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Abstract

Many dynamic networks coming from real-world contexts are link
streams, i.e. a finite collection of triplets (u, v, t) where u and v are two
nodes having a link between them at time t. A very large number of
studies on these objects start by aggregating the data in disjoint time
windows of length ∆ in order to obtain a series of graphs on which are
made all subsequent analyses. Here we are concerned with the impact of
the chosen ∆ on the obtained graph series. We address the fundamental
question of knowing whether a series of graphs formed using a given ∆
faithfully describes the original link stream. We answer the question by
showing that such dynamic networks exhibit a threshold for ∆, which we
call the saturation scale, beyond which the properties of propagation of
the link stream are altered, while they are mostly preserved before. We
design an automatic method to determine the saturation scale of any link
stream, which we apply and validate on several real-world datasets.

∗This is a complete version of the extended abstract appeared in CoNEXT 2015 [22].
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1 Introduction

Many real world dynamic networks are naturally given in the form of a finite
collection L of triplets (u, v, t), which we call a link stream, where u, v ∈ V
are two nodes of the network and t is a timestamp1, with the meaning that
nodes u and v have a link between them at time t. Depending on the context2,
these links can represent physical contacts between individuals, exchanges of
emails between people, commercial interactions between companies, etc. When
one wants to study such dynamic networks, a very common approach [11, 19,
25, 15, 6, 42, 9, 34, 30, 46, 44, 38, 43, 33, 4, 24, 13, 2, 23] is to transform
them into series of graphs. The process used to do so is called aggregation. It
consists in choosing a time window [a, b] ⊆ [0, T ] in the initial series, where
T is the length of the period of study, and forming the graph G[a,b] with all
edges u, v such that there exists a triplet (u, v, t) ∈ L with t ∈ [a, b]. Doing so
for a collection of windows that covers the entire period of study, one obtains
a representation of the dynamic network as a graph series: the graphs formed
for each window, called snapshots. Very often, as in this paper, the windows
are disjoint and all have the same length, but in some studies, they may also
overlap [20, 1, 29, 40, 5, 37] or have different lengths [35, 39] or all start at the
beginning of the period of study [21, 31, 14, 37]. In all cases, once the series is
obtained, all analyses are conducted on it instead of the raw data, which is in
the form of a link stream, referred to as the original link stream in the rest of
the paper, see Figure 1.

There are two main reasons to use aggregation for studying dynamic net-
works. First, in many cases, it does not make sense to study the network at
the scale of the time resolution of the timestamps of the given link stream. For
example, in an email dataset, the timestamps of the events (sending of email)
are often given with a 1-second resolution. However, studying the dynamic net-
work at this time scale does not give a general and comprehensive view of its
organization, like someone watching a painting with a microscope. Hence, ag-
gregation allows to study the network at a scale which is relevant compared to
its activity. The second reason for using aggregation is that it produces graphs.
They give an instantaneous view of the network (snapshot) which is practical
in itself to get a view of what the object under study looks like and one can
use the rich set of notions developed in graph theory to analyze the considered
dynamic network.

If the benefits of aggregation are clear, on the other hand, it also raises
some important concerns. Indeed, the length chosen for the aggregation win-
dow usually has a strong impact on the properties of the aggregated graph
series [18, 36, 37]. This raises the question of which time scale should be cho-
sen to study a given dynamic network and how much the properties studied,
based on which conclusions are derived, are sensitive to the length of the ag-
gregation period used [34, 30, 45]. It points out that in any case, this period
should not be chosen without well established evidence, as it is currently done
in most of the studies cited above. Pushing further, it is not even clear whether
an aggregated series faithfully describes the original link stream. Indeed, the

1Time can be continuous or discrete. The method we design works in both frameworks.
Though, the sample datasets on which we illustrate it all use discrete timestamps.

2See [16] for a survey on dynamic networks and the vocabulary used to refer to them in
the various contexts in which they are encountered and studied.
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aggregation process goes along with a loss of information: in each aggregation
window, the information on the exact times at which links occur in this window
is lost. In particular, in a given time window, it is impossible to know whether
a given link (a, b) has occurred before or after another one (b, c). This question,
which determines whether it is possible to go from node a to node c, via b,
within this time window (only if ab has occurred before bc), is crucial for many
phenomena taking place on the dynamic network, such as epidemic spreads, pos-
sibilities of communications and cascade of influence for example. The wider the
aggregation period, the greater the amount of information lost. At the limit,
aggregating a link stream over the whole period of study yields one single static
network which misses all the information on the order of occurrences of links
and which therefore very poorly captures the structure of the original dynamic
network, see e.g. [27]. Then, more generally, for a given aggregation period,
one can ask whether the obtained graph series is a faithful representation of the
original link stream. This is precisely the question we address here, through the
prism of propagation properties.

1.1 Our results

We show that for many dynamic networks, the length ∆ of the window chosen
for aggregating the network into a graph series exhibits a threshold, which is
proper to each network. Beyond this threshold, the propagation properties of
the graph series obtained from aggregation show evidence of alteration, while
they are mostly preserved below it. We design a method, called the occupancy
method, in order to determine this threshold, which we call the saturation scale
and denote γ. We apply and validate the occupancy method on various real-
world datasets, as well as on synthetic dynamic networks.

This answers the fundamental question of deciding whether a given aggre-
gation period gives rise to a graph series that faithfully describes the original
dynamic network. The aggregation periods beyond the saturation scale alters
the properties of propagation of the dynamics. This range of scale must then
be avoided or used only for analyzing properties of the series that do not suffer
this alteration.

Moreover, the saturation scale, which is the larger non-altering aggregation
period, is a characteristic time scale of the network. It can then be used to com-
pare the properties of different dynamic networks at a same level of aggregation,
which is very interesting in itself. Finally, let us emphasize that our method
is fully automatic and does not require any parameter as input. Therefore,
it can easily been incorporated into any automatic tool for analyzing dynamic
networks.

1.2 Related work

It is paradoxical to note that, while the question of the influence of aggregation
on the properties of the formed graph series is largely ignored in most of the
studies on dynamic networks, this question actually already received a lot of
specific attention [18, 36, 37, 41, 7, 39, 12, 3].

