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The efficiency of dynamic dispatch is a major impediment to the adoption of multimethods in
object-oriented languages. In this article, we propose a simple multimethod dispatch scheme
based on compressed dispatch tables. This scheme is applicable to any object-oriented language
using a method precedence order that satisfies a specific monotonous property (e.g., as Cecil and
Dylan) and guarantees that dynamic dispatch is performed in constant time, the latter being a
major requirement for some languages and applications. We provide efficient algorithms to build
the dispatch tables, provide their worst-case complexity, and demonstrate the effectiveness of our

scheme by real measurements performed on two large object-oriented applications. Finally, we
provide a detailed comparison of our technique with other existing techniques.
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1. INTRODUCTION

In traditional object-oriented systems such as Smalltalk [Goldberg and Robson
1983] and C++ [Ellis and Stroustrup 1992], functions have a specially designated
target argument, sometimes called receiver, whose type, determined either at run-
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time or at compile-time, serves to select the method to execute in response to
a function invocation. Multiple dispatching, first introduced in CommonLoops
[Bobrow et al. 1986] and CLOS [Bobrow et al. 1988], generalizes this form of dy-
namic binding by selecting a method, depending on the run-time type of a subset
of the arguments of a function invocation. Methods in this generalized scheme
are called multitargetted methods, or multimethods for short. As explained in
Chambers and Leavens [1995], multimethods bring an increased expressive power
over single-targetted methods. For this reason, multimethods are becoming a key
feature of recently developed object-oriented languages as Polyglot [Agrawal et al.
1991], Kea [Mugridge et al. 1991], Cecil [Chambers 1992], and Dylan [Apple Com-
puter 1995]. They also have been integrated as part of the SQL3 standard [Melton
1994; 1996] currently under development.

However, several problems still hamper the wide acceptance of multimethods
in object-oriented systems, among which the inefficiency of multiple dispatching
caused by the multiple-selection criteria of methods. By contrast, there exist al-
gorithmical solutions that offer a fast constant-time dispatching for mono-methods
using a two-dimensional table, called dispatch table, that holds the precalculated
result of dispatching for all possible function invocations. Optimization tech-
niques have been developed to minimize the size of the dispatch table by elimi-
nating entries corresponding to function invocations for which there is no applica-
ble method [Dixon et al. 1989; Driesen and Hölzle 1995; Ellis and Stroustrup 1992;
Huang and Chen 1992]. The reduction factor is experimentally measured to be up
to 66 in Driesen and Hölzle [1995].

The dispatch table technique does not naturally scale up for multimethods be-
cause additional target arguments create new dimensions in the table. Since each
dimension is indexed by the set of types, which is usually large (e.g., above 100),
the size of the table dramatically increases and cannot be handled anymore. Fur-
thermore, since the number of target arguments varies between functions, there
must be one dispatch table per function.

The major contribution of this article is to propose a simple, rigorously defined,
multimethod dispatch scheme based on compressed dispatch tables that guarantees
a dynamic dispatching in constant time. Our compression technique is widely ap-
plicable: representing a method dispatch scheme as a function that applies to an
invocation m(s) and returns a set of applicable methods ordered with a precedence
ordering, our technique only assumes that this ordering obeys a single monotonic-
ity property. We formally state that languages such as Cecil and Dylan use a
precedence ordering that does satisfy this property, whereas CLOS does not.

The basic idea of the table’s compression scheme is first to eliminate entries cor-
responding to invocations for which there is no applicable method, and second to
group identical (n− 1)-dimensional rows in a table of dimension n. Although this
scheme can achieve a high compression factor, naive algorithms to group identical
rows in a table of dimension n have a worst-case complexity of O(n×|Θ|n+1) where
|Θ| represents the total number of types in this system. We show that in a com-
pressed dispatch table, each dimension is indexed by a subset of the types, called
the pole types of this dimension. We then provide fast algorithms to compute pole
types, and hence a compressed table’s structure, with a worst-case complexity of
O(|m|+|Θ|×E), where |m| is the number of methods associated with a generic func-
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tion m, and E is the number of edges in the type graph. We prove the correctness of
our algorithms and demonstrate the effectiveness of our compression scheme using
two real object-oriented applications with multimethods (in Cecil and Dylan). Fi-
nally, we provide a detailed comparison of our multimethod dispatch scheme with
other existing schemes, including the recent proposal of Chen and Turau [1995],
which uses a kind of “dispatch tree.”

The article is organized as follows. Section 2 introduces preliminary notions and
notations on multimethods and method dispatch. Section 3 presents the problem
and an overview of our solution. Section 4 introduces our dispatch table compres-
sion scheme, based on a formal definition of pole types, and proves its correctness.
Section 5 presents the pole type computation algorithm, while Section 6 presents
the table fill-up algorithm. Section 7 describes our implementation and provides
experimental results. Section 8 is devoted to a presentation of related work. Finally,
we conclude in Section 9.

2. BACKGROUND

We briefly review some terminology mainly introduced in Agrawal et al. [1991]. We
denote subtyping by �. Given two types T1 and T2, if T1 � T2, we say that T1 is
a subtype of T2 and that T2 is a supertype of T1. The set of types is denoted Θ.
We assume the existence of a relation isa between types, such that the subtyping
relation � is the transitive closure of isa. If T isa T ′, T is a direct subtype of T ′, and
T ′ is a direct supertype of T . Intuitively, isa corresponds to the user’s declarations
of supertypes.

A generic function is defined by its name and its arity. To each generic function
m of arity n corresponds a set of methods mk(T 1

k , . . . , T
n
k ) → Rk, where T ik is the

type of the ith formal argument, and where Rk is the type of the result. We call the
list of arguments (T 1

k , . . . , T
n
k ) of method mk the signature of mk. We also define a

relation � on signatures, called precedence, such that (T 1, . . . , T n) � (T ′1, . . . , T ′n)
if and only if for all i, T i � T ′i. An invocation of a generic function m is denoted
m(T 1, ..., T n), where (T 1, . . . , T n) is the signature of the invocation, and the T i’s
represent the types of the expressions passed as arguments.

Object-oriented languages support late binding of method code to invocations:
the method that gets executed is selected based on the run-time type(s) of the
target argument(s). This selection process is called method dispatch. In traditional
object-oriented systems, generic functions have a single specially designated target
argument, also known as receiver. In systems that support multimethods, a subset
of the arguments of a generic function are target arguments. From now on, we shall
only consider multimethods, and without a loss of generality we assume that all
arguments are target arguments.

Operationally, given an invocation m(s), method dispatch follows a two-step
process: first, based on the types of the target arguments, the set of applicable
methods, henceforth noted applicable(m(s)), is found:

Definition 2.1. A method mi(T 1
i , . . . , T

n
i ) is applicable to a signature (T 1, . . . ,

T n), denoted by mi � (T 1, . . . , T n), if and only if (T 1
i , . . . , T

n
i ) � (T 1, . . . , T n).

If the set of applicable methods is empty then the method dispatch is undefined.
Otherwise, a precedence ordering is used to select the most specific method to
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998.
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m1(A,B)

m2(B,A)

Fig. 1. Cecil types and methods.

execute. If there are several most specific methods, they are said to be ambiguous.
Given a signature s = (T1, . . . , Tn) and a generic function invocation m(s), if mi

and mj are applicable to m(s), and according to a particular method precedence
ordering, mi is more specific than mj for s, denoted as mi �s mj, then mi is a
closer match for the invocation. Indeed, looking at existing languages, the result of
method dispatch can be more accurately described as a set of applicable methods
ordered with �s. We illustrate this with two existing languages: Cecil and Dylan.

Cecil offers either a static or a dynamic checking mode to the programmer. In
both modes, Cecil uses a precedence ordering over applicable methods, called ar-
gument subtype precedence in Agrawal et al. [1991]:

Definition 2.2. Let mi(T 1
i , . . . , T

n
i ) and mj(T 1

j , . . . , T
n
j ) be two methods associ-

ated with a generic function m of arity n; if (T 1
i , . . . , T

n
i ) � (T 1

j , . . . , T
n
j ), then for

any method invocation m(s) such that mi and mj are applicable to m(s), we have
mi �s mj .

With a static checking mode, Cecil guarantees that there always exists a unique
most specific applicable method (henceforth, called UMSA) for all possible run-
time arguments of each generic function invocation. This means that an invocation
signature may remain ambiguous as long as the type-checker can prove that it
will never occur at run-time in the actual codes of methods. With a dynamic
checking mode, the detection of possible ambiguities is performed at run-time. If
an ambiguity is detected for a given invocation then an error is signaled, and the
set of ambiguous methods is returned.

Example 2.3. Consider the type hierarchy and methods of Figure 1. With a
static checking mode, Cecil’s type-checker attempts to prove that no invocation
m(B,B) may occur at run-time. If it succeeds then no ambiguity will arise: method
dispatch will returns m1 for an invocation m(C,B) and m2 for invocations m(A,C)
or m(B,C). With a dynamic checking mode, if an invocation m(B,B) occurs then
an error is signaled, and the set {m1,m2} is returned.

Dylan distinguishes classes as a variety of types.1 When a class is created, a
linearization of its supertype classes, including itself, is defined and represented as
a Class Precedence List (CPL) that strictly orders all its supertype classes. For
convenience, we define a specific order between types as follows:

Definition 2.4. Given a type T ,

(1) if T is not a class, then �T is the subtyping order;2

1Here, we use the same definitions for “types” and “classes” as the ones of Dylan
[Apple Computer 1995].
2More precisely, the subtyping order between types we use here denotes what is called “proper
subtyping” in Dylan.
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m1(A,B)

m2(B,A)

m3(C,A)

m4(C,B)

CPL (C) = (A,B)

Fig. 2. Dylan types and methods.

(2) if T is a class, and T1, T2 are types, then T1 �T T2 if and only if T1 � T2 or T1

precedes T2 in T’s CPL.

Note that �T is an order, since subtyping is an order, and by definition in Dylan,
T1 cannot precede T2 in any CPL if T2 is a subtype of T1. Using this definition,
Dylan’s precedence ordering between methods can be defined as follows:

Definition 2.5. Let m1(T 1
1 , . . . , T

n
1 ) and m2(T 1

2 , . . . , T
n
2 ) be two methods associ-

ated with a generic function m of arity n, and let s = (T1, . . . , Tn) be the signature
of an invocation of m. Then m1 �s m2 ⇔ ∃i, 1 ≤ i ≤ n, such that T 1

i �Ti T 2
i and

∀ j such that j 6= i, T 2
j 6�Ti T 1

j .

Initially, given an invocation m(s), method dispatch looks for the most specific
applicable method according to the above precedence (partial) ordering. If there is
more than one such method, an error is signaled. Otherwise, the method, say mi,
is returned. However, mi may invoke a function called next-method that returns
the “next” method that is immediately less specific than mi in the set of applicable
methods to m(s). If there is no such method, or it is not unique, an error is signaled.
Thus, conceptually, the method dispatcher of Dylan can be interpreted as returning
the subset of most specific applicable methods that is totally ordered according to
the precedence ordering.

Example 2.6. Consider the type hierarchy and methods of Figure 2. Let s =
(C,C) be the signature of an invocation of m. All four methods are applicable.
Since A �C B, m1(A,B) and m2(B,A) are ambiguous, and m3 �s m4. Thus, con-
ceptually, method dispatch returns {m3,m4}�s , and function next-method operates
over this set.

Formally, we represent a method dispatch as a function denoted MS (Most Spe-
cific) that applies to an invocation m(s) and returns a set of applicable methods
ordered with a precedence ordering �s. The dispatch table compression scheme
presented in this article assumes that the precedence ordering used by MS satisfies
the monotonicity property defined as follows:

Definition 2.7. Let s and s′ be two signatures of arity n such that s � s′. If for
any methods m1 and m2 applicable to m(s) and m(s′), m1 �s m2 ⇔ m1 �s′ m2,
then �s is said to be a monotonous order.

The notion of monotonous order on classes was first introduced in Ducournau et
at. [1992]. We generalized this notion for method orders in the above definition.
Languages such as Cecil [Chambers 1993] and Dylan [Barrett et al. 1996] use a
precedence ordering that satisfies the monotonicity condition. This will be for-
mally stated in Section 4. On the contrary, CLOS [Bobrow et al. 1988] does not
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998.
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Fig. 3. Example schema.

enforce monotonicity. However, Ducournau et al. [1994] proposes a monotonous
class precedence order that would yield a monotonous order on methods.

3. PROBLEM STATEMENT AND OVERVIEW OF THE SOLUTION

We address the problem of multimethods dispatch in languages requiring constant-
time method selection. Therefore, our goal is to explore the dispatch table approach
both in statically and dynamically typed languages.

3.1 Dispatch Tables for Multimethods

As generic functions can have different arities, the single global table organization is
not applicable anymore. We need to use a dispatch table for each generic function.
For a set of types Θ, the dispatch table of a generic function m of arity n is an
n-dimensional array with the types of Θ as indices of each dimension. We denote
the dispatch table by Dm. Every entry in Dm represents a signature in Θn. The
entry at position (T1, . . . , Tn) holds the result of MS(m(T1, . . . , Tn)) and a null
value if MS returns an empty set. In the next examples, MS always return a
single method called the Most Specific Applicable (MSA) method. For clarity, we
assume that (1) a table entry contains the address of the method indicated by its
index and (2) “−” denotes the null value.

Example 3.1.1. We compute the dispatch table for the type hierarchy and the
methods of Figure 3. To this end, we determine MS for every possible invocation
using argument subtype precedence and the additional order saying that m1 is more
specific than m3 and saying that m2 is more specific than m5. Dm is illustrated in
Figure 4.

Dispatching the methods of a generic functionm using a dispatch table is achieved
as follows. Assume a unique index is attributed to every type and that every
object contains the index of its type as an attribute named type index. Then, in a
statically typed language, which ensures that MS always returns an MSA method
for every possible invocation,3 an invocationm(o1, . . . , on), where the oi are objects,
is translated into the following pseudocode:

ms = Dm[o1.type index, . . . , on.type index]
call ms(o1, . . . , on)

3Take, for instance, Cecil with static checking mode.
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P A B C D E F G H I
P − − − − − − − − − −
A − − 1 − 2 1 − 2 2 1
B − − 3 4 5 3 4 5 5 3
C − − 1 − 2 1 − 2 2 1
D − − 1 4 2 1 4 2 2 1
E − − 3 4 5 3 4 5 5 3
F − − 1 − 2 1 − 2 2 1
G − − 1 4 2 1 4 2 2 1
H − − 1 4 2 1 4 2 2 1
I − − 3 4 5 3 4 5 5 3

Fig. 4. Dispatch table of generic function m.

In a dynamically typed language, which does not ensure the existence of an MSA
method for every possible invocation,4 an additional test is required to check the
content of the table entry: it may be empty, or there may be several ambiguous
methods. In any case, the computation of MS for an invocation is performed very
fast, using a single n-dimensional array access. However, the size of Dm is |Θ|n,
which is prohibitive (|Θ| being usually above 100 and the arity of multimethods
between 2 and 4).

