
The Limits of Composable Crypto with
Transferable Setup Devices

Ioana Boureanu
Akamai Technologies Limited

London
UK

icarlson@akamai.com

Miyako Ohkubo
NICT
Tokyo
Japan

m.ohkubo@nict.go.jp

Serge Vaudenay
EPFL

Lausanne
Switzerland

serge.vaudenay@epfl.ch

ABSTRACT
UC security realized with setup devices imposes that single in-
stances of these setups are used. In most cases, UC-realization
relies further on other properties of the setups devices, like tamper-
resistance. But what happens in stronger versions of the UC frame-
work, like EUC or JUC, where multiple instances of these setups
are allowed? Can we formalise what it is about setups like these
which makes them sometimes hinder UC, JUC, EUC realizability?

In this paper, we answer this question. As such, we formally
introduce transferable setups, which can be viewed as setup devices
that do not (publicly) disclose if they have been maliciously passed
on. Further, we prove the general result that one cannot realize
oblivious transfer (OT) or any “interesting” 2-party protocol using
transferable setups in the EUC model.

As a by-product, we show that physically unclonable functions
(PUFs) themselves are transferable devices, which means that one
cannot use PUFs as a global setups; this is interesting because non-
transferability is a weaker requirement than locality, which until
now was the property informally blamed for UC-impossibility re-
sults regarding PUFs as global setups.

If setups are transferable (i.e., they can be passed on from one
party to another without explicit disclosure of a malicious transfer),
then they will not intrinsically leak if a relay attack takes place. In-
deed, we further prove that if relay attacks are possible then oblivi-
ous transfer cannot be realized in the JUC model.

Linked to the prevention of relaying, authenticated channels have
historically been an essential building stone of the UC model. Re-
lated to this, we show how to strengthen some existing protocols
UC-realized with PUFs, and render them not only UC-secure but
also JUC-secure.

Categories and Subject Descriptors
E.3 [Data encryption]: [Public key cryptosystems]

Keywords
universal comparability; relay attacks; physically unclonable func-
tions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’15, April 14–17, 2015, Singapore..
Copyright c© 2015 ACM 978-1-4503-3245-3/15/04 ...$15.00.
http://dx.doi.org/10.1145/2714576.2714591.

1. INTRODUCTION
UC-composable [5] cryptographic primitives give us the very

sought-after secure guarantees when it comes to the design of cryp-
tographic protocols. And, the skeptical can even go beyond and
aim for stronger models, like the JUC (joint-state UC), EUC (ex-
ternalized UC), GUC (generalized UC) [6], where realizability is
even harder. However there is a fundamentally limiting impossibil-
ity result by Canetti et al. [7]: two-party secure computations are
UC-impossible in the UC plain model. To bypass this, the UC mod-
els are augmented with helping building blocks, also called (UC)
setups.

In this paper, we look at designing composable cryptographic
primitives, especially in stronger UC frameworks (like JUC, EUC)
and at how relaying comes in the way of that. We link relay attacks
to whether they are apparent/visible at the level of the crypto setups
used therein, via the notion of transferable setups. An instance of
such setups is given by the much spoken-of PUFs (physical unclon-
able functions) [17, 24, 16, 10, 13, 25]. We then look at how the
often-assumed authenticated channels have come to defeat relaying
within the UC framework.

For completeness, we will first summarize the general settings
of UC models with and without setups, underlining certain impor-
tant details on the communication model and the legitimate use of
setups.

A UC overview.
Plain UC. In the UC framework, we consider several partici-

pants and an environment. They all run their purported algorithms.
Some participants may be corrupted, in which case they behave as
the adversary instructs them to. Participants receive inputs from the
environment and send their final outputs to the environment. It is
assumed that all algorithms are probabilistic polynomial-time algo-
rithms. The UC models comprises two symbolic worlds that should
behave similarly, i.e., a real world where the protocol π is run, and
an ideal world where the idealized version of the protocol is exe-
cuted; this idealized version is usually denoted via an ideal (target)
functionality Ftarget . Let us detail slightly. In the real world, a set of
honest participants is assumed to run their corresponding part of π.
In the ideal world, honest participants are “dummies” who just for-
ward inputs/outputs to the ideal functionality Ftarget . We say that
this functionality is UC-realized by the protocol π if for every real
adversary, there exists an ideal adversary (also called simulator)
such that for every environment Z, the real and the ideal worlds are
indistinguishable in terms of the output of Z. This definition is ac-
companied by a composition theorem: every complex experiment
using one instance of π as a subroutine emulates a corresponding
experiment using (the dummy protocol based on) Ftarget instead.
This substitution can of course be used recursively.



Communication Models in UC. In the original UC papers [5],
it was assumed that the channels were secure; we will henceforth
refer to that UC-model as the secure-channel UC. However, this as-
sumption was consequently [6] dropped; we will henceforth refer to
this later UC-model as the insecure-channel UC. The latter means
that in the case of honest real-world executions, one can imagine
man-in-the-middle adversaries mounting attacks. To bypass this is-
sue, most UC-secure constructions assume or intrinsically require
authenticated channels between the participants1. Participants can
identify where an incoming message comes from and where an out-
going message goes to. Note that the UC models also assume that
such authenticated channels are not visible to the adversary.

Hybrid UC. Unfortunately, virtually no interesting ideal func-
tionalities can be realized by protocols in the plain UC setting [7].
So, one turns to the hybrid model, where participants can further
access a setup functionality Fsetup, in both the real and the ideal
worlds. This defines the Fsetup-UC-realization. Roughly speak-
ing, a protocol π is said to be realized in the Fsetup-hybrid model
if π is now built using calls to the ideal functionality Fsetup, in
such a way that one instance of the corresponding “physical” setup
will only be used in one protocol session of π. One clear disad-
vantage is that composition only works for one single session of π

which is using a “physical” instance of the setup given via Fsetup

at one point in time. Namely, such a Fsetup UC-functionality is
always so that it models the following: “duplicates” of the (phys-
ical) UC setup-device that Fsetup is modelling will be issued for
every new session of π. Moreover, no other process should access
Fsetup when π is already using it (i.e., the environment Z cannot
directly access Fsetup). In UC terms, for π to be UC-composable
using Fsetup, π needs to be “subroutine respecting” [6].

EUC and GUC. From UC, one moves to the EUC formaliza-
tion [6] by allowing the environment to access the Fsetup as well.
EUC-realization and EUC-composition are simply UC-realization
and UC-composition respectively where the environment is em-
powered in this way. I.e., EUC still refers to one session of a
protocol, but –in EUC– all parties have access to a global setup,
even if it is still only one (physical) instance of such a setup. In
the GUC framework [6], the environment is even more powerful as
he has access to other protocols running simultaneously in the net-
work. Also, in GUC, the target protocol has several simultaneously
running sessions, which the GUC-environment can have adaptive
(I/O) access to. GUC-realization is defined with respect to this
all-powerful environment. A result of equivalence between some
type of GUC-composition and some type of EUC-composition ex-
ists [6]. For this equivalence to hold, the communication is re-
stricted again, in that it still only allows “subroutine-respecting”
protocols. A protocol π is Fsetup-subroutine respecting if no sub-
routine of a party in π takes I/O from any non-subroutine of π (other
than a single instance of Fsetup and the environment). With such
a restriction in place, a weaker EUC-realization/EUC-composition
is defined, i.e., EUC-realization that applies to Fsetup-subroutine
respecting protocols, which was proven equivalent to the GUC-
realization.

JUC. There also exists a model in between the hybrid-UC and
EUC, namely JUC [9]. In the definition of the Fsetup-JUC realiza-
tion, we consider several groups of participants, each running their
own instance of π in the real world, and “playing” with their own
instance of Ftarget in the ideal world. The protocol participants can
all jointly access Fsetup, but the environment cannot. The envi-

1In the UC literature, it is not always clear when authenticated
channels are assumed, but most of the UC protocols do implicitly
rely on this assumption of the model. There are a few feasibility
results without it [1].

ronment must also provide all inputs at once, i.e., the simultaneous
sessions of π cannot be initialized adaptively. This notion makes
feasible a complex composition in some limited way. Namely, for
each set of sessions of π which can only be initialized with inputs in
parallel, we can substitute each session with an instance of Ftarget ,
and use the same instance of Fsetup for this set (and this set only).