In [18], the authors lead a systematic analysis of what is visible from the
structure of a dynamic phone-call network when it is aggregated at different
time scales. They show that significant characteristics of the dynamics of the
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network appear at different scales of analysis, which implies that one should use
the broad spectrum of possible scales in order to reveal these different properties
of the dynamics. Though we are also concerned by the impact of the aggregation
period on the properties of the formed graph series, our motivation and goal are
clearly different from those of [18]. Here, we do not intend to find time scales
that are able to reveal the key properties of the dynamic network or that are
relevant to study phenomena taking place over the network. Instead, we aim at
determining the range of aggregation scales such that the formed graph series
faithfully describe the original network. Making statistics on the network out
of this range of scale may still reveal interesting facts that are invisible at other
scales. Nevertheless, for such aggregation scales greater than γ, one should
consider only statistics that are not sensitive to the loss of information induced
by aggregation (like those used in [18] for example), excluding all statistics based
on propagation properties of the dynamics.

This is also the point of view developed in [36], where the authors study
the impact of aggregation over the properties of random walks in a dynamic
network. They show that the probability of occupation of nodes of the network
by such random walks is deeply impacted by aggregation, implying that it should
be used with great caution when dealing with phenomenon that depends on
propagation properties of the dynamics. The key contribution of the work of [36]
is to emphasize and analytically explain the impact of aggregation on random
walks, but it does not provide any way of determining a maximum aggregation
period that can be used safely, which is precisely our goal here.

In [37], the authors study the impact of the length of the aggregation window,
as well as the impact of the type of windows used (disjoint or overlapping or
starting at the beginning of the period of study), on the output of a dynamic
community tracking algorithm taking as input a series of graphs. Their results
show that both the length and the type of the windows used have a strong impact
on the dynamic communities outputted by the algorithm. As [36], the purpose
of their work is to provide a deeper understanding of the effect of aggregation,
but it is not intended to choose a suitable aggregation period.

Contrastingly, the goal of [41] is precisely to determine an ideal aggrega-
tion period. In their method, this period is obtained as a trade-off between
two metrics that vary monotonically and oppositely with regard to aggrega-
tion: one describing the loss of information (increasing with aggregation) and
one describing the noise contained in the series of snapshots (decreasing with
aggregation). Compared to them, here, we are concerned only with the loss of
information. This allows us to avoid some drawbacks and limitations inherent
to the approaches based on a trade-off: i) the value selected for the aggregation
period strongly depends on the importance given to each metrics and ii) the
selected value does not reveal any particular behavior of the properties of the
network used in the trade-off, as each of them varies smoothly and monoton-
ically from one extremal value to another one. On the contrary, our method
does not depend on any arbitrary choice of ponderation and reveals a natural
change in the way the network responds to aggregation at a certain aggregation
scale that we determine.

[7] also aims at determining an appropriate time scale for aggregating a link
stream into a graph series. Their method does not take into account the loss
of information but is instead based on the modes of periodicity and on the self-
similarity of the time series of some properties of the snapshots. They observe
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that the offset time for which the self similarity of these time series is zero is
close to half of the period of the highest frequency visible in their spectra, which
is the aggregation period suggested as a result of their method. Though this
provides a very relevant time scale for analyzing dynamic networks, its meaning
is different from the meaning of the saturation scale we are looking for in this
paper. Indeed, an important part of the activity of dynamic networks takes place
at time scales much smaller than their modes of periodicity. Therefore, using
such periods for aggregation usually induces an important loss of information,
which we aim at avoiding here. Let us mention that a similar approach based on
modes of periodicity of some time series associated to the network was previously
used in [10, 11].

The approaches of [39, 8] are noticeable in that they develop a method to
aggregate a link stream on variable length windows. To this purpose, they fix
the beginning time of the current aggregation window and they observe the
evolution of some statistics of events of the aggregated graph, like the density
[39] or the recurence of ties [8], as the ending time of the window increases. When
the observed statistics is optimized, they end the current window and start a
new one. The idea is to form a series of so-called ”mature” graphs, meaning
that these graphs have been aggregated on a time window long enough so that
the properties of the formed graph would not change much if it was aggregated
on a longer period of time. This motivation is clearly different from ours and
the loss of information due to aggregation may occur before the convergence of
the properties of the formed graph.

[12] and [3] consider the aggregation of a particular class of link streams:
those that are obtained as the result of the oversampling of a dynamic network
where links do not occur punctually but instead last over a time interval. Such
dynamic networks are often measured by sampling processes that repeatedly
check (often periodically) what are the links existing in the network at different
times along the period of study, e.g. using sensor devices to measure contacts
between individuals [11, 5]. These sampling processes introduce some noise in
the data, for example due to failure to measure some links that do exist. The
aim of [12, 3] is to find an aggregation period that removes the noise introduced
by the sampling process and allows to retrieve the original signal. Here, both
our purpose and the kind of dynamic networks we consider are different. We
deal only with link streams where links are punctual and do not last over time.
The approach of [12, 3] is not intended and not directly applicable to this kind
of link streams. Conversely, it must be clear that applying our method to lasting
links would require some adaptation and is one key perspective of our work.

For sake of completeness, let us mention two other works that address in
different ways the problem of aggregation of link streams into graph series. [1]
design a tool for visualizing a dynamic network as a series of snapshots, which
takes as parameter the length of the aggregation window. One of the interest
of this tool is that it helps to visually choose an aggregation period that gives a
comprehensive view of the evolution of the network. Finally, [28] provides alter-
natives to aggregation by designing two representations of a dynamic network
that encode both time and links in the form of a static graph structure.
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2 Preliminaries

We describe our methodology in discrete time and with non-directed links, but
actually, it applies the same if the time t is continuous and if the links are
directed (as in the real-world datasets we consider in Section 5). The only re-
striction which is meaningful here is that links are punctual events and therefore
have no duration. The case where links exist during one interval of time instead
of one instant requires some adaptation, both for continuous and discrete time.
We now formally define some of the concepts we use in the paper, starting with
the process of aggregation of a link stream into a graph series, see example in
Figure 1.