3.2 Compressing Dispatch Tables

The core of the problem of multimethod dispatch tables is their size, which is in
the power of the number of arguments. We propose to reduce the number of entries
of each dispatch table and get a compressed table for m that we denote by Dcm.
Assuming a generic function of arity n, our compression scheme is based on two
techniques:

—eliminating entries holding only null values and
—grouping entries which have all their values identical.

The following example sketches the idea.

Example 3.2.1. Consider the table of Figure 4. First, columns P and A and line
P can be eliminated, as they only contain null values. This means that invocations
where P appears as the first or second argument, or where A appears as the second
argument, are actually type errors. In these cases, examining the type of the
argument is sufficient to determine that there is no MSA. Second, lines A, C, and
F are identical, as are lines B, E, and I and lines D, G, and H . The same is true
for columns B, E, and I, columns C and F , and columns D, G, and H . Such
rows can be grouped yielding the following table, where indices of the table may
be groups of types. Entry at position ({T1, . . . , Tp}, {U1, . . . , Uq}) holds the MSA
method for all invocations m(Ti, Uj), i ∈ {1, . . . , p}, j ∈ {1, . . . , q}:

{B,E, I} {C,F} {D,G,H}
{A,C, F} 1 − 2
{B,E, I} 3 4 5
{D,G,H} 1 4 2

4As in Cecil with dynamic checking mode, or Dylan.
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We call the groups of types that index the dimensions of a compressed table
index-groups. In each dimension, index-groups are attributed an index. In our
example, index-group {A,C, F} of the first dimension has index 1. The index of a
type in a dimension of a compressed table is the index of its group.

3.3 Dispatch Using Compressed Tables

Once the table is compressed, dispatch must be performed differently. Indeed, the
index of a type is not anymore the same in every dimension of a dispatch table and
in every dispatch table. Thus, the unique index of each type cannot be directly
used to access entries in compressed dispatch tables. In the compressed table of
Example 3.2.1, the index of type A is 1 (index of its group) when A appears as the
first argument, while A does not appear in the second dimension.

We map, for every generic function m and every argument position i, a type to
its index in the ith dimension of the compressed dispatch table of m. This can be
achieved using n argument arrays, where n is the arity of m. Each argument array
is a one-dimensional array indexed by the types. The ith argument array of m
holds the positions of every type in the ith dimension of the compressed dispatch
table of m, i.e., when the type appears as the ith argument. A “0” indicates that
this type cannot appear as the ith argument.

Example 3.3.1. Here are the two argument arrays m arg1 and m arg2 of m for
the compressed dispatch table of Example 3.2.1:

P A B C D E F G H I
m arg1 0 1 2 1 3 2 1 3 3 2
m arg2 0 0 1 2 3 1 2 3 3 1

In a statically typed language that ensures an MSA method for every invocation,
an invocation m(o1, . . . , on) is translated into the following code:

ms = Dcm[m arg1[o1.type index], . . . ,m argn[on.type index]]
call ms(o1, . . . , on)

In a dynamically typed language, run-time type checking is needed to verify the
content of m argi[oi.type index] and Dcm before calling the MS method.

3.4 Argument-Array Coloring

Coloring has been proposed in Dixon et al. [1989] to compress dispatch tables of
mono-methods. This technique is applicable to argument arrays for grouping into
one array several arrays which hold nonnull cells at different positions.

We shall call selector, noted (m, i), an argument position i in a generic function
m. A selector is associated with a set of types, which are the types allowed at
run-time for this method and this argument position. Two selectors are said to
conflict if their sets of types intersect. When two or more selectors do not conflict
with each other, their colors can be the same, i.e., their argument arrays can be
grouped, as shown in Figure 5. These arrays do not necessarily belong to the same
generic function.

When argument arrays are grouped, the information represented by a null value in
the original argument arrays is lost in the group argument array. This information
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Selector-Array
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Selectors Original Argument-Arrays

T1 T3 T4 T5 T6 T7T2

Fig. 5. Grouping of argument arrays.

is used by run-time type checking, in dynamically typed languages like Smalltalk or
Self, or in Amiel et al. [1996]. If a type T is not allowed for a selector (m, i), type
checking makes it necessary to mark that the entry of T in the group argument
array is related to another selector. For this, we associate with each group argument
array a selector array. For each type, this array holds the selector with which it is
associated in the group argument array. At run-time, the type of the object that
appears as the ith argument in an invocation of m yields both an entry number
(coming from the group argument array) and a selector (coming from the selector
array). Type checking consists in comparing the selector to (m, i), and raises an
error if they differ. If not, the entry number is used against the dispatch table to
obtain MS.

3.5 Naive Approach to Compress a Dispatch Table

The naive approach starts from an uncompressed dispatch table and then com-
presses it. In this section, we consider the case of a language that ensures an MSA
method for every invocation. Building the uncompressed dispatch table simply in-
volves computing the MSA method for every possible invocation signature. With a
generic function of arity n, compressing the table comes down first to scanning all
entries in all dimensions to detect the empty entries and eliminate them and then
compare the remaining entries, to group the ones that are identical. However, this
process is unrealistic, both for memory space and processing time considerations:

3.5.1 MSA Computation Time. Assuming an application with 100 types, and
the use of a library like the programming environment of Smalltalk which roughly
counts 800 more types, there are 810,000 possible invocation signatures for two-
targetted generic functions, and 729,000,000 for three-targetted generic functions,
for which the MSA method has to be computed.

3.5.2 Uncompressed Table Size. With |Θ| = 900, the uncompressed table of a
three-targetted method takes 695MB, and the one of a four-targetted method takes
610GB.

3.5.3 Empty Entries Elimination. Searching the empty entries needs at worst
to scan n times the entire table, once for each dimension. Moreover, eliminating
the empty entries requires moving a lot of data in memory.
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3.5.4 Identical Entries Grouping. Grouping the entries needs at worst, for each
dimension and each entry, to compare it to |Θ| − 1 other entries. Each of these
entries is associated with |Θ|n−1 values. Hence grouping takes at worst n × |Θ| ×
(|Θ|−1)×|Θ|n−1 = n×(|Θ|n+1−|Θ|n) equality comparisons. For n = 3, |Θ| = 900,
assuming each comparison is done in one cycle by a 200MHz processor, this nearly
takes three hours. Grouping also involves a lot of memory moves.

In the following, we present an efficient algorithm to directly build compressed
dispatch tables. For this, we first analyse the set of formal argument types in each
dimension, to determine the empty entries and the index groups. Then, we build
the compressed dispatch table by computing MS only once for each index-group
signature. In this way, both processing time and memory space are spared, and
obtaining the compressed dispatch table becomes realistic.

4. COMPRESSION APPROACH

The central issue in our approach to dispatch table compression is to determine
which entries can be eliminated and which ones can be grouped without having
to scan the whole table. Let us first formally define the condition under which an
entry can be eliminated and two entries can be grouped. Consider the ith argument
position of a generic function m of arity n.

—Elimination Condition: The entry for type T in the ith dimension of the dispatch
table of m can be eliminated if and only if

∀(T1, . . . , Tn−1) ∈ Θn−1,MS(m(T1, . . . , Ti−1, T, Ti, . . . , Tn−1)) = ∅. (1)

—Grouping Condition: The two entries for types T and T ′ in the ith dimension of
the dispatch table of m can be grouped if and only if

∀(T1, . . . , Ti−1, Ti+1, . . . , Tn) ∈ Θn−1,

MS(m(T1, . . . , Ti−1, T, Ti+1, . . . , Tn))
= MS(m(T1, . . . , Ti−1, T

′, Ti+1, . . . , Tn)). (2)

The first condition says that T is not allowed as the type of the ith argument
of an invocation of m. The second condition says that T can replace T ′ as the
ith argument of any invocation without any change to MS and vice-versa. If this
condition holds, then T and T ′ belong to the same index-group in the ith dimension
and thus have the same index in the ith argument array of m.

Coming back to Example 3.2.1, it is useful to observe that in every index-group
there is a type supertype of all the other types of the group. For instance, in the
groups of the first dimension, types A, B, and D are respectively the greatest types
for groups {A,C, F}, {B,E, I}, and {D,G,H}. We call these types i-poles, where
i is the argument position. Thus, A, B, and D are 1-poles and B, C and D are
2-poles. We shall show that there always exists a unique i-pole for every group
in the ith dimension. In fact, we show how to determine for every dimension the
i-poles and their associated index-groups, called influence. Then, we establish that

—the types that do not belong to an influence can be eliminated from the ith
dimension and

—the types belonging to the same influence can be grouped.
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4.1 Poles and Influences

We first introduce some auxiliary definitions and then formally define the notions
of i-pole and influence.

Definition 4.1.1. T1 and T2 are incomparable, denoted T1 ≺� T2, if and only if

T1 � T2 and T1 � T2.

Definition 4.1.2. The cover of a type T , denoted cover(T ), is the set of subtypes
of T :

cover(T ) = {T ′ | T ′ � T }
The cover of a set of types {T1, . . . , Tn}, denoted cover({T1, . . . , Tn}), is the union

of the covers of each type in the set:

cover({T1, . . . , Tn}) =
n⋃
i=1

cover(Ti)

Definition 4.1.3. The ith static arguments of a generic function m, denoted
Staticim, are the types of the ith formal arguments of the methods of m:

Staticim = {T ik | ∃mk(T 1
k , . . . , T

n
k )}

Definition 4.1.4. The ith dynamic arguments of a generic function m, denoted
Dynamicim, are the cover of the ith static arguments of m:

Dynamicim = cover(Staticim)

They represent the types that can appear at the ith position in invocations of m
at run-time. Dynamicm is the cross product of the ith dynamic arguments sets:

Dynamicm =
n∏
i=1

Dynamicim

Fact 4.1.5. s ∈ Dynamicm ⇔ applicable(m(s)) 6= ∅.

Definition 4.1.6. A type T ∈ Θ is an i-pole of a generic function m of arity n,
1 ≤ i ≤ n, if and only if5

T ∈ Staticim (3)

or
|min� {T ′ ∈ Θ | T ′ is an i-pole of m and T ′ � T }| > 1. (4)

The set of i-poles of m is denoted Poleim. The poles that are included in Staticim
are called primary poles, and the others are called secondary poles.

Fact 4.1.7. Poleim ⊂ Dynamicim.

5In this definition and the sequel of this article, (E,≤) being an ordered set, we define min≤E as
{x ∈ E | ∀y ∈ E − {x}, y 6≤ x}.
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Definition 4.1.8. Let m be a generic function of arity n, T ∈ Θ, and 1 ≤ i ≤ n;
the set of closest poles of T is

closest-polesim(T ) = min�{T ′ ∈ Poleim | T ≺ T ′}.

Using this notation, condition (4) can also be expressed as

|closest-polesim(T )| > 1. (5)

Lemma 4.1.9. Given a generic function m of arity n, for each i, 1 ≤ i ≤ n and
each T ∈ Θ, we have

closest-polesim(T ) 6= ∅ ⇒ T ∈ Dynamicim.

Proof. If closest-polesim(T ) 6= ∅ then there exists some T ′ ∈ Poleim such that
T � T ′. To establish the lemma, we show that there exists T ′′ ∈ Staticim such that
T � T ′ � T ′′, i.e., T ∈ cover(T ′′). We proceed by contradiction. Suppose

∀T ′ ∈ Poleim(T ) s.t. T � T ′, @T ′′ ∈ Staticim s.t. T ′ � T ′′. (6)

In particular T ′ 6∈Staticim. Since T ′ is an i-pole, by condition (4) ∃T0 ∈ Poleim such
that T ′ � T0. Hence T � T0, and by (6), T0 6∈Staticim. Iterating the same reasoning,
we can prove the existence of an infinite sequence of distinct poles T0, T1, . . ., which
contradicts the fact that Θ is finite.

Proposition 4.1.10. Given a generic function m of arity n, and i ∈ {1, . . . , n},
we have

(∀T ′ ∈ Staticim, ∀T ∈ Θ s.t. T ≺ T ′, T has exactly one supertype)
⇒ (Poleim = Staticim).

Proof. We have to show that Poleim ⊂ Staticim, i.e., ∀T ∈ Θ, T is not a
secondary pole. Let T ∈ Θ. If closest-polesim(T ) = ∅ then {T ′ ∈ Staticim | T ≺
T ′} = ∅, and the proposition trivially holds. If closest-polesim(T ) 6= ∅ then by
Lemma 4.1.9, T ∈ Dynamicim. Thus, by definition, there exists T ′ ∈ Staticim such
that T ∈ cover(T ′). We show that |closest-polesim(T )| = 1, which by condition (5)
means that T is not a secondary pole. We proceed by contradiction.

Let Ta and Tb be two distinct poles of closest-polesim(T ). Let T1, . . . , Tk such
that T isa T1 . . . isa Tk isa T

′. By the left-hand side of the proposition, each
type T, T1, . . . , Tk has only one direct supertype. Since {T, T1, . . . , Tk, T

′} is totally
ordered with respect to � and Ta and Tb are incomparable by definition, this set
does not include both Ta and Tb. Suppose that Tb is not in this set. By the left-
hand side of the proposition, the path from T to Tb in the type graph necessarily
goes through T ′; hence T ′ � Tb. As Tb 6∈{T, T1, . . . , Tk, T

′}, T ′ ≺ T b.
Since T ′ ∈ Staticim, T ′ is an i-pole, and by Definition 4.1.8, Tb � T ′, a final

contradiction.

Corollary 4.1.11. In systems supporting or actually using only single inheri-
tance, for each generic function m, and each i in {1, . . . , n}, Poleim = Staticim.

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998.



128 · E. Dujardin et al.

m1(A,B)
m2(A,D)
m3(B,B)
m4(B,C)
m5(B,D)
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F G H I
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Fig. 6. Example schema with poles and influences.

Example 4.1.12. We determine the 1- and 2-poles in the example of Figure 3. We
have Static1m = {A,B}, Static2m = {B,C,D}, Dynamic1m = {A,B,C,D,E, F,G,
H, I}, and Dynamic2m = {B,C,D,E, F,G,H, I}. As Static1m = {A,B}, A and B
are 1-poles. Moreover, they are the closest poles of D, so D is also a 1-pole. So
Pole1

m = {A,B,D}. As Static2m = {B,C,D}, B, C, and D are 2-poles. They
do not satisfy condition (4) with respect to any type, so Pole2

m = {B,C,D}. The
1-poles are underlined on Figure 6.

Definition 4.1.13. With every i-pole T of a generic function m is associated the
set of subtypes of T , noted Influenceim(T ), which is defined as

Influenceim(T ) = {T ′ � T | ∀T ′′ ∈ Poleim, T ′ 6� T ′′ or T � T ′′}

Example 4.1.14. We determine Influenceim for the 1-poles of Example 4.1.12.
The influence of A contains A, C, and F , as A is their only 1-pole supertype. For
the same reason, the influence of B contains B, E, and I. D does not belong to
the influence of either A or B, as D is a 1-pole, and it is supertype of itself and a
subtype of A and B. The influence of D contains D, G, and H , as D is the single
closest 1-pole. The influences are surrounded by a blob on Figure 6.