UC setups of interest. UC hybrid models, with setups of tamper-
evident and tamper-resistant devices, have been employed to UC-
realize bit-commitments (COM), oblivious transfers (OT), coin flip-
ping, polling schemes [15, 18, 14, 19, 20, 22, 21, 2, 3], etc. More
recently, a new type of tamper-resilient devices has been modelled
as setups to create UC-secure OT and COM [4, 23], namely PUFs
(physically unclonable functions). Different assumptions [4] have
been taken to model these PUFs: e.g., super-polynomial sizes of
the input domains, well-spread domains, freshness of usage, hon-
est behavior, etc. In [23], malicious PUFs are also modelled.

Contributions.

I. In this paper, we first look at how UC setups can in fact lead to
impossibility results in certain flavors of the UC model. To this end,
we formalize transferable setups, which can be viewed as devices
that do not (publicly) disclose if they have been maliciously passed
on. For instance, transferable setups will not publicly output, e.g.,
the identifiers of the parties who are physically accessing them. We
show that OT is not EUC-realizable if transferable setups are to be
used. So, transferable setups cannot be global.

We will show that many of the well-known tamper-resilient de-
vices, PUFs included, can be modelled as what we call transferable
setups. More specifically, we show that those used in in [14, 19, 20,
22, 21, 2, 4, 23] can, while those used in [15, 18, 2] cannot.

II. We also formalize relay attacks in the context of using UC
setups. Using this formalism, we then show that an OT protocol
subject to a relay attack cannot be JUC-secure.

III. We then look at how relaying and PUFs were handled in the
latest UC protocols using these setups. We observe that if PUFs
are reusable amongst sessions, or that if we do not assume channel
authentication within UC, then the OT protocol in [4] is not UC-
secure in the FPUF-hybrid model.

We then show a manner to render the OT protocol in [4] even
JUC-secure, by strengthening the protocol.

We discuss other related protocols and setups in the literature
and obtain similar results with the protocols from [11, 12, 23].

Organization. We define and observe transferable setup in Sec-
tion 2. The EUC-impossibilities with transferable setups, as well
as other related JUC-imposibilities are discussed in Section 3. We
give several examples of transferable setups in Section 4. Section
5 shows how to make JUC-secure OT protocol out of from UC-
secure OT protocol that uses transferable setup. We conclude in
Section 6.

2. UC SETUPS, TRANSFERABILITY AND
RELAYING

Intuitive description of transferability.
This section will give a mathematical expression for the follow-

ing scenario.

Scenario for transferability. Assume that parties A, B and C
are engaged in a communication protocol involving some setup-
device. Assume further that B and C are malicious, and A thinks



she is communicating with B when in fact she is communicating
with C. Roughly speaking, the setup used therein is transferable
if the fact that A is mis-lead w.r.t. its interlocutor is not prevented
by/via the outputs of this setup.

By separating the notions of party/participant, algorithm, and
setup being used, this section will formalise the idea behind trans-
ferable setups. This is needed in order to formulate and prove a
formal (E)UC impossibility result.

Participants, algorithms and transferability.
We distinguish between a physical participant (e.g., a computer,

a HSM) and the actual algorithm that is run by this physical par-
ticipant (e.g., the client-side SSH installed on a computer). We
will now formalise how these participants and algorithms interact
together within a protocol execution. E.g., pieces of software can
interact together on the same machine, and each piece can indepen-
dently deliver several outputs: an SSL client algorithm can send
some messages directly on port 443 and some other messages to
the network configuration daemon of the same physical machine.

Participants can be viewed as identifiable entities/parties taking
part in real/idealized execution: e.g., a physical machine with an
identifiable IP address. Participants, functionalities, and the envi-
ronment run algorithms. They are connected with each others by
some bi-directional channels. For simplicity, we assume only two
ends for every channel. We assume that algorithms have differ-
ent input/output communication ports which can be “plugged” to
the port of other algorithms, or to the communication channel of
a participant. I.e., in a real-world setting, this would be akin to
one algorithm being called by another algorithm and/or used by a
device/party. Also, algorithms are not aware how their communi-
cation ports are plugged. At the same time, honest participants are
correctly “plugged”. I.e., the SSL algorithm does not “care” on
which port messages are delivered, but a correctly/standardly con-
figured SSL server will have port 443 open and it will be listening
on it.

Participants, functionalities, and the environment have an iden-
tifier. Algorithms could use the identifier of participants as part of
their communication. I.e., the SSL-handshake algorithm will verify
a certificate against a given hostname that identifies the server. In-
deed, algorithms could receive such identifiers as input, e.g., to in-
struct them which role they are supposed to “play” and with whom
they are supposed to communicate. This is akin to instantiated
an object of a generic class with specific parameters, or calling a
function with specific arguments, e.g., instantiate the server-side
(object) of a program with a server-identifier called “server1” to
speak to a client instantiated as “client3”. To denote that an algo-
rithm alg runs with some given identifiers id1, . . . , idn, we simply
write alg(id1, . . . , idn). These identifiers can also be hard-coded
in the algorithm. For instance, we can assume that the algorithm
of a UC setup functionality Fsetup is correctly “plugged” and that
all identifiers are hard-coded. In this way, Fsetup always knows
from which participant a message comes in, and to which partic-
ipant a message is to be sent to. However, for participants and
their algorithms, there is no guarantee that the “plugging” and/or
the input-manipulation runs correctly. This is so since inputs can
be (maliciously) handled, e.g., if the algorithm is run by a corrupted
participant.

Transferability.
In the context of communicating parties, using setups, we will

also formalize how an unobservable relay can be achieved, i.e.,
a relay that no party/setup can be aware of. To do so, we will

introduce a series of experiments (i.e., interactive games of ma-
chines/participants and algorithms) depicted in Fig. 1 and denoted
exp1, exp2, exp′1 and exp′2.

The transferability/relay-defining experiments in Fig. 1. As-
sume an arbitrary 2-party protocol defined by two algorithms sdr
(sender) and rcv (receiver). We assume that sdr is designed to be
run by party P1 and to communicate with party P2, and that rcv is
designed to be run by P2 and to communicate with P1 (I.e., this is
as if the previously mentioned identifiers, here denoted P1 and P2,
were hard-coded in sdr and rcv). The participant denoted with Z
is executing an arbitrary algorithm with two communication ports,
no input (port) and one output (port). Both algorithms sdr and rcv
have an input/output port (connected to Z), a setup port (connected
to Fsetup), and an extra communication port to communicate with
their counterpart. This is depicted in the upper, leftmost part of
Fig.1, denoted exp1. In this experiment denoted exp1, P1 indeed
executes sdr (sender), P2 executes rcv (receiver) with correctly con-
nected communication ports. A second experiment is shown on
the upper right part of Fig. 1 and is denoted exp2. In this sec-
ond experiment exp2, P3 is running two concurrent algorithms: the
rcv (receiver) algorithm and tr

P1P2
P2P3

(some “relay-accommodating”
translator).

The aim of experiments exp1 and exp2 in Fig. 1. This is here is
as follows: exp2 will appear (to the outside world) just like exp1.,
only that –in exp2– the outputs by the sdr algorithm are relayed
from P1 to the P3 party, who is the one running the rcv algorithm
in exp2; All of this is done transparently to Z and all other parties
involved. For this transparency to be achieved, we introduced the
tr

P1P2
P2P3

: a mechanisation facilitating whatever translation (of iden-

tifiers) needs to take place. Intuitively, via tr
P1P2
P2P3

’s “translation”,
the rcv (receiver) algorithm behaves as if it was run by P2 commu-
nicating with P1 in the upper part of exp2’s last block, while in its
lower part, rcv behaves as if it is run by P3 communicating with P2.

We define similar experiments exp′1 and exp′2, in a symmetric
way.

The first communication port of Z is connected to P1 in both
experiments. The second port of Z is connected to (the channel of)
P2 in the first experiment, and to P3 in the second experiment. The
algorithm tr

P1P2
P2P3

uses two ports: the upper and the lower one. The
input/output port of rcv is connected to Z, its communication port
is connected to P2, and its setup port is connected to the upper port
of trP1P2

P2P3
. The lower port of trP1P2

P2P3
is connected (to the channel) to

Fsetup. In both experiments, we assume that P1 executes sdr with
correctly connected communication ports.