Definition 1 (Aggregation) The aggregation, on disjoint time windows of
equal length, of a link stream L on the period of study [0, T ] consists in choosing
a constant time period ∆ such that ∆ = T/K for some integer K ≥ 1 and
forming the graph series G∆ = (Gk)1≤k≤K defined by Gk = (V,Ek) with

Ek = {uv | ∃(u, v, t) ∈ L, (k − 1)∆ ≤ t < k∆}

where V is the set of nodes involved in the link stream L.

Note that with this definition, the set of nodes V of each graph of the series
G∆ is the same. This is a convention adopted for convenience of description. But
our methodology applies the same if one keeps, in each snapshot, only the set of
nodes that have at least one link during the time window used for aggregation.
Doing so, one obtains a series where the set of nodes of the graphs in the series
is not fixed but depends on the time. This kind of graph series may suit better
in some contexts of study. The methodological tools developped here, though
described for series of graphs on a fixed set of nodes, apply also on series of
graphs with a variable set of nodes.

A temporal path, in a link stream or a graph series, is a sequence of edges
defining a path and occurring at strictly increasing time along the path (see
examples given in Figure 1).

Definition 2 (Temporal path in a link stream) In a link stream L, a tem-
poral path P is a sequence (ui, vi, ti) of triplets, with 1 ≤ i ≤ l and l > 0, such
that ∀i, (ui, vi, ti) ∈ L and ∀i > 1, ui = vi−1 and ∀i, j, if i < j then ti < tj.

Definition 3 (Temporal path in a series of graphs) In a series of graphs
G = (Gk)1≤k≤K , a temporal path P is a sequence (ui, vi, ki) of triplets, with
1 ≤ i ≤ l and l > 0, such that ∀i, uivi ∈ E(Gki

) and ∀i > 1, ui = vi−1 and ∀i, j,
if i < j then ki < kj.

Remark 1 Note that, in Definitions 2 and 3, the inequalities are strict. This
implies that a temporal path cannot use two links belonging to the same graph
of the series or occurring at the same time in the link stream.

Temporal paths are an essential notion as they capture the propagation
properties of the dynamic network. Indeed, all diffusion phenomena in the
network, such as communication of information, spreading of epidemics and
cascades of influence for example, respect time causality: a node needs to be
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Figure 1: A link stream L and the graph series G = (G1, G2, G3) obtained by
aggregating L using a period ∆. The bold dark-blue links depict a temporal
path, from e to b, in the link stream and its corresponding temporal path in the
graph series. The bold light-pink links also form a temporal path in the link
stream, from d to b, but there is no temporal path from d to b in the graph series,
because it would require to use two links of graph G3, which is not allowed (see
Remark 1).

reached by the diffusion before it can propagate it further. Therefore, all these
phenomena occur on and follow temporal paths of the dynamic network.

There are two notions of length associated to a temporal path: the topolog-
ical length, which is the classical one for static graphs, and the duration of the
path.

Definition 4 (hops(P) and time(P)) In a link stream or a graph series, the
topological length of a temporal path P = ((ui, vi, ti))1≤i≤l is the number l of
edges in the path. In the rest of the paper, we call it the number of hops of P
and denote it hops(P ).
The duration of path P , denoted time(P ), is tl−t1 in a link stream and tl−t1+1
in a graph series (because each ti is not an instant as in a link stream but an
interval of time which has a duration).

Remark 2 By definition, in a graph series, we always have hops(P ) ≤ time(P )
for any temporal path P . Note that this does not hold for link streams in general,
since time is not necessarily indexed by an integer.

In the rest of the paper, we also use three notions of distance at time t
between two nodes u, v of a link stream or a graph series. These notions are
based on the minimal arrival time tarr, if any (otherwise tarr is undefined),
among all paths from u to v whose departure time is not before t. The distance
in time, denoted dtime(u, v, t), is simply defined as tarr − t in a link stream
and tarr − t + 1 in a graph series, with the convention dtime(u, v, t) = +∞ if
tarr is undefined. The distance in hops, denoted dhops(u, v, t), is the minimum
number of hops among all paths realizing the distance in time dtime(u, v, t). By
convention, dhops(u, v, t) = +∞ when dtime(u, v, t) = +∞. Finally, the distance
in absolute time, which is dedicated to aggregated graph series only, is denoted
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dabstime(u, v, t) and defined by dabstime(u, v, t) = ∆.dtime(u, v, t). It is the absolute
time needed to go from node u to node v in the aggregated graph series, with
a departure time not before t, taking into account the fact that each graph of
the series represent a time interval of length ∆. Interestingly, this last notion
contains in itself the imprecision of the timestamps of the aggregated series.

3 Difficulty of the problem

As previously explained, the larger the length of the aggregation window, the
greater the loss of temporal information due to aggregation, as the exact times
of occurrence of the links within one given window are lost. Then, we can
reformulate the problem as follows: what is the maximum aggregation period
that induces no significant loss of information in the graph series compared to
the original link stream? A natural way to proceed to answer this question is to
make the aggregation period vary from its minimal value to its maximal value
and to observe the variations of the properties of the obtained series of graphs
in the meanwhile. Then, one would hope to find a time scale beyond which the
variation of these properties exhibit a qualitative change. Unfortunately, this
does not happen for the classical properties of interest of the graph series. On the
opposite, when the aggregation period varies, these properties varies smoothly
from one extremal value to another one. Figure 2 shows the results for several
properties of the Irvine network, which we use as an example to describe our
method in the first sections of this article (see Section 5 for a description of the
Irvine dataset).

Figure 2 top-left shows the variations of the mean density of the snapshots of
the series, which is also equivalent, up to a multiplicative factor n− 1 (where n
is the number of vertices), to the mean degree of the nodes in all the snapshots.
The plot shows that when the aggregation goes from the minimal temporal reso-
lution of the timestamps (1s) to the total length of the period of study (∼1175h),
these two properties linearly varies from a very small value (5.7×10−7) to their
maximal value (7.2×10−3), which is the one obtained by aggregating the whole
dynamic network into one single graph. In this case, the mean density of the
graphs in the series is therefore equal to the density of the totally aggregated
graph.

The plot in Figure 2 top-right shows that in the meanwhile the mean size of
the largest connected component in each snapshot as well as the mean number
of non isolated vertices per snapshot (which are very close) exhibit the same
behavior: their values go increasingly from a minimal one (2.3 nodes) to a
maximal one (1509 nodes), which is the total number of nodes in the network,
without exhibiting any non-smooth behavior at any time scale.