Proposition 4.1.15. Given a generic function m of arity n, and i ∈ {1, . . . , n},
let Poleim = {T1, . . . , Tl}, then

(1 ) {Influenceim(T1), . . . , Influenceim(Tl)} is a partition of Dynamicim and
(2 ) ∀T ∈ Dynamicim

(T ∈ Influenceim(Tk)⇔ min�{T ′ ∈ Poleim | T � T ′} = {Tk}).

Proof. Let us prove the first assertion. We first show that influences are pair-
wise disjoint. We proceed by contradiction. Suppose that T1 and T2 are in Poleim,
and T ∈ Influenceim(T1) ∩ Influenceim(T2). Hence, T � T1 and T � T2. By def-
inition of Influenceim(T1) and T � T2, we infer that T1 � T2, and symmetrically
that T2 � T1. Therefore T1 = T2, a contradiction.

We now show that
⋃
k�l

Influenceim(Tk) = Dynamicim.
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⊆:If T ∈ Incluenceim(Tk) then closest-polesim(T ) = {Tk}, and by Lemma 4.1.9,
T ∈ Dynamicim.
⊇:Let T ∈ Dynamicim. If T is a pole then T ∈ Influenceim(T ). Otherwise,

|closest-polesim(T )| ≤ 1, by condition (4). Since T ∈ Dynamicim, there exists
an i-pole T ′ such that T ∈ cover(T ′). Thus, |closest-polesim(T )| > 0. Then,
there exists T ′ such that {T ′} = closest-polesim(T ), and by definition 4.1.13, T ∈
Influenceim(T ′). We prove now the second assertion.
⇐: This is shown by what precedes.
⇒: If T ∈ Influenceim(Tk) then let {T ′k} = min�{Tp ∈ Poleim | T ≺ Tp}. By

assertion (1), Tk = T ′k.

As a consequence, each type of Dynamicim is in the influence of one and only one
pole of Poleim. We use this to define poleim.

Definition 4.1.16. For each type T in Θ, we define poleim:

—∀T ∈ Dynamicim, poleim(T ) = T ′ ⇔ T ∈ Influenceim(T ′)
—∀T ∈ Θ−Dynamicim, poleim(T ) = 0

From this definition, and Proposition 4.1.15, we have the following

Corollary 4.1.17. Given a generic function m of arity n, i ∈ {1, . . . , n}, for
each type T ∈ Dynamicim,

min�{T ′ ∈ Poleim | T � T ′} = {poleim(T )}.

4.2 Main Results

The following two theorems respectively establish that in the ith dimension, the
entries for types which do not belong to any influence can be eliminated and that
the entries for types belonging to the same influence can be grouped.

Theorem 4.2.1. For every generic function m of arity n, and i ∈ {1, . . . , n},
the entry for type T can be eliminated from the dimension i of the dispatch table of
m if T does not belong to the influence of any i-pole.

Proof. By condition (1), we note Ti = T , and we prove that if Ti does not
belong to the influence of any i-pole, then it verifies

∀(T1, . . . , Ti−1, Ti+1, . . . , Tn) ∈ Θn−1,MS(m(T1, . . . , Ti, . . . , Tn)) = ∅.

By assertion (1) of Proposition 4.1.15, Ti 6∈ Dynamicim. By Definition 4.1.4,
(T1, . . . , Tn)6∈Dynamicm. By Fact 4.1.5, applicable(m(T1, . . . , Tn)) = ∅. Hence by
Definition 2.2, MS(m(T1, . . . , Tn)) = ∅.

As the cell associated with (T1, . . . , Tn) is composed of members of MS(m(T1,
. . . , Tn)), it is also empty. Consequently the entry for T can be eliminated.

Lemma 4.2.2. Given a generic function m of arity n, for all s = (T1, . . . , Tn)
in Dynamicm, with sp = (pole1

m(T1), . . . , polenm(Tn)), we have

MS(m(s)) = MS(m(sp))
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Proof. We have to prove that applicable(m(s)) = applicable(m(sp)) and that
�s is the same order as �sp . We first prove applicable(m(s)) = applicable(m(sp)).

⊆ : As s ∈ Dynamicm, applicable(m(s)) is not empty. Let mk(T 1
k , . . . , T

n
k ) ∈

applicable(m(s)). From Definition 2.1, for all i, 1 ≤ i ≤ n, Ti � T ik. By Definition
(4.1.6), T ik is an i-pole. By Corollary 4.1.17, poleim(T i) � T ik. Hence by Definition
2.1, mk is applicable to sp.

⊇ : As applicable(m(s)) 6= ∅ and applicable(m(s)) ⊆ applicable(m(sp)), we have
applicable(m(sp)) 6= ∅. Let mk ∈ applicable(m(sp)). From Definition 2.1, ∀i,
1 ≤ i ≤ n, we have poleim(Ti) � T ik, and by Corollary 4.1.17, Ti � poleim(Ti). By
transitivity, T i � T ik, and by Definition 2.1, mk ∈ applicable(m(s)).

We now prove that �s=�sp . By Corollary 4.1.17, ∀i, 1 ≤ i ≤ n, T i � poleim(T i).
Hence s � sp. By Definition 2.7, ∀m1,m2 ∈ applicable(s),m1 �sp m2 if and only
if m1 �s m2.

Theorem 4.2.3. Let m be a generic function of arity n, for each i, 1 ≤ i ≤ n,
and for each type T ∈ Dynamicim, the entries for type T and poleim(T ) can be
grouped in the dispatch table.

Proof. We prove that for each i, 1 ≤ i ≤ n, ∀T ∈ Dynamicim, ∀(T1, . . . , Ti−1,
Ti+1, . . . , Tn) ∈ Θn−1, and Ti = T , we have

MS(m(T1, . . . , Ti, . . . , Tn)) = MS(m(T1, . . . , pole
i
m(T ), . . . , Tn)). (7)

If there exists j, j 6= i, such that Tj 6∈Dynamicim then (T1, . . . , Tn)6∈Dynamicm,
and by Fact 4.1.5, both sides of (7) are ∅. Assuming now that (T1, . . . , Tn) ∈
Dynamicm, by Lemma 4.2.2,

MS(m(T1, . . . , Tn)) = MS(m(pole1
m(T1), polenm(Tn))).

By Fact 4.1.7, poleim(Ti) ∈ Dynamicim and
MS(m(T1, . . . , pole

i
m(Ti), . . . , Tn))

= MS(m(pole1
m(T1), . . . , poleim(poleim(T )), . . . , polenm(Tn))).

By Definitions 4.1.16 and 4.1.13, poleim(Ti) ∈ Poleim and poleim(Ti) ∈ Influenceim
(poleim(Ti)). Hence by Definition 4.1.16, poleim(poleim(T )) = poleim(T ), which
proves (7).

As the cells associated with (T1, . . . , Tn) and (T1, . . . , pole
i
m(T ), . . . , Tn) are both

computed from the same ordered set, their values are identical, and by condition
(2), the entries associated with T and poleim(T ) can be grouped.

Proposition 4.2.4. Method precedence is monotonous in Cecil and Dylan.

Proof. In Cecil, method precedence only depends on subtyping:

∀s ∈ Dynamicm,m1(T 1
1 , . . . , T

1
n) �s m2(T 2

1 , . . . , T
2
n)⇔ ∀i, 1 ≤ i ≤ n, T 1

i � T 2
i

As a consequence, for all s, s′ in Dynamicm, m1 �s m2 ⇔ m1 �s′ m2.
Dylan enforces a monotonicity constraint on CPLs [Barrett et al. 1996]:
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Fact 4.2.5. If a class T has a class T ′ as supertype, and classes Ta and Tb appear
in the CPLs of both T and T ′, they appear in the same order.

Consequently,�T is monotonous, i.e., ∀T, T ′, Ta, Tb ∈ Θ such that T � T ′, T ′ � Ta,
and T ′ � Tb; thus we have

Ta �T Tb ⇔ Ta �T ′ Tb. (8)

Let us show that method precedence is monotonous. Let s = (T1, . . . , Tn) and s′ =
(T ′1, . . . , T ′n) be two signatures in Dynamicm such that s � s′. Let m1(T 1

1 , . . . , T
1
n)

andm2(T 2
1 , . . . , T

2
n) be two methods applicable to s and s′ such thatm1 �s′ m2. Let

i, 1 ≤ i ≤ n, be such that T 1
i �T ′i T

2
i . From (8), if follows that T 1

i �Ti T 2
i . As, by

Definition 2.5, ∀j, j 6= i, T 1
j 6�T ′i T

2
j , it follows from (8) that ∀j, j 6= i, T 1

j 6�Ti T 2
j .

Method dispatch both in Cecil and Dylan uses the applicability criteria and obeys
the monotonicity rule, which are the basic conditions for Theorems 4.2.1 and 4.2.3.
As a consequence, both theorems apply to Cecil and Dylan.

4.3 General Algorithm

From the above definitions and theorems, the general algorithm to compute the
compressed dispatch table of a generic function m is the following:

(1) Compute the i-poles and their influence, for each selector (m, i).

(2) Attribute an index to each i-pole.

(3) Compute the selector conflicts, define the color of each selector, and give an
identifier to each selector of the same color.

(4) For every type T and each argument position i, store the index of its i-pole in
the entry of T in the group argument array associated with selector (m, i), and
store the selector number at the same position in the corresponding selector
array.

(5) For every signature (T1, . . . , Tn) ∈
∏n
i=1 Pole

i
m, determine MS(m(T1, . . . ,

Tn)), and store the result (address of a set or index of a method) in the cor-
responding entry of the table, i.e., in Dcm[m arg1[T1.type index], . . . ,m argn
[Tn.type index]].

5. COMPUTING POLES

Computing the i-poles and influences of a generic function m amounts to succes-
sively computing the pole of each type in Θ, i.e., poleim. This is needed because
T is a pole if and only if poleim(T ) = T , and if T ′ is a pole then Influence(T ′) =
{T ∈ Θ | poleim(T ) = T ′}. Moreover, the values of poleim are also needed to build
the argument arrays, whereas the values of Influence are not needed in the general
algorithm given above.

We show that the computation of poleim can be done in a single pass over the
set of types using closest-polesim. We then present two techniques to optimize
the computation of closest-polesim, first by minimizing the set in which they need
to be searched, then by using bit vectors to efficiently represent the subtyping
relationship.
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5.1 Single-Pass Traversal of the Type Graph

We consider a generic function m of arity n, and an argument position i. We show
that poleim(T ) only depends on closest-polesim(T ).

Theorem 5.1.1. Given a generic function m of arity n, for each i, 1 ≤ i ≤ n,
for each T in Θ,

(1 ) (poleim(T ) = 0)⇔ (T 6∈Staticim and closest-polesim(T ) = ∅),
(2 ) (poleim(T ) = T ′, T ′ 6= T )⇔ (T 6∈Staticim and closest-polesim(T ) = {T ′}), and
(3 ) (poleim(T ) = T )⇔ (T ∈ Staticim or |closest-polesim(T )| > 1).

Proof. We first show that

T = poleim(T )⇔ T ∈ Poleim. (9)

If T = poleim(T ), from Definition 4.1.16, T ∈ Influenceim(T ), and by Definition
4.1.13, T ∈ Poleim. Conversely if T ∈ Poleim, as T ∈ {T ′ ∈ Poleim | T � T ′}, by
Corollary 4.1.17 T = poleim(T ).

From (3), T ∈ Staticim ⇒ T ∈ Poleim; hence by (9), poleim(T ) = T . Thus, we
have

T ∈ Staticim ⇒ poleim(T ) = T. (10)

We finally have the following fact:

T 6∈Poleim ⇒ {T ′ ∈ Poleim | T ≺ T ′} = {T ′ ∈ Poleim | T � T ′} (11)

(1) ⇒: As poleim(T ) 6= T , from (10) we have T 6∈Staticim. Suppose that closest-
polesim(T ) 6= ∅; then by Lemma 4.1.9, T ∈ Dynamicim and by Definition 4.1.16,
poleim(T ) 6= 0.

⇐: From Definition 4.1.6, Staticim ⊆ Poleim; hence closest-polesim(T ) = ∅
implies {T ′ ∈ Staticim | T ≺ T ′} = ∅. As T 6∈Staticim, from Definition 4.1.4,
T 6∈Dynamicim. Using Definition 4.1.16, this implies poleim(T ) = 0.

(2)⇒: As poleim(T ) 6= T , from (10), T 6∈Staticim. From Corollary 4.1.17 we have
{T ′} = min�{T ′′ ∈ Poleim | T � T ′′}. From (9), T 6∈Poleim; hence (11) applies,
and from the definition of closest-polesim, {T ′} = closest-polesim(T ).

⇐: From Lemma 4.1.9, T ∈ Dynamicim; hence from Corollary 4.1.17, {poleim(T )}
= min�{T ′ ∈ Poleim | T � T ′}. From (3) and (5), T 6∈Poleim. Hence (11) applies,
and {poleim(T )} = min�{T ′ ∈ Poleim | T ≺ T ′}. Then by definition of T ′ and of
closest-polesim, poleim(T ) = T ′.

(3) ⇒: From (9) T ∈ Poleim; hence by Definition 4.1.6 and (5), T ∈ Staticim or
|closest-polesim(T )| > 1.

⇐: If T ∈ Staticim, from (10), poleim(T ) = T . If |closest-polesim(T )| > 1, from
(5), T ∈ Poleim and from (9), poleim(T ) = T .

We define now the linear order ≤ over Θ, which is used by our algorithm to
compute the poles. As � is a partial order over Θ, it is possible to find a total
order α over Θ that is an extension of �, i.e.,
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input : an ordered set of types Θ≤, a generic function m, an argument position i
output : a set of poles Poles
side-effect: updated pole attribute of the types

Poles ←∅
for T in (Θ,≤) do

if T ∈ Staticim then // case 3a of Theorem 5.1.1
T.pole← T // T is a primary pole
insert T into Poles

else
if closest-polesim(T ) = ∅ then // case 1 of Theorem 5.1.1

T.pole← 0
else

if closest-polesim(T ) = {Tp} then // case 2 of Theorem 5.1.1
T.pole← Tp

else // case 3b of Theorem 5.1.1
T.pole← T // T is a secondary pole
insert T into Poles

Fig. 7. Pole computation algorithm.

(∀T, T ′ ∈ Θ, (T α T ′ or T ′ α T )) and (∀T, T ′ ∈ Θ, (T � T ′ ⇒ T α T ′)).

The topological sort of Knuth [1973] is a classical algorithm to obtain a linear
extension from a partial order. We define ≤ to be the opposite of a linear extension
of �; hence the highest types according to � are the first according to ≤:

(∀T, T ′ ∈ Θ, (T ≤ T ′ or T ′ ≤ T )) and (∀T, T ′ ∈ Θ, (T � T ′ ⇒ T ′ ≤ T )).

We note (Θ,≤) as the set of all types totally ordered by ≤. Our algorithm starts
from the highest types and traverses the type graph downward to the most specific
types. Thus, each type is treated before its subtypes and after its supertypes.
Since the closest poles of T only involve poles that are supertypes of T , and all the
supertypes of T have already been treated before T , all poles supertypes of T are
known when T is treated. Thus, the body of the algorithm merely implements the
case analysis given in Theorem 5.1.1.

In the algorithm of Figure 7, we use a record-like representation of types, with
an attribute pole. A variable Poles records the set of poles.