Let us now formalize the requirements of the setups, in order for
the above (informal) transparent relaying to be the case.

Definition 1. (Transferable Setup) Assume some participants and
identifiers P1,P2,P3. Let Fsetup be a setup functionality and
relay(P1,P2,P3) be an algorithm. We say that Fsetup is a relay-
transferable setup if there exists some algorithms tr = tr

P1P2
P2P3

and

tr′ = tr
P2P3
P1P2

such that for any 2-party protocol π = (alg1,alg2) as
per the above and any Z, the above experiments in (exp1,exp2) and
(exp′1,exp

′
2) produce indistinguishable outcomes in each respective

tuple.

In Section 4, we are going to show which “modern” UC setups
are transferable and which are not; in anticipation, PUFs [4] are
transferable, but tamper-resistant hardware [15] are not.



≈

Fsetup

������?6
?
6

P1 ��
�� ���-sdr�� ����

P2

�� ����
��
rcv���� ��

Z

�� �� ��-

? ?
6

�� ��
���� -

Fsetup

������?6
?
6
?

6

P1 ��
�� ���-sdr�� ����

P2

�� ����
��

�-relay���� ��
P3 ��

���� rcv�� ����
tr

����

Z

�� �� ��-

?

�

?

�� ��
�����

exp2exp1

≈

Fsetup

������?6? 6

P2 ��
�� ���-sdr�� ����

P3

�� ����
��
rcv���� ��

Z

�� �� ��
?
6

�

?

����
���� -

Fsetup

������?6
?
6
?

6

P1 ��
�� ��sdr

������
tr′

���� �-

P2

�� ����
��

�-relay���� ��
P3 ��

���� rcv���� ��
Z

�� �� ��-

?

�

?

����
�����

exp′2exp′1

Figure 1: Transferable Setup.

We are now going to formalize the notion of relay attacks, in
presence of transferable setups.

Definition 2. (Relay Attack (Fig. 2)) Let Fsetup be a relay-
transferable setup, for relay(P1,P2,P3), P1, P2, P3 as before. We
consider a 2-party protocol π = (alg1(P1,P2),alg2(P1,P2)) based
on the functionality Fsetup in which sdr and rcv receive two hard-
coded identifiers. We say that π is subject to relay attacks if for
any Z, the two following experiments are indistinguishable to any
environment: 1. participant P1 runs sdr(P1,P3) with the communi-
cation port connected (to the channel) to participant P3, participant
P3 runs rcv(P1,P3) with the communication port connected (to the
channel) to participant P1; 2. participant P1 runs sdr(P1,P2) with
the communication port connected (to the channel) to participant
P2, participant P3 runs rcv(P2,P3) with the communication port
connected (to the channel) to participant P2, participant P2 runs
relay(P1,P2,P3), as per the definition of relay-transferable se-
tups.

3. IMPOSSIBILITY RESULTS IN UC WITH
TRANSFERABLE SETUPS & RELAYING

In this section, we will see how transferability affects
EUC-realization.

3.1 Transferable Setups & EUC-Impossibility

THEOREM 1. If Fsetup is a relay-transferable setup for some
symmetric relay algorithm, then there is no protocol which Fsetup-
EUC-realizes FOT .

The intuition of the proof.
The idea of the proof is classical. Start from the premise that

an arbitrary protocol π = (algs,algr) would Fsetup-EUC-realize
FOT . Then, create a series of runs of this protocol and of the FOT
functionality respectively, such that these runs are pair-wise and/or
transitively indistinguishable, yet you arrive at some (distinguishability-
based) contradiction. Thus, conclude that no such protocol π =
(algs,algr) could have in fact Fsetup-EUC realized FOT .

To get to this contradiction, we will basically use the existence
of the ideal-world simulator S im (given the initial presumption that
π = (algs,algr) would Fsetup-EUC-realize FOT say running with
one of the inputs as a bit b). Then, this S im must be able to “ex-
tract” the correct bit b to send to FOT . We will then make S im
internally available to a corrupt participant in a new (real-world)
run of the protocol. The executions run via such a corrupt party (in
the real world) will not be indistinguishably simulatable (in an ideal
counterpart). To build the series of indistinguishable experiments
we apply transformation steps provided either by the (supposed)
Fsetup-EUC realization of FOT or by the definition of transferable
setups.

Note1.
It seems intuitive that if a setup is transferable, then it loses

“globality”, hence it cannot serve as an EUC-setup. However, the
separation between "globality" and non-transferability is not known.
I.e., if a setup is non-global, it does not mean it is transferable,



Fsetup

������?6
?

6

P1 ��
�� ��� -sdr

(P1 ,P3)�� ����
P3

�� ��
��
rcv

(P1 ,P3)���� ��
Z

�� ��-

?

�

?

�� ������ -

Fsetup

������?6
?
6
?

6

P1 ��
�� ���-sdr

(P1 ,P2)�� ����
P2

�� ���� �-relay���� ��
P3

�� ��
��
rcv

(P2 ,P3)���� ��
Z

�� ��-

?

�

?

�� �������≈

Figure 2: Relay Attack.

nor do we know how many other well-distinguishable properties
may lie between transferable and non-global, or between global
and non-transferable. Moreover, this is the first time a compact
class of global setups, which lead to lack of realizability, has been
formally characterised.

Note2.
This proof strategy to be seen below (but not the methodology of

symmetric algorithms and relay-transferable setups) is akin to that
of splitting adversaries in [8]. Thus, our result above seems to also
be an extension from UC-impossibility results to EUC-impossibility
results, when the class of relay-transferable setups are used. Along
similar lines, the above OT-impossibility result should extend and,
like in [8], apply to all same-output non-trivial 2-party protocols.

PROOF. We start with a protocol π = (algs,algr) and assume
contrary to our current theorem that π would Fsetup-EUC realize
FOT . If this is the case then for every adversary that will corrupt
π (in the real world), there exists a simulator running an algorithm
S im that would mimic it (in the ideal world) in such a way that
no (EUC) environment Z can tell the difference (between the two
worlds).

In what follows we consider an environment and three partici-
pants P1,P2,P3, together with Fsetup.

In the first three experiments, the environment is running and
algorithm G generating two strings s0 and s1 and a bit b, sending
s0 and s1 to a left participant and b to a right one, getting from the
right participant some s, and giving as an outcome 1 if and only if
s = sb.

In the first experiment, denoted exp1 in Fig. 3, the left participant
is connected to P1 who is running algs with P2. The right one is
connected to P2 who is running algr with P1. So, this experiment
always outputs 1.

At the higher level, we can simply view exp1 as P1 running an
honest sender-side algorithm and P2 running an honest receiver-
side algorithm within an 1-out-of-2 two-party OT protocol π.

Using the transferability assumption (marked with “(1)” in Fig. 3),
a direct consequence of Def. 1 shows that this is equivalent to a sec-
ond experiment in which the left participant is still connected to P1,
still running algs with P2, but the right one is connected to P3, now
running algr and trP1P2

P2P3
with P2. The participant P2 is now running

relay(P1,P2,P3). Please see the top two experiments of Fig. 3.
At a higher level, this second experiment exp2 shows how mainly

the receiver-side is getting corrupted (and, above all, imperson-

ated). I.e., the receiver-side is now being run by some P3, but P1
thinks he is sending messages to some P2; meanwhile, the receiver-
side messages produced inside P3 will be received by the man-in-
the-middle P2 and then fed by P2 back to P1.

We can define a new environment putting the old one and P3
together (see the doted line on the second diagram in Fig. 3, exp2
and exp3).

Thus, in exp2, we simply have an EUC environment (within exp2’s
dotted line) which runs the receiver-side inside himself, and we
have an adversary in the person of P2 who simply relays between
this environment and an honest sender-side algorithm run inside
P1. This EUC real-world execution now becomes fundamental to
the proof (because we presumed it would be simulatable).

Let us apply the EUC-realizability assumption (marked with “(2)”
in Fig. 3). Then, this second, real-life EUC experiment exp2 is
equivalent to a third, ideal-life EUC experiment exp3. In exp3, P1
is a dummy sender forwarding messages to FOT, P2 is running a
simulator exchanging messages with FOT , and the environment is
as before, i.e., the (old, G-based) environment and P3 are still being
run as in exp2.