Let us now examine the variations of distance properties according to the
aggregation period. Figure 2 bottom-left gives the variation of the mean distance
in time dtime(u, v, t) (see Section 2) for all couples (u, v) of nodes and all time t
(such that dtime(u, v, t) is finite), in logarithmic scale. As one can see, the curve
is almost a straight line, indicating that the mean distance in time depends on
∆ following a power law. This comes from the fact that the number of graphs
formed in the aggregated series varies as 1/∆: the plot shows that the mean
distance in time varies accordingly. This does not help much to detect a time
scale at which the properties of the aggregated series significantly change their
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behavior.
Pushing further, in Figure 2 bottom-right, we also plotted the mean distance

in hops (empty squares) and the mean distance in absolute time (filled squares),
both in linear scale. The rational for using the distance in absolute time, defined
as dabstime(u, v, t) = ∆.dtime(u, v, t), is that it does not suffer from the dependence
on 1/∆ previously highlighted for the distance in time, since it is canceled by
the multiplication by ∆. Then, it gives a clearer insight into the variations of
the distance in time with the aggregation period. Unfortunately, as one can
see, the situation is the same as for the other parameters previously studied.
When the aggregation period ∆ increases from the minimal temporal resolution
of the timestamps (1s) to the total length of the period of study (∼1175h), the
mean distance in absolute time increases as well, going monotonically from its
minimal value (∼110h) until its maximal value (∼1175h), which is by definition
equal to the total length of the period of study, as there is only one graph in
the series formed using the maximum value of ∆. In the meanwhile the mean
distance in hops (empty squares in Figure 2 bottom-right) decreases, from 5.4
to 1, without exhibiting any remarkable change at any value of the aggregation
period.

Thus, the observation of the variations of the classical properties of the
graph series with the aggregation period does not point out scale at which
some qualitative changes occur in the way the dynamic network responds to
aggregation. Instead, one finds a regular drift from one extreme value to another
one3. This constitutes the main difficulty of the problem we consider.

3Note that we present results for only one dataset but they hold similarly for all the four
datasets we consider in this paper, cf. Section 5.
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4 The occupancy method

We now give the definitions necessary to describe our method and we illustrate
it on a sample real-world network, the Irvine network (cf. Section 5).

Definition 5 (Trip and minimal trip) A trip is a quadruplet (u, v, tdep, tarr)
such that there exists a temporal path from u to v whose starting time from u
and arriving time at v are both in the interval [tdep, tarr]. A trip (u, v, tdep, tarr)
is minimal if there exists no trip from u to v in an interval [t′dep, t

′
arr] strictly

included in [tdep, tarr] (i.e. [t′dep, t
′
arr] ( [tdep, tarr]).

Definition 6 (Transition and shortest transition) A temporal path P on
two hops, i.e. P = ((a, b, t1), (b, c, t2)), is called a transition, and P is a shortest
transition if (a, c, t1, t2) is a minimal trip.

Definition 7 (Occupancy rate) For a graph series G and a temporal path P
in G, the occupancy rate of path P , denoted occ(P ), is defined as occ(P ) =
hops(P )/time(P ). The occupancy rate of a minimal trip (u, v, tdep, tarr) is the
occupancy rate of a temporal path starting from u at tdep and arriving at v at
tarr and having the minimum number of hops among such paths. Note that we
always have 0 < occ(P ) ≤ 1, since from Remark 2, 0 < hops(P ) ≤ time(P ).

The rational behind the occupancy rate occ(P ), which is comprised between
0 and 1, is to count the proportion of time steps between tdep and tarr that are
effectively used by path P to move from one node of the dynamic network to
another one. Indeed, only some of the graphs Gt with tdep ≤ t ≤ tarr contain a
link of path P , but not all of them. Therefore, a path P uses some time steps
to move to the next node on the path and spends the rest of the time steps
simply waiting on the node reached so far, until the next hop to be performed
on path P occurs. Then, in other words, the occupancy rate quantifies how
much the path P is busy moving from one node to the next one, taking into
account that P also spends some proportion of the time without moving. As we
explain later in this section, the occupancy rate of paths in the agregated graph
series is strongly impacted by the aggregation period used to form the series,
and it is at the core of our method to determine the saturation scale γ.

To this purpose, we make the aggregation period ∆ vary from its minimal
value, the resolution of the timestamps, until the whole length T of study of the
network. For each value of ∆ we form the aggregated graph series G∆ for which
we compute the set of minimal trips and their occupancy rates. Then, for each
∆, we plot the distribution of occupancy rates of all the minimal trips in G∆

(considering all pairs of nodes and all time intervals), see Figure 3 left.
Necessarily, when ∆ is close to its minimal value, provided that the resolution

of the timestamps is fine enough, the distribution of occupancy rates must be
concentrated on values close to 0. The reason is that the aggregation windows
contain only few data and the shortest paths therefore need to wait several slot of
times before finding one opportunity to perform the next hop. On the opposite,
when the aggregation period reaches its maximum value, by definition, all the
minimal trips are made of one single link (because there is only one graph in
the aggregated series) and their occupation rate is 1. Then, the distribution is
again concentrated, this time on the value 1. What is remarkable here (Figure 3
left) is that the distribution changes from values concentrated near 0 to values
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Figure 4: Inverse Cumulative Distributions (ICD) of the occupancy rates (x-
axis) of the minimal trips of the aggregated series G∆ for several values of
the aggregation period ∆ in the range [1, T ], for the Facebook, Enron and
Manufacturing networks.

concentrated on 1 in a very specific manner: it first progressively stretches
toward 1 until it almost equally occupies all the values on the range from 0 to 1
and then it contracts again, leaving the low values to progressively concentrate
on the values close to 1.

