

Edinburgh Research Explorer

Helium: a transparent inter-kernel optimizer for OpenCL

Citation for published version:
Lutz, T, Fensch, C & Cole, M 2015, Helium: a transparent inter-kernel optimizer for OpenCL. in GPGPU
2015 Proceedings of the 8th Workshop on General Purpose Processing using GPUs. ACM, pp. 70-80.
https://doi.org/10.1145/2716282.2716284

Digital Object Identifier (DOI):
10.1145/2716282.2716284

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
GPGPU 2015 Proceedings of the 8th Workshop on General Purpose Processing using GPUs

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 07. May. 2024

https://doi.org/10.1145/2716282.2716284
https://doi.org/10.1145/2716282.2716284
https://www.research.ed.ac.uk/en/publications/bbe048d0-7d8e-4167-9ec2-42e46094f8d9

Helium: A Transparent Inter-kernel Optimizer for OpenCL

Thibaut Lutz
University of Edinburgh

10 Crichton Street
Edinburgh, UK

thibaut.lutz@ed.ac.uk

Christian Fensch
Heriot-Watt University

Riccarton
Edinburgh, UK

c.fensch@hw.ac.uk

Murray Cole
University of Edinburgh

10 Crichton Street
Edinburgh, UK

mic@inf.ed.ac.uk

ABSTRACT
State of the art automatic optimization of OpenCL applications fo-
cuses on improving the performance of individual compute kernels.
Programmers address opportunities for inter-kernel optimization in
specific applications by ad-hoc hand tuning: manually fusing ker-
nels together. However, the complexity of interactions between
host and kernel code makes this approach weak or even unviable
for applications involving more than a small number of kernel in-
vocations or a highly dynamic control flow, leaving substantial po-
tential opportunities unexplored. It also leads to an over complex,
hard to maintain code base.

We present Helium, a transparent OpenCL overlay which dis-
covers, manipulates and exploits opportunities for inter-and intra-
kernel optimization. Helium is implemented as preloaded library
and uses a delay-optimize-replay mechanism in which kernel calls
are intercepted, collectively optimized, and then executed accord-
ing to an improved execution plan. This allows us to benefit from
composite optimizations, on large, dynamically complex applica-
tions, with no impact on the code base. Our results show that He-
lium obtains at least the same, and frequently even better perfor-
mance, than carefully handtuned code. Helium outperforms hand-
optimized code where the exact dynamic composition of compute
kernel cannot be known statically. In these cases, we demonstrate
speedups of up to 3x over unoptimized code and an average speedup
of 1.4x over hand optimized code.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; D.3.4 [Programming Languages]: Pro-
cessors—Run-time environments. Optimization. Incremental com-
pilers

Keywords
GPGPU, OpenCL, profiling, inter-kernel optimization, JIT compi-
lation, staging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GPGPU-8 February 07 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3407-5/15/02 ...$15.00.

1. INTRODUCTION
Compute accelerators have become a common component in all

areas of computation: from mobile phones to supercomputers. Ex-
amples of accelerators include specialized processors (Intel Xeon
Phi), FPGAs (Altera Cyclone V) or GPGPUs (Nvidia Tesla). Most
accelerators adopt a compute kernel based software development
process in which the developer splits the application into two parts.
Compute intensive parts are packaged into compute kernels that ex-
ecute on the accelerator. The remainder of the application executes
on the host and is responsible for managing communication to the
device and dispatching computation. CUDA[1] and OpenCL[7] are
two widely used implementations of this approach. The former is a
proprietary approach by Nvidia limited to Nvidia devices; the lat-
ter is an industry standard that is widely supported by more than 15
leading hardware companies.

Most current research has focused on improving the performance
of individual compute kernels[15, 9, 16]. However, most real world
applications consist of multiple, interdependent compute kernels.
Like traditional function calls, this composition of kernels could be
subjected to interprocedural optimizations (such as inlining or loop
fusion). Unfortunately these optimizations are not easily applied in
practice because of the separation of concerns between host and de-
vice programs and the lack of unified analysis. While the host has
some knowledge about the inputs and outputs of a compute kernel,
it has no information about how the data is manipulated and the
resulting data dependencies. Similarly, due to the compute kernel
based execution model, the accelerator is only aware of the opera-
tions that the currently executing kernel performs. Furthermore, in
some cases it is not possible to determine the precise composition
of kernels statically as it relies on runtime decisions.

Applying these optimizations manually is sometimes possible
since programmers have a global view of the application; however
this approach has several drawbacks. Each instance of code spe-
cialization creates additional functions by duplicating or fusing ex-
isting kernels, introducing redundancies. This results in a code base
that is more difficult to maintain. Furthermore, for some of these
optimizations it is difficult to decide statically if they are beneficial
for a particular device or application, so the high development costs
represent a significant risk.

In this paper, we present Helium, a transparent OpenCL over-
lay that overcomes these obstacles and allows us to perform inter-
kernel optimizations of unmodified, binary OpenCL applications.
Intercepting all OpenCL API library calls, our system is able to
build a dynamic task and data dependency graph of the OpenCL
application. In addition, we postpone the execution of all OpenCL
API calls until the host application requests an output from the ac-
celerator. At this point, we use the collected task and data flow de-
pendency information to perform inter-kernel based optimizations.

To the best of our knowledge, we are the first to perform this kind
of optimization for compute kernel based applications. Our results
show that we can improve application performance up to 3x, and
1.87x on average.

The contributions of this paper can be summarized as follows. It
is the first to:

• Present an approach that automatically constructs dataflow
graphs in any OpenCL application by combining compiler
analysis and runtime information.

• Develop a delay mechanism for OpenCL commands and re-
play them lazily, transparently to the application.

• Dynamically apply effective inter-kernel optimizations such
as task reordering and parallelization or kernel fusion.

The remainder of this paper is structured as follows: Section 2
motivates this work, Section 3 provides an overview of Helium,
which is then detailed in Section 4. Section 5 and 6 present our
evaluation methodology and its output. Section 7 lists state of the
art research in this field and relevant techniques developed to solve
similar problems. Section 8 discusses the implications of this work
and exposes future extensions; and Section 9 concludes.

2. MOTIVATION
Complex applications often define computation as a stream of

data through a set of independent operators, creating a modular
and maintainable code base. Composable operators can be opti-
mized very efficiently to improve data locality, by merging stages
producing and consuming data, or eliminating redundant data ac-
cesses across multiple stages of the computational pipeline. For
most programming environments, developers are oblivious to these
optimizations since they are performed by the compiler, allowing
programmers to focus on application semantics rather than opti-
mization. In languages like C or C++, static compiler analysis finds
the dataflow paths in the application and interprocedural optimiza-
tion improves the implicit or explicit data flow whenever possible.

Sadly these optimizations do not arise naturally in OpenCL (or
any other compute kernel based approach): since the code is broken
down into host and device code, there is no global analysis of the
data flow between host and accelerators. The host program does not
know the computation patterns and how the data is being consumed
by the compute kernels, while the kernels do not contain informa-
tion about the data flow or the compute sequences. This prevents
automatic inter-kernel compiler optimizations in either the offline
host compiler or the runtime device compiler.