Example 5.1.2. Figure 8 illustrates the computation of the 1-poles of method m.
Poles appear in boxes, and primary poles are written in bold. The dashed arrow
shows the order in which types are considered. The closest poles for each type are
given between curly brackets. The closest poles of D are A and B; thus D is a pole.
The poles supertypes of H are D and B, and as D is a subtype of A, the single
closest pole of H is D. Hence H is not a pole, and its pole is D.

5.2 Computing the Closest Poles

The computation of the closest poles can be optimized by reducing the number of
poles that need to be compared at each step. The following theorem reduces this
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Fig. 8. Pole computation example.

number of comparisons to the number of direct supertypes of the current type.

Theorem 5.2.1. For all T in Θ, we have

closest-polesim(T ) = min�{poleim(T ′) | T isa T ′}. (12)

Proof. Let T1, . . . , TN be the totally ordered list of types in (Θ,≤). The proof
is by induction on k, 1 ≤ k ≤ N .

Basis of the Induction T1 has no supertype; thus {poleim(T ′) | T1 isa T
′} = ∅,

and since closest-polesim(T1) = ∅, (12) holds.

Lemma 5.2.2. Let (S,�) be a partially ordered set; if A and B are two subsets
of S, then

((A ⊂ B) and (min�B ⊂ A)) ⇒ (min�A = min�B). (13)

Proof. First, let A and B be two subsets of S:

A ⊂ B ⇒ ∀x ∈ min�B, @y ∈ min�A s.t. y ≺ x (14)

To see that, suppose that x ∈ min�B and y ∈ min�A. As A ⊂ B, y ∈ B. If
y ≺ x then x6∈min�B, a contradiction.

Suppose that A ⊂ B and min�B ⊂ A.

⊆: Let x ∈ min�A. As A ⊂ B, x ∈ B. Since min�B ⊂ A, by (13), @y ∈
min�(min�B), y ≺ x, i.e., @y ∈ min�B, y ≺ x. Hence, x ∈ min�B.

⊇: Let x ∈ min�B. As min�B ⊂ A, x ∈ A. Since A ⊂ B, by (13), @y ∈
min�A, y ≺ x. Hence, x ∈ min�A.

We now come to the induction part.
Induction: Suppose that (12) holds for some k. LetA = {poleim(Tk′) | Tk+1 isa Tk′ ,

1 ≤ k′ ≤ k} and B = {T ′ ∈ Poleim | Tk+1 ≺ T ′}.
A ⊂ B: Let T ′ ∈ A. T ′ ∈ Poleim and ∃k′ such that Tk+1 ≺ Tk′ � T ′. Thus,

T ′ ∈ B.
min�B ⊂ A: Let T ′ ∈ min�B. As Tk+1 ≺ T ′ either (i) Tk+1 isa T

′ or (ii) there
exists an ascending chain C of the partially ordered set (Θ, isa) starting from Tk+1

and finishing at T ′.
Case (i): By (9), poleim(T ′) = T ′. Hence, T ′ ∈ A.
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Case (ii): Let C = Tk+1 isa T
0 . . . isa T ′. We first prove that closest-polesim(T 0) =

{T ′}.
T ′ ∈ closest-polesim(T 0): Suppose there exists T ′′ ∈ Poleim such that T 0 � T ′′ ≺

T ′; then T k+1 � T ′′ ≺ T ′, which contradicts that T ′ ∈ min�B.
closest-polesim(T 0) ⊆ {T ′}: Suppose there exists T ′′ ∈ closest-polesim(T 0) such

that T ′ 6= T ′′. Then, by Theorem 5.1.1, poleim(T 0) = T 0. As Tk+1 ≺ T 0 ≺ T ′,
T ′ 6∈closest-polesim(Tk+1), which contradicts that T ′ ∈ min�B.

Thus poleim(T 0) = T ′, and since Tk+1 � T 0, T ′ ∈ A.
We can now apply the above lemma, which gives that min�{poleim(Tk) |

Tk+1 isa Tk′ , 1 ≤ k′ ≤ k} = min�{T ′ ∈ Poleim | Tk+1 ≺ T ′} = closest-polesim(Tk+1).
Thus (12) holds for k + 1.

Note that the poles of the direct supertypes of a type T are also supertypes of
T ; thus this verification is not needed in the computation of the closest poles of T .

Nonetheless, (12) still requires to compute the minimum over a set, and min�E
has a cost of |E|2. By Theorem 5.1.1, the Pole Computation Algorithm only needs
to know if |closest-polesim(T )| is 0, 1, or more, and if there is a single closest pole,
we need to compute it. In this latter case, the closest pole of T has the greatest
rank in (Θ,≤) among all the poles of T .

Based on these considerations, we propose to compute the pseudo-closest poles
of T . We assume that pole types are ranked in the ascending order of ≤. The
algorithm consists of three iterations over the set {poleim(T ′) | T isa T ′}. In the
first iteration, this set is assigned to the variable candidates. In the next iteration,
the type T c with the greatest rank is returned, and finally it is checked if it is a
subtype of all the other poles. If there is one pole T ′ for which T c is not a subtype
then T ′ is also returned,and the computation stops.

The algorithm assumes that each type has a pole-rank attribute used for pole
types only. Because poles are found in the ascending order of ≤, pole ranks are also
generated in this ascending order. This algorithm is used instead of closest-poles.

5.3 Testing the Subtyping Relationship

In this section, we show how to optimize the many subtyping tests that are needed
in the Peudo-Closest-Poles Algorithm.

We associate with each pole the set of poles of its direct supertypes, implemented
as a vector of bits. Because this number of poles is usually small, a few bit vectors
are needed. The vector is built during the computation of poles and is released
when all poles in a given dimension have been obtained. The subtyping test can
then be performed in constant-time by testing the value of a bit.

The poles in a given dimension form an ascending chain of (Θ,≤), denoted
(T k)1≤k≤l, where k indicates the rank of the pole in the chain.

Definition 5.3.1. For each k in {1, . . . , l}, the bit vectorHk of length l associated
with T k is defined as

∀k′, 1 ≤ k′ ≤ l, Hk(k′) = 1 ⇔ T k
′ � T k

Hk(k′) = 0 ⇔ T k
′ 6� T k.

The following theorem allows us to build these arrays at a very low cost:
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input : a type T , an argument position i, a generic function m
output : a set of poles pseudo-closest

Iteration 1: compute candidates
candidates← {poleim(T ′) | T isa T ′}
if candidates = ∅ then

pseudo-closests = ∅
else

Iteration 2: search for type T c with greatest rank
T c ← any-element(candidates)
for T ′ in candidates

if T ′.pole-rank > T c.pole-rank then
T c ← T ′

Iteration 3: check T c is a subtype of all members of candidates
pseudo-closest← {T c}
for T ′ in candidates

if T c 6� T ′ then
insert T ′ into pseudo-closest
break

Fig. 9. Pseudo-Closest Poles algorithm.

Theorem 5.3.2. For each k in {1, . . . , l}, we have

Hk =
∨

Tk′∈{poleim(T ′) | Tk isa T ′}

Hk′ ∨ (2k
′
). (15)

The symbol ∨ denotes the logical-OR operation, and 2k
′

is the bit vector with a
“1” at position k′ and “0” everywhere else.

Proof. As Hk is a bit vector, (15) is equivalent to

Hk[k′] = 1⇔ ( ∃k′′ s.t. ( T k
′′ ∈ {poleim(T ′) | T k isa T ′}

and ( Hk′′ [k′] = 1 or k′ = k′′)))

Using Definition 5.3.1, this is equivalent to

T k ≺ T k
′
⇔ ( ∃T k

′′
∈ {poleim(T ′) | T k isa T ′} s.t. ( T k

′′
≺ T k

′
or T k

′′
= T k

′
))

⇔ ( ∃T k′′ ∈ {poleim(T ′) | T k isa T ′} s.t. T k
′′ � T k′ )

We prove the last equivalence.

⇐: As T k ≺ T ′ � T k′′ , and T k
′′ � T k′ , by transitivity of �, T k ≺ T k′ .

⇒: As T k
′ ∈ Poleim and T k ≺ T k

′
, by Definition 4.1.8, ∃T k′′ ∈ closest-

polesim(T k) such that T k
′′ � T k′ . Let A = {poleim(T ′) | T k isa T ′}. From Theorem

5.2.1, closest-polesim(T k) = min�A. Hence T k
′′ ∈ min�A, and T k

′′ ∈ A.

This result enables us to easily build a vector Hk as the logical-OR between the
bit vectors associated with the poles of the direct supertypes of T k and a bit vector
in which one-valued bits refer to the direct supertypes of T k.
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input : two poles T k and T k
′

output : true if and only if T k ≺ T k′ , else false

if T k.pole-rank > T k
′
.pole-rank then

if Hk[k′] = 1 then
return(true)

return(false)

Fig. 10. Subtyping test.

input : A new pole T , its closest poles closest-poles
output : modified T , modified H, modified last-pole-rank

increment last-pole-rank
T.pole-rank ← last-pole-rank
for Tc in {poleim(T ′) | T isa T ′} do
HT.pole-rank ← HT.pole-rank ∨ HTc.pole-rank ∨ 2Tc.pole-rank

Fig. 11. Pole initialization.

The simple test of Figure 10 tests if a pole T k is a subtype of a pole T k
′
. It

assumes that H is implemented as an array of arrays of bits, such that Hk is the
kth array of bits, and Hk[k′] is the k′th bit in this array.

The ranking of poles in (Θ,≤) and the construction of bit vectors are progressively
done as long as a new pole is found by the routine in Figure 11, which must be
invoked by the Pole Computation Algorithm (Figure 7).

As a pole T k cannot be a subtype of T k
′

if k < k′, we have ∀k, k′, (k < k′ ⇒
Hk(k′) = 0). Hence Hk can have an effective length of k − 1, which allows us to
allocate this vector as soon as pole T k is found.

5.4 Worst-Case Complexity

In this section, we denote |m| as the number of methods of a generic function m, E
the number of edges in the type graph, µ the number of types with two supertypes
or more, and we use the following definition:

Definition 5.4.1. Let T ∈ Θ. The set of direct supertypes of T , denoted as
dst(T ), is defined as

dst(T ) = {T ′ | T isa T ′}.

Cost Units. Table I summarizes the cost units of the basic operations used in
our algorithms. All these operations are supposed to execute in constant time. Bit
vectors have a fixed length; hence they can be represented as an array of integers,
and hence BitT est and BitSet execute in constant time. For BitOr, we denote ω
as the size of a memory word. We do not assume any duplicate removal in sets;
hence InsSet is constant. We also assume that the number of elements is memorized
into the set representation; hence SetCard executes in constant time.

Subtyping Test. the cost of the subtyping test in Figure 10 is

SbTest = IntComp+BitT est.
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Table I. Cost Units

Unit Description of Basic Operation

IntComp comparison between two integers
VarAssg variable assignment
BitTest test the value of an entry in an array of bits
BitSet sets the value of an entry in an array of bits
BitOr logical-OR between two memory words
InsSet insertion of an element into a set
SetCard yields the cardinality of a set
SetElem take an element out of a set

Pseudo-Closest-Poles. The Pseudo-Closest-Poles algorithm (Figure 9) essen-
tially consists of three loops over the set of direct supertypes of a type T .
—Loop 1: Collects in candidates the poles of the direct supertypes. This costs

L1(T ) = |dst(T )| × InsSet.

—Loop 2: Searches for the pole T c with the greatest rank. Each iteration consists
at worst of a comparison between integers and an assignment. This costs

L2(T ) = |dst(T )| × (IntComp+ V arAssg).

—Loop 3: Checks that T c is a subtype of all the other poles. It includes the
comparison T ′ 6� T c,which consists of an equality comparison between the ranks
of T ′ and T c, and a subtyping test. Hence each iteration consists at worst of
an equality comparison, a subtyping test, and an insertion into pseudo-closest.
This costs

L3(T ) = |dst(T )| × (IntComp+ SbTest+ InsSet)
= |dst(T )| × (2× IntComp+BitT est+ InsSet).

To sum up, this algorithm costs

PCP (T ) = L1(T ) + L2(T ) + L3(T )
= |dst(T )| × (3× IntComp+BitT est+ 2× InsSet).

Pole Initialization. The pole initialization routine in Figure 11 essentially con-
sists of a loop over the direct supertypes. |H| being the number of bits in a vectors,
a vector is stored in (|H|/ω)+1 memory words (we assume integer division). Hence
the cost of pole initialization is

PI(T ) = |dst(T )| × ((
|H|
ω

+ 1)× BitOr +BitSet+ V arAssg).

|H| is at least the total number of poles to be computed, which cannot be pre-
dicted. As the number of primary poles is bounded by |m|, and the number of
secondary poles is bounded by µ, we use |H| = |m|+ µ. In the following, we use

PI ′(T ) = |dst(T )| × ( (
|m|+ µ

ω
+ 1)×BitOr +BitSet+ V arAssg ).
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input : an ordered set of types (Θ,≤), a generic function m, an argument position i
output : a set of poles Poles, modified types

1. Poles ← ∅
Step 1: mark primary poles

2. increment current-mark
3. for mk in m.methods do
4. mk.formals[i].mark ← current-mark

Step 2:
5. for T in (Θ,≤) do
6. if T.mark = current-mark then // tests if T ∈ Staticim (case 3a of Theorem 5.1.1)
7. pole-init(T ) // T is a primary pole
8. T.pole← T
9. insert T into Poles
10. else
11. closest← pseudo-closest-poles(T,m, i)
12. size-closest← |closest|
13. if size-closest = 0 then // case 1 of Theorem 5.1.1
14. T.pole← 0
15. else
16. if size-closest = 1 then // case 2 of Theorem 5.1.1
17. T.pole←first(closest)
18. else // case 3b of Theorem 5.1.1
19. pole-init(T ) // T is a secondary pole
20. T.pole← T
21. insert T into Poles

Fig. 12. Detailed algorithm for pole computation.

Pole Computation. We compute the worst-case complexity of pole computation
on the detailed algorithm of Figure 12. In particular, the membership test of a
type T in Staticim can be done immediately by marking each type of Staticim.
An integer mark is generated before each pole computation and assigned to the
variable current-mark. This new mark is used to identify the elements of Staticim,
by assigning it to the attribute mark of each type in Staticim. Then, to test if a type
T is a member of Staticim, it suffices to test if T.mark is equal to current-mark. We
use a record-like representation of generic functions and methods. Generic functions
have an attribute methods that represents the set of methods, and methods have
an attribute formals that represents the array of their formal arguments, which
are primary poles. The algorithm essentially consists of two loops:

—Loop 1 (lines 3–4): This loop marks the ith formal argument of each method of
the generic function m, which costs

L1 = |m| × V arAssg.

—Loop 2 (lines 5–21): This is the main loop over Θ, which consists of several tests.
—If T is a primary pole, only lines 6–9 are executed, which costs

L1
2(T ) = IntComp+ PI ′(T ) + V arAssg + InsSet.
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—If T has no pole, lines 6 and 11–14 are executed, which costs

L2
2(T ) = 2× IntComp+ PCP (T ) + 3× V arAssg + SetCard.