The saturation scale γ is precisely the value of ∆ for which the distribution
is maximally stretched on the interval [0, 1] (curve marked with green squares
on Figure 3 left). In order to detect it, we compute for each value of ∆ in the
total range of variation, the M-K distance d(∆) (see Section 7 for a definition)
between the distribution obtained for ∆ and the uniform density distribution on
[0, 1], i.e. the distribution whose inverse cumulative is the straight line y = 1−x.
We then plot the M-K proximity, defined as 1/2− d(∆), in Figure 3 right. This
confirms the observation made above on the way the distribution first stretches
and then concentrate again: accordingly, the M-K proximity first increases and
then decreases. As a consequence, the value γ returned by our method is the
value of ∆ that realizes the maximum of the M-K proximity. Of course, one may
think of many other ways to determine which ∆ gives the maximum stretch of
the distribution. We actually tried several of them (see Section 7) and we chose
to use the M-K distance with the uniform density distribution because it gives
results that are visually satisfying and it is conceptually simple.

Let us now explain the meaning of γ. As pointed out in the introduction, the
most significative loss of information due to aggregation is the loss of the order in
which the links involving one given node u occur in a given aggregation window.
This loss makes it impossible to know whether there exists a transition from node
v1 to node v2 going through node u within an aggregation window where both
links (v1, u) and (u, v2) occur: this depends on whether (v1, u) occurs before
(u, v2) or not, which is lost with aggregation. Then, the propagation properties
of the aggregated series do not faithfully reflect those of the original link stream.

To this regard, a very low occupancy rate for most minimal trips of the series
denotes that most paths spend a long time waiting between two consecutive
hops. This means that there are only very few links in each aggregation window,
which implies that only very few information is lost in the whole graph series
about the order of occurences of links. On the opposite, a very high occupancy
rate for most of the minimal trips reveals that at each time in the graph series,
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Figure 5: M-K proximity (y-axis) of the distribution of occupancy rates of
minimal trips of the aggregated series G∆ according to the aggregation period
∆ (x-axis), for the Facebook, Enron and Manufacturing networks.

there is a high probability to find a next hop to perform on any given shortest
path, meaning that, in each snapshot, a high proportion of nodes are involved
in a high number of edges. Then, at the same time, the information on the
existence or the non existence of a transition, in the original link stream, using
a couple of these edges incident to one same node is lost, which constitutes the
essential loss resulting from the aggregation process.

What makes the occupancy rate so remarkable with regard to aggregation,
compared to the classical parameters such as density for example (see Figure 2),
is that the evolution of the distribution of occupancy rates when the aggregation
period varies clearly shows two distinct phases. In the first phase of variation,
below γ, only the low values of the distribution increase, while the proportion
of high occupancy rates almost does not change. This means that during this
phase, the effect of increasing the aggregation period is mainly to fill the lack of
links in the aggregation windows without inducing a significant loss of informa-
tion. On the opposite, in the second phase, beyond γ, there is a strong increase
of the proportion of minimal trips having a very high occupancy rate, 1 or close
to 1, indicating that the loss of information due to aggregation becomes non-
negligible. Therefore, the saturation scale γ appears as a separation between
the range of values, below γ, where the aggregated graph series still faithfully
describes the original link stream and the range of values, beyond γ, where
aggregation alters the properties of propagation of the original link stream.

5 Results on real-world datasets

In this section we apply our methodology and discuss the results obtained on
four link streams, whose timestamps have a resolution of 1s. The UC Irvine
messages network [32], which is the one used for presentation of the method
in the previous section, is made of 48 000 messages sent between 1 509 users of
an online community of students from the University of California, Irvine, over
a period of 48 days. The Facebook wall posts network [46] is made of 11 991
wall posts between a group of 3 387 Facebook users over a period of 1 month.
The Enron emails network [17] contains 15 951 individual emails sent between
a group of 150 employees of the Enron company during year 2001. Finally, the
Manufacturing emails network [26] contains 82 894 internal emails between 153
employees of a mid-sized manufacturing company over a period of 8 months.

From a computational point of view, let us mention that the algorithm we
use for computing the distribution of occupancy rates in one given graph series
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G has time complexity O(nM), where n is the number of vertices of one graph
in the series (which is the same for all graphs) and M is the total number
of edges in all the graphs of the series. It is a dynamic programming scheme
going backward in time: at one step, knowing all the minimal trips of the series
starting not before time k+1, the algorithm computes the minimal trips starting
exactly at time k, their duration and their minimum number of hops. In the
occupancy method, this algorithm has to be run as many times as the number of
values of ∆ used for the aggregation period. But the most costly computations
are the ones made for small values of ∆, as M is then large.

We applied the occupancy method on each of the four datasets mentionned
above. The distributions of occupancy rates of the minimal trips in the aggre-
gated graph series are given on Figure 3 left for Irvine and Figure 4 for the three
other networks, their M-K proximity with the uniform density distribution is
given on Figure 3 right and Figure 5. One can see that the observations made
on the Irvine network in Section 4, hold for all the four datasets. When the
aggregation period ∆ increases, the distribution of occupancy rates, initially
concentrated near 0, stretches until it occupies almost equitably all the range
of values between 0 and 1, and then concentrates again on the values close to
1. Consequently, the proximity with the uniform density distribution first in-
creases, until it reaches a maximum for ∆ = γ, which is the saturation scale
returned by the occupancy method, and then decreases until the aggregation
period reaches its maximum value T . This shows that the way the distribution
of occupancy rates evolves with the aggregation period is a fundamental phe-
nomenon common to many dynamic networks, therefore guaranteeing that our
method is sound and that it can be used for a wide range of dynamic networks.

The values returned for γ in each of the four cases are: 18 hours for the Irvine
message network, 46 hours for the Facebook wall-post network, 78 hours for the
Enron email network and 12 hours for the Manufacturing email network. These
values, between half a day and three days, are in accordance with the fact that
both emails and on-line social network messages are generally not dedicated to
live discussions. In the case of email networks for example, most of people only
send some emails a day and frequently wait for some hours or some days before
getting a reply. Therefore, this range of values seems appropriate for the largest
aggregation scales providing accurate views of the original link streams.

The aggregation periods returned by our method also appear to be in ac-
cordance with the level of activity of these 4 networks. The two greater values,
46h for Facebook and 78h for Enron, are obtained for the two networks that
have the lower activity, 0.12 and 0.29 messages sent in average per person per
day for Facebook and Enron respectively. The two other networks have higher
activities, 0.66 messages per person per day in the Irvine network and 2.22 in
the Manufacturing network, and have smaller saturation scales, 18 hours and 12
hours respectively. As one can see, the average activity has a strong influence
on the saturation scale, even though this is not the only parameter affecting
it. We further investigate the relationship between the level of activity and the
saturation scale in the next section.