However the optimization potential of inter-kernel transforma-
tion is very high since improving data locality is considered to be
one of the most effective optimization on many architectures. For
most GPUs for example, data caches are not persistent across ker-
nel executions, making redundant memory accesses very expensive
and a significant waste of resources when several kernels manipu-
late the same input data or temporary intermediate buffers.

Because of this, inter-kernel optimizations are often performed
by hand. Analyzing an OpenCL application manually requires a
constant switching between host and device code, as well as keep-
ing track of the various OpenCL objects across the application.
This is a tedious, difficult and error prone task. The main obstacles
are the extensive changes required for optimizing the computation
and the difficulty to follow data flow paths between host and device.

The example shown in Figure 1 represents an application with
multi-kernel asynchronous execution and dynamic dataflow. Be-
fore computation is delegated to the device, a number of steps are

1 / / Compile d e v i c e s o u r c e code
2 s t d : : s t r i n g c = R" (
3 #define ID g e t _ g l o b a l _ i d (0)
4 #define buf g l o b a l i n t ∗
5

6 k e r n e l vo id A(buf a , buf b)
7 { b [ID] = 2 ∗ a [ID] ; }
8

9 k e r n e l vo id B(buf t , buf u)
10 { u [ID] = t [ID] − 1 ; }
11

12 k e r n e l vo id C(buf x , buf y , buf z , i n t n)
13 { y [ID+n] += x [ID−n] + z [ID−n] ; }) " ;
14 Program p{ c tx , { 1 { c . d a t a () , c . s i z e () } } } ;
15 p . b u i l d (d e v i c e s) ;
16

17 / / Memory a l l o c a t i o n
18 B u f f e r b1 { c tx , CL_MEM_READ_WRITE, s i z e } ;
19 B u f f e r b2 { c tx , CL_MEM_READ_WRITE, s i z e } ;
20 B u f f e r b3 { c tx , CL_MEM_READ_WRITE, s i z e } ;
21

22 / / K e r ne l c r e a t i o n and argument b i n d i n g
23 K er ne l A{p , "A" } , B{p , "B" } , C{p , "C" } ;
24 A. s e t A r g (0 , b1) ; A. s e t A r g (1 , b2) ;
25 B . s e t A r g (0 , b1) ; B . s e t A r g (1 , b3) ;
26 C . s e t A r g (0 , b2) ; C . s e t A r g (1 , b1) ; C . s e t A r g (2 , b3) ;
27

28 / / ’ n ’ i s a v a l u e computed a t r u n t i m e
29 int n = computeN () ; C . s e t A r g (3 , n) ;
30

31 / / Enqueue non−b l o c k i n g o p e r a t i o n s
32 q . e n q u e u e W r i t e B u f f e r (b1 , CL_FALSE , 0 , s i z e , d a t a) ;
33 q . enqueueNDRangeKernel (A, { 0 } , { g } ,{ l }) ;
34 q . enqueueNDRangeKernel (B, { 0 } , { g } ,{ l }) ;
35 if (n > 1) { / / dynamic c o m p u t a t i o n
36 q . enqueueReadBuf fe r (b2 , CL_FALSE , 0 , s i z e , tmp) ;
37 q . enqueueNDRangeKernel (C, { n } ,{ g−n } ,{ l }) ;
38 n = 0 ;
39 C . s e t A r g (3 , n) ; C . s e t A r g (0 , b3) ; A. s e t A r g (0 , b2) ;
40 }
41 q . enqueueNDRangeKernel (A, { 0 } , { g } ,{ l }) ;
42 q . enqueueNDRangeKernel (C, { n } ,{ g−n } ,{ l }) ;
43

44 / / B l o c k i n g o p e r a t i o n
45 q . enqueueReadBuf fe r (b1 , CL_TRUE, 0 , s i z e , r e s u l t) ;
46 if (n > 1) { b2 = B u f f e r () ; }

Figure 1: Example of application using the C++ OpenCL API.
The device program is compiled at runtime from OpenCL-C.
Memory buffers are allocated/released explicitly by the host.
Kernels are configured and invoked in separate operations.
Communication functions copy data between host and device.

necessary to set up the device application. First, the device program
is compiled from source () and data is allocated on the device ().
Kernels objects are then created and their arguments are bound to
host variables (). Finally the data is copied to the device (line 32),
then processed by a series of kernels (lines 33, 34, 37, 41 and 42)
and the final result is read back (line 45). All these steps must be
cross-referenced to find the actual dataflow paths. More specifi-
cally, the dataflow analysis must keep track of:

• kernel states: unlike C functions, OpenCL kernels have per-
sistent states for their arguments, which do not need to be
specified for each invocation.

• data access patterns: for each kernel invocation, one must
refer to the device code with the latest known state of the
arguments to know which memory object is updated or con-
sumed.

• synchronization primitives: most of the OpenCL actions ex-
ecute asynchronously, only special functions or blocking op-
erations guarantee coherence of the data in the host program.

Ta
rg

et

A
pp

lic
at

io
n

OpenCL Profiler Dependency Analyzer Task Graph Optimizer

Kernels

Kernel Invocations

Device Buffers

Communication

Parallelizing Scheduler

O
pe

nC
L

A
P

I

O
pe

nC
L

A
P

I

V
en

do
r

O
pe

nC
L

Im
p

le
m

en
ta

tio
n

I/O
Queue

Compute
Queue

Delay Optimization Replay

Figure 2: Overview of the Helium. The calls to OpenCL functions from a target application are intercepted to gather profile
information. This information is then analyzed and combined to build a task graph, which is optimized before being executed by the
vendor implementation.

• conditional compute sequences: kernels might be enqueued
in branches or the state of the OpenCL objects might change
according to the application’s control flow. In the example,
some computation depends on the runtime value of n.

Even if the dataflow can be traced statically, applying the opti-
mizations to the code is equally challenging. Merging operators to
improve data locality requires implementing new kernels, for which
the business logic of the host program has to be adapted. This also
creates many variants of the same code, which greatly decreases
maintainability. Modifying the host code and introducing new ker-
nels might introduce races in different parts of the application if
the synchronization points or the kernel arguments are not correct.
These problems are hard to debug or might go undetected; and be-
cause of this, inter-kernel optimizations are rarely applied or only
on non-dynamic parts of the computation pipelines.

By contrast, Helium can dynamically trace a running applica-
tion, find the minimal set of dependencies between OpenCL ac-
tions and optimize the task graph before it is transparently executed
by the vendor implementation. New kernels are created on the fly
from the initial set of kernels to improve data locality, and tasks are
parallelized automatically to take advantage of the task parallelism
provided by the OpenCL model.

3. HELIUM OVERVIEW
The Helium optimizer uses a delay-optimize-replay mechanism;

by which all asynchronous OpenCL commands are postponed and
executed lazily in order to exploit as much runtime information
as possible and depict a broader execution plan spanning multiple
kernel invocations. The optimizer then improves these execution
plans before replaying them. This process takes place between the
host program and the OpenCL vendor implementation, thus it can
be deployed transparently over any existing application. The main
steps executed by our system, represented in Figure 2, are:

1. Profiling: the execution context of each OpenCL command is
saved at its call site, which corresponds to its parameters, and
the call to the OpenCL function implementation is delayed.

