
http://crossmark.crossref.org/dialog/?doi=10.1145%2F271658.271705&domain=pdf&date_stamp=1997-10-01

Other issues particularly relevant with the nature of the
real-t ime problem domain deals with hard and flexible
scheduling demands, and safe and efficient access to shared
and possible distributed information resources. Ada 95
l anguage i m p r o v e m e n t s fo r r e a l - t i m e d e v e l o p m e n t
p r o c e s s i n g are be ing e x a m i n e d and u t i l i z e d w h e r e
appropriate, and are important in a reuse effort because the
resu l t ing set o f c o m p o n e n t s may vary, e f f ec t i ng the
schedu l ing demands . N u m e r o u s so lu t ions are under
development to support an Ada 95 (software) plug-n-play
arch i tec ture using various schedul ing a lgor i thms. An
advantage with Ada 95's Object capability is that a core
executive capability can be developed which provides an
architecture component that is then never modified. Instead
concre te plugs are deve loped and added over t ime to
conform to abstract definitions[7].

2. R e a l - T i m e P r o b l e m C o n t e x t

This research work deals with examining an existing full-
scale Boeing project as they develop a COTS-based Open
System Architecture (OSA) for many different Command
and Control System applications. As their system migrates
f rom Ada 83 to Ada 95, this e f for t has examined the
viability of commercial distributed processing capabilities,
such as CORBA[I] and Ada 95's DSA Distributed Annex-
E[2].

The runtime environment consists of both Sun-Solaris and
DEC-Alpha Digital-Unix platforms of varying performance
charac ter i s t ics . Ada 95 is suppor ted by the GNAT[4]
p r o d u c t i o n c o m p i l e r and r u n t i m e s y s t e m . D S A is
implemented in the GNAT tool called GARLIC (GNU Ada
Reuse Library for In te rpar t i t ion Communica t ion) [2] .
(GLADE is the actual tool name). The CORBA/Ada-95
product is provided by Iona and OIS (Objective Interface
Systems). A goal of the project is to have totally portable
Ado 95 systems running on most Unix based platforms and
communicating with local and remote networks.

2.1 R e a l - T i m e O b j e c t S o l u t i o n Prototypes

This Boeing project is a major undertaking combining
numerous designs that touch on all aspects of advanced real-
time systems. Some of these areas are being prototyped with
maximum use of the new object oriented features of Ada 95
integrated with Ada Tasking and extended with a distributed
computing infrastructure. As this paper describes a Hybrid
Distributed Architecture, this section will first describe ofie
of many p rob lems c o m m o n to the class of so ca l led
Information Battle Management Systems (such as AWACS,
Air-Traffic-Control, etc.). In general, for these multi-user
sys tems, there is a Main C o m p u t e r that co l lec t s and
correlates volumes of information from many input sensors.
Portions of this information is then broadcasted to a set of
User Display consoles for viewing and interpreta t ion,
resulting in actions performed on the information back on
the main computer (or elsewhere in the information space).

Figure 2 shows a simple interpretation of this problem.
Additional requirements state that there may be redundant
warm backup main computers that, if running, will receive
snapshots of existing backup information. There can also be

a varying number of display computers. One aspect of fault-
tolerance that is added requires the warm backup to take
over main processing duties if the hot main goes down,
while display computers would then communicate with the
new main processor. (This figure also shows a controller
sub-system which is not part of the requirement, but is used
in the object solution.).

I Figure 2:
Problem of Replicated Capabilities using Objects and
and unknown physical locations to ease fault-tolerant issues

la

2.2 Issues in a Distributed Design Utilizing Objects

Through use of a technique cal led RACW (Remote
Access to Class Wide Types), an example Object Oriented
solution can ease faults through replication and use of a
name server to act as a repository of known object class
services. In this example, if a Main_Computer dies or looses
contact (caught by exceptions in this example), then the
Name_server informs one of the backup computers that they
should take over. Future requests by the display computer to
communicate with the Main are then directed to this new
main. This is done through r emo te ob jec t r e f e r ences
allowing capabilities to be in various locations. If another
instance of the main computer starts it will take on a backup
role and accept backup-data commands. Numerous backup
computers can also be running for additional redundancy.