Finally, let us emphasize that the aggregation period γ returned by our
method should not been interpreted as the best possible one but instead as
an upper-bound on the aggregation periods that are suitable for studying the
network. For many practical studies, one may prefer to choose an aggregation
period slightly lower than γ, which will preserve more carefully the properties
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Figure 6: Left: for time uniform networks, saturation scale (y-axis) in function
of the mean inter-contact time of nodes (x-axis). Right: for two-mode networks,
saturation scale (y-axis) in function of the percentage of low-activity time (x-
axis).

of the network. For example, in the case of the four networks we study here,
one can note that the proportion of minimal trips having occupancy rate 1
started to increase just before the distribution of occupancy rates reaches its
maximal stretched position (the one selected by our method). Then, one could
prefer to use an aggregation period smaller than γ in order to get a finer grain
representation of the dynamic network. In Section 8, we give some ways to
directly estimate the loss of information in the aggregated graph series that can
be used to choose more accurately the aggregation period in the range of scales
immediately preceding γ.

6 Results on synthetic networks

We now investigate how the aggregation period returned by our method depends
on the level of activity of the link streams considered, i.e. the number of links per
node and per unit of time, and on the temporal heterogeneity of this activity.
To this purpose, we use two kinds of synthetic dynamic networks, where the
activity is uniformly distributed between all pairs of nodes. The first kind,
called time uniform networks, is generated by assigning N links (N << T ) to
each pair of the n = 100 nodes of the network and uniformly randomly choosing
each of their timestamps between 0 and T = 100 000s. We make the value of N
vary from 10 to 100 and for each of these values, we compute the aggregation
period γ returned by the occupancy method. Results are given in Figure 6 left,
which shows γ as a function of the average inter-contact time of one node, that is
T/(N(n−1)). For these time uniform networks, the aggregation period returned
by the occupancy method is perfectly proportional to the average inter-contact
time, showing that our method correctly takes into account the level of activity
of the link stream.

However, most of the dynamic networks encountered in practice are far from
being uniformly active over time. Many of them instead alternate periods of
intense activity with periods of lower activity. In particular, this is the case for
networks coming from human activities, such as the ones considered in Section 5,
which often exhibit circadian rhythms. Then the question naturally arises to
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know how the saturation scale behaves according to this temporal heterogeneity.
Does it simply make the average between the different levels of activity? Or does
it favor one of them? To answer these questions we generate two-mode networks
that are built by 10 alternations of one period of high activity and one period
of low activity, which are time uniform networks with parameters N1, T1 and
N2, T2 respectively. N1, N2 and the whole length T = 10(T1 + T2) of study are
fixed and we vary the ratio between T1 and T2.

Figure 6 right gives the saturation scale γ as a function of the percentage
ρ = T2/(T1 + T2) of low-activity time in the network. The curve goes from the
value of γ for the high-activity mode (for ρ = 0%) to the one, much larger, for the
low-activity mode (for ρ = 100%). The plot shows that when the proportion
of low activity varies from 0% to 70-80%, the saturation scale almost does
not increase: it remains very close to the smaller value of the high-activity
network, which preserves better the information contained in the original link
stream. This is surprising as one would rather expect the saturation scale to
be a compromise between its value for the low-activity periods and its value
for the high-activity periods. This shows that in presence of heterogeneity of
the activity along time, even with high-activity periods occupying only 30%
to 20% of the time, the saturation scale returned by the occupancy method is
respectful of this important part of the dynamics. Moreover, and importantly,
the fact that the saturation scale does not linearly vary with respect to the
percentage of low-activity time in the network shows that, for networks that
are not time uniform (which is in particular the case of real-world networks),
the saturation scale returned by the occupancy method does not only depend
on the mean inter-contact time of nodes in the network (or equivalently on the
frequency of links in the network).

When the proportion of low-activity time goes beyond 80%, the aggregation
period returned starts to increase until it reaches the value for the low-activity
network when its proportion in time is 100%. This seems natural as when
the low-activity part takes most of the time of the dynamic network, it does
not make sense to continue to study it with a scale which is suitable only for
a marginal part of the time. Nevertheless, we note that the increase of γ is
progressive. For example for 90% of low activity, the returned value is close
to the arithmetic mean between the values for the two modes of the network.
This shows that the returned aggregation does not forget too quickly the high
activity part of the dynamics, which once again is a desirable feature of such a
method.

7 Detection of the more uniform distribution

In this section we consider several methods for selecting the aggregation period γ
that gives the distribution of occupancy rates that is the more uniformly spread
on [0, 1], and we study the dependence of γ on the chosen selection method.
Until now, all the results we gave were obtained by selecting the distribution
which minimizes the M-K distance with the uniform density distribution on
[0, 1]. Of course, one may think of many other ways to select γ. This includes
plotting the sets of distributions obtained when the aggregation period spans
its entire range of variation, like on Figure 3, and selecting one distribution by
visual mean. This empirical method is likely to give the most satisfactory results
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Figure 7: Results of four methods for selection of the more uniformly spread
distribution: M-K proximity, standard deviation, Shannon entropy with 10 slots
and cumulative residual entropy (CRE). The left plot shows the distributions
selected by the maximum of each of the metrics and the right plot shows the
variations (normalized to have maximum 1) of each metric (y-axis) depending
on the aggregation period ∆ (x-axis).

in practice and will therefore be preferred in many studies. However, here, we
are interested only in quantitative methods of selection, for two reasons. Firstly,
we want to provide a uniquely defined value which can be used as a reference
for comparing the saturation scales of different dynamic networks. Secondly, we
want our method to be fully automatic in order to be easily incorporable to any
tool for analysis of dynamic networks.

In addition to the method based on the M-K distance, which we used until
now, we now consider four other selection methods and compare their results.
These four additional methods are based respectively on: standard deviation,
variation coefficient, Shannon entropy and cumulative residual entropy. Figure 7
gives the results obtained when applying these methods on the Irvine data set.
We now describe and analyze them one by one each before giving a global
comparison of their respective results.