2. Analysis: datapaths are computed by keeping track of the last
command modifying each device memory object and con-
necting it to each subsequent action reading from it.

3. Optimization: when a command which has a side effect on
the host program (either a blocking operation, a wait com-
mand or a barrier) is enqueued, the framework recursively
builds an optimized task graph of all dependent commands.

4. Scheduling: the task graph is replayed in topological order
using a parallelizing scheduler, exposing task parallelism.
The host program is blocked until completion of all the ac-
tions required to restore consistency in the target application.

While delaying the OpenCL actions might cause some overheads
since it prevents host and device from performing computation in
parallel, most applications delegating computation to an accelera-
tor actively wait for the result shortly after issuing a chain of com-
mands in order to proceed further, hence it does not cause signif-
icant delays. Similarly, profiling overheads are minimal and are
easily amortized by the resulting performance gain.

4. HELIUM IMPLEMENTATION
This section presents the implementation of the Helium OpenCL

overlay and the optimizations it performes on the generated task
graphs. Helium is packaged as a library, which can be preloaded
when executing any OpenCL application and acts as a broker be-
tween the original program and the vendor OpenCL implementa-
tion, gathering runtime information and delaying the calls to the
vendor implementation as much as possible.

Helium is divided in four components. We first describe in Sec-
tion 4.1 what type of information is gathered by the OpenCL Pro-
filer, then explain how it is used by the Dependency Analyzer in
Section 4.2. The Task Graph Optimizer, detailed in Section 4.3,
modifies the graph and the replay mechanism performed by the
Parallelizing Scheduler is presented in Section 4.4. The code shown
in Figure 1 will be used as a case study throughout the section to
demonstrate the analysis and transformations. We consider an exe-
cution where the runtime value n is 2.

4.1 OpenCL Profiler
Before computing the data paths of an application, the analyzer

must keep track of the OpenCL commands invoked and build an
abstract representation for them in order to find their dependencies
and the scope of the main OpenCL objects. To do this, Helium
intercepts OpenCL function calls by overriding all the standard host
functions and emitting information collected in the profiler. The
main actions tracked by the profiler are:

Device Program Compilation. Most OpenCL applications
compile the device program at runtime from OpenCL-C source
code to improve portability. The profiler intercepts the source code
through the OpenCL API calls. Helium’s OpenCL compiler then
analyzes this code to gather static information.

The usage of each kernel argument representing a pointer in the
global memory space is traced across the kernel in order to find if
the data is produced or consumed. If it used in a store instruction,
it is annotated as write, and similarly if it is used in a load opera-
tion it is annotated as read. The result can be expressed as a map
expression; for our example kernel A has two arguments: a and b.
Analyzing this kernel finds a load from the argument a and a store
from the argument b, which can be expressed as a map from a to b
in kernel A; denoted A : a 7→ b.

For each memory access, the compiler also builds a partially
evaluated expression representing the offset in bytes from the base
pointer used for the actual operation. For simplicity we present the
linearized global position as a special id marker, which is used for
evaluation and comparison of these expressions in the optimization
stage. Both kernels A and B only access addresses with an offset
global_id(0), which is simplified to id. Kernel C uses both id+ n
and id− n, where n is a kernel argument unknown statically. This
information can be integrated with the previously described nota-
tion, and the output of the analysis for the code from Figure 1 can
be expressed as:

A : aid 7→ bid B : tid 7→ uid

C : xid−n, yid+n, zid−n 7→ yid+n

Kernel Objects. Kernel objects in the OpenCL API represent a
handle on a function executed on the device. They are created from
a compiled OpenCL-C or a binary program using the name of a
kernel function. Unlike native functions, the arguments of a kernel
are persistent across calls and are independent from the call site.
Each argument is set through a separate non type safe API where
programmers set the raw binary content of each argument and its
size. Hence, OpenCL kernels have a state which changes over the
course of the application and often cannot be known statically.

Kernel Invocations. Kernel invocations are the equivalent of a
function call on the device. They execute asynchronously a given
kernel over an N-dimensional compute grid indicating the local and
global sizes as well as the starting offset. The last state of the kernel
arguments is used for the current invocation.

Task Dependencies. Kernel invocations, and other OpenCL
actions like data copy, are issued in command queues which pro-
cess requests either in-order or out-of-order depending on their
properties. Each action in the queue can have explicit dependen-
cies to other commands in the same or a different command queue.

Buffer Allocation and Deallocation. The OpenCL frame-
work operates as a distributed memory model where the devices are
passive. Device memory must be explicitly allocated by the host,
which is also responsible for ensuring consistency of the buffers
and their deallocation. Since allocation and deallocation are done
through the OpenCL API, Helium can keep track of the lifetime of
each individual memory object. This information can be used to
improve the memory management: buffers can be allocated lazily
just before being used, and freed immediately after their last use.
In the example code, three buffers of identical size are allocated on
the same context: b1 to b3.

Synchronization Operations. Most OpenCL commands ex-
ecute asynchronously, and the host program is responsible for ex-
plicitly issuing synchronization to guarantee the coherency of the
computation. A synchronous operation, which is achieved either by

Figure 3: Task graph generated from analyzing the dataflow
paths in the application from Figure 1 when n is 2. Each node
is an OpenCL command and an edge represents a dependency.

enqueuing a blocking command or using a synchronization prim-
itive, blocks the host program execution until the asynchronous
commands have completed.

When these commands are intercepted by the profiler, they are
not forwarded to the vendor implementation straight away: this is
the delay phase. Instead, each action generates an object represen-
tation within Helium. The objects encapsulate the action by copy-
ing their arguments and the object handles are replaced with virtual
ones. Object handles represent pointers to an opaque type defined
by a vendor implementation for representing allocated OpenCL ob-
jects. They are used to symbolize relationships between objects
through the OpenCL API. For example, clCreateBuffer allocates
memory within a context and returns a cl_mem handle, which can
later be used to specify a memory operation or a kernel argument.
However, a delayed buffer allocation does not have a valid handle
in the vendor implementation, thus it must be replaced by a tempo-
rary virtual handle, which is returned to the target application and
used transparently as a vendor provided one.

The output of the delay phase creates a set of commands objects,
represented as the nodes in the Figure 3, without any connection.
The dependencies between these actions are inferred by Helium’s
dependency analyzer.

4.2 Dependency Analyzer
The dependency analyzer uses the runtime information gathered

from intercepting the OpenCL API function calls to build an ab-
stract representation of the program and its execution flow. The
result is a task graph of inter-dependent OpenCL commands, pre-
sented in Figure 3. The mechanisms used to build the dependency
graph are described in the remainder of this section.

OpenCL Handle Tracking. Most of the relationships between
objects are defined in the OpenCL API through the use of handles.
However the handles do not directly provide dependencies between
the actions; instead, they act as a common pool of objects used by
different actions. Helium combines this information with semantic
knowledge of each action to infer dependencies between them by
linking each action to all OpenCL objects it manipulates.

Kernel invocations can be indirectly associated to memory ob-
jects through their arguments. When a kernel argument is set, its bi-
nary content is cross-referenced against the profiler’s handle lookup
table to determine whether it is an OpenCL object handle, a virtual
handle or raw data. If it is a handle, the kernel is temporarily asso-
ciated to the corresponding object, until the argument is overridden.
When a kernel is invoked, its parameter list is copied to the invoca-
tion object, along with its relationships to other objects.