According to the assumption of EUC-realizability assumption,
S im is able to produce a bit b′ to send to FOT, FOT gives him back
a state sb′ such that, with a high probability, b′ = b and then sb′ is
equal to sb (i.e., with s).

In the next experiments, the environment is still generating s0,s1,b,
sending b to a right participant (who is still connected to P3 at this
time), waiting for a bit b′ from a left participant (that we connect
to P2 for the moment) and sending him back sb′ . The environment
expects some s or sb from the right participant and outputs 1 if and
only if sb′ = sb.

By redirecting the simulator’s port to the environment (marked
with “(3)” in Fig. 3), we obtain an experiment which is obviously
equivalent to the previous one. We denote by G′ the algorithm of
the environment.

The simple step from exp3to exp4 was first to include a simulated
version of FOT inside the run done by Z. Then, (algorithm of) the
dummy P1 was also silently “pushed inside” Z. This is why we
renamed his internal algorithm from G to G′. This is possible with-
out distinguishability repercussions since FOT does not state who
queries what, i.e., it makes no public announcements that would
hinter its simulated “inclusion” within Z, and P1 did practically
nothing.

We now apply the transferability with (P3,P2,P1) (marked with
“(4)” in Fig. 4). We obtain that P2 runs relay(P3,P2,P1) with the



�s0 ,s1

?b 6s

Fsetup

������?6
?
6

P1 ��
�� ���-algs�� ����

P2

�� ����
��

algr���� ��
Z

�� �� ��-

? ?
6

G
�� ��
��output

⇒
tr

(1)

�s0 ,s1 -b�
s

Fsetup

������?6
?
6
?

6

P1 ��
�� ���-algs�� ����

P2

�� ����
��

�-relay���� ��
P3 ��

���� algr
�� ����

tr

����

Z

�� �� ��-

?

�

?

G
�� ����

output

⇓ EUC(2)

q q q q q q q q q q q q q q q q

qqqqqq
qqqqqq
qqqq

q q q q q q q q q q qqqqqq
qqqqqq
qqqqqq
qqqqqq
qqqq q q q q q q q q q q q q q q q q q q q q q q q q q

qqqqqq
qqqqq env.

�s0 ,s1 -b�
s

Fsetup

������?6? 6

P1 ��
�� ��

��FOT��
P2

�� ����
��

�-S im���� ��
P3 ��

���� algr
�� ����

tr

����

Z

�� �� ��-

?

�

?

G
�� ��
��output

⇐
(3) q q q q q q q q q q q q q q q q

qqqqqq
qqqqqq
qqqq

q q q q q q q q q q qqqqqq
qqqqqq
qqqqqq
qqqqqq
qqqq q q q q q q q q q q q q q q q q q q q q q q q q q

qqqqqq
qqqqq env.

?
sb′ 6b′

-b�
s

Fsetup

������?6? 6

P2

�� ����
��

�-S im���� ��
P3 ��

���� algr
�� ����

tr

����

Z

�� �� ��
6

-

�

?

G′
�� ��
��output

exp1 exp2

exp4 exp3

Figure 3: Reductions (1) to (3).

left port connected to P3 and the right port connected to P1. But,
due to the symmetry, this is equivalent to relay(P1,P2,P3) with the
left port connected to P1 and the right port connected to P3. Now,
P1 is running the simulator connected to a translator.

We apply again (marked with “(5)” in Fig. 4) the transferability
(backwards) to move back to the situation where P2 is running algr
correctly connected, and P3 unused.

We have now arrived to some clearer, new real-world (UC) ex-
ecutions depicted in exp6. We can see it in the following way. Z
is running an OT session called π1 (on s0,s1,b) with a receiver in
the person of P2. Out of this, Z gets s = sb from P2. And, P1 in-
teracts as a sender with the honest receiver P2 according to the OT
protocol π, in a session called π3. At the same time, Z is running
another OT session called π2 (on b′) with a (corrupt) party in the
person of P1. P1 is acting as an OT-receiver for Z inside π2. Out
of this, Z should send sb′ to P1, where b′ is provided by P1 via S im.
Since S im should be able to extract b out of the run in π3, then
with an overwhelming probability, b′ should be equal to b and then
sb′ should be equal to sb with an overwhelming probability. So, in
these real-world executions the environment with output 1, with an
overwhelming probability.

Finally, we apply (marked with “(6)” in Fig. 4) the EUC assump-
tion again (actually, the UC assumption is enough in this case, since
the environment is not using Fsetup). Due to our reductions, in the
ideal-world execution depicted in exp7, the output must also be 1
(except with negligible probability).

In exp7, in the session π1, we obtain that P2 is honestly receiving
a bit b and giving it to FOT, P1 sends some s′0,s

′
1 to FOT, FOT sends

s′b back to P2, P2 then sends this s′b as s back to Z. In the session π2,

P1 is running a simulator S im′ to send some b′′ to the environment
Z, to get sb′′ in return from Z.

The question is whether sb′′ is still equal to s (like sb′ was in
exp6). Clearly, if b = b′′, then this holds with probability 1 (i.e.,
then sb′′ = sb ≡ s). But if b 6= b′′ (which happens with probability
1
2 ), this can only work if the simulator S im′ can correctly guess s′b.
Given that there is at least one bit of information in s′b, the outcome
of the experiment is 1 with probability lower than 3

4 , which con-
tradicts the initial assumption (i.e., exp7 cannot perfectly emulate
exp6, which goes back to exp4 not perfectly emulating exp3, which
refutes the EUC-realizability in the first place).

Other EUC impossibilities with transferable setups.
We believe that this can be taken further, to some other types

of protocols (like the impossibility in [8] was). For instance, we
can easily show with a similar proof the same result for commit-
ment.2 A natural question, given our results, is whether we can
EUC-realize key exchange FKE (since practice likes to do key ex-
change with PUFs), based on transferable setups. The answer is
that we cannot.

THEOREM 2. If Fsetup is a relay-transferable setup for some
symmetric relay algorithm, then there is no protocol which Fsetup-
EUC-realizes FCOM or FKE .

2Care is to be taken at the fact that commitment-transactions are
done in two phases.



?
sb′ 6b′

-b�
s

Fsetup

������?6? 6

P2

�� ����
��

�-S im���� ��
P3 ��

���� algr
�� ����

tr

����

Z

�� �� ��
6

-

�

?

G′
�� ��
��output

⇒
tr

(4)

-b′�
sb′

-b�
s

Fsetup

������?6
?
6
?

6

P1 ��
�� ���-S im

������
tr

���� P2

�� ����
��

�-relay���� ��
P3 ��

���� algr
�� ����

tr

����

Z

�� �� ��-

?

�

?

G′
�� ��
��output

⇓ tr(5)

-b′�
sb′

?b 6s

Fsetup

������?6
?
6

P1 ��
�� ���-S im

������
tr

���� P2

�� ����
��

algr���� ��
Z

�� �� ��-

? ?
6

G′
�� ����

output

⇐
UC

(6)

-b′�
sb′

?b 6s = s′b

Fsetup

������?6
?
6

P1

����
��

S im′���� ��
P2

�� ����
��

Z

�� �� ��-

? ?
6

G′
�� ����

output

6
��FOT��

s′0
s′1

exp5 exp6

exp8 exp7

Figure 4: Reductions (4) to (6).

The intuition of the proof.
If we have a protocol EUC-realizing FKE , we can consider an

experiment with Alice and Bob, where Alice is malicious and just
forwards everything to the environment. Due to transferability, this
is the same as Alice and Bob running the protocol honestly. Due
to EUC-security, there must be an ideal adversary who as follows.
First, this ideal adversary makes Alice and dummy Bob run FKE

and get the exchanged key K. Then, it can simulate Bob’s protocol
to the environment running Alice’s protocol in such a way that the
protocol terminate with the key K. Now, take the algorithm of this
ideal adversary and consider another experiment where Bob is ma-
licious and running this algorithm. This will make a honest Alice
terminate the KE protocol on a key K chosen by the environment
and given to Bob. But now, it is clear that the ideal world cannot
force FKE to make Alice receive some K chosen by the environ-
ment. So, there is a contradiction with EUC security.