—If poleim(T ) = T ′, T 6= T ′, lines 6, 11–13, and 16–17 are executed, which costs

L3
2(T ) = 3× IntComp+ PCP (T ) + 3× V arAssg + SetCard+ SetElem.

—If T is a secondary pole, lines 6, 11–13, 16, and 19–21 are executed, which costs

L4
2(T ) = 3×IntComp+PCP (T )+3×V arAssg+SetCard+PI ′(T )+InsSet.

In the worst case, the cost is max{L1
2(T ), L2

2(T ), L3
2(T ), L4

2(T )}, which is bounded
by

L2(T ) = 3× IntComp+ PCP (T ) + PI ′(T ) + 3× V arAssg
+SetCard+ InsSet+ SetElem.

The total cost of pole computation is

PC = L1 +
∑
T∈Θ

L2(T )

= |m| × V arAssg +
∑
T∈Θ

(3× IntComp+ PCP (T ) + PI ′(T ) + 3× V arAssg

+SetCard+ InsSet+ SetElem)

= |m| × V arAssg +
∑
T∈Θ

(3× IntComp+ 3× V arAssg + SetCard+ InsSet

+SetElem+ |dst(T )| × (3× IntComp+BitT est
+2× InsSet+ V arAssg

+BitSet+ ( |m|+µω + 1)×BitOr))
= |m| × V arAssg + |Θ| × (3× IntComp+ 3× V arAssg + SetCard+ InsSet

+SetElem) + (
∑
T∈Θ

dst(T ))× (3× IntComp+BitT est+ 2× InsSet

+( |m|+µω + 1)×BitOr +BitSet+ V arAssg).

As
∑
T∈Θ

dst(T ) = E , we finally have

PC = O(V arAssg×|m|+(3×IntComp+. . .+SetElem)×|Θ|+BitOr×|m|+ µ

ω
×E).

As ω > 1, the cost of pole computation is at worst in |m|+ |Θ|+ (|m|+ µ)× E .
|m|+ µ is our bound of the number of poles, which is also bounded by |Θ|; hence
another bound to the complexity of pole computation is |m|+ |Θ| × E .

6. FILLING UP DISPATCH TABLES

The computation of poles determines the structure of the dispatch table and the
associated argument arrays. Filling up the dispatch table requires that we compute
MS for each signature of poles. Thus, the more the table is compressed, the less are
computations needed. In this section, we optimize the computation of MS when
it returns a set consisting of the most specific applicable methods. In particular,
this covers the case of Cecil with static and dynamic checking. We first show that
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the most specific methods can be computed on a subset of the applicable methods
obtained by examining the signatures of poles in an order compatible with signature
precedence. We explain how such an order is obtained. We finally give the algorithm
to fill up the dispatch table and its worst-case complexity.

6.1 MSA Method Computation

We first define the notions of pole signature, candidate signature, and conflicting
methods.

Definition 6.1.1. Given a generic function m of arity n, the set of pole signatures
is

Polesm =
n∏
i=1

Poleim.

Definition 6.1.2. For each (T1, . . . , Tn) in Dynamicm, the set of candidate sig-
natures of (T1, . . . , Tn) is

candidate-signaturesm((T1, . . . , Tn))

= {(T ′1, . . . , T ′n) | ∃i ∈ {1, . . . , n}, ∃T ∈ Θ s.t. T ′i = poleim(T ) and Ti isa T
and ∀j 6= i, T ′j = Ti}.

Example 6.1.3. Consider the types and methods in Figure 3. The 1-poles are A,
B, and D, and the 2-poles are B, C, and D. The candidate signatures of (D,D)
are obtained by substitution with the poles of the direct supertypes. The 1-poles
of D’s direct supertypes are A and B, and their 2-poles is simply B. Hence the
candidate signatures of (D,D) are (A,D), (B,D), and (D,B).

Definition 6.1.4. The set of conflicting methods of an invocation m(s), denoted
as conflicting(m(s)), is

conflicting(m(s)) = min�sMS(m(s)) = min�sapplicable(m(s)).

When m(s) is not ambiguous, we have

conflicting(m(s)) = {MSA(m(s))}.

The above definition exactly matches the dynamic checking mode of Cecil, which
needs the MSA method of unambiguous invocations, and the conflicting methods
of ambiguous invocations. It also applies to its static checking mode, in which the
type-checker searches possible ambiguous invocations in the source code, and where
the MSA methods are needed at run-time. Finally, the definition captures the case
of Dylan when “next-method” is not used.

Theorem 6.1.5. For each s ∈ Polesm, which is not the signature of a method,
we have

conflicting(m(s)) = min�s
⋃

s′∈candidate-signaturesm(s)

conflicting(m(s′)).

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998.



142 · E. Dujardin et al.

Proof. Let s = (T 1, . . . , T n). If conflicting(m(s)) = ∅, then applicable(m(s)) is
empty. From Definition 6.1.2, the candidate signatures of s are more generic than
s. By transitivity of �, no method is also applicable to these signatures; hence
both sides of the equality are ∅. We assume now that conflicting(m(s)) 6= ∅, and we
denote A =

⋃
s′∈candidate-signaturesm(s) conflicting(m(s′)) and B = {mk | mk � s}.

—A ⊂ B: Let mk ∈ A, and s′ ∈ candidate-signaturesm(s) such that mk ∈
conflicting(m(s′)). From Definition 6.1.2, s � s′. From Definition 2.1, mk is
transitively applicable to s. By definition of B, mk ∈ B.

—min�sB ⊂ A: We proceed by contradiction. Let ms ∈ min�sB, i.e., ms ∈
conflicting(m(s)). We assume that ms 6∈A. Let T 1

s , . . . , T
n
s be the formals of ms;

we have conflicting(m(T 1
s , . . . , T

n
s )) = {ms}. As ms 6∈A, we have (T 1

s , . . . , T
n
s )

6∈candidate-signaturesm(s). By Definition 2.1, and as s is not the signature
of a method, s ≺ (T 1

s , . . . , T
n
s ). We build a candidate signature sc such that

sc ≺ (T 1
s , . . . , T

n
s ). Two cases may occur:

Case 1: ∃i ∈ {1, . . . , n}, with i being unique, such that T is � T i. As T is ∈ Poleim,
by Corollary 4.1.17 we have poleim(T is) = T is . We show by contradiction that
T is is not a direct supertype of T i: assuming T i isa T is , we have (T 1

s , . . . , T
n
s ) ∈

candidate-signaturem(s), a contradiction. Hence ∃T0 ∈ Θ such that T i isa T0 ≺
T is. As T is ∈ Staticim, by Definition 4.1.4, T0 ∈ Dynamicim. Let T ′0 = poleim(T0).
As T is ∈ Poleim and T0 ≺ T is, by Corollary 4.1.17, T ′0 � T is . As T i isa T0,
T ′0 = poleim(T0) and (T 1

s , . . . , T
n
s )6∈candidate-signaturesm(s), by Definition 6.1.2,

T ′0 6= T is . Hence sc = (T 1, . . . , T i−1, T ′0, . . . , Tn) is a candidate signature, and
sc ≺ (T 1

s , . . . , T
n
s ).

Case 2: ∃i, j ∈ {1, . . . , n}, with i 6= j, such that T is � T i and T js � T j. Let T0

such that Ti isa T0 � T is . As T is ∈ Staticim, by Definition 4.1.4, T0 ∈ Dynamicim.
Let T ′0 = poleim(T0). As T is ∈ Poleim and T0 ≺ T is, by Corollary 4.1.17, T ′0 � T is.
Let sc be the candidate signature (T 1, . . . , T i−1, T0, . . . , T

n). As Tj ≺ T js , sc ≺
(T 1
s , . . . , T

n
s ).

As sc ≺ (T 1
s , . . . , T

n
s ), from Definition 2.1, ms is applicable to sc. As ms 6∈A and

sc is a candidate signature of s, by construction of A, ms 6∈conflicting(m(sc)).
Hence by Definition 6.1.4, ∃m′s ∈ applicable(m(sc)) such that m′s ≺sc ms. As
s � sc, by Definition 2.7, we have m′s ≺s ms also. As m′s ∈ applicable(m(sc))
and s � sc, from Definition 2.1, m′s ∈ applicable(m(s)). From Definition 6.1.4,
because of m′s, ms 6∈conflicting(s), a contradiction. Hence ms ∈ A.

As the set of methods applicable to m(s), ordered by �, is a partially ordered
set, by (12), we have min�sA = min�sB.

This theorem is useful if the conflicting methods of the candidate signatures are
known before computing conflicting(m(s)). We propose to ensure this property by
considering signatures in the ascending order of ≤, ≤ being the opposite of a linear
extension of the precedence order �:

(∀s, s′ ∈ Θn, (s ≤ s′ or s′ ≤ s))
and

(∀s, s′ ∈ Θn, (s � s′ ⇒ s′ ≤ s))
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As for pole computation, this order of pole signatures ensures that for each
signature s, the signatures s′, such that s ≺ s′, are considered before s, because
s′ < s. As all the candidate signatures of s are in this case, their conflicting
methods are computed before considering s, and Theorem 6.1.5 can be applied.
Note that the same order is used in the method disambiguation algorithm presented
in Amiel and Dujardin [1996], which allows us to perform table fillup and method
disambiguation at the same time.

6.2 Ordering the Pole Signatures

Ordering the pole signatures in an order that is compatible with precedence comes
down to transforming a partially ordered set (S,�) into a totally ordered set (S′,≤),
where S is the set of pole signatures. A classical algorithm is given in Knuth [1973].
The basic idea is to pick a first element that has no predecessor, remove this element
from S, append it to the originally empty set S′, and start over until S is empty.
In the case of pole signatures, it is necessary to scan the set of pole signatures to
find that a given signature has no predecessor. Hence, ordering the pole signatures
has an a priori complexity of O(|Polesm|2).

However, it is possible to obtain a complexity of O(|Polesm|) if the poles of each
dimension, Poleim, are themselves sorted in an order compatible with signature
precedence. Indeed, it suffices to produce the signatures in the lexicographic or-
dering generated by the total orders on the poles. This ordering is inexpensive, as
poles are already produced in this order by the algorithm of Figure 7. The total
order ≤ on Θn is defined as follows:

Definition 6.2.1. Given a generic function m of arity n, (T1, . . . , Tn) and (T ′1, . . . ,
T ′n) in Polesm, we have

((T1, . . . , Tn) ≤ (T ′1, . . . , T ′n)) ⇔ ( (T1, . . . , Tn) = (T ′1, . . . , T ′n) or (∃i0, i0 =
min{i | Ti 6= T ′i} and Ti0 < T ′i0).

Theorem 6.2.2. Given a generic function m, the relation ≤ defines a total
order on Polesm which is an extension of the precedence order �.

Proof. Let n be the arity of m. Let s = (T1, . . . , Tn), s′ = (T ′1, . . . , T
′
n) ∈

Polesm.

Antisymmetry. We assume that s ≤ s′ and s′ ≤ s. We proceed by contradiction:
assuming s 6= s′, let i0 = min{i | Ti 6= T ′i}. By Definition 6.2.1, s ≤ s′ implies
Ti0 < T ′i0 , and s′ ≤ s implies T ′i0 < Ti0 , a contradiction.

Transitivity. Let s′′ = (T ′′1 , . . . , T ′′n ) ∈ Polesm. We assume that s ≤ s′ and
s′ ≤ s′′. We consider two cases:

—s = s′ or s′ = s′′: By substitution of s′ with s or with s′′, s ≤ s′′.
—s 6= s′ and s′ 6= s′′: Let i0 = min{i | Ti 6= T ′i}, i′0 = min{i | T ′i 6= T ′′i }, and
i′′0 = min{i0, i′0}. Then ∀i, i < i′′0 , Ti = T ′′i . If i′′0 = i0 and i′′0 < i′0, then Ti′′0 < T ′i′′0
and T ′i′′0

= T ′′i′′0
; hence Ti′′0 < T ′′i′′0

. In the same way, if i′′0 = i0 and i′′0 < i′0, then
Ti′′0 < T ′′i′′0

. Finally if i′′0 = i0 and i′′0 = i′0, then Ti′′0 < T ′i′′0
< T ′′i′′0

. By Definition
6.2.1, this implies s ≤ s′′.
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Fig. 13. Order of pole signatures.

input : a generic function m, an array of pole lists P , an empty table dispatch
side-effect: filled dispatch table

Step 1: initialization
1. (Polesm,≤) ← OrderedPoleSignatures(P )

Step 2: dispatch of method signatures
2. for mk in m.methods do
3. dispatch[mk.formals] ←mk

Step 3: computation of the MSA methods
4. for s in (Polesm,≤) do
5. if dispatch[s] = 0 then // s is not a method signature
6. dispatch[s]← most-specific(s, dispatch)

Fig. 14. Table Fill Up algorithm.

Total Order. If s = s′ then s ≤ s′. If not, then {i | T1 6= T ′i} 6= ∅, hence
i0 = min{i | Ti 6= T ′i} is defined. As ≤ is a total order over Θ, either Ti ≤ T ′i or
T ′i ≤ Ti, and respectively s ≤ s′ or s′ ≤ s.

Extension of �. We assume that s � s′. If s = s′ then s ≤ s′. If not, let
i0 = min{i | Ti 6= T ′i}. As s � s′, by definition of �, Ti0 � T ′i0 . As Ti0 6= T ′i0 ,
Ti0 ≺ T ′i0 . As < is an extension of ≤ on Θ, Ti0 < T ′i0 . Hence by Definition 6.2.1,
s � s′.

Example 6.2.3. The table in Figure 13 represents the pole signatures of the
methods and types of Figure 3. The order on 1-poles (resp., 2-poles) in lines (resp.,
columns) is compatible with argument subtype precedence. A total order of Polesm
is a path through this table. Such a path is compatible with signature precedence
if it traverses each signature s before the signatures on the right and below s.
The path given by a lexicographic ordering, as shown on Figure 13, satisfies the
condition. For example, the signatures that are more specific than (B,C) are all
included in the gray area.
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6.3 Table Fill Up Algorithm

Figure 14 gives the fillup algorithm of table dispatch for a generic function m.
This algorithm proceeds in three steps. The first step invokes the function Or-
deredPoleSignature that builds the ordered poles signatures (Polesm,�), using the
array of pole lists P , where P [i] is (Poleim,≤). The second step fills the cells
of dispatch whose indices are signatures of methods. The value of each of these
cells is a single method when method dispatch disambiguation is performed (as
in Amiel and Dujardin [1996]), or it is a pointer to the set of conflicting methods.
The third step considers the other pole signatures ordered by ≤ using Theorem
6.1.5. It assigns the cell associated with the current signature in dispatch, using
the Most-Specific algorithm. This algorithm needs dispatch as argument in order
to collect the conflicting methods of candidate signatures.

6.4 Most Specific Method Computation

To compute the complexity of the Table Fill Up Algorithm, we need to specify the
Most-Specific function used to compare methods. This function depends on the
method specificity criterion of the language. In this section, for simplicity, we use
argument subtype precedence, without any additional criterion.