New techniques using Object designs, coupled with
remote access pointers provides useful object abstractions
providing class wide services that can reside in various
network locations. An important feature of this design is that
implementation of concrete services don't necessarily know
they may be remotely accessed, and the implementation is
postponed until later when code is automatically generated
to support the distribution.

Additional designs (not described in this paper) support
the Object Or iented ability for these warm backups to
assume the main role while informing all the various sub-
systems to run with the latest backup information. This is
especially useful when a system configuration may have
been configured from domain based reusable components
that fit the correct architectural framework. It is easy in a
paper like this to describe the solution to a portion of the
prob lem but the other aspects must also be in tegrated
showing why an overall object oriented design is imperative.

Ado Letters. Sep/Ocf 1997 Page 72 Volume XVII, Number 5

This example provides a good vehicle to discuss many
framework issues dealing with fault-tolerance[9][10]. Issues
such as replicating the single name server, providing heart-
beats or handling connection exceptions could be abstracted
for more error proof application code.

2.3 Further Requirements on Real-Time Distributed
Systems

Multiple Sockets are sometimes used to increase priority
based throughput. The idea is that low priority data is not
pre-empting higher priori ty data. Priority Inversion is
another issue that is difficult to deal with unless there are
priorities for queued data.

An DSA i m p l e m e n t a t i o n can pass t ask p r i o r i t y
information onto a remote operation making the receiving
task take on the same priority. This is already available to
traditional Ada users but furthering the implementation to
remote connections only serves to strengthen the correctness
of systems, whether or not they are distributed. This concept
may only be appropriate for application specific systems
since priorities may not always make sense once distributed.

Other hard real- t ime constraints deal with both the
latency of the underlying network, and the efficiency of the
response once the network hands the data to the users
software. Systems must also support various models for
access to possibly large database in either a read-only or
read-write mode. The later can make a parallel distributed
system serial if others are also waiting on the same data.

3. Distributed Solutions Available

Three main class of solution techniques are available to
Ada programmers: (1) Hand Built Socket-Based Calls (2)
Ada Distributed Systems Annex-E (DSA) (3) CORBA
(Common Object Request Broker Architecture) These are
described in the following sections.

This paper does not describe other distributed capabilities
such as Java RMI, DCE RPC, PVM or ILU, but they could
probably also be added to the hybrid architecture as needed.

Another solution that i sn ' t ment ioned is the typical
e m b e d d e d p r o c e d u r e / f u n c t i o n ca l l o f the n a t i v e
programming language. Both DSA and CORBA support
non-distributed solution that can be broken apart later
without modification. CORBA tools implement this through
an a lways p resen t ind i rec t ion scheme, whi le DSA's
interaction is totally removed and implemented instead with
straight Ada compiler calls. (This can be changed by the
user through the All_Calls_Remote pragma requiring a
similar indirection.)

3.1 Custom Socket Based Solutions

Many internal real-time systems built today have a custom
c o m m u n i c a t i o n i n f r a s t r u c t u r e . T h i s s t e m s f r o m
requirements for tight control over performance and firm
requirement for the message queues. Some designs support
"Priority Message Channels" where different sockets are
allocated different priorities allowing higher demanded
information not be blocked by slower (possibly large) data
using the only socket.

In general , these custom solut ions can support firm
runtime constraints. Improved abstractions, such as class
l ibraries, can make uti l ization much easier. The main
drawback is the lack of standards and harder inter-language
support.

3.2 Ada-95 Distributed Systems Annex-E (DSA)

Ada 95 Dis t r ibu ted Annex -E p rov ides a power fu l
capabi l i ty for dis t r ibut ing Ada p rograms to different
processors. Moreover, this can be accomplished without
changing any user code. Integration of external distributed
m e c h a n i s m s usua l ly requi re va r ious levels of code
modification making portability to other capabilities harder.
Unfortunately this Ada 95 capability only supports inter-
Ada communication and is not directly compatible with
CORBA's communication model. A short summary of Ada
95 Distributed Systems (Annex E) features includes:

• Development language treated like large Ada program,
thus testing can occur with complete program before
distribution occurs,

• Faster for same process communication (if not distributed
then no overhead).

• (Distributed) Shared Memory described in Ada via
SharedPassive pragma.

• Consistent version of interfaces are guaranteed (no special
syntax is required for distribution or communication).