3.2 Relaying & JUC-Impossibility
We now move to JUC-security and show that it is hindered by

relay attacks, formalized in Def. 2.

THEOREM 3. If π = (algs,algr) is an OT protocol based on
Fsetup and π is subject to relay attacks, then π does not Fsetup-
JUC-realizes FOT .

PROOF. Consider a JUC (real-world) experiment of two ses-
sions of the OT protocol in Fsetup hybrid model, with a sender
S1 and a receiver R1, and a sender S2 and receiver R2, in the two
respective sessions. The environment Z chooses s(i)0 and s(i)1 and
sends them to the honest participant Si, where i = 1,2. Z also

selects a bit b(i) and sends it to the honest participant Ri, where
i = 1,2. The outcome s coming for R2 will be given back to the
environment. The environment outputs 1 if and only if s = s(1)b .
We consider the following execution of this real-world experiment
where R1 and S2 are corrupted. In first session π1 of π, using a
setup function Fsetup, S1 runs with (s(1)0 ,s(1)1 ) with the adversary
A who does the following: A relays the protocol sessions from S1
to R2 (as well as the physical setup instance, as per the transfer-
ability assumption). The above real-world execution is illustrated
in Fig. 5.

Due to the transferability assumption, this is indistinguishable
from S1 and R2 running the protocol together. So, in this real-
world execution, the environment outputs 1 with probability 1 (as
he would do if S1 and R2 running the protocol together).

Let us now describe the corresponding ideal-world execution.
The ideal adversary S im (namely S im(R1)) learns s(1)

β
, but has no

information about sβ. Equally, S im (namely S im(S2)) knows noth-
ing about b(2). So, with the output by the dummy R2, in this ideal-
world execution, the environment outputs 1 with a probability close
to 1

2 .
Thus, we exemplified a JUC real-world execution of an arbitrary

1-out-of-2 2-party OT that is distinguishable from its ideal-world
counterpart. Thus, OT is not JUC-secure in Fsetup-hybrid model,
when Fsetup is transferable and relaying is possible.



Fsetup

?
6

?
6

?
6

?
6

S1

algs
(S1 ,R1)

R1

algr
(S1 ,R1)

S2

algs
(S2 ,R2)

R2

algr
(S2 ,R2)

Z

output 1
s2=s1

b2

?
6

? ?

�

?

�s
1
0 ,s

1
1 -b2

�
s2

b1 ,s1 s2
0 ,s

2
1

Fsetup

?
6

?
6

?
6

?
6

S1

algs
(S1 ,R1)

R1

relay

S2

relay

R2

algr
(S2 ,R2)

Z

output 1
s2=s1

b2

? ? ?

�

?

�s
1
0 ,s

1
1 -b2

�
s2

b1 s2
0 ,s

2
1

⇒JUC

Fsetup

?
6

?
6

S1

FOT

R1

S im

S2

S im

FOT

R2

Z

output 1
s2=s1

b2

? ? ?

�

?

�s
1
0 ,s

1
1 -b2

�
s2

b1 s2
0 ,s

2
1

Figure 5: Relay Attack against JUC Security.

4. ACTUAL TRANSFERABLE SETUP DE-
VICES

Examples of transferable setups.
We will show prove/discuss the transferability of certain known

UC setup devices. One of these is FPUF, modelling PUFs, as they
were formalised in [4].

THEOREM 4. FPUF defined in [4] is relay-transferable setup.
PROOF. Let us consider a 2-party protocol π run using PUFs

(i.e., FPUF). We presume some hard-coded identifiers P1,P2, and
two algorithms sdr, rcv respectively used by parties with these
identifiers. Let the run of this protocol by the parties above denote
an experiment called exp1 (as in the left hand side of Fig. 1). Let
P3 be another hard-coded identifier, to be used by a third party. We
will define two more algorithms, relay and tr and we will prove
that — with P1,P2,P2,alg1,alg2,FPUF and relay and tr — we
can build an execution of π, in an experiment exp2, indistinguish-
able from exp1. The same holds for exp′1 and exp′2. Consequently,
FPUF is relay-transferable setup as per Def. 1.
A relay algorithm: This is relaying messages in an intuitive way:
whatever comes from the left port is forwarded to the right port and
vice versa. Messages from FPUF are ignored except the notifications
of a received handover: if relay receives (handoverPUF,sid,Pi)
for i = 1,3, it sends back m = (handoverPUF,sid,Pj) with j such
that {i, j} = {1,3} to forward the PUF to the other participant.
Since we consider 2-party protocols, whenever relay receives a
message from FPUF, it could only have originated from sdr or rcv.
So, other handed over PUFs are just ignored by relay.
A tr

P1P2
P′1P′2

algorithm: This translates identifiers in an intuitive way:

if it receives m = (initPUF,sid,Pj) from the top port, then tr
P1P2
P′1P′2

sends (initPUF,sid,P′j) to the bottom one. The response of form
(initializedPUF,sid) from the bottom port is forwarded to the
top one. If m = (evalPUF,Pj,c) comes from the top, then tr

P1P2
P′1P′2

sends (initPUF,P′j,c) to the bottom. Then, the response of form
(eval′edPUF,sid,c,r) from the bottom is forwarded to the top. Fi-
nally, after it receives the message m = (handoverPUF,sid,Pj,Pi)

from the top, (handoverPUF,sid,P′j,P
′
i ) is sent by tr

P1P2
P′1P′2

to the

bottom, and m = (handoverPUF,sid,P′i ) coming from the bottom
makes trP1P2

P′1P′2
send the message (handoverPUF,sid,Pi) to the top.

For P′1 = P3 and P′2 = P3, we show by induction that any step in
exp1 matches one (or several) steps in exp2. So, the simulation is
perfect.

Let us now consider other setup assumptions. Tamper-proof
hardware is used in [15] and is described using Fwrap. According to
the definition, Fwrap is not a transferable setup since it is assumed
that the creator of the tamper-proof device intends to have this de-
vice be used only by one user, whose id is recorded in the device,
and the thus-wise recorded id cannot be changed. Tamper-resistant
devices FTA are building blocks in a model called the trusted agent
model [18]; like Fwrap, FTA is not a transferable setup. This is be-
cause there is no opportunity for handing it over as per the device’s
definition in [18]. Tamper-evident envelopes presented in [21] can
be considered relay-transferable setups, because such an envelope
includes only the sender’s id (and a value), and the envelope sent to
a user can be diverted to another user. However, purported tamper-
evident envelopes F DE

Oneseal (a variant of the above envelopes), pro-
posed by [2], are not transferable. It is because such an envelope
is aimed only for an intended recipient and cannot be diverted to
another recipient.



5. COMPOSABILITY & TRANSFERABLE
DEVICES – FURTHER ASPECTS

We will now report on further issues with the UC-security of
recent protocols that were particularly based on PUFs, which we
showed above to be transferable devices. (These discussions could
extend to other transferable devices.)

Then we will propose some solutions to bypass the issues high-
lighted in the first part of the section.

To set the basis of the discussions, in Fig. 6, we first recall the
PUFOT protocol from [4], an OT protocol based on PUFs.3 We
simplified the description of the protocols as follows: 1). we are
assuming non-noisy PUFs (which allows to get rid of the fuzzy
extraction); 2). we removed the multiple OT capabilities. It is fairly
easy to check that our observations extend to the original PUFOT
protocol. In this way, we treat PUFs as access-controlled random
oracles. (Malicious PUFs could later be introduced as arbitrary
oracles.) Basically, the receiver initializes a PUF, gets one random

Sender Receiver
input: s0,s1 input: b

init PUF, pick c
handover PUF←−−−−−−−−−−−−− r = PUF(c)

pick x0,x1
x0 ,x1−−−−−−−−−−−−−→

r′0 = PUF(v⊕ x0),
v←−−−−−−−−−−−−− v = c⊕ xb

r′1 = PUF(v⊕ x1)

S0 = s0⊕ r′0,
S0 ,S1−−−−−−−−−−−−−→ s′ = Sb⊕ r

S1 = s1⊕ r′1
output: s′

Figure 6: The (Simplified) PUFOT Protocol.