By tracking OpenCL handles, and in particular handles on allo-
cated device memory, Helium can infer relations between actions
by adding data and temporal dependencies.

Data Dependencies. A data dependency represents a produ-
cer-consumer dependency: an action creating or modifying data
must be completed before the data is read again. Helium classifies
each OpenCL action into producer or consumer categories. For
example, allocating a buffer or writing data to the device produces
input for the kernels, whereas releasing a buffer or reading data
consumes it by acquiring its state.

Data dependency for kernels is more fine-grained, since combin-
ing the static device code analysis and the runtime value of each
kernel argument for each invocation allows Helium to deduce if a
particular buffer was produced or consumed. For example, at the
first invocation of kernel A, the arguments were bound to b1 and
b2 respectively. The static analysis for A derived by the profiler is
aid 7→ bid, which can be substituted with the runtime arguments:
b1 7→ b2, hence this particular invocation consumed b1 and pro-
duced b2. It is then connected to the last actions producing the
consumed buffer, here b1 was initialized by a memory write, so an
edge is created between the two actions, as shown in Figure 3.

Our system can build the dataflow path in the application by con-
necting the last producer to all subsequent consumers for each de-
vice memory object.

Temporal Dependencies. After dataflow analysis, the result-
ing task graph contains only the minimal set of dependencies be-
tween actions. However it might still contain data races and ambi-
guities, which must be resolved by adding edges between conflict-
ing nodes to enforce an ordering. Depending on whether the race
was present in the original application or not, it can be solved in
two ways:

• if the race was introduced by the delay replay mechanism,
it can be solved using temporal dependencies. This occurs
when the application expects an in-order queue to solve am-
biguities, such as multiple unsequenced readers and writers.
Helium uses the weak ordering of the original queue to insert
a dependency edge from the earlier operations in the queue
to the later ones, respecting the in-order semantics for con-
flicting nodes. In the example, the second invocation of A
consumes and updates b2, which was last produced by the
first invocation of A. However, the first invocation of C and
a buffer read command also consume b2 and were enqueued
before, so they must be completed before the second invoca-
tion of A is executed to prevent a data race, so two temporal
edges are added to enforce this.

• if the race was present in the original application, it must
have been resolved by the user. Since OpenCL supports
task parallelism, race conditions naturally occurs in OpenCL
when using multiple queues or out-of-order queues. To en-
force an ordering, the OpenCL API provides events, which
are handles optionally attached to each command. It is also
possible to add a list of events as dependencies to an OpenCL

action, which guarantees that all dependencies must be com-
pleted before the action starts. Our system analyzes these
events and uses them to solve conflicts in the task graph,
similarly to the OpenCL implementations. Note that all non-
necessary event based synchronizations are discarded auto-
matically: if there are user-specified dependencies between
actions which are not conflicting in the task graph, they can
be ignored as they cannot have visible side effects on the ap-
plication and might slow down the execution.

Restoring Consistency. Finally, some additional edges need
to be added to force the execution of asynchronous operations hav-
ing a side effect on the host program. Executing only the ancestors
of a blocking action is sufficient to restore consistency for this ac-
tion. However the synchronization itself might trigger side effects
for unconnected nodes, because it restores consistency between
host and device. For example, enqueuing multiple asynchronous
reads followed by a blocking read in an in-order queue guarantees
that all pending reads will be completed when the blocking call
finishes.

Helium solves this by tracking all operations having a side effect
visible from the host and flushing them before a blocking call. In
the example, the blocking read uses the buffer b1, for which the
latest value can be computed independently of the asynchronous
read in line 36. However, because the host program assumes con-
sistency after synchronization, the read must be completed before
the blocking call completes, so a temporal dependency is inserted
between the asynchronous read and the blocking operation.

The resulting task graph, shown in Figure 3, is very specific to an
execution where the value n is 2. The trace for other values might
look completely different since some actions are executed condi-
tionally. This highlights the difficulty of performing this analysis
by hand, where all possible paths must be considered at once.

The resulting graph contains only a minimal set of dependencies
and can be optimized before being replayed.

4.3 Task Graph Optimizer
Once the task graph has been built by combining the compiler

analysis and the runtime information, it is passed to an optimizer
before being replayed.

The role of the task graph optimizer is twofold: it aims to bridge
the optimization gap between kernels which have been compiled
in isolation, and maximize task parallelism. We classify the task
graph optimizations in three categories: device code optimizations,
which generate new kernels dynamically, host flow optimizations,
which re-arrange tasks in the command queues in a more efficient
way, and dynamic optimizations, which use profiling information
to inject host runtime values to specialize device code. They will
be described in that order in the remainder of the section.

Horizontal Fusion. When several nodes are at the same depth
in the task graph, or more generally when there is no path between
two nodes, these nodes are data independent. The absence of a path
indicates that their relative ordering does not matter, or they can
even be executed at the same time. If they are both compute nodes,
their source code can be fused to improve data locality between the
kernels. To find candidates for horizontal fusion, Helium groups
nodes for which the input and output sets are disjoint. In the task
graph presented in Figure 3, kernels A and B are data independent
since their input and output set do not overlap:

({b1} ∪ {b1}) ∩ ({b2} ∪ {b3}) = ∅

(a) Horizontal Fusion (b) Vertical Fusion (c) Task Reordering (d) Task Elimination

Figure 4: Overview of the task graph optimization. Transformations (a) and (b) are device code optimization where specialized
kernels are created on the fly. Optimizations (c) and (d) are host program modifications. Helium applies these transformations in the
optimize phase.

This makes them a potential candidate for fusion. In this case, the
optimizer will generate a fused kernel to improve data reuse: both
A and B are reading from the same buffer b1 at the same address
id. The resulting kernel has one fewer parameter, as shown in Fig-
ure 4a. While there might be other occasions where horizontal fu-
sion is beneficial without data reuse, such as amortizing the cost of
spawning a new kernel or optimizing register occupancy, our sys-
tem only generates fusion when there are common read instructions
to amortize the compilation cost.

Vertical Fusion. A path between two nodes indicates a data de-
pendency: the first node produces data, which is then consumed by
the second, indicating a temporal relationship between the nodes.
The OpenCL model provides two ways to avoid data races for tem-
poral dependencies: either relying on the memory model or using
memory fences. The memory model only guarantees sequential
consistency in the global space within a single thread1, so if there
exists a mapping between the kernels such that data generated in
each producer thread is read by at most one thread in the consumer,
then the operation can be performed safely using the same thread
for producer and consumer. If this mapping does not exist, a barrier
is required to avoid data race, and since the OpenCL model does
not provide a global memory fence or a global synchronization, the
operations must be performed in two distinct kernels.

In the example, the first invocation of C is consumed by another
instance of C, which creates a producer-consumer dependency in
the task graph. In this case the conflicting buffer is b1, which is
both read from and written to at address id + n. The variable n is
a kernel argument, for which the value is known at each instance
using the profiling information. The runtime can deduce that b1 is
produced at id + 2 in the first instance and consumed at id in the
other. Thus, merging the kernels directly would introduce spatial
dependencies across kernel instances, which is not valid.