In this case, the specificity relationship on methods is the same as the relation
� on their signatures. Hence the order ≤ on pole signatures also defines a linear
extension of the specificity order for methods. Given a generic function m, we rank
all methods of m in the ascending order of their signatures in (Polesm,≤), the rank
of method mk(T 1

k , . . . , T
n
k ) being k. As in Section 5.3, with each method mk we

associate a bit vector called higher-methods and denoted as higher-methods(mk).
The k′th bit of higher-methods(mk) is 1 if and only if mk is more specific than
mk′ . As shown by Theorem 5.3.2 in the context of higher-poles’s arrays, higher-
methods(mk) is computed as a combination of the methods higher than the MSA
for the candidate signatures of (T 1

k , . . . , T
n
k ).

Operationally, the ranking of methods and the construction of the higher-methods
vectors are done during the traversal of (Polesm,≤) required by the Table Fill Up
Algorithm. In this traversal, the signatures of methods are identified by existing
table’s cells. The corresponding methods are then treated by the Higher Methods
Initialization Algorithm in Figure 15, which assumes that both the rank and the
higher methods are represented as attributes rank and higher-methods. This so-
lution allows to treat the methods in the ascending order of ≤. Thus, the higher
methods of the MSA methods of the candidate signatures are already defined.
Finally, the routine collects each method in the order of their rank into the list
ordered-methods, which is needed by the Most-Specific algorithm.

The computation of the most specific method using the higher-methods bits,
in Figure 16, proceeds in two steps. The first step marks the conflicting meth-
ods of candidate signatures, as described for marking the members of Staticim in
Section 5.4. The second step collects conflicting methods in the reverse order of
ordered-methods, i.e., from the method with the highest rank downward. Each
marked method m is compared with the current set of the conflicting methods mc,
using the higher-methods bits. As each mc has been collected in a previous itera-
tion, it has a greater mark and cannot be more generic than m. Hence it is only
relevant to test if m � mc. If no conflicting method mc is more specific than m,
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input : a method meth, a table dispatch
side-effect: modified meth, modified last-method-rank, modified ordered-methods

1. meth.rank ← last-method-rank
2. increment last-method-rank
3. for other in {dispatch[s′] | s′ ∈ candidate-signatures(meth.formals)} do
4. meth.higher-methods ←meth.higher-methods ∨ other.higher-methods ∨ 2other.rank

5. append meth to ordered-methods

Fig. 15. Higher Methods’s Initialization algorithm.

input : a signature s, a table dispatch, a list ordered-methods
output : list of conflicting methods conflicting

Step 1: mark candidate methods
1. for s′ in candidate-signatures(s)
2. for m in dispatch[s′]
3. mark(m)

Step 2: compute conflict set
4. conflicting ← ∅
5. for m in reverse(ordered-methods)
6. if m is marked then // m is a candidate
7. if (∀mc ∈ conflicting,mc.higher-methods[m.rank] 6= 1) then
8. insert m into conflicting

Fig. 16. Most-Specific algorithm.

then m is added to conflicting.
In systems that do not authorize method selection ambiguities at compile-time,

conflicting may only contain 0 or 1 method; hence the loop at line 7 reduces to one
test. As ≤ is an extension of �, the most specific method is the marked method m
with the highest rank, and other marked methods have to be more generic. Once
m is found, the algorithm may return or finish the loop over ordered-methods to
detect ambiguities.

In the case of Cecil’s static checking mode, selection ambiguities may remain at
compile-time (as long as those invocations cannot occur at run-time). However the
conflicting methods of those invocations are not needed at run-time. We are then
able to show that in this mode, line 7 can also be safely reduced to one test.

In the case of Dylan, table cells have to contain a list of most specific methods
ordered by precedence. Besides, the method precedence test is more complex and
depends on the invocation signature. Consequently, the Most Specific Algorithm
would have to be changed, and the higher-methods arrays could not be used. It is
likely that using the candidate signatures would again allow to optimize the Most
Specific Algorithm. Further work is needed to formally establish this conjecture.

6.5 Worst-Case Complexity

We use the cost units introduced in Table I.

Table Access. The cost of an access in a dispatch table of dimension n is propor-
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tional to n:

TabAcc(n) = n× TabAcc(1)

Higher Methods Initialization Algorithm. This algorithm essentially consists of
an iteration over the MSA methods of candidate signatures. For a given method
mk, we denote csg(mk) as the number of candidate signatures for the formals of
mk, and we denote |H| as the size of the higher-methods array:

HMI(mk) = csg(mk)× ( (
|H|
ω

+ 1)×BitOr +BitSet+ V arAssg)

|H| is simply equal to the number of methods |m|. Let K be the maximum
number of direct supertypes of all types. The number of candidate signatures is
less than n×K. Hence the worst-case value of HMI(mk) is

HMI ′ = n×K × ( (
|m|
ω

+ 1)×BitOr +BitSet+ V arAssg).

Most Specific Methods. This routine essentially consists of two loops:

Step 1. There are at most n×K candidate signatures and at most |m| conflicting
methods for each. Hence this loop costs at worse n × K × (|m| × V arAssg +
TabAcc(n)).

Step 2. There are at most |m| methods in the current list of ordered methods
as well as in the current set of conflicting methods. Hence this loop costs at worse
|m| × (IntComp+ InsSet+ |m| × (BitT est+ V arAssg)).

The cost of this algorithm is

MSM = n×K × (TabAcc(n) + |m| × V arAssg)
+|m| × (IntComp+ InsSet+ |m| × (BitT est+ V arAssg)).

When no selection ambiguity occurs, line 7 reduces to one test and dispatch[s′]
on line 2 holds at most one method. Hence the worst-case complexity is

MSM ′ = n×K × (V arAssg + TabAcc(n))
+|m| × (IntComp+ InsSet+BitT est+ V arAssg).

Table Fill Up. The algorithm in Figure 14 essentially consists of three iterations.
—Iteration 1 (line 1): builds the list of pole signatures, which costs

I1 = |Polesm| × InsSet.
—Iteration 2 (lines 2-3): assigns the cells of the signatures of methods, which costs

I2 = |m| × (TabAcc(n) + V arAssg).

—Iteration 3 (lines 4-6): assigns the other cells.
—The detection of the signatures of methods costs

I1
3 = TabAcc(n) + IntComp.

—The assignment in line 6 costs

I2
3 = TabAcc(n) + V arAssg +MSM.
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As I2
3 does not apply to method signatures, and taking into account the initial-

ization of the higher-methods bits of method signatures, in the worst case this
iteration costs

I3=I1
3 + (|Polesm| − |m|)× I2

3 + |m| ×HMI ′

= |Polesm| × (TabAcc(n) + IntComp)
+(|Polesm| − |m|)× (TabAcc(n) + V arAssg +MSM)
+|m| × n×K × ( ( |m|ω + 1)×BitOr +BitSet+ V arAssg)

= |Polesm|×(TabAcc(n) + IntComp) + (|Polesm| − |m|)
×(TabAcc(n) + V arAssg + n×K × (TabAcc(n) + |m| × V arAssg)
+|m| × (IntComp+ InsSet+ |m| × (BitT est+ V arAssg)))
+|m| × n×K × ( ( |m|ω + 1)×BitOr +BitSet+ V arAssg).

To sum up, table fill up costs

TFU = I1 + I2 + I3
= |Polesm| × (InsSet+ n× TabAcc(1) + IntComp)

+|m| × (n× TabAcc(1) + V arAssg

+n×K × ( ( |m|ω + 1)×BitOr +BitSet+ V arAssg ))
+(|Polesm| − |m|)× (TabAcc(n) + V arAssg
+n×K × (TabAcc(n) + |m| × V arAssg)
+|m| × (IntComp+ InsSet+ |m| × (BitT est+ V arAssg)))

= O(TabAcc(1)× n× |Polesm|+ BitOr
ω × |m| × n×K × |m|

+(|Polesm| − |m|)× (n×K × (TabAcc(1)× n+ V arAssg × |m|)
+(BitT est+ V arAssg)× |m|2)

= O(BitOrω × |m|2 × n×K
+(|Polesm| − |m|)× (TabAcc(1)× n2 ×K + V arAssg × |m| × n×K
+(BitT est+ V arAssg)× |m|2).

As |Polesm| ≤ |Θ|n and |m| ≤ |Polesm|, we obtain

TFU <O(BitOrω × |m|2 × n×K
+(TabAcc(1)× n2 ×K + V arAssg × |m| × n×K
+(BitT est+ V arAssg)× |m|2)× |Θ|n.

In real cases, Θ and |m| are the only factors likely to vary a lot; hence table fillup
is performed in |Θ|n×|m|2, typical values for n being 2 and 3. Taking into account
the cost reduction brought by table compression, it is performed in |Polesm|×|m|2.
When no method ambiguity occurs (e.g. with Cecil’s static mode) this complexity
reduces to |Polesm| × |m|.

7. IMPLEMENTATION AND MEASUREMENTS

This section focuses on the run-time dispatching using compressed dispatch tables.
We only describe the implementation in the case of a language that ensures the
existence of a UMSA for any invocation. We first describe the representation of the
run-time data structures. In particular, we optimize the size of argument arrays
using bytes or 16-bit words. We also describe the dispatch code, since its size
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Fig. 17. Implementation of a dispatch table.

must also be counted. We then describe the global algorithm to build the dispatch
structures with group argument arrays using bytes or 16-bit words. Finally, we
present two applications with multimethods. In the first application consisting
of the Cecil compiler, we measure the size of the dispatch table and the total
size of dispatch structures using our proposed implementation. With the second
application, consisting of the Dylan library, we only compute the poles and give the
compression factors of the dispatch table. We then give upper and lower bounds
for the size of the dispatch tables.

7.1 Run-Time Structures and Dispatch Code

The data structures used at run-time are slightly different from those used at com-
pile time. In the following, we consider an n-ary generic function m. We denote as
ω the size in bytes of a memory word (in practice, ω = 4 or 8). Furthermore, since
run-time dispatch only needs the address of the code to execute, we assume that
at run-time each dispatch table’s cell holds the address of a method’s code.

We assume that these addresses are stored contiguously, starting from a base
address β. We also assume that a n-dimensional table is stored as a nesting of
one-dimensional arrays. The top-level array is associated with the first argument
position, and the low-level arrays are associated with the last argument position.
For each dimension, the associated argument array stores the offset of the cells with
respect to the base of a one-dimensional array. The function m argi (introduced in
Section 3.3) associates each type with the corresponding offset in the ith dimension.
This offset is the multiplication of (pole number − 1) by a constant γim, which
depends on the number of poles for the next argument positions. Hence given an
invocation signature m(o1, . . . , on), the address of the code to execute appears at
address β+

∑n
i=1m argi[oi.type index]. Depending on the value of the largest offset

in an argument array, its content can be stored in 8-bit, 16-bit, or 32-bit memory
words.6 In practice, 32-bit words were never needed in our measures; hence we only
assume 8- and 16-bit words in the following.

To illustrate this, consider a 3-dimensional dispatch table for a generic function
m. Let P ji be the jth pole in dimension i, and let |Poleim| be the number of poles
in dimension i. Thus, we have γ1

m = |Pole2
m| × |Pole3

m| × ω, γ2
m = |Pole3

m| ×
ω, and γ3

m = ω. Figure 17 portrays the implementation of the dispatch table.
Consider three types T1, T2, and T3, such that pole1

m(T1) = P 2
1 , pole2

m(T2) = P 1
2 ,

6This does not matter on some processors that cannot deal easily with bytes or 16-bit words, such
as the Dec Alpha (see Sites [1992])
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and pole3
m(T3) = P 2

3 . Hence, we will have m arg1(T1) = |Pole2
m| × |Pole3

m| × ω,
m arg2(T2) = 0, and m arg3(T3) = ω. Thus, the code to execute for an invocation
m(T1, T2, T3) appears at β + |Pole2

m| × |Pole3
m| × ω + ω, which corresponds to the

gray cell of Figure 17.
We assume that the operations necessary to perform the dispatch are replicated

for each generic function. This allows to have the base addresses of the argument
arrays and table as constants in the code.

For each invocation, the application’s object code includes the parameter-passing
code and a call to the dispatch routine. This is equivalent to a static invocation and
cannot be counted as method selection overhead. Then the dispatch routine finds
the address of the code to execute, based on the relevant arguments, and jumps
to this code. Finally this code performs the necessary stack adjustments. Again,
these adjustments cannot be counted as method selection overhead.

In the case of a SPARC processor, the dynamic dispatch code for n target ar-
guments needs 5n + 3 operations. We give in Figure 18 the dispatch code7 for a
generic function with two target arguments, without type checking. It assumes that
both argument arrays are made of bytes and that the arguments of the invocation
are referred to by registers i0 and i1. Apart from giving the space overhead in-
curred by multiple dispatching, this code also shows that run-time dispatch is done
efficiently and in constant time, the effective time depending on the version of the
processor. Furthermore, the blocks of instructions that fetch the table offsets (lines
1–4 and 5–8) are clearly independant, and the offset sum computation (line 9) can
be performed in pipe-line mode. For n target arguments, this amounts to 3×n− 1
additions and 2 × n loads from memory that can be performed in parallel, in a
sufficiently superscalar processor (n being typically 2 or 3). The common section of
code (lines 10–13) involves one addition, one load,and one indirect jump. A being
the cost of an addition, L the load latency, and B the branch misprediction penalty
of the target processor (we assume it does not predict indirect branches), the total
cost of dispatch, assuming use of a superscalar processor, is 4 × A + 2 × L + B.
Compared to the time overhead for monomethods, the time overhead of n targets
is 2×A+ L.

7.2 Implementation of Group Argument-Arrays

We use the same coloring algorithm as Dixon et al. [1989] to construct group argu-
ment arrays. Each selector is associated with the set of types to which it is appli-
cable, i.e., to which one of its formal arguments is applicable. The conflict set of
a selector is the set of the other selectors which set of applicable types intersect
with its own set. We order selectors according to the size of their conflict sets in
decreasing order, and we allocate the colors by considering the selectors in this
order. For a given selector, we first search in the list of colors ordered by creation
time from the earliest, a color for which selectors do not conflict with the selector
being considered. If no such color exists, a new color is created and associated with
the selector. Following André and Royer [1992], we only consider, in the sets of
applicable types, the types which do not have any subtypes.

7This code was obtained from the compilation of C code, the order of the assembler operations
being changed for clarity purposes.
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! find in 1st argument array the offset associated with 1st target argument
1. ld [%i0+4],%o0 ! o0=type number of 1st argument
2. sethi %hi( aa1),%o2
3. or %o2,%lo( aa1),%o2 ! o2=base address of arg-array 1
4. lduh [%o0+%o2],%o0 ! o0=offset in dispatch table

! find in 2nd argument array the offset associated with 2nd target argument
5. ld [%i1+4],%g1 ! g1=type number of 2nd argument
6. sethi %hi( aa2),%l1
7. or %l1,%lo( aa2),%l1 ! l1=base address of arg-array 2
8. ldub [%g1+%l1],%g1 ! g1=ωγ2π2 =offset in dispatch table

! add offsets
9. add %o0,%g1,%g1 ! g1=global offset in table (n− 1 additions)

! find code address
10. sethi %hi( meth),%o4
11. or %o4,%lo( meth),%o4 ! o4=table base address
12. ld [%o4+%g1],%g1 ! g1=address of code to execute

13. jmpl %g1,%g0 ! jump to the code

Fig. 18. Sparc implementation of the dispatch routine using dispatch tables.