(c,PUF(c)) pair, and hands over the PUF to the sender.4 The sender
selects two values x0 and x1 and sends them to the receiver. The
receiver responds by v= c⊕xb which perfectly hides b. The sender
computes r′0 = PUF(v⊕ x0) and r′1 = PUF(v⊕ x1) as one of these
must be the r known by the receiver. The receiver cannot know
both since he cannot predict x0⊕ x1. Finally, the sender used r′0
and r′1 to encrypt s0 and s1 respectively. The receiver is then able
to decrypt sb.

5.1 Two Issues in UC-security: Reusing PUFs
and Authenticating Channels

Honest reuse of PUFs in PUFOT.
We now observe that the PUF instances/devices cannot be handed

over again after one session of PUFOT. Indeed, if a PUF-instance
is used in one session of PUFOT and then handed-over by the
sender, then the first session is insecure. To see that, let us assume
that a PUF instance can be reused after a session of the PUFOT
with sender S and receiver R. As we know, when the session fin-
ishes, the sender S will hold the PUF. We assume that S hands over
the PUF after the session. During this hand-over, the adversary
that overheard the session is able to query the PUF on the value
c′ = c⊕ x0 ⊕ x1 and learn r′1−b. Then, he can decrypt s1−b and
break the OT requirements.

3Note that [26, 27] have shown a weakness of this protocol.
4On Fig. 6, “handover PUF” is a shorthand to mean that the re-
ceiver sends a hand-over command to FPUF and that the sender
waits for being granted access to the PUF.

This observation states a version of the PAM-impossibility re-
sults in [28]. Our formulation/proof above is much simpler, and in
fact natural.

Consequently, PUFs must be destroyed after a protocol is com-
pleted. Note that the PUFOT protocol allows multiple OTs with
the same sender and receiver. But since the PUF is not be handed
over, this imposes that the OT sessions are from the same sender to
the same receiver. After all sessions completed, the PUF cannot be
used anymore and must be destroyed. So, attacks based on honest
reuse of PUFs can be avoided.

Malicious reuse of PUFs in PUFOT.
The PUFOT protocol is subject to relay attacks as per Def. 2,

which could be seen as a malicious reuse of a PUF. So, due to
Th. 3, it does not FPUF-JUC realize FOT .

Actually, there is no practical way to prevent an adversary from
reusing a PUF. This entails that the PUC model [4] does not com-
pose in the classical sense, even to the weak level of JUC.

Malleability in PUFOT and its successors.
The PUFOT protocol has another shortcoming. Namely, it makes

the oblivious transfer malleable: when messages are not authenti-
cated, a man-in-the-middle in the OT between two honest partici-
pants can transform the sdr(s0,s1) into sdr(s1,s0) by exchanging
S0 and S1 and by replacing v by v⊕x0⊕x1: rcv(b) will obtain s1−b
instead of sb. This only requires the capability to corrupt the com-
munication between the two participants. So, this property shall be
a concern for the practicality of PUFOT.

When using PUFOT to implement a bit commitment [4], this
translates into an man-in-the-middle attack to transform the com-
mitment to b to a commitment to 1−b.

A similar problem occurs in the [23] protocol. (See Appendix A
for details.) The same goes for the commitment protocol of [11,
12]. Although these protocols are UC-secure, this observation shows
that it is not the case without the authenticated channel assumption.
This is clearly stated in [4, 11, 12], but it is not mentioned in [23].

There could be another subtle form of malleability which could
be a concern in practice: assume a man-in-the-middle adversary
who could substitute the PUF which is handed over by R to S. Con-
cretely, the adversary substitutes the PUF in a way that he runs in-
dependently a receiver protocol with S using a random b̄, finishing
by giving sb̄, and a sender protocol with R, using two strings s̄0 and
s̄1 such that s̄b̄ = f (sb̄) and the other string s1−b̄ is random. Finally,
R receives f (sb) if b = b̄ and something random otherwise. This is
still a malleability problem. It applies to all protocols using PUFs.
Fortunately, the PUF formalisation does not allow substituting the
PUF during the hand-over process. Indeed, when Pi hands over a
PUF to Pj, upon reception, FPUF tells Pj that the PUF was sent by
Pi, and FPUF also delivers a receipt to Pi saying that the PUF was
well received by Pj. So, the PUF which is sent by R must be the
one received by S, even in a protocol under attack. So, there is an
intrinsic authentication of PUFs in the handover process of FPUF

and this can be used to avoid the authenticated channel assump-
tion. Even assuming a weaker PUF formalisation where the PUF
delivery could be corrupted, the authors of [23] proposed a way to
avoid this attack based on the unpredictability of PUFs.

5.2 Strengthening PUFOT (still using authen-
ticated channels)

We will avoid relay attacks by strengthening the PUFOT proto-
col. Our Strengthened PUF Oblivious Transfer protocol (SPOT) is
depicted in Fig. 7. Essentially, we bind the PUF query to the sender



Sender S Receiver
input: s0,s1 input: b

init PUF, pick c
handover PUF←−−−−−−−−−−− r = PUF(S‖c)

pick x0,x1
x0,x1−−−−−−−−−−−→

s′0 = s0⊕PUF(S‖v⊕ x0)
v←−−−−−−−−−−− v = c⊕ xb

s′1 = s1⊕PUF(S‖v⊕ x1)
auth(s′0,s

′
1)−−−−−−−−−−−→ s′ = s′b⊕ r

destroy PUF output: s′

Figure 7: The (Simplified) SPOT Protocol.

S by adding S in the query. As one can see, this is a minor change,
and it brings more security.

THEOREM 5. Assuming authenticated channels, the SPOT pro-
tocol on Fig. 7 FPUF-JUC-realizes FOT.

PROOF SKETCH. Following the JUC setting, we have several
participants S j (corrupted or not) receiving (s j

0,s
j
1) from Z at the

beginning and running the sender protocol with several participants
Ri (corrupted or not) receiving bi from Z at the beginning and run-
ning the receiver protocol, respectively. At the end, they send there
output si to Z who produces the outcome of the experiment. Of
course, Z may interact with corrupted participants in between send-
ing the inputs and receiving the outputs.

We consider an environment Z and an adversary A in a JUC
setting, and we want to construct an ideal-world adversary S im.
This S im runs a simulation Ā of A to simulate the corrupted par-
ticipants as in the real world. Ā will also have to interact with
FPUF. Since neither any honest participant nor the environment is
assumed to interact with FPUF, S im needs not hand over any PUF.
He just uses FPUF for simulating the interaction with real PUFs.
The hand-over processing is simulated. S im also has to interact
with FOT on behalf of corrupted participants and to feed Ā with
communications between honest participants (since we assume the
authenticated channel UC framework).

To run Ā , S im needs to simulate some honest participants S̄ j and
R̄i while the ideal participants S j and Ri (with inputs unknown to
S im) are interacting with FOT. In what follows, we consider

Viewsreal(Z,A ,S,R) =

〈Viewreal(Z),Viewreal(A),(Viewreal(S j)) j,(Viewreal(Ri))i〉

the collection of the views of Z, A , all honest S j and Ri in the real
world, and

Viewsideal(Z,S im) = 〈Viewideal(Z),Viewideal(S im)〉

the collection of the views of Z and S im in the ideal world. (Since
the ideal S j and Ri are just forwarding inputs from Z, we can ig-
nore their views which are redundant with the one of Z.) We denote
by VZ the first view in a collection V . So, Viewsreal(Z,A ,S,R)Z =
Viewreal(Z). Below, we construct Viewssim as a function Viewssim =
f (Viewsideal(Z,S im)) such that Viewsreal(Z,A ,S,R) and Viewssim
are indistinguishable and that Viewideal(Z) = (Viewssim)Z . We de-
duce from this construction that Viewideal(Z) is indistinguishable
from Viewreal(Z), which is what we had to prove.

To prove indistinguishability, we just have to say that the inputs
and responses from FPUF have a correct distribution and that run-
ning the real world on the same input produces the same views.