Using a technique similar to loop alignment and loop fusion, the
optimizer determines that the alignment threshold of the fusion-
preventing kernel is equal to 2. Therefore, the first invocation can
be aligned with the second by adding the negation of the alignment
threshold to the id function and adjusting the ranges. The first in-
vocation of C now uses id− 2 between [4, size) instead of id be-
tween [2, size− 2), so the write operation now updates id+2− 2,
which does not conflict with the following invocation of C. Hence,
the spatial dependency has been eliminated, allowing the kernels
to be fused. The fused kernel, shown in Figure 4b, has three input
parameters instead of six, and a single store instead of two.

Because implementing this transformation by hand requires a
modification of all memory accesses in a kernel from the device

1OpenCL 2.0 has a more complete memory model, but it is not yet
supported by all vendors.

code, and an adjustment of the ranges each time the kernel is en-
queued in the host code, it triggers cumbersome changes. Helium
automatically adjusts the ranges dynamically and generates new de-
vice code where each fused kernel uses an adjusted index function
with a range guard to ensure the correctness of the transformation.

Task Reordering and Parallelization. Like horizontal fu-
sion, task reordering is applicable between any two nodes which
are not connected by data dependency. OpenCL supports Parallel
task execution, provided that users carefully define the dependen-
cies between the nodes to avoid data races. Since the task graph
itself contains the minimal set of data dependency required, He-
lium automatically switches in-order command queues to out of
order queues, and the edges in the task graph are converted to event
handles, used to define dependencies. While this does not guaran-
tee task parallelism, it is exposed through the OpenCL API. In our
example, the asynchronous read operation is independent from the
invocations of C, they will be enqueued without dependencies and
may execute in parallel if the vendor implementation support it.

In order to reduce blocking delays, OpenCL commands are de-
layed as much as possible. Not all actions are always necessary to
restore consistency in the host program; some can be delayed even
after synchronization. The optimizer is able to delay actions across
synchronization points whenever is it safe to do so, which concerns
three types of actions:

• computation nodes: until one of the outputs is re-used in a
chain of events having a side effect on the host. This in-
creases the optimization potential of the next task graph fol-
lowing the synchronization operation. In the example the
second invocation of the kernel A is not needed to evaluate
the blocking operation, hence it is not replayed at this point.

• write operations: transferring data on the device is unneces-
sary until the data is consumed by a kernel. However host
data might be discarded after synchronization, so the opti-
mizer has to create a copy of at the synchronization point in
order to replay it safely later. Asynchronous read operations
cannot be delayed further since the host program assumes the
transfer terminated after a blocking operation.

• memory allocation/deallocation: memory is a very limited
resource on some devices, hence having an efficient memory
management is often crucial. Memory allocation is delayed
until the buffer is first used. Releasing memory is performed
as soon as the last action using the buffer finishes, if the host
released the object before the synchronization point.

Figure 5: Optimized task graphs depending on the runtime
value n. Implementing all the variations by hand would re-
quire a complex control flow in the host optimization and du-
plications in the device code.

Dead Task Elimination. Tasks having no side effect on the
host program are often mistakenly introduced in complex applica-
tions as artifacts of the development process, especially after manu-
ally optimizing the code. Compute tasks can be considered unnec-
essary if their output is never read back in the host application or if
is entirely overwritten by a subsequent computation before the data
is ever used. In the example, the buffer b2 is used in a computation
by the second invocation of Kernel A, but the buffer is released be-
fore the host reads back the result, meaning the computation had
no side effect visible from the host and is not necessary. As a con-
sequence, the second invocation of A will never be replayed. This
optimization will occur automatically as a natural consequence of
lazy instantiation of the actions. Task reordering was also necessary
to delay the invocation of A to the next synchronization point.

Code Specialization. Creating specialized versions of the code
by injecting runtime information into the device code is sometimes
necessary. For example, when only one output of a kernel has no
side effect, the compiler can eliminate the dead stores. However
the remainder of the kernel has to be executed. In this case, the
Helium compiler only removes the unnecessary store instructions
and a dead code elimination pass will later simplify the code.

Code specialization is also used to propagate scalar values used
in kernel arguments. This creates a highly specialized version of the
code, which needs to be balanced with the compilation overhead: a
scalar value that changes between kernel invocations, requires gen-
erating a new version of the kernel. Helium’s default behavior is to
specialize scalar values only if they control loops or large branches,
since these are most likely to yield better performance.

Combining these optimizations incrementally generates a highly
runtime specific task graph which takes into account the actual
dataflow path. Figure 5 shows the three possible optimization sets
depending on the value of n in the example application. If imple-
mented by hand, the application would have required four addi-
tional specialized kernels: AoB, CoC, AoAoC and AoAoBoC,
with high code redundancy. This would have also considerably in-
creased the complexity of the host application since each dataflow
path must be implemented in different control flow path, which may
extend beyond this code fragment to the rest of the application.

Once the task graph has been optimized, it must be scheduled on
the device via the OpenCL vendor implementation.

4.4 Parallelizing Scheduler
The task graph scheduling corresponds to the replay phase. This

is triggered by a synchronization operation from the host program.
Helium must restore the consistency of the program in such a way
that all actions having a side effect on the blocking operation must
be replayed.

Command Queue Manager. Our system manages a set of
out-of-order command queues to dispatch computation. Helium
creates three separate queues per device for computation, read and
write operations in order to maximize the chances of concurrency.

JIT Compilation. For the fused node, the newly generated ker-
nels are compiled to using Helium’s embedded compiler. The re-
sulting program is loaded back into the OpenCL runtime as a na-
tive OpenCL binary program. As an orthogonal optimization, the
program is also saved in an offline compilation cache along with
the requirements of the transformation in order to accelerate future
uses of the same fused set. In our example, the fused AoB kernel
has no additional requirements and can be used any time the chain
A followed by B is found. However, kernel CoC has been special-
ized in this particular case so the additional condition n = 2 for the
first kernel and n = 0 for the second are both required since they
are the values used for range alignment.

Replay Actions. These are achieved by recursively traversing
the dependencies of the task graph from the blocking operation.
Each node is enqueued only once in topological order. An event
handle is attached to each action as they get enqueued, and the de-
pendencies are translated to an array of event handles from the en-
queued actions. This exploits task parallelism as expressible by the
OpenCL framework: since the queue is out of order and the depen-
dencies between actions are minimal, independent actions might
execute concurrently if the vendor implementation supports it.

Kernel arguments must be rolled back to the state they were at
the point of invocation, and restored immediately after the invo-
cation has been issued to maintain consistency. Similarly, nodes
resulting from a fusion have to be set up with the runtime values of
the fused kernels. The argument of each kernel is copied and their
dependencies are transferred to the fused node.

Profiler Update. Finally, the replayed commands transforming
virtual handles into vendor specific ones are sent back to the pro-
filer, and the handles are propagated through the task graph. He-
lium must seamlessly translate the virtual handles created from
the delay phase into vendor specific handles to ensure correctness.
Specifically, our system must translate every cl_event and cl_mem
objects from a Helium assigned identifier to a vendor specific ob-
ject. This also affects kernel arguments, for which the binary con-
tent must be updated if they contain an object handle.