M-K distance with the uniform density distribution. The Monge-
Kantorovich distance is a way to measure the distance between two distributions
of probability on the same support, here [0, 1]. It is defined as the area comprised
between the two inverse cumulative distributions of the probability distributions
to be compared. Here, as we are looking for the distribution which is maximally
spread over [0, 1], we compare each distribution with the uniform density distri-
bution, which gives distM−K(X) =

∫
[0,1]
|P (X > λ)−(1−λ)|dλ, where X is the

random variable defined by the occupancy rate. Then, the aggregation period
we select is the one for which the distribution of occupancy rates X realizes
the minimum of distM−K(X). In order to get the desired distribution for the
maximum of the measure, instead of the minimum, as for all the other mea-
sures we consider, we rather use the corresponding proximity measure defined
as 1/2 − distM−K(X), as distM−K(X) is always less than 1/2. This metric is
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the one we use throughout the article. It gives visually very satisfying results
for all the data sets.

Standard deviation. This method selects the distribution having the max-
imum standard deviation σ =

√
E[(X − µ)2], where X is the random variable

defined by occupancy rate and µ is its mean value. This is one of the most
direct measure one can think of in order to compare the spread of distributions
on support [0, 1]. It gives very satisfactory results, comparable to the one ob-
tained with the M-K distance. Nevertheless, it tends to select slightly higher
aggregation period than the M-K distance, as the standard deviation is less
penalized by the increasing of occupancy rates 1, which is the maximal value
in the distribution. Then, usually, the aggregation period selected by the M-K
distance is visually a bit more satisfying. This is the reason why we prefer to
present our methodology using the M-K distance, but the two metrics actually
give comparable results.

Variation coefficient. Another very natural method is the one that selects
the distribution having the maximum variation coefficient cv = σ/µ, where µ
is the mean and σ the standard deviation of the distribution. Moreover, it
could possibly correct the slight drawback of the standard deviation pointed
above, which tends to select a little bit higher value than would desire. Unfor-
tunately, the method based on variation coefficient suffers from a much more
severe limitation: it favors too much distributions having a small mean and
therefore proposes only very short aggregation periods, or even not to aggre-
gate at all. Among all the methods we tried, this is the only one which gives
clearly unsatisfactory results to select the more spread distribution.

Shannon entropy. In information theory, the Shannon entropy H(X) =
E[−ln(P (X))] of a random variable X (here the occupancy rate) allows to
measure the spread of distributions on a given fixed finite support. This means
that in order to compare different distributions, the set of possible values taken
by the distributions (the support) must be the same and must be finite. As for
the measure based on the M-K distance, the distribution which maximizes the
Shannon entropy is the one with uniform density on the considered support.
The difficulty we face here to use this measure is that the supports of the distri-
butions we want to compare are not the same: the set of possible values of the
occupancy rate is different for each aggregation period. There are different ways
to deal with this issue in order to compare all the distributions we obtain when
varying the aggregation period. The first one is to artificially take one common
support for all the distributions, the minimal such support being the union of
the supports of all obtained distributions. Unfortunately, when applied with
this support, the method always selects the distributions that effectively use
the larger part of the support, that is those obtained for very short aggregation
periods. As noted for the variation coefficient, this does not give satisfactory
results.

Another possibility to solve this issue is to discretize the segment [0, 1] into k
slots of equal length and to compute for each distribution what is the probability
that the value of the occupancy rate belongs to each slot. For example, when
applied with k = 10, this measures gives very satisfactory results. On the
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other hand, the returned aggregation period depends on the number of slots
chosen. The results are sensibly different using k = 5 or k = 20. With smaller
number of slots, the method tends to select higher aggregation periods, while
with greater number of slots, like previously, it favors the distributions having
greater original supports, which are those obtained for short aggregation periods.
For k = 100 this trend is already clearly marked: the value returned for γ is
less than half of the one returned with k = 10 and visually, the distribution
selected does not appear to be spread over [0, 1] in the best possible way among
all the distributions obtained. Despite of this, we note that in the range of
variation we consider for k, namely [2, 100], and for the data sets we use, the
selection method based on the Shannon entropy properly determines the order
of magnitude of the saturation scale γ and even gives visually very satisfying
results for values of k between 5 and 20. Nevertheless, because of its sensitivity
to the chosen k, we decided not to use this selection method. The next metric is
another attempt to correct the difficulties arising from the use of the Shannon
entropy.

Cumulative residual entropy (CRE). This is a variation of the Shannon
entropy that is able to compare distributions with the same infinite support. It
is suitable for our purpose as all the distributions we consider have support [0, 1].
In this case, the cumulative residual entropy is defined as ε(X) = −

∫
[0,1]

P (X >

λ) log(P (X > λ))dλ. As for the Shannon entropy, the maximum value of the
CRE is reached for the uniform density on the considered support. It turns
out that this selection method performs well on all the data sets we used. It
gives aggregation periods close to the one obtained by the M-K distance, usu-
ally shorter. Visually the results are satisfying, even if on some example this
method appears to favor a bit too much distributions with large supports. But
this is only a slight effect and this method seems quite suitable for our needs,
and theoretically well funded. The reason why we preferred the M-K distance
with the uniform density distribution is that it is conceptually much simpler
and gives as good results.

Let us now compare the aggregation periods selected by the 5 methods above
for the Irvine data set. First of all, let us note that all the selected aggregation
periods are very close between 14.5h and 18.7h, except one of them, the one
based on the variation coefficient. This method proposes an aggregation period
of 1 second, which is the resolution of the timestamps, and the distribution it
selects is very far from being uniformly spread on [0, 1]. The variation coefficient
method therefore appears not to be suitable for our purpose. On this data
set, the distributions selected by the M-K distance and the standard deviation
methods are exactly the same. They are the distribution obtained with an
aggregation period of 18.7h. The distribution selected by the method based
on Shannon entropy with 10 slots of width 0.1 is almost indistinguishable from
the previous one, it is the distribution obtained for an aggregation period of
18.1h. These two distributions are indeed visually quite well spread on [0, 1] and
therefore, these three methods give here very satisfying results, and they also did
on other data-sets (not presented here). The method based on the cumulative
residual entropy selects the distribution obtained with an aggregation period of
14.5h, which is slightly lower than the three previous method. In this case, this
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distribution is also visually very well spread on [0, 1] and then quite good for
our purpose.