To define Viewssim = f (Viewsideal(Z,S im)), we just concate-
nate Viewideal(Z), Viewideal(Ā), and the (reconstructed) views of
each honest S̄ j and R̄i. All is computed from Viewideal(S im) by
running Ā and the simulator for the honest S̄ j and R̄i, except for
Viewideal(Z) which is already part of Viewsideal(Z,S im). As we
will see, S̄ j and R̄i are simulated but we can reconstruct a meaning-
ful view for S j and Ri afterwards.

To make the simulation work, S im has to simulate the honest
participants S̄ j and R̄i interacting with Ā . One problem is that S im
is not always aware of which inputs S j and Ri receive from Z. An-
other issue for S im is to simulate the interaction with FOT on behalf
of corrupted participants interacting with honest ones. The inter-
action between two malicious participants is fully taken care of by
Ā .

Incidentally, we notice that S im is aware of all interaction (queries
and answers) with all PUFs.

To define S im and f , we maintain two sets Q and Q′ of (sidPUF,q)
queries. The set Q includes actual queries to the PUF while the set
Q′ contains undecided queries, which could have been made by
some honest receiver. These two sets are originally empty. When-
ever Ā is making a query to PUF, the corresponding pair is added
in Q. During the simulation for a honest receiver R̄i, some undeter-
mined queries will be added in Q′ as detailed below.

To simulate a honest R̄i, S im simply takes a fresh PUF, waits for
some x0,x1, and selects a random string v. Then, S im queries both
PUF(S‖v⊕ x0) and PUF(S‖v⊕ x1) and inserts both queries in Q′.
To reconstruct the view of Ri in Viewssim = f (Viewsideal(Z,S im)),
we take c = v⊕ xb as the random coins of Ri (where b is computed
from Viewideal(Z)) and the response from PUF to the query corre-
sponding to b. Clearly, the coins have a correct distribution and the
simulation is perfect. If S is corrupted, S im further has to submit
some s0,s1 to FOT for Ri. After receiving s′0,s

′
1, S im can get both

s0 and s1 and submit them to FOT, and the ideal Ri will get sb like
in the real world.

To simulate a honest S̄ j, we pick x0 and x1 normally and wait for
v. The corresponding PUF is now handed by a honest sender and
not supposed to be queried any more by Ā . We can check if the
queries PUF(S‖v⊕ x0) and PUF(S‖v⊕ x1) exist in Q or Q′. Then,
there are two cases to analyse.

In the first case, there is at most one of the two queries in Q∪Q′

and we can set b to the value such that PUF(S‖v⊕xb) is the existing
query. If there is none, we just set b to a random value. So, S im
can make the corrupted Ri send b to FOT to deduce sb. Then, we
construct s′b based on sb and set s′1−b to a random string. Whatever
Ā is doing is equivalent to running the real world with a correct
sb and some random s1−b. But Ā cannot have any access to the
correct value of s1−b due to the non-existent query to the PUF. So,
the executions produce equivalent results. In the reconstructed view
of S j, the non-queried PUF value is set to s′1−b⊕s1−b where s1−b is
taken from Viewideal(Z). Since the PUF output is random and the
PUF is no longer used, this reconstructed view perfectly simulates
S j running with input s0 and s1.

In the second case, both possible queries are in Q∪Q′. Note that
the PUF handed by S cannot have been queried after S̄ j selected
x0 and x1. Since the probability that x0 ⊕ x1 matches the XOR
between two existing queries is negligible, both queries cannot be
in Q∪Q′ at this time and none can later be added in Q: it can
only be the case that some queries were added in Q′ afterwards.
If only one is added in Q′ and the other is already existing, then
it means that a simulation for a honest receiver managed to select
some random vector hitting an existing query. This occurs with
negligible probability. So, the two values must have been added



in Q′. Clearly, this comes from the above simulation of a honest
receiver R̄i who is undecided about b and who received some x̄0
and x̄1. The queries have form S‖v⊕ x̄b. Due to this structure, it
must be the case that these two participants are really interacting
with each other and have seen some protocol messages x0,x1, v̄ (for
the sender) and x̄0, x̄1,v (for the receiver) leading to the same pairs
{v̄⊕x0, v̄⊕x1} and {v⊕ x̄0 = v⊕ x̄1}. So, x0⊕x1 = x̄0⊕ x̄1. Since
sidPUF is the same, they also have seen the same PUF. By looking
at the receiver protocol, we can see that the adversary cannot know
any v⊕ x̄i before he got v from the receiver. This occurs after giv-
ing x̄0 and x̄1. If either of the possible values of v̄⊕ xi is known
before S̄ j selects x0 and x1, then v must have been released by the
receiver before. So, it is unlikely that x0⊕ x1 = x̄0⊕ x̄1. Therefore,
the probability that the adversary queries the PUF with either of
the possible values of v̄⊕ x j, before x0 and x1 have been released,
is negligible. Similarly, he has no chance to query the PUF after
learning these values. So, he knows nothing about the decryption
keys for s′0 and s′1. The simulator S̄ j can thus use some random s′0
and s′1. The reconstructed view for S j works as above, by changing
the table value of the PUF. Since s′0 and s′1 cannot be corrupted, the
receiver R̄i must receive them unchanged. In this situation, we have
to change slightly the simulator R̄i which was described before: in-
deed, we cannot extract s0 and s1 from these random values. But
fortunately, we do not need to submit s0 and s1 to FOT. This was
done by the ideal S j already.

Note that the above theorem (and proof) only holds in JUC, but
does not hold in GUC. This is because, in JUC, all sessions and the
PUF usages inter-sessions will have one single, all-encompassing
interface with the environment, as if they were all part of one macro-
session; in GUC, by contrast, the environment (and thus the com-
bined adversarial body) has fine-tuned, inter-session access to the
PUF and has separate access/control to and over each individual
session. Thus, the simulation in the proof above would default in
GUC.

6. CONCLUSIONS
It is important to know not only what we can realize with (UC-

)setup devices, but also what shortfalls they bring to the crypto
world. In that sense, in this paper, we looked at UC-setup de-
vices that may hinder EUC/JUC realization. We singled these out
and characterized them formally. We thuswise denote the class of
transferable setups; informally, these are setup devices which do
not (publicly) disclose if they have been maliciously passed on. A
subset of these are the well-known physical unclonable functions
(PUFs).

We proved that one cannot realize oblivious transfer (OT) or any
other “interesting” 2-party protocol using transferable setups in the
EUC model.

Furthermore, if relay attacks are possible then oblivious transfer
cannot be realized in the JUC model either. As a by-product, we
show that the protocols proposed built with PUFs by Brzuska et al.
at CRYPTO 2011, by Ostrovsky et al. at EUROCRYPT 2013, by
Damgård and Scafuro at ASIACRYPT 2013, are subject to relay-
ing thus not being JUC secure. In addition to this, they all need
authenticated channels. We also discuss this need, to some extend.

We showed how to strengthen one of these PUF-based protocols
to make them JUC-secure.

7. REFERENCES
[1] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and

Tal Rabin. Secure computation without authentication.
Journal of Cryptology, 24(4):720–760, October 2011.

[2] Ioana Boureanu and Serge Vaudenay. Several weak
bit-commitments using seal-once tamper-evident devices. In
Proceedings of the 6th International Conference on Provable
Security, ProvSec’12, pages 70–87, Berlin, Heidelberg,
2012. Springer-Verlag.

[3] Ioana Boureanu and Serge Vaudenay. Compact and efficient
uc commitments under atomic-exchanges. In Proceedings of
the 17th International Conference on Information Security
and Cryptology, ICISC 2014, Berlin, Heidelberg, 2015.
Springer-Verlag. to appear.

[4] Christina Brzuska, Marc Fischlin, Heike Schröder, and
Stefan Katzenbeisser. Physically uncloneable functions in
the universal composition framework. In CRYPTO, pages
51–70, 2011.

[5] R. Canetti. A Unified Framework for Analyzing Security of
Protocols. Electronic Colloquium on Computational
Complexity (ECCC), 8(16), 2001.

[6] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally
Composable Security with Global Setup. Cryptology ePrint
Archive, Report 2006/432, 2006.
http://eprint.iacr.org/.

[7] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the
limitations of universally composable two-party computation
without set-up assumptions. In Eli Biham, editor, Advances
in Cryptology, Proceedings of the 22nd Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, EUROCRYPT, volume 2656 of Lecture Notes in
Computer Science, pages 68–86. Springer, 2003.