The result of the replay phase is transparent to the target appli-
cation. Figure 6 represents an equivalent OpenCL program to Fig-
ure 1 as seen from the vendor implementation point of view. The
executed code contains fewer OpenCL API calls overall since the
code has been optimized. The device code has been entirely re-
written in this case since the original kernels are not needed for
the execution. Coding these optimizations by hand would require
explicitly implementing all the possible control flow in separate
branches along with the exact preconditions necessary for each op-
timized flow. This would lead to a high amount of code redundancy.

1 s t d : : s t r i n g c = R" (
2 #define ID g e t _ g l o b a l _ i d (0)
3 #define buf g l o b a l i n t ∗
4 k e r n e l vo id AoB(buf a t , buf b , buf u)
5 { b [ID] = 2 ∗ a t [ID] ;
6 u [i d] = a t [ID] − 1 ; }
7 k e r n e l vo id CoC(buf x , buf y , buf z)
8 { i f (ID >= 4)
9 y [ID] += x [ID−4] + z [ID−4];

10 y [ID] += 2 ∗ z [i] ; }) " ;
11 Program p{ c tx , { 1 { c . d a t a () , c . s i z e () } } } ;
12 p . b u i l d (d e v i c e s) ;
13

14 c l : : Event e1 , e2 , e3 , e4 , e5 ;
15 K er ne l AoB{p , "AoB" } , CoC{p , "CoC" } ;
16 B u f f e r b1 { c tx , CL_MEM_READ_WRITE, s i z e } ;
17 i o q . e n q u e u e W r i t e B u f f e r (b1 , CL_FALSE , 0 , s i z e , da t a ,
18 n u l l p t r , &e1) ;
19

20 B u f f e r b2 { c tx , CL_MEM_READ_WRITE, s i z e } ;
21 B u f f e r b3 { c tx , CL_MEM_READ_WRITE, s i z e } ;
22 AoB . s e t A r g (0 , b1) ; AoB . s e t A r g (1 , b2) ;
23 AoB . s e t A r g (1 , b3) ; CoB . s e t A r g (0 , b2) ;
24 CoC . s e t A r g (1 , b1) ; CoC . s e t A r g (2 , b3) ;
25 q . enqueueNDRangeKernel (AoB, { 0 } , { g } ,{ l } ,
26 { e1 } , &e2) ;
27 i o q . enqueueReadBuf fe r (b2 , CL_FALSE , 0 , s i z e , tmp ,
28 { e2 } , &e3) ;
29 q . enqueueNDRangeKernel (CoC , { 0 } , { g } ,{ l } ,
30 { e2 } , &e4) ;
31 b2 = B u f f e r () ;
32 i o q . enqueueReadBuf fe r (b1 , CL_TRUE, 0 , s i z e , r e s u l t ,
33 {e3 , e4 } , n u l l p t r) ;

Figure 6: OpenCL code equivalent to the optimized applica-
tion. The device code has been automatically re-written entirely
taking into account dataflow aware optimizations.

5. EXPERIMENTAL SETUP
We evaluate Helium on a collection of applications, which are

present in both raw (baseline) and hand-optimized forms. This
enables us to evaluate the benefits Helium brings directly against
hand-optimization and the benefits it brings when applied after
hand-optimization. For complex and dynamic applications, op-
portunities for hand-optimization are quite restricted and the latter
comparison demonstrates that they may even be counter-productive
when a powerful, automated system such as Helium is available.
We use the following four benchmarks:

• CCO is a simplified version of the copy-compute overlap
benchmark from the Nvidia benchmark suite, demonstrating
parallel computation and communication. The computation
flow is the same for a given number of iterations: write two
input buffers to the device, enqueue a kernel which uses both
inputs and generates an output buffer, which it read at each
iteration. The optimized implementation fragments the com-
putation in by splitting the input and output buffers in half.
The commands are then pushed in two in-order queues in a
very specific order such that computation and communica-
tion may overlap across iterations. The baseline implemen-
tation is a simplified version of the code where all actions are
pushed in a single in-order queue.

• Sobel: the Sobel filter is a discrete differentiation operator
commonly used for image processing applications like edge
detection. In its general form, two gradient convolution op-
erators are applied to the input, generating two temporary
values, which are combined by a third operation. In this case
the code can be hand optimized but in more complex appli-
cations these operators are created by composition of simple

1

2

3

CCO Sobel geoMatrix ExpFusion

N
o

rm
a

liz
e

d
 S

p
e

e
d

u
p

Unopt. Unopt. + Helium Hand Opt. Hand Opt. + Helium

Figure 7: Helium performance compared to unoptimized and
hand optimized code. We test the application runtime when
pre-loading helium before and after manually optimizing the
code for a set of four benchmarks, comparing against the non
optimized version.

filters, making the number of combinations impossible to op-
timize by hand.

• geoMatrix computes the entrywise geometric mean of n ma-
trices by computing n-1 Hadamard product and a pointwise
division. This process is present in many signal and image
processing applications, such as lossy image compression al-
gorithms. The baseline implementation composes the oper-
ations using generic binary functions. The hand optimized
version uses specialized kernels for processing multiple ma-
trices in-place and defines a tree reduction for the multipli-
cation stage, exposing task parallelism though the OpenCL
API.

• ExpFusion: this application [10] fuses several images taken
with different exposure times into one to increase the dy-
namic range by using a Laplacian decomposition and a Gaus-
sian pyramid. The depth of the pyramids, number of input
images and their properties are not known statically, making
the application highly dynamic. The hand optimized version
makes some assumptions about the input to fuse some static
parts of the pipeline (which can only apply to a subset of
possible inputs).

Each application is tested with two different input sizes. The
large input size is 4 times larger than the small one for all input and
output buffers. For geoMatrix and ExpFusion, we also increase
the number of inputs: geoMatrix is tested with 16 and 32 input
matrices; ExpFusion with 4 and 12 input images and a pyramid
depth of 4 and 8 respectively.

Each benchmark is executed ten times with and without pre-
loading our framework, measuring the total wall clock time on the
host between the first OpenCL action pushed in a command queue
to the termination of the last synchronization or blocking operation.
We report the analysis for the median point of the ten executions.
As both the Nvidia driver and Helium use a persistent compiler
cache, most of the compilation overhead is excluded from the mea-
surements. However, the overhead of the analysis and task graph
transformation is still present since the trace is regenerated with
each execution.

The machine used for the test has an Intel Core i7-4770K CPU
with 16GB of RAM and an Nvidia GeForce GTX 780 GPU con-
nected via PCI-E 3.0. We use the OpenCL 1.1 implementation in-
cluded in Nvidia’s Linux driver 331.79. Since Helium’s backend
relies on Nvidia’s open source PTX backend, we only evaluated
the benchmarks on the GPU.

Table 1: Performance impact of Helium on non-optimized baseline and hand-optimized version. For each application we report
how many commands were issued, and how many of those were kernel invocations in parenthesis. All speedups are relative to the
non-optimized code. The bold speedup numbers present the average speedup of both large and small inputs.