As a conclusion, except the method based on the variation coefficient, all the
four other methods we considered appear to give satisfactory results on all the
data sets we use. We chose the method based on the M-K distance because it
is conceptually simple and it gives very satisfactory results. Beyond the slight
differences between these methods, the fact that they all give very close values of
γ shows that each of them is sound and is appropriate to detect the aggregation
period that maximally stretches the distribution of the occupancy rates in the
interval [0, 1].

8 Validation

In this section we quantify the amount of information which is lost when one
aggregates the network using a given period ∆. This allows us to validate our
approach by evaluating the loss obtained for ∆ = γ. Moreover, this provides
tools to select more accurately an aggregation period, in the range preceding γ,
that is suitable for representing a given link stream as a graph series.

The first measure of loss we use is the proportion of shortest transitions
(minimal trips with two hops, cf. Definition 6) that lay entirely in one aggre-
gation window. These are exactly the shortest transitions of the original link
stream that do not exist anymore in the aggregated series of graphs: all the other
minimal trips having their two hops, say (a, b, t1), (b, c, t2), in two different ag-
gregation windows, say indexed t′1 and t′2, still exist in the form (a, b, t′1), (b, c, t′2)
in the aggregated series. We chose this way of measuring the loss as the shortest
transitions are the key units that capture the possibilities of propagation in the
link streams. In other words, note that if all the shortest transitions of the
link stream are conserved in the graph series (in the sense above), so are all
the minimal trips, and therefore, the possibilities of propagation in the dynamic
network are unchanged.

Figure 8 left depicts the proportion of lost transitions as a function of the
aggregation period ∆, for the Irvine network. One can see that when the ag-
gregation increases, starting from 1 second, the number of lost transitions first
remains very low during several orders of magnitude, until an aggregation pe-
riod of 0.5h where only 10% have been lost. The main part of the loss (80%)
is concentrated on the range between 0.5h and 235h, i.e. a bit more than 2
orders of magnitude. The saturation scale γ = 18h returned by the occupancy
method is in the beginning of this range, and in the middle in terms of order
of magnitude. This shows that the occupancy method successfully detects the
order of magnitude of the time scale from which the loss of information starts to
be visible. For ∆ = γ, 48% of the shortest transitions are lost. Therefore, one
may prefer to limit further the range of aggregation periods used, for example
one order of magnitude below γ.

On the other hand, it must be clear that the measure of the loss used above
is rather pessimistic. Indeed, some of the shortest transitions of the original link
stream that are lost can be replaced by some others slightly longer or occurring
a bit later. This limits the actual impact of this loss on the possibilities of
propagation in the aggregated series. As lost transitions can be replaced, the
duration of a minimal trip that was using some of these transitions may be
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Figure 8: Left: proportion of shortest transitions lost (y-axis) in the aggre-
gated series G∆ according to the aggregation period ∆ (x-axis). Right: mean
elongation factor of minimal trips of G∆ (y-axis) according to ∆ (x-axis).

only slightly altered by their loss (or even not at all). For this reason, we also
use a measure of loss which is based on the elongation of minimal trips in the
aggregated series G∆ compared to the original link stream L.

Definition 8 (Elongation factor) The elongation factor eP of a minimal
trip P = (u, v, tu, tv) of G∆, with tu 6= tv, is defined as the ratio

eP = (tv − tu + 1).∆/timeL(P )

where timeL(P ) = min{t′v−t′u | (u, v, t′u, t′v) is a minimal trip of L and t′u, t
′
v ∈

[(tu − 1).∆, tv.∆]}

Note that when tu 6= tv, we necessarily have timeL(P ) 6= 0. Therefore,
the elongation factor is properly defined. Figure 8 right gives the mean elon-
gation factor (y-axis) of all minimal trips of the series aggregated with period
∆ (x-axis), for the Irvine network. When ∆ increases, the elongation factor
of minimal trips first stays very close to 1 during several orders of magnitude,
before it suddenly raises when the aggregation period reaches values around the
saturation scale γ. This shows that our method properly determines the scale
at which the properties of propagation of the link streams start to be altered by
aggregation. For ∆ = γ, the mean elongation ratio of minimal trips is less than
1.5, showing that despite the 48% of shortest transitions lost, the propagation
properties of the original link stream are not yet too drastically altered.

9 Conclusion

We showed that there exists a threshold, called the saturation scale γ, for the
aggregation period of a link stream at which a qualitative change occurs in
the way the network responds to aggregation. We showed that this change of
behavior reveals an alteration of the properties of propagation of the dynamics,
implying that dynamic networks should not be aggregated with a period larger
than γ to perform analyses that depend on these properties. In addition, we
designed a fully automatic and parameter-free method to determine the value
of γ for an arbitrary link stream.
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Our work open several perspectives to improve the method and broaden its
field of application. The first of these perspectives is to extend the occupancy
method to the case where links have a duration. The method presented in
this article applies to both discrete and continuous time, to both undirected
links and directed links, but it is able to deal only with links that are punctual
events. However, in some contexts, the links of the dynamic network last during
an interval of time (e.g. phone calls and physical contacts between individuals).
Adapting the occupancy method to this case would be highly desirable. One
particularly interesting way to do so would be to develop a notion of minimal
trip that is specifically adapted to links that have a duration.

In Section 6, we pointed out a nice behavior of the occupancy method in
presence of temporal heterogeneity in the activity of the link stream processed:
the aggregation scale γ returned in this case gives more importance to the parts
of the dynamics that have a high level of activity, even if they do not occupy
the majority of the time. Nevertheless, if these periods are really too short,
they will have only a limited impact on the value of γ. As a consequence, these
highly active parts of the link stream, which are likely to contain a valuable
information for the whole dynamics, may be smoothed out by the aggregation
process. Avoiding this phenomenon by better taking into account the temporal
heterogeneity of the activity of the link stream would constitute a key improve-
ment. To this end, one could enhance the method so that it is able to separate
the high activity periods from the lower activity periods and to determine an
appropriate aggregation scale for each of these parts independently. Then one
could decide either to aggregate the whole link stream at the shortest aggre-
gation scale detected, which is the one that better preserves the information
contained in it, or to partition the period of study and aggregate each part with
a different length of window.
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