• Communication within specified time supported via native
Ada linguistic features (i.e. for fault-tolerance support)

With the new distributed processing capabilities being
developed, distributed processing can be left to a later
design decision, while the syntax for p rogramming is
shielded as much as possible (if the original system was
des igned to be mul t i - t a sk safe) . In i t ia l p e r f o r m a n c e
experiences also favor GARLIC when communica t ing
arrays of large data records in a homogeneous environment.

3.3 CORBA (Common Object Request Broker
Architecture) and Ada 95 Bindings

Without providing in-depth discussion, CORBA can be
thought of as another tool to ease development of distributed
solutions. The main strength of CORBA is the requirement
that an arbitrary implementation language does not dictate
d i s t r i bu t ed i n t e r f ace s . I n s t ead , a l a n g u a g e neut ra l
specification is developed and published called an Interface
Definition Language (IDL). Types, objects and object
operations/methods are specified and then implemented
through one of the numerous CORBA IDL language
bindings. Eventual ly , d is t r ibuted p rograms exchange
services wi thout knowing the actual implementa t ion
language. The CORBA runtime systems must ensure that
information is communicated and represented correctly for
all parties.

Because of this language neutral benefit, a majority of
vendors are mak ing their t r ad i t iona l p r o g r a m m a t i c
i n t e r f a c e s (A P I ' s) a v a i l a b l e as C O R B A s e r v i c e s .
Additionally, an extensive set of capabilit ies are under
design and development for other common services. These
range from data management to event services (publish/
subscribe). Eventually these services will be purchased and
reused in a portable manner.

Ada Letters, Sep/Oct 1997 Page 73 Volume XVlI, Number 5

Ada d e v e l o p e d s y s t e m are p r i m e c a n d i d a t e s fo r
involvement in the CORBA movement. A CORBA/Ada-95
Mapping has been designed and standardized, and at least
one product is available through Iona and OIS. But as
mentioned throughout this paper, the Ada system designer
has other language built-in tools available before integrating
with CORBA is required. The next section describes a
Hybrid capability developed to ease this integration while
keeping the benefits of the DSA supported Ada solution.

4. Hybrid Distributed Computing Capability

Remote_Types I IDL

Remote_Call "]-I. DSA/
Interface Package~ ill . GARLIC Ill
~1'1 111 Multiple

Tasks/
Protected] ; Sockets

IGIobal-Data (Not D S A) ~ - -

Packages supporting "]- h "~ ~
Remote Objects r ~ [i iiii!iiiiiii~i~!i~

, , - i i-

Figure 3: Hybrid DSA-CORBA Architecture

Figure 3 shows some aspects of the Hybrid Architecture.
It is composed of a generic set of Ada Packages classified in
three main areas: (1) Packages classified through pragmas
Remote_Call_Interface and Remote_Types (2) Packages
supporting possible remote class wide services and (3)
N o r m a l n o n - d i s t r i b u t e d p a c k a g e s p r o v i d i n g s ta te
information such as global data structures. Safe access to
shared application data can also use protected types.

The right side of the figure shows the two distributed
capab i l i t i e s o f DSA and CORBA. Both capab i l i t i e s
currently allocate a socket connection to the distinct clients.
This means if a client is multi-threaded it still gets only one
c o n n e c t i o n to the s e r v i c e . (A c u s t o m i z e d D S A
i m p l e m e n t a t i o n c o u l d c o n c e i v a b l y c h a n g e t h i s
implementation for special cases.) DSA allocates a task for
the different connections and can read the information in
parallel. Currently the CORBA portion is allocated to a
single Ada task and will support serial connect ions to
numerous external clients. (Future versions of the CORBA
too lse t will p rov ide mul t ip le tasks for the d i f fe ren t
connections.)

Two other aspects of the figure need explanation. DSA
can only provide direct external connections to the first two
package classifications identified above. Global data can not
be directly exported. In contrast, the CORBA solution relies
on various manual translations to map requests to the correct
implementations. An implementation can then indirectly
access any visible package , including the global data
structures. In most cases access should probably go through
the DSA expor t ed se rv ices , but some ef f ic ien t data
manipulations require access to the direct information,
e spec ia l ly for local access to an array of large data

structures. Of course, if the internal CORBA mapping is
through DSA services, these services may be re-allocated to
other servers without modifying the CORBA code (but
incurring a possibly high communication overhead). Also
note that other information such as Ada Remote_Types
definitions and IDL files are also available to clients but
typical ly they are manual ly used in cl ient executable
development.