As some argument arrays use short (8-bit) words, and others long (16-bit) words,
the coloring algorithm distinguishes the corresponding selectors. Thus, we do not
group two argument arrays whose elements do not have the same size.

It often happens that no overriding occurs on some arguments of a generic func-
tion m: for some position i, the set of ith formal arguments types is a singleton. In
this case, the MSA method selection does not depend on the run-time type at this
position; hence there is no corresponding dimension in the dispatch table. These
selectors are called inactive selectors, the others being called active selectors. The
associated formal argument is the single element of Poleim, called a single pole.

As a consequence, the argument arrays of inactive selectors may only be useful
for type-checking, to efficiently differentiate the subtypes of the single pole from
the other types. The coloring of these arrays must only yield the selector arrays.
Also, note that if two selectors have the same type as single pole, they can share
the same selector array. We do not detail the construction of these selector arrays
of inactive selectors, as they are not needed for run-time dispatch. Hence in the
following, “selector” means “active selector”, unless specified otherwise.

Consequently, our dispatch table computation algorithm with coloring is as fol-
lows:

(1) Compute and Store All Poles: For each generic function m, for each argument
position i of m, compute Poleim and store it, as well as the value of function
poleim, in a temporary array.

(2) Create Active Selectors: This comes down to find the selectors with at least
two poles.

(3) Prepare Argument-Array Fillup: For each selector (m, i), compute the corre-
sponding ω × γim and the corresponding breadth (8 bits or 16 bits). It is 16
bits if ω× γim × (|Poleim| − 1) > 255, because (|Poleim| − 1) is the highest pole
number.
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(4) Build Conflict Graph for Coloring: For each selector, find the applicable types
which have no subtypes, by propagating the selector down the subtyping graph
using a recursive function. The conflict set of each type without subtypes T is
composed of the selectors applicable to T . For each such conflict set, add each
selector to the conflict set of the other selectors.

(5) Order the selectors by size of the conflict set, from the biggest one.
(6) Compute the Colors: A color is a set of selectors, and the color list is empty at

the beginning. For each selector (m, i) of the list, look for a compatible color
in the list of colors. A compatible color is composed of selectors which do not
conflict with (m, i) and which have the same breadth as (m, i). If no such color
exists, create a new color and add it to the list; then add (m, i) to this color.
As an optimization, two color lists can be built, respectively for 8-bit selectors
and 16-bit selectors.

(7) Create the colored argument arrays, selector array, and associate each color
with its colored argument array and selector array.

(8) Identify Selectors: For each color, sequentially number the selectors of the color.
(9) Fill Up the Argument Arrays: For each selector (m, i), using the temporary

array of the function poleim, and for each type T such that poleim(T ) is not
null, πi being the pole number of poleim(T ), store ω × γim × πi at T ’s place in
the colored argument array of (m, i) and store (m, i)’s number in the associated
selector array.

(10) Fill up the dispatch table, using the algorithm of Figure 14.

As coloring differentiates active selectors with 8-bit argument arrays from those
with 16-bit argument arrays, the width of argument arrays must be computed before
coloring. This involves computing the number of poles in all dimensions. As coloring
takes into account all selectors of all generic functions, the pole computation has
to be done for all of these selectors. The argument arrays are filled up before the
dispatch table because, for each cell of the latter, we need to use the values of
the preceding cells, based on Theorem 6.1.5. The argument arrays are needed to
quickly access these cells.

7.3 The Cecil Hierarchy

Our results have been conducted on the Cecil compiler8 [Chambers 1993], which
is a real object-oriented application with multimethods, as the compiler is written
in Cecil itself. This application includes 932 types and 3,990 generic functions,
composed of 7,873 methods. Appendix A is a gzip’d tar archive of files that give the
declarations of the types, subtyping links and method signatures of this application,
in the format that we have used to conduct our tests. Table II gives the number of
generic functions and methods respectively with 0, 1, 2, 3, and 4 selectors.

Most of these functions have 0 or 1 active selector. Indeed, despite many generic
functions have many arguments, it often occurs that their type is the same for all
methods of the generic function. We say that an argument of a generic function
is a target only if its selector is active. Note that in the Cecil terminology, the

8The lists of classes and methods of the Cecil compiler were graciously put at our disposal by
Craig Chambers and Jeff Dean from University of Washington.
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Table II. Distribution of Generic Functions and Methods in the Cecil Compiler

Number of selectors Number of generic functions Number of methods

0 2,761 2,761

1 1,147 4,465

2 75 586

3 6 59

4 1 2

Table III. Sizes of Dispatch Tables, Cecil Compiler
Number of Selectors Size of Uncompressed Tables Size of Compressed Tables

2 248.5MB 7.5KB

3 18.1GB 3KB

4 11TB 64B

Table IV. Number of Argument Arrays
Uncolored Argument Arrays Colored Argument-Arrays

on 8 bits on 16 bits on 8 bits on 16 bits

Multitargetted Gen. Fun. 159 18 66 7

Monotargetted Gen. Fun. 1147 99

ith argument of a generic function m is a dispatching argument if and only if
Staticim includes at least one type which is not any, the common superclass of all
classes. Hence, the set of target arguments is a subset of the set of dispatching
arguments. In our view, dispatching arguments which are not target arguments are
only considered for type-checking. No type checking is necessary for nondispatching
arguments, because all types are subtypes of any.

7.4 Measurements with Cecil

We first give the results that show (1) the effectiveness of compression in terms
of memory space and (2) the computation time for the algorithms that construct
dispatch tables.

7.4.1 Size of Dispatch Tables. Table III gives the total memory size in bytes of
uncompressed and compressed dispatch tables, for the generic functions with 2, 3,
and 4 target arguments. We assume a system with memory addresses using 32-bit
words. These totals take into account all generic functions, and as there are fewer
generic functions with three target arguments instead of two, the total size of the
corresponding compressed tables is also smaller.

7.4.2 Effectiveness of Coloring. We first consider generic functions with at least
two target arguments, then generic functions with one target argument. Regarding
the former, we distinguish the argument arrays, depending on their width, i.e., 8-bit
or 16-bit word. We also consider monotargetted generic functions in order to give
the total size of dispatch structures for the whole application.

7.4.3 Total Size of Dispatch Structures. The total size of the structures needed
for run-time dispatch tables includes the compressed tables (Table III), the colored
argument arrays (Table IV), the selector arrays (in case of dynamic type-checking)
and the dynamic dispatch code (shown in Figure 18). Assuming a 32-bit system,
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Table V. Size of Dispatch Structures (in bytes)

Static Type-Checking Dynamic Type-Checking

Multitargetted Generic Functions 89,788 161,264

Monotargetted Generic Functions 371,052 507,220

Total 460,840 668,484
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Fig. 19. Pole computation time.

we summarize the results in Table V in the case of multitargetted generic functions,
monotargetted ones, and all generic functions. For monotargetted generic functions,
we assume monodimensional dispatch tables. The dispatch code is replicated for
each generic function if type-checking is used, or for each colored dispatch table
otherwise.

7.4.4 Pole Computation Time. We measured the computation time for poles.
In practice, the most costly operation is the Pseudo-Closest-Poles algorithm (Figure
9). It iterates twice over the poles of the direct supertypes of each type to build
the candidates list and to find the one with the greatest rank. For a type T , the
size of this candidate list is the number of direct supertypes of T which have a
pole, i.e., which are in Dynamicim. Therefore, we show in Figure 19 the graph of
the pole computation time in function of σ =

∑
T∈Θ |{T ′ ∈ Dynamicim|T isa T ′}|.

As above, pole computation is performed on active selectors. We compute the line
t = f(x), which is the closest to the graph, using the Levenberg-Marquardt method.

The following observations can be made. As Object is the supertype of all types
in the Cecil hierarchy, when Object ∈ Staticim, we have σ = E = 1155, i.e., the
rightmost points on the graph. On the opposite, when the primary poles are on the
bottom of the type hierarchy, most types do not have any supertype pole; hence σ
is close to 0. This case occurs quite often, which explains why there are many more
points on the left of the graph. This also explains why there are more abnormal
values on the left, which represent abnormally long pole computations. This result
shows that our pole computation algorithm performs better when primary poles
have less subtypes, because types then have less supertype poles.
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Table VI. Distribution of Generic Functions and Methods in the Dylan Library
Number of Selectors Number of Generic Functions Number of Methods

0 1559 1559

1 271 1012

2 61 461

3 9 129

4 2 40

Table VII. Sizes of Dispatch Tables, Dylan library
Number of Size of Minimum Size of Maximum Size of
Selectors Uncompressed Tables Compressed Tables Compressed Tables

2 199.1MB 7.8KB 28.4KB

3 26.5GB 60.4KB 246.2KB

4 5.3TB 60.3KB 184.7KB

7.5 The Dylan Library

Our second results have been conducted on the Dylan library, which is included
in the Apple “Technical Release” distribution.9 A particular aspect of Dylan is to
allow us the use of “singleton types” as targets. These are simply instances, for
example character strings, which allows the use of the run-time value of character
string arguments for method dispatch. We simply considered each of these strings
as a direct subtype of “string,” and similarly for other singleton types. The resulting
library includes 925 types, and 1,902 generic functions composed of 3,201 methods.

Table VI gives the number of generic functions and methods respectively with 0,
1, 2, 3, and 4 target arguments.

7.6 Measurements with Dylan

In the case of Dylan, we only compute the size of the dispatch tables in terms of the
number of entries in each dimension, i.e., the number of poles in each dimension.
The reason is that, as said earlier, our current implementation of the construction
of dispatch tables assumes that there exists an MSA for any invocation. However,
this is not guaranteed by Dylan for which MS returns a list of most specific meth-
ods ordered by precedence. Furthermore, the test of method precedence used in
our implementation is different from the one of Dylan. Nevertheless, we give useful
boundaries on the size of the dispatch table. A lower bound is obtained by consid-
ering the case where only the most specific applicable method is stored in each cell
of the dispatch table. This would correspond to a case where no method uses the
function next-method. The upper bound is obtained by considering that each cell
of the dispatch table stores all the corresponding applicable methods. This would
correspond to a case where the applicable methods for each pole signature are to-
tally ordered. For the latter, we assume an implementation where each nonempty
cell holds a reference to a null-terminated array of method references.10

9Many thanks go to Glenn S. Burke, Bill St. Clair, and Dave Moon, who gave very helpful
informations on how to list the Dylan types and methods.
10This structure could probably be optimized by detecting the cells c1 whose array’s end is iden-
tical to the array of another cell c2, so that c2 could refer to the end of c1’s array.
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Table VII gives the total memory size in bytes of uncompressed and compressed
dispatch tables, for the generic functions with two, three, and four target arguments.
The two columns on the right indicate the upper and lower bounds. As above, we
assume a system with memory adresses using 32-bit words.

7.7 Summary

We have described an optimized implementation of our multimethod dispatch
scheme. Ignoring arguments that do not take part in the dispatch process saves
both space and time. Storing the offsets of the cells in the argument arrays, instead
of pole numbers, ensures true constant-time dispatch. Replicating the dispatch code
for each generic function saves some instructions at run-time. Using the minimal
memory word width for argument arrays, and grouping the argument arrays that
have the same color, optimizes the memory space needed by argument arrays with
no extra cost at run-time. This is of particular importance, as argument arrays are
significantly larger than any of the other structures. In the case of multitargetted
generic functions without type-checking and the Cecil classes and methods, they
represent 83% of the total 89,788 bytes. The structures used for type-checking are
another kind of argument arrays. Argument arrays could be further optimized in
the following ways:

—ordering optimally the argument positions of each generic function to increase
the number of 8-bit-wide argument arrays.

—replacing coloring with a better compression scheme for bidimensional tables.
An example is the “minimized row displacement” scheme of Driesen and Hölzle
[1995].

—grouping identical argument arrays. If two selectors have the same formal ar-
guments, the associated pole functions are then identical; hence their argument
arrays can be made identical, by defining the corresponding argument positions
as the last of their respective generic functions. Indeed, the associated dimensions
in the tables are then represented by low-level arrays, and the offsets (stored in
the arguments-arrays) coincide with pole numbers.

On the opposite, the n-dimensional compressed tables only take 10,804 bytes with
Cecil, a compression ratio of more than 99.99% with respect to Table III, considering
only generic functions with two targets. Altogether, the compressed structures take
a very small fraction of the memory space required by the uncompressed structures.

8. RELATED WORK

8.1 Monomethod Dispatch and Generalizations

Several techniques have been proposed to optimize the dynamic dispatch of mono-
methods. Their presentation is relevant here because first they can be related to
some of the techniques we used in our algorithms, and second they have been gener-
alized to multimethod dispatch. We classify these techniques, depending on whether
they guarantee that method selection is done in constant or nonconstant time. The
latter techniques are mainly used in dynamically typed pure object-oriented lan-
guages. They try to optimize the average method dispatch time. Constant-time
techniques are mostly used in statically typed nonpure object-oriented languages.
ACM Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998.
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8.1.1 Variable Time Techniques. The technique known as caching consists in
memorizing the MSA methods found by previous searches into a cache. The
cache is then searched first, and if a method is not found then the MSA is re-
trieved using the schema search approach. Several caching schemes exist, and
systems typically use a combination of them: a single global cache in Smalltalk and
Sather [Deutsch 1983; Schmidt and Omohundro 1991; Ungar and Patterson 1983],
local caches (local to a generic function or an invocation) in CLOS, PCL, and Sather
[Kiczales and Rodriguez 1990; Schmidt and Omohundro 1991], inline caches in
Smalltalk and Self [Chambers et al. 1989; Deutsch and Schifman 1984; Hölzle et al.
1991; Ungar 1986; Ungar and Patterson 1987]. Kiczales and Rodriguez [1990] pro-
pose to extend its cache per generic function scheme to multimethod dispatch.
Hashing is applied to the types of all the arguments, instead of a single argument,
to access a cache entry.

The second technique, known as inlining, performs type analysis and run-time
type tests to avoid method dispatch and inline the code of the MSA method. Several
sophisticated techniques exist to achieve inlining: type prediction [Deutsch and
Schifman 1984; Goldberg and Robson 1983; Ungar and Patterson 1983] and type
casing [Johnson et al. 1988] in Smalltalk, customization, splitting [Chambers et al.
1989; Chambers and Ungar 1991; Ungar et al. 1992] , type feedback, and adaptive
optimization [Hölzle and Ungar 1996] in Self.

Recently, Ferragina and Muthukrishnan [1996] reduce method dispatch to the
inclusion test of integer intervals. In this way, the worst-case complexity of method
dispatch is O(log(log|Θ|)). The data structures needed for run-time dispatch are
small and can be updated quickly when a new type or a new method is added. This
technique currently only applies to single dispatch and single inheritance.