Unoptimized Unoptimized + Helium Hand Optimized Hand Optimized + Helium

Application # Tasks
Enqueued

Tasks
Replayed

Speedup # Tasks
Enqueued

Speedup # Tasks
Replayed

Speedup

CCO 1.14× 1.49× 1.63×
small 40 (10) 40 (10) 1.14× 80 (20) 1.50× 80 (20) 1.63×
large 40 (10) 40 (10) 1.15× 80 (20) 1.49× 80 (20) 1.63×

Sobel 1.98× 1.98× 1.98×
small 5 (3) 3 (1) 1.78× 3 (1) 1.80× 3 (1) 1.79×
large 5 (3) 3 (1) 2.17× 3 (1) 2.17× 3 (1) 2.17×

geoMatrix 3.06× 1.68× 2.45×
small 19 (18) 2 (1) 3.05× 10 (9) 1.68× 2 (1) 2.47×
large 35 (34) 2 (1) 3.06× 18 (17) 1.68× 2 (1) 2.44×

ExpFusion 1.36× 1.04× 1.36×
small 446 (441) 298 (293) 1.32× 339 (334) 1.05× 298 (293) 1.31×
large 2198 (2185) 820 (807) 1.41× 1727 (1714) 1.02× 820 (807) 1.41×

6. RESULTS
Figure 7 summarizes the effect of Helium on unoptimized and

hand-optimized versions of our benchmarks. We notice that, He-
lium is able to improve performance over unoptimized code in all
cases and further improve hand optimization in all cases except one
where the performance is on par. Table 1 describes the experi-
mental results in more detail. For each application and input, we
report the number of OpenCL commands pushed in the command
queue and how many of those were kernel invocations. We compare
three alternative executions: the unoptimized binary with Helium
preloaded, a manually hand-optimized version and lastly Helium
with the hand-optimized binary. For each alternative execution we
report the performance relative to the unoptimized application and
the number of commands actually executed by the vendor imple-
mentation. The findings for each application are discussed below.

CCO. Helium is able to introduce task parallelism from the base-
line using its parallelizing scheduler. Since there are no dependen-
cies between the read at the end of an iteration and the writes from
the following iteration, computation and communication can over-
lap. This results in a speedup of 1.15x. The hand optimized version
does a better job by fragmenting the computation in smaller units,
increasing the scope for copy-compute overlap, achieving 1.49x.
However, combining Helium and the hand optimized version yields
the best performance at 1.63x. Helium also takes advantage of
the fragmented tasks but dispatches the tasks in three out-of-order
queues; exposing three-way parallelism between computation and
communication both from and to the device. Doing so manually
requires a major re-write of the already hand-optimized code.

This shows that while Helium is able to improve the performance
of existing code, it may also benefit from hand-transformations ex-
posing more optimization opportunities.

Sobel. The first two stages being data independent and their out-
put being processed by a map function, the three kernels can safely
be merged into one, resulting in two fewer store instructions per
point (for each temporary buffer) and three fewer loads per point
(two for the temporary and one redundant read). When isolating
this pattern in a single application, the same conclusion can eas-

ily be reached by a programmer, who applied the same optimiza-
tion strategies in the hand optimized version. All implementations
generated the same code and achieve the same speedup of 1.98x.
However, if this pattern is part of a larger image application, or if it
the result of dynamically composing from operators at runtime, it
would become increasingly difficult to optimize by hand.

This application shows that Helium performs the same transfor-
mations as an expert programmer, without bloating the code base
with specialized versions of the code.

geoMatrix. Because the number of input matrices is not known
statically, it is not possible to implement a specialized version of the
kernel. The hand optimized implementation achieves a speedup of
1.68x using in-place operations and creating specialized operators
to multiply three matrices at once. Helium also generated special-
ized kernels, but combining all the matrices at once since their num-
ber is known at runtime. For both input sizes, Helium generated a
single kernel, improving performance by over 3x.

While opting for a reasonable strategy of parallelizing tasks in
the multiply stage, the manual transformations did not result in
an important performance improvement. Task parallelism is not
exploited by the GPU in this case because both inputs generate
enough threads to occupy the entire device. However, this op-
timization considerably increases the complexity of the dataflow
paths, resulting in poorer performance gains by Helium compared
to Helium operating on the baseline. In both cases, our system per-
forms the same optimizations: all kernels are fused into a single
specialized kernel, and the amount of computation is roughly the
same in both cases. The difference comes from the use of memory.
By optimizing a composition in the baseline, the optimized version
resulted in a single load per input matrix element and a single write
for the result. The hand-optimized version uses writes to temporary
buffers to speed up the reduction tree stage. These writes cannot be
eliminated, as they are not released until after reading the final re-
sult. Hence, their side effect cannot be predicted and Helium cannot
eliminate the dead store operations.

This demonstrates that partial hand-optimization can actually be
counter-productive and impair performance if it is attempted prior
to automatic techniques.

ExpFusion. Exposure fusion is a highly dynamic application and
very little can be known statically. First, the pre-processing step
depends on the image format, which is unknown at compile time.
Second, the number of input images is unknown as well. A Lapla-
cian Pyramid of an arbitrary depth is then built by recursively blur-
ring and down-sampling the images, and the final image is recon-
structed using a Gaussian pyramid. Despite the complexity of the
pipeline, the host program only requires less than a hundred lines
of code, but it contains complex control flow and requires a very
modular design code to be maintainable.

The number of kernels executed at runtime widely varies de-
pending on the input configuration, making manual optimizations
very difficult, even with a help of a profiler. The small input size
used 4 RGB input images and a pyramid depth of 4, which gener-
ated over 400 kernel instances. The larger input size used 12 input
images and a depth of 8, invoking more than 2000 kernels.

The hand optimized version clones large parts of the code and
specializes it for three-channels images, leaving the original generic
application as a fallback if this assumption is not met at runtime. By
specializing kernels, the overall number of invocations is decreased
by 20%, however the performance gain is less than 5%, since most
of the time is spent in combining across images rather than across
image channels.

Helium takes advantage of runtime specialization to achieve the
same speedup of 1.36x from either the baseline or the hand opti-
mized code. It generates specialized code combining all images at
once, leaving only the convolution steps in between, which cannot
be merged due to spatial and temporal dependencies.

As the pyramid becomes wider and deeper with the larger input
size, Helium shows better scalability than hand optimized code.
It achieves a speedup of 1.4x, while the hand optimized version
does not improve. This shows that even with more versions of the
specialized kernels in the hand optimized implementation, Helium
will alway stay ahead by generating them at runtime, allowing it to
adapt to new inputs.

This last application demonstrates the applicability of Helium
on large and dynamic workloads where hand optimizations are not
applicable or not efficient.

7. RELATED WORK

Dataflow Analysis. Mistry et al. [11] developed a profiling
technique for analyzing data flow in multi-kernel OpenCL appli-
cations. This approach does not apply optimizations but allows
programmers to identify bottlenecks by manually inspecting a pro-
filing trace. Jablin et al. [6] explored a CPU-GPU communication
framework to track buffer usage and infer memory transfers be-
tween host and devices automatically. This scheme improves com-
plex communication patterns but does not alter device code.