An impor tan t aspec t o f this vers ion of the Hybr id
Architecture is that a correct Ada 95 distributed program is
exposing some of its services through a CORBA facility.
The general system engineering concept supports definition
and construction of a well known and contained system.
With Ada 95, a full system can be developed and various
partitions built, tested, and re-configured, before external
CORBA services are exposed. At that t ime the Hybrid
Architecture is integrated.

I f other l i fecycle requirements require interfaces to
external CORBA services then t radi t ional use of the
CORBA/Ada facilities are used. It doesn ' t make sense to
provide a DSA interface to those external services unless
internal prototyping can how show they might be used, or
duplicate capabilities are internally developed before the
external services are made available. At present very few
automation tools were used to make the translations between
DSA categorized packages and CORBA IDL. This is still a
research issue.

Object Oriented Issues

Introduction of Object-Oriented concepts into traditional
real- t ime distributed system development poses some
interesting issues. In general, a resulting system should
exhibit more flexibility but there are still concerns about
p e r f o r m a n c e . Ob jec t a p p r o a c h e s take a s tep out in
abstract ion while implementa t ions usually rely on the
indirection of nameserver concepts such as a CORBA ORB
or Ada 95's RNS (Remote Name Server) implemented in
DSA.

As an example, a straight forward use of distributed
process ing would involve defining interfaces that can
potentially be distributed. These interfaces would usually
expose a package as a set of services. A user of these
services must then consciously incorporate the instances of
the services. Any abstract ion to deal with objects was
incorporated into state information passed as parameters.
This capability is still important and directly represented
using Remote_Calllnterface Categorized Library Units.

Object designs for distributed problems, like the "main-
display" from Figure 2, are important to understand as they
are fundamentally different than traditional point connection
solutions. First, procedural operations are performed on
objects instead of statically known code sections (identified
through pragma Remote_Call_Interface). This means that
phys ica l code can res ide in d y n a m i c a l l y de te rmined
locations by a remote form of class wide dispatching. An
object implementa t ion may even migra te to different
physical locations during a single execution.

Ada Letters, Sep/Oct 1997 Page 74 Volume XVlI, Number 5

Inheritance and extension are techniques that are also
supported through object designs. For example, a backup
main computer could be implemented as an extension to
main providing implementa t ion for a pr ivate backup
operations. This capabi l i ty would not be available (or
known) by the display computers; for all they know they are
always communicating to an instance of the main computer
class. This means that mult iple instances of the same
partition can run and take on some of the fault-tolerant
requirements - without the client knowing anything about
them except that they implement object capabilities.

Locking of import shared information is an issue that
should be treated like any other multi-use application.
Exposing an application to possibly concurrent distributed
users definitely takes careful design. Ada 95's new protected
type is a valuable and efficient tool available for this type of
problem (see Figure 3).

These newer Object-Oriented solutions are still under a
watchful eye in terms of performance, and the multi-tasking
issues are still a concern when data is usually sequentially
manipulated (for performance and determinism). There are
also real-time concerns dealing with volumes of information
being transferred, and how much fault-tolerance can be built
into the language or framework capabilities, and how much
must be manually developed.

Through use of other Ada real-time support, such as task
threads and various timing tools (e.g. delay until, ATC, etc.),
a self contained system (and possibly single CPU process)
can be developed. This can be an accurate (or simulated)
reflection of the end system's constraints, such as network
speed and process load. Later breakup of the system into
distributed part i t ions is then made easier (taking into
account new network information). At that time, appropriate
CORBA interfaces can be developed and integrated into the
Hybrid Architecture.

5. Future Research Issues

The technologies and tools present in the paper are
relatively new. This includes CORBA, DSA, Ada 95, and
the Hybrid approach. Real-Time systems impose additional
s t r i n g e n t r e q u i r e m e n t s on these p o s s i b l y g e n e r i c
capabilities. This section raises a few issues that need to be
addressed with the end goal of portable and vendor neutral
solutions.