8.1.2 Constant-Time Techniques: Dispatch Tables. In the case of monotarget-
ted generic functions, dispatch tables are bidimensional and can be organized in
three ways. The first one is a unique global two-dimensional array with the types
and the generic functions as indices. The second organization associates to every
generic function a one-dimensional array indexed by the types with an entry for
every type. The third organization associates to every type a one-dimensional array
indexed by the generic functions. The last two organizations are just two different
ways of slicing the global table. Independently of the organization, the number of
entries in the dispatch table is |Θ| × |F |; hence in practice the tables need to be
compressed. For example in a Smalltalk-80 system, |Θ| × |F | amounts to about 3.5
millions entries.

In the case of single-inheritance C++, each type owns a single table (the vtbl).
Finding the MSA method requires that we get the base address of the dispatch
table stored in the target argument and perform one array access using the index
of the generic function. This amounts to two indirections and one addition. This
scheme eliminates all empty cells and was adapted when multiple inheritance was
added to C++.11 If a class C inherits classes A and B, C’s instances are composed
of two parts, which correspond to the properties respectively inherited from A and
B. Because of polymorphism, each of these parts begins with references to distinct
dispatch tables, which are used when the instances of C are considered as A’s or

11The cost of dynamic dispatch may then rise to three indirections and two additions.
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as B’s instances. This scheme does not seem to generalize well to multimethods.
Indeed, the method tables would then be associated with n-tuples of classes, and in
case of multiple inheritance each n-tuple of objects should be split in several parts,
which is impossible since each objet should have several cut-outs.

Coloring was originally used to compress the bidimensional dispatch tables of
monomethods. Lines are labeled with generic functions, and columns with types.
As for the merging of argument arrays described in Figure 5, coloring consists of
merging lines in which nonempty cells are not associated with the same type. As
an extension, Huang and Chen [1992] propose to merge both lines and columns
of the dispatch tables. Row displacement [Driesen 1993; Driesen and Hölzle 1995]
also proceeds by merging lines and columns. Before being merged, these lines and
columns are shifted by a variable number of cells. Driesen and Hölzle [1995] show
that row displacement is more efficient on lines than on columns. Experimentally,
the best compression factor obtained is a factor of 66. These techniques might be
used to compress multimethod dispatch tables, but they only aim at eliminating
empty cells. Note however that row displacement could be used to compress our
argument arrays, possibly yielding a better compression rate.

Besides, Vitek and Horspool [1994] also proposes to group similar lines of
monomethod dispatch tables. When few corresponding cells differ between two
lines, the resulting cell in the merged line contains the address of an intermediary
routine that chooses the adequate method at run-time. This technique however
does not offer constant-time selection. More recently, Vitek and Horspool [1996]
proposed instead to slice tables in partitions, each type belonging to one single
partition. Then grouping occurs inside a partition, between strictly identical lines,
which offers constant-time dispatch. Measurements (only done in the context of
single inheritance) show similar compression rates for these two techniques, which
significantly outperform coloring and row dispacement. Here again, the technique
of Vitek and Horspool [1996] could be profitably used to enhance the compression
of our argument arrays.

Finally, Queinnec [1995] proposes to use a different structure than tables to store
the precalculated MSA method of each class. It consists of decision trees, composed
of three kinds of nodes, traversed by dynamic dispatch using the class of the target
at run-time. “cst” nodes hold one method reference; they can be nested in “if”
nodes to group the classes having the same MSA method as a common superclass.
Finally, “xif” nodes hold arrays that relate each subclass of a class to its MSA
method. These trees hence have a limited number of empty cells and enable us to
group some cells with the same contents. Each node of the decision tree is used
in constant time at run-time, but if the decision tree is not balanced, dynamic
selection is not performed in constant time. Queinnec [1995] recognizes that many
decision trees can be associated with a given generic function. However, it seems
that finding the smallest tree requires us to build all possible trees and compare
them. Finally, this proposal does not take into account multiple inheritance and
multiple targetting.

The general problem of compressing sparse tables was already studied in the
context of compiler construction for parser tables. Dencker et al. [1984] review six
compression techniques, notably coloring and row displacement, and their optimiza-
tions. The “line elimination scheme,” originally proposed by Bell [1974], proceeds
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Fig. 20. Type graph and generic function with dispatch tree.

by extracting rows, then columns, in which the values of nonempty cells are iden-
tical, and by storing these values in two arrays. The system iterates again over
rows, then columns, until a fixpoint is reached. As in the naive approach of Sec-
tion 3.5, the uncompressed table has to be computed first, and its compression
uses many comparisons. Moreover, a table of bits of the dimension of the original
table has to be built to memorize which of the original cells are empty. Other
techniques reviewed by Dencker et al. [1984] are the Significant Distance Scheme,
which suppresses heading and trailing empty cells (as proposed by Driesen [1993]),
and two others that require some list scanning to retrieve a cell, which precludes
constant-time lookup.

8.2 Dispatching Using Lookup Automata

Chen and Turau [1995] present algorithms to dispatch multimethods using some
sort of “dispatch trees,”12 which as our dispatch tables, hold the precalculated
MSA method for each possible invocation of a generic function. Their multiple-
dispatching scheme offers a quasiconstant time. Furthermore, dispatch trees are
compressed using a notion very similar to our poles.

The formalism presented by Chen and Turau [1995] is very different from ours,
and its exposure is quite long. Thus, we first present our own description of the
principles of their algorithms and then draw a comparison between their algorithms
and ours.

8.2.1 General Principle. The dispatch tree of a n-ary generic function m is a
directed, balanced tree of depth n. Each invocation signature is associated with
a unique path in this tree. Each path starts from the root, and each type Ti of
the signature determines the choice of one of the possible branches of the tree to
expand the path of length i− 1 into a path of length i. The leaves of the tree are
labeled with the MSA method of the invocation.

Example 8.2.1.1. Consider in Figure 20 the graph of types A, B, and C, the
generic function m, and the dispatch tree associated with m. The arcs are labeled
with types. Each signature for which there is an MSA method is associated with
a path in the tree. This path leads to a leaf labeled with the corresponding MSA
method. An invocation with signature (A,C) corresponds to a path starting from
the root that follows the arcs labeled by A and C, yielding an MSA method m1.

12Dispatch trees is our own terminology to describe what the authors call a lookup automaton.
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An invocation with signature (A,B) has no associated path, since m(A,B) has no
MSA method.

There is a single path T1, T2, . . . , Ti−1 that starts from the root and reaches a
node Ni of depth i. Furthermore, from node Ni, there is exactly one output arc for
each type Ti ∈ Θ such that there exists an invocation m(T1, . . . , Ti, . . .) for which
there is an MSA method.

In fact, since an invocation m(T1, . . . , Tn) has the same MSA method as (T ′1, . . . ,
T ′n), where ∀i, T ′i ∈ Poleim, arcs of the tree can be associated with poles only.
Moreover, suppose that a node N of depth i is reached by a path T ′1, . . . , T

′
i−1

where each T ′i is an i-pole; the set of methods that are applicable to an invocation
where the i−1 first types are (T ′1, . . . , T

′
i−1) forms a subsetM′ of the set of methods

associated with m. The subtree with root N only needs to explore this set M′ of
applicable methods. Thus, the number of output arcs for N is determined by the
number of i-poles that occur at the ith position in the methods of M′. We call
these i-poles the local poles of N , and their set is noted PoleN . Dujardin [1996]
gives a formal definition of these notions.

Example 8.2.1.2. In the tree of Figure 20, all types on the labels of arcs are poles.
Consider the two nodes N1 and N2 reached by signatures respectively starting with
A and B at the first position. The set of possible applicable methods to these
signatures is {m1,m2}. The set of 2-poles is {A,B,C}. However, PoleN1 = {A}
and PoleN2 = {B}. Thus, the output arcs of N1 and N2 labeled by C can be
discarded from the tree.

A further compression can be obtained by node unification. Two nodes N1 and
N2 of a given depth can be unified into one node N , if it is possible to superpose
the two subtrees with respective roots N1 and N2. This superposition must take
into account the types labeling the arcs and the MSA methods that label the leave
nodes. Then the arcs that lead to N1 and N2 lead to N , and the dispatch tree
becomes a direct, acyclic graph. This unification spares the space taken by one
node and all its subtree.

Example 8.2.1.3. Considering the dispatch tree of Figure 21, two unifications
can be done. The first one unifies the nodes N1 and N2, and the second unifies N ′1,
N ′2, and N ′3. This spares six nodes.

8.2.2 Comparison. The approach of Chen and Turau [1995] supports languages
whose precedence ordering is Inheritance Order Precedence, as defined by Argrawal
et al. [1991]. This order is a particular case of Argument Subtype Precedence with
monotonicity, considered throughout this article. No implemented language cur-
rently supports the former order,13 while both Cecil and Dylan support the latter.

The proposal of Chen and Turau [1995] includes a pole computation algorithm
(called there a closure algorithm). This algorithm does not compute the influences.
It operates in two steps. The first step duplicates the type graph. The second step
traverses the type graph from the most generic to the most specific types. In this

13Inheritance Order Precedence was presented by Agrawal et al. [1991] to model the precedence
algorithm of CLOS; however, the former is monotonic by definition, while the latter is not, as
shown by Ducournau et al. [1992].
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traversal, each type which is found not to be a pole is removed from the graph, and
its direct subtypes become direct subtypes of its pole. This way, the poles of the
supertypes appear as direct supertypes. In contrast, our proposal associates a pole
with each type, which avoids to update the type graph.

For each type, their traversal computes the most specific supertype poles. The
technique used for subtyping comparisons is that of Agrawal et al. [1989]. This
technique associates with each pole a sequential number and the list of its super-
types’s numbers. Testing if T1 is a subtype of T2 then reduces to looking for T2’s
number in T1’s list. The experimental complexity of this technique is described
by Agrawal et al. [1989] as ”essentially constant”. Chen and Turau [1995] base the
complexity of their pole computation algorithm on this experimental complexity.
However, the worst-case complexity of this technique is O(log|Θ|). Indeed, each
test implies a loop through a list, which can be long if T1 has many supertypes.
Our proposal is different, due to the representation of the collection of supertypes,
which allows us to perform the test with a direct access in a small and constant
number of basic operations.

To summarize, the complexity of their algorithm is O(|Θ| + E). However, this
does take into account neither the worst-case complexity of the subtype comparison
nor the construction of the list of supertypes’s numbers.

The construction of the dispatch tree requires more pole computations than the
dispatch table. Indeed, one pole computation must be done for each node. The
number of nodes is bounded by

∑n
i=1 |Θ|i. In contrast, the number of pole computa-

tions in a dispatch table is n. Moreover, node unification also takes supplementary
time in dispatch trees. On the other hand, filling up the dispatch tables requires
more MSA computations than with dispatch trees. Finally, as we do not assume the
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same precedence ordering to compute the MSA methods, it is difficult to compare
the effective construction time.

The nodes of the dispatch trees are implemented as two arrays, which respec-
tively hold the local poles and the succeeding nodes of each local pole. Run-time
dispatch traverses the dispatch tree using the types of the successive arguments of
the invocation. Each type T is used against one node N to obtain the succeeding
node in two steps. The first step looks for the pole of T in the array of local poles of
N . If this pole is found at position k, the second step retrieves the succeeding node
at position k in the array of succeeding nodes. The first step is done in time linear
to |Polev|, by finding the first pole supertype of T . To keep this time bounded by a
constant, nodes have a different structure when the number of local poles is greater
than an arbitrary constant c. This structure is then a single array that associates
with each type of the schema its successor node, which is found in a constant time.

The time needed for dynamic dispatch hence obviously depends on c. If |Polev| ≤
c, the time complexity of finding the successor vertex is O(|Polev|) (assuming that
the subtyping tests are done in constant time). If |Polev| > c, this time is a
constant. |Polev| is bounded by |Θ|; hence the worst-case time complexity of
dynamic dispatch is O(n× |Θ|). In contrast, the time for dispatch tables is n× γ,
γ being a constant.

The memory space taken by dispatch trees also depends on c. If c is high,
dispatch trees benefit from the progressive decrease of the number of local poles
and the absence of argument arrays. However, dynamic dispatch is guaranteed to
be done in constant time only if c is 1. Then many nodes have a size of Θ words.
This is equivalent to having many argument arrays for each generic function, and
in this case the dispatch trees take a lot more space than dispatch tables. Indeed,
the measurements in Section 7 show the importance of argument arrays.

To sum up, the dispatch time with this proposal is linear but not constant, as
long as its memory cost is competitive. Furthermore, the run-time dispatch with
dispatch trees cannot benefit from superscalar architectures, because each step is
based on the result of the previous step.

In Dujardin [1996], we present dispatch trees that offer constant-time dispatch.
In that study, trees offer better compression rates than tables only for n ≥ 3.
Tridimensional compressed tables however do not seem to take a significant space,
as shown in Section 7. Thus, dispatch trees should be considered only for n ≥ 4, and
with enough methods. We also observed that tree construction was significantly
slower than table construction, due to the number of pole computations.

9. CONCLUSION

We proposed a simple multimethod dispatch scheme based on compressed dispatch
tables. The salient features of our proposal are the following. First, it guarantees
a dynamic dispatching in constant time, an important property for some object-
oriented applications. Second, unlike the proposals such as Chen and Turau [1995],
it is applicable to most existing object-oriented languages, both statically and dy-
namically typed, since it only assumes that method selection does not contradict
argument subtype precedence, a most common property of method orderings. Last,
our scheme is simple to implement and quite effective: in most cases, it yields a
minimal dispatch table [Amiel et al. 1994].
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We provided efficient algorithms to obtain the structure of a dispatch table in a
linear time in the number of types and to fill it up with MSA methods’s addresses.
Our measurements show that the compression of dispatch tables is very effective, re-
sulting in a very small fraction of the space required by the uncompressed structures.
Further compression can be obtained at the expense of implementation complexity
and increased compile time, using dispatch trees [Dujardin 1996] (for four targets or
more) or better schemes of argument arrays compression, such as row displacement
[Driesen and Hölzle 1995] or partitionning [Vitek and Horspool 1996].

Several issues are left for future work. First, it would be useful to quantify
the effectiveness of our compression scheme on other real applications that use
multimethods. Second, in Amiel et al. [1994], we presented another possible op-
timization, which consists of sharing compressed dispatch tables between generic
functions. A study of multimethods’s definition patterns in real applications would
allow the development of heuristics to guide the use of this optimization. Third,
applying our scheme to interactive programming environments requires that we
develop incremental versions of our algorithms. If new methods are added, new
primary poles may appear, and the poles must be recomputed. To do that ef-
ficiently, we would need to keep and maintain extra information such as the bit
vectors associated with the poles, so that poles can only be recomputed on a sub-
part of the graph of types. Similarly, the maintenance of additional information
would be needed to compute the new dispatch table from the existing one. These in-
cremental algorithms should also take care of method disambiguation, as presented
in Amiel and Dujardin [1996].

ONLINE-ONLY APPENDIX

A. SOURCE DATA FOR CECIL HIERARCHY EXPERIMENTS (SECTION 7.3)

Appendix A is available only online. You should be able to get the online-only
appendix from the citation page for this article:

http://www.acm.org/pubs/citations/journals/toplas/1998-20-1/p116-dujardin/

Alternative instructions on how to obtain online-only appendices are given on
the back inside cover of current issues of ACM TOPLAS or on the ACM TOPLAS
web page:

http://www.acm.org/toplas
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