[8] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the
limitations of universally composable two-party computation
without set-up assumptions. J. Cryptology, 19(2):135–167,
2006.

[9] Ran Canetti and Tal Rabin. Universal composition with joint
state. Cryptology ePrint Archive, Report 2002/047, 2002.
http://eprint.iacr.org/.

[10] Cheun Ngen Chong, Dan Jiang, Jiagang Zhang, and Long
Guo. Anti-counterfeiting with a random pattern. In
Proceedings of the 2008 Second International Conference on
Emerging Security Information, Systems and Technologies,
SECURWARE 2008, pages 146–153, Washington, DC,
USA, 2008. IEEE Computer Society.

[11] Ivan Damgård and Alessandra Scafuro. Unconditionally
secure and universally composable commitments from
physical assumptions. Cryptology ePrint Archive, Report
2013/108, 2013. http://eprint.iacr.org/.

[12] Ivan Damgård and Alessandra Scafuro. Unconditionally
secure and universally composable commitments from
physical assumptions. In In Proceedings of the International
Conference on the Theory and Application of Cryptographic
Techniques, ASIACRYPT ’13, pages 100–119, 2013.

[13] Sezer Goren, H. Fatih Ugurdag, Abdullah Yildiz, and Ozgur
Ozkurt. FPGA design security with time division
multiplexed PUFs. In Proceedings of the International
Conference on High Performance Computing and Simulation
(HPCS), volume 28, pages 608–614, July 2010.

[14] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia.
Founding Cryptography on Tamper-Proof Hardware Tokens.
In Theory of Cryptography, pages 308–326, 2010.

[15] J. Katz. Universally Composable Multi-party Computation
Using Tamper-Proof Hardware. In Theory and Application of
Cryptographic Techniques, pages 115–128, 2007.



[16] Roel Maes, Pim Tuyls, and Ingrid Verbauwhede.
Low-overhead implementation of a soft decision helper data
algorithm for sram pufs. In Proceedings of the 11th
International Workshop on Cryptographic Hardware and
Embedded Systems, CHES 2009, pages 332–347, Berlin,
Heidelberg, 2009. Springer-Verlag.

[17] Roel Maes and Ingrid Verbauwhede. Physically unclonable
functions: A study on the state of the art and future research
directions. In Towards Hardware-Intrinsic Security, pages
3–37. Springer, 2010.

[18] P. Mateus and S. Vaudenay. On Tamper-Resistance from a
Theoretical Viewpoint. In Proceedings of the 11th
International Workshop on Cryptographic Hardware and
Embedded Systems(CHES), volume 5747 of Lecture Notes in
Computer Science, pages 411–428. Springer, 2009.

[19] T. Moran and M. Naor. Basing Cryptographic Protocols on
Tamper-Evident Seals. In Proceedings of the 32nd
International Colloquium on Automata, Languages and
Programming (ICALP), volume 3580 of Lecture Notes in
Computer Science, pages 285–297. Springer-Verlag, Jul
2005.

[20] T. Moran and M. Naor. Polling with Physical Envelopes: A
Rigorous Analysis of a Human-Centric Protocol. In
Advances in Cryptology, Proceedings of the 25th Annual
International Conference on Theory and Application of
Cryptographic Techniques – EUROCRYPT, volume 4004 of
Lecture Notes in Computer Science, pages 88–108. Springer
Berlin / Heidelberg, May 2006.

[21] T. Moran and M. Naor. Basing Cryptographic Protocols on
Tamper-Evident Seals. Theoretical Computer Science,
411:1283–1310, March 2010.

[22] T. Moran and G. Segev. David and Goliath Commitments:
UC Computation for Asymmetric Parties Using
Tamper-Proof Hardware. In Theory and Application of
Cryptographic Techniques, pages 527–544, 2008.

[23] Rafail Ostrovsky, Alessandra Scafuro, Ivan Visconti, and
Akshay Wadia. Universally composable secure computation
with (malicious) physically uncloneable functions. In
Advances in Cryptology, Proceedings of the 32nd Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, EUROCRYPT, pages 702–718,
2013.

[24] Ravikanth S. Pappu. Physical one-way functions. PhD thesis,
Massachusetts Institute of Technology, March 2001.

[25] Masoud Rostami, Mehrdad Majzoobi, Farinaz Koushanfar,
Dan S. Wallach, and Srinivas Devadas. Robust and

reverse-engineering resilient PUF authentication and
key-exchange by substring matching. IEEE Transactions on
Emerging Topics in Computing, 2014. to appear.

[26] Ulrich Rührmair and Marten van Dijk. On the practical use
of physical unclonable functions in oblivious transfer and bit
commitment protocols. J. Cryptographic Engineering,
3(1):17–28, 2013.

[27] Ulrich Rührmair and Marten van Dijk. PUFs in security
protocols: Attack models and security evaluations. In 2013
IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013, pages 286–300. IEEE
Computer Society, 2013.

[28] Marten van Dijk and Ulrich Rührmair. Physical unclonable
functions in cryptographic protocols: Security proofs and
impossibility results. Cryptology ePrint Archive, Report
2012/228, 2012. http://eprint.iacr.org/.

APPENDIX
A. AUTHENTICATED CHANNELS & UC-

SECURITY WITH PUFS
In [23], there are two commitment protocols using PUFs. One is

inherited from the protocol of Brzuska et al. and, like it, it requires
authentication of communication as an extra assumption on top of
the insecure-channel UC model; this assumption is stated clearly
in [4]. The other, completely novel protocol in [23] also requires
authenticated channels, even if this is not stated in the paper.

To see that this is the case, we sketch a man-in-the-middle attack
against the Comequiv, if the UC channels therein were not authenti-
cated. The protocol is recalled on Fig. 8. Note that the input r is the
result of a previous coin flipping protocol in the full commitment
protocol by [23]. It is known by the adversary. The step where S
sends some ci’s based on r to R is known as the Naor commitment
of ab. It is opened by giving s1, . . . ,sn with a. The protocol uses a
subprotocol OT where R plays the role of the sender. This protocol
runs based on a view to be disclosed later on, so that S – playing
the role of the receiver– can check for consistencies.

Thus, imagine a honest receiver R following the protocol, in –let
us say– session 1 of Comequiv. I.e., R chooses q0 and q1, queries
PUFR on one of them, obtains ai, with i ∈ {0,1}, and then hands
over the PUF to the honest sender S. He then runs the inner OT
protocol on q0, q1. The man-in-the-middle (MiM) adversary A is
playing two different protocols with S and R. To R in session 1, he
runs the OT protocol with a random bit b, As expected, this man-in-
the-middle gets out of the OT protocol a state qb. In the OT session
which is run with S, let us call it session 2, A selects q′0 and q′1 such
that q′

1−b
= qb and q′

b
is random. Supposing that S inputted a bit b

into the OT protocol, then this sender S gets q′b as the OT output.
So, q′b = q1−b with probability 1

2 . Then, the Naor commitment c
from S to R is left unchanged. The view (with the OT inputs) that
A sends to S is set so that it is consistent with q′0 and q′1. In the
opening, the Naor commitment is left unchanged but the bit b is
replaced by b.

In this MiM-infected real world execution, R receives b = 1−b
with probability 1

2 . Of course, this will never be the case in the
ideal-world execution. This is due to S and R being honest and the
commitment functionality making sure that only the bit b set by S
can be opened to R. So, authentication is a requirement in order for
the Comequiv protocol in [23] to enjoy UC-security.

Sender S Receiver
input: b,r input: r

init PUF, pick q0,q1
handover PUF←−−−−−−−−−−−−− a0 = PUF(q0),

a1 = PUF(q1)

run OTR(b)→ qb
OT←−−−−−−−−−−−→ run OTS(q0,q1)

a = PUF(qb), pick s1, . . . ,sn
ci = G(si) if ai = 0
ci = G(si)⊕ r if ai = 1

}
c1 ,...,cn−−−−−−−−−−−−−→

check consistency with OTR
view,q0 ,q1←−−−−−−−−−−−−− set the view of OTS

s1 ,...,sn ,a,b−−−−−−−−−−−−−→ check a = ab and
c1, . . . ,cn

Figure 8: The Simplified Comequiv Protocol