5.1 Shared Data and Broadcast Issues

Processing time is at a premium in real-time systems.
Replication and distribution are two techniques used to ease
some of the processing requirements and add fault-tolerant
aspects. Information must still be exchanged between these
systems and the more time spent serving this exchange, the
less t ime for other process ing . A solut ion technique
supported with physical networks is to broadcast or multi-
cast information to everyone on the network or to a specific
subset (one way for sharing at least read-only data). Also,
Ada ' s protected object[6] provides rich semantic and
linguistic access to shared memory. Will an API level
interface, such as CORBA, ensure the same runt ime
protection and still help large scale software development?

At present there is no built-in broadcast capability in DSA
or CORBA. There are various external tools providing this
capability and the CORBA community is trying to define a
specification. Seamless integration of this capability into the
Ada language and DSA are still under investigation. The end
goal would be to provide this capability in such a way that
the syntax of the Ada code isn't compromised. This might
be achievable through use of DSA configuration files or
other runtime information. The must be accomplish without
changing the Ada language semantics. Issues with this
include what level of support is needed to ensure reliable
delivery methods.

Some initial thoughts include extending the pragma
Asynchronous with some kind of TCP/IP network group
broadcas t address, or adding informat ion to the PCS
configuration language, or maybe configuring the Ada
tasking system to support task queues (through pragmas)
where all those waiting on an event would be notified at the
same time (versus one at a time).

Another related issue deals with the Shared_Passive
capability. Can this be implemented with broadcast? As this
capability hasn't been available, are there ramifications for
designers in it's eventual use? In the end, will the flexibility
of the resulting system be hindered such that broadcasted
information could not be transformed back into a single
address system without physical ly modifying user Ada
code? Will it also be easy to change the underlying network
easily (such as ATM, FDDI, Ethernet)?

5.2 Distributed Scheduling

Now that Ada 95 task priori t ies can be dynamical ly
modified, various solution techniques are now available to
system designers. For example, the DSA system uses this to
help avoid Distributed Priority Inversion. New Ada-95 task
features combined with DSA also provide fine control on
failure semantics (e.g. The subtle difference between ATC
and delay until, such as whether an abort occurs on call or
completion).

As hybrid architectures are developed, what scheduling
concerns should there be that are different than the same
non-distributed solution? Ada developers enjoy various
scheduling capabilities not available to other languages.
What is the best way to merge this capability with the non-
Ada developed distributed components? In general, what
scheduling issues and policies should be exploited and
controlled with the entire distributed network? Distributed
scheduling is still a research issue and at present still relies
on very application specific solutions.

5.3 DSA Implementation Issues

There are numerous issues that could be addressed with
any DSA i m p l e m e n t a t i o n . P e r f o r m a n c e and unique
tailoring, such as priori ty message queues, should be
examined. Solutions to many of the raised issues could
involve new language constructs in the vendor specific DSA
configuration file, including broadcast specification. These
must be we igh ted aga ins t po r t ab i l i t y to o ther DSA
i m p l e m e n t a t i o n s and the t r anspo r t of the seman t i c
information, that should belong in the Ada language, to
other languages such as IDL or makefiles.

Ada Letters, Sep/Oct 1997 Page 75 Volume XVII, Number 5

It is conceivable that DSA could support different network
transport layers such that communication actually involves
CORBA. This was not done for many reasons, and it would
not be effective unless the on-the-wire information matched
a CORBA specific definition.

It would also seem that the idea for configuration files to
be first-class (non Ada) objects[5] could be supported
without violating any rules. Within this Reuse project, the
plan is for configuration files to be automatically generated
based on desired products. Some form of hierarchal
configuration concept is internally under development for
intra-net availability[8].

There are still some fundamental lifecycle differences and
costs between CORBA and Ada's Annex-E that must play
into an overal l deve lopmen t scheme. For example ,
modification of generated CORBA templates (the IDL
specs) requires manual migration into possibly already
existing implementation code. The GARLIC system does
away with this because the c o m m u n i c a t i o n code is
generated every time changes are made. This is possible
since the distribution specification is Ada and not in a
neutral language like IDL.

5.4 Seamless Hybrid Integration with CORBA

Should automatic tools be developed to ease the creation
of CORBA IDL specifications from already existing Ada
distributed capabilities? The reverse already occurs with
existing products - but integration with an application can
still be time consuming. It would seem that this tool should
map a CORBA model into an appropriate DSA supported
model by using the various package categorizations. An
A d a - t o - I D L mapp ing should be des igned to e i ther
automatically or manually support Ada designers as they
start to publish CORBA IDL specifications.