JIT Compiler Optimization. TaskGraph[3] is a C++ library
for dynamic code generation. The computation is expressed in
terms of nested components, from which a framework builds a high
level computation AST, optimizes it at runtime and re-compiles
the optimized version. Lancet[14] is a framework for interact-
ing with the Java JIT compiler in order to specialize fragments of
code. Instead of automatically infer dependencies and optimiza-
tions, the Lancet compiler relies on user annotations and explicit
specialization, allowing users to control the transformations. The
Java Virtual Machine uses a variety of runtime optimizers such as
Jalapeño[2] and Graal[12], allowing aggressive dynamic transfor-
mations of Java programs.

Code Generator for Heterogeneous Systems. Code gen-
erators allow generation of highly tuned device code, often taking
into account kernel sequences. Halide[13] is a language and com-
piler for implementing complex image processing pipelines. Their
DSL provides high level scheduling API while the compiler sup-
ports many backends, including CUDA and OpenCL. StreamIt[5]
is a language and a compiler for stream programs. The compiler
analyses the resulting streams and performs optimizations such as
task fusion and fission or reordering. Delite[4] is a framework al-
lowing the user to implement domain specific languages and use a
sophisticated compiler toolchain.

8. DISCUSSION AND FUTURE WORK
OpenCL implementations have demonstrated and popularized

JIT compilation and JIT optimizations as a way to tame heterogene-
ity. The most recent version of OpenCL proposes interoperabil-
ity between vendors at a much lower level with another standard,
SPIR[8], allowing the kind of transformation applied by Helium to
be performed even more efficiently and in a platform-independent
way.

We showed that delaying OpenCL commands can be done com-
pletely transparently and that enough information can be gathered
at runtime to drive more aggressive optimizations. As backend im-
plementations get more efficient, lazily evaluated command queues
might become the default behavior in OpenCL in order to maximize
optimization potential, or at least become an alternative scheduling
method proposed as an extension.

Helium can be used to integrate many other optimization tech-
niques and is complementary to existing single-kernel compiler
transformations. It would be beneficial for both single kernel and
inter kernel optimizations to divide kernels in smaller atomic func-
tions (kernel fission), which could then be re-assembled more ef-
fectively using Helium’s task graph optimizer. This would allow
Helium to factorize common memory operations and avoid redun-
dant operations.

More research is necessary to evaluate and prioritize heuristics
deciding how nodes should be fused and predict the efficiency of
the transformation. Fusion is not always applicable since there are
limitations on the number of kernel parameters. It is also not al-
ways beneficial for kernels using a lot of registers or for which
the memory bandwidth has been optimized for a particular device.
The challenges lie not only in predicting the performance gain of
the transformation but also its re-usability in order to avoid over-
specializing the code. Very aggressive specialization might not per-
form much better than a more selective specialization and is less
applicable.

Finally the same technique can be adapted to distribute compu-
tation across multiple devices transparently. Analysis of a large
task graph could find large independent sub-trees, which can be
dispatched to different devices.

9. CONCLUSION
This paper has presented Helium, a transparent OpenCL overlay

for automatically computing and optimizing task graphs in OpenCL
applications. It is based on a delay-optimize-replay mechanism al-
lowing the scheduler to chain OpenCL commands together accord-
ing to their dependencies and compute only what is necessary in
the host application. The optimizer also performs other types of
transformations on the task graph, such as task reordering and ker-
nel fusion, which improve the overall performance by increasing
device occupancy and simplifying memory transactions across ker-
nels.

We evaluated this framework on multiple benchmarks to assess
both the efficiency of Helium’s compiler transformations and its
parallelizing scheduler. We found that in most cases Helium can
replicate the performance of hand optimized code without the ex-
pense of refactoring code. For highly dynamic applications He-
lium can outperform hand optimized code by taking advantage of
runtime information. Finally we showed that over-engineered and
over-complicated code not only impairs maintainability but may
also harm automated optimization processes, which could achieve
better results with simpler code.

10. REFERENCES

[1] CUDA specifications.
http://docs.nvidia.com/cuda/.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive optimization in the Jalapeño JVM. In Proceedings
of the 15th Conf. on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA, 2000.

[3] O. Beckmann, A. Houghton, M. Mellor, and P. Kelly.
Runtime code generation in C++ as a foundation for
domain-specific optimisation. In C. Lengauer, D. Batory,
C. Consel, and M. Odersky, editors, Domain-Specific
Program Generation, volume 3016 of Lecture Notes in
Computer Science. 2004.

[4] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya,
and K. Olukotun. A domain-specific approach to
heterogeneous parallelism. In Proceedings of the 16th
Symposium on Principles and Practice of Parallel
Programming, PPoPP, 2011.

[5] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli,
A. A. Lamb, C. Leger, J. Wong, H. Hoffmann, D. Maze, and
S. Amarasinghe. A stream compiler for
communication-exposed architectures. In Proceedings of the
10th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, 2002.

[6] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R.
Beard, and D. I. August. Automatic CPU-GPU
communication management and optimization. In
Proceedings of the 32nd Conf. on Programming Language
Design and Implementation, PLDI, 2011.

[7] Khronos OpenCL Working Group. The OpenCL

Specification version 1.2, 19 edition, Nov. 2012.
http://www.khronos.org/
registry/cl/specs/opencl-1.2.pdf.

[8] Khronos SPIR Working Group. The SPIR Specification
version 1.2, 1 edition, Jan. 2014.
http://www.khronos.org/
registry/spir/specs/spir_spec-1.2.pdf.

[9] A. Magni, C. Dubach, and M. O’Boyle. Automatic
optimization of thread-coarsening for graphics processors. In
Proceedings of the 23rd Intl. Conf. on Parallel Architectures
and Compilation, PACT, 2014.

[10] T. Mertens, J. Kautz, and F. V. Reeth. Exposure fusion. In
Proceedings of Pacific Conf. on Computer Graphics and
Applications, 2007.

[11] P. Mistry, C. Gregg, N. Rubin, D. Kaeli, and K. Hazelwood.
Analyzing program flow within a many-kernel opencl
application. In Proceedings of the 4th Workshop on General
Purpose Processing on Graphics Processing Units, GPGPU,
2011.

[12] OpenJDK. Graal project, 2013.
http://openjdk.java.net/ projects/graal.

[13] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe. Halide: A language and compiler for
optimizing parallelism, locality, and recomputation in image
processing pipelines. In Proceedings of the 34th Conf. on
Programming Language Design and Implementation, PLDI,
2013.

[14] T. Rompf, A. K. Sujeeth, K. J. Brown, H. Lee, H. Chafi, and
K. Olukotun. Surgical precision jit compilers. In Proceedings
of the 35th Conf. on Programming Language Design and
Implementation, PLDI, 2013.

[15] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B.
Kirk, and W.-m. W. Hwu. Optimization principles and
application performance evaluation of a multithreaded GPU
using CUDA. In Proceedings of the 13th Symposium on
Principles and Practice of Parallel Programming, PPoPP,
2008.

[16] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen.
On-the-fly elimination of dynamic irregularities for gpu
computing. In Proceedings of the 16th Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS, 2011.

	Introduction
	Motivation
	Helium Overview
	Helium Implementation
	OpenCL Profiler
	Dependency Analyzer
	Task Graph Optimizer
	Parallelizing Scheduler

	Experimental Setup
	Results
	Related Work
	Discussion and Future Work
	Conclusion
	References