Since there are different execution issues with the two
models, can a correctly running Ada and DSA program be
plug replaced with CORBA modules? As a cursory look at
the differences, how would priority inversion be solved with
CORBA when different task runtime models are in effect?

6. Conclusion

The Ada Programming Languages, both Ada 83 and Ada
95, were designed with a major focus on Real-Time
computing. These languages provide high level l inguis t ic
support for aspects such as multiple threads, protected data,
task synchronization, timing issues and scheduling policies.
The Ada Compiler then ensures these high level features are
implemented correctly on each underlying operating system.

The next challenge for the international computing field is
incorporation of a necessary set of Real-Time concepts into
the various Distributed Comput ing capabilities. This
becomes very important as distributed objects are embedded
into TV's or used to control telecommunication switches.
When describing this challenge to, the Ada community, one
can say that the goal is to have the same Ada real-time
linguistic support that is then extended to distributed
computing, while ensuring predictable and deterministic

results. Without this Ada context, one would have to
describe the problem in a mixture of operating system
concepts and scheduling techniques.

At least two international efforts are currently looking at
many of the issues with real-time distributed computing. For
example, the OMG is working actively on requirements and
vendor participation in defining and developing Real-Time
CORBA. Also, IEEE P1003.21 (POSIX) is developing a
real-time distributed systems communication capability.
Ada's Real-time language could have an important role in
these initial requirements and designs, with the linguistic
support of the underlying implementations, and possibly for
the end-user language where the Ada runtime is built from
the CORBA or POSIX lower level distributed primitives.

As the development of component based architectures
prevail throughout industry, newer technologies such as
CORBA are gaining importance. The Ada community
should examine how much is gained with CORBA versus
the amount of true Ada that is lost (such as weaker typing,
no generics, no abstract types, no overloading, no shared
memory model, etc.) and determine the best mix. After all
the issues are addressed, a Hybrid Architecture, as described
here, could support the long term goals of most system
development efforts.

Acknowledgments

This research could not have been performed without
Boeing commitment and recognition that Reuse is vital i n
the ever changing business climate and that Ada 95 has been
recognized as one of Boeing's vital tools to support real-
time system development and reuse. The OSA project, and
the research extensions, should also be acknowledged as
they let the reuse work absorb enough of the key personal to
gain the knowledge for migrating key functionality while
learning how to best use these new technologies.

References

[1] DEC, HP, et al. "The Common Object Request Broker: Architecture
and Specification". Technical Report OMG 91-12-1, Object
Management Group and X Open, December 1991.

[2] Y. Kermarrec, L. Pautet, S. Tardieu, "GARLIC: Generic Ada
Reusable Library for Interpartition Communication", Proc. TRI-
Ada'95, ACM Press

[3] Ada 95 Reference Manual, ANSI/ISO/IEC-8652:1995, January 1995.

[4] E. Schonberg et al. "GNAT: The GNU-NYU Ada translator, a
compiler for everyone". Proc. TRI-Ada'94, Nov 94. ACM Press

[5] A. Bums, A. Wellings, Concurrency in Ada, Cambridge University
Press, 1995

[6] Burns, Wellings, Real-Time Systems and Programming Languages,
Addison-Wesley, 1997

[7] S. Moody, "Migrating Well Engineered Ada 83 Systems to Newer
Architecture and Reuse Based Ada 95 Systems", Proc. TRI-Ada'96,
Dec 96. ACM Press

[8] S. Moody, "STARS Process Engine", Proc. TRI-Ada'94, Nov 94

[9] E. Shokri, K. Tso, "Ada 95 Object-Oriented and Real-Time Support
for Development of Software Fault Tolerance Reusable Components.,
Proceedings of 2nd Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS), Feb 1996, IEEE.

[10] R. Guerraoui, A. Schiper, "Fault-Tolerance by Replication in
Distributed Systems" Proceedings on Reliable Software Technologies
- Ada-Europe'96, Lecture Notes in Computer Science v1088,
Spfinger-Verlag

Ada Letters, Sep/Oct 1997 Page 76 Volume XVlI, Number 5

