
Task Termination and Ada 95

A.J. Wellings and A. Burns
Real-Time Systems Research Group

Department of Computer Science
University of York, U.K.

{andy, bums}~minster.york.ac.uk

O. Pazy
48 Beeri St., Tel-Aviv 64233, Israel

pazy~world.std.com

September 9, 1996

A b s t r a c t

Ada 83 removed from the programmer
the burden of coding potentially complex
termination conditions between clients and
servers by introducing an 'or terminate' op-
tion to the select statement. With the in-
troduction of indirect communication (em-
phasised by the provision of protected ob-
jects in Ada 95), it is no longer straightfor-
ward to obtain program termination. This
paper illustrates the problem and suggests
that adding a terminate alternative to an
entry call might solve the problem. The ad-
vantages and disadvantages of the approach
are discussed.

Keywords: termination, Ada 95

1 I n t r o d u c t i o n

Although there were many perceived difficulties

with the Ada 83 (U.S. Department of Defense, 1983)
tasking model, one of its benefits was that it

provided a simple mechanism for application pro-

grammers to specify termination conditions. With

the introduction of indirect communication (em-

phasised by the provision of protected objects in

Ada 95(Intermetrics, 1995)), it is no longer straight-

forward to obtain program termination.

This paper firstly considers the problem of ter-

mination when asynchronous communication is in-

troduced. It then considers the extent to which ter-

mination in Ada 95 can be supported by changing

the language so that entries can be called with an

"or terminate" option. Finally we present our con-

clusions.

2 The Basic Problem

The motivation for having a terminate alternative
on the Ada select statement was to provide a simple
mechanism with which to terminate server tasks.
For example, consider the following Ada program:

task type Producer;

task Consumer is
entzy Next(-..);

end Consumer;

Ada Letters, Sep/Oct 1997 Page 100 Volume XVII, Number 5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F271658.271719&domain=pdf&date_stamp=1997-10-01

task body Producer is

begin

loop

Consumer.Next(...);

exit when . . . ;

end loop;
and Producer;

task body Consumer is

begin

loop
solaot

accept Next(...) do

end;
or terminate;

end sole=t;

end loop;

end Consumer;

Pi, P2 : Producer;

This p rog r a m will t e rmina t e i rrespect ive of how
many P r o d u c e r s are created. The Consumer task
s imply indicates t ha t it wishes to t e rmina te when
there are no more tasks requiring its services.
W i t h o u t the t e rmina te opt ion, it would be necessary
to p rog r a m the Consumer's t e rmina t ion explicitly•

W i t h the above approach, the P r o d u c e r has to
wait for the Consumer to service its request• An
al ternat ive pa r ad igm is where the P r o d u c e r s imply
issues its request and t hen continues. T h e classical
solut ion to this p rob lem is to in t roduce a b o u n d e d
buffer be tween the tasks. To do this in Ada 83 re-
quired the in t roduc t ion of a buffer task and modi-
fications to the P r o d u c e r and Consumer.

task ty]pe Producer;

task Consumer;

task Buffer is

entry Get(...);

entzy Put(...);

end Buffer;

task h~dy Producer As
begin

loop

Buffer_Put(...);

exit when ...;

end loop;

end Producer;

task body Consumer is

begin

l o o p

Buffer.Get (...) ;

end loop;

end Consumer;

task bodF Buffer is

Full : Boolean := False;

Empty : Boolean := True;

began

loop

seloot

when not Full =>

aooopt Put(_..) do

Full := True;
Empty := False;

end;

or
when not Empty =>

accept Get(...) do

Full := False;

Empty := True;

end;

o r terminato;
end select ;

end loop ;
end Buffer;

Pi, P2 : Producer;

However, this so lut ion introduces a termination
problem• W h e n the P r o d u c e r tasks finish, the
Consumer task is left wait ing on a closed entry of
the B u f f e r task. Note also that the B u f f e r task
will not terminate because the Consumer task has
visibility of the buffer and consequently can call Get.
The system is thus deadlocked. We are, therefore,
forced to consider ways to terminate the consumer.

Ada Letters, Sep/Oct 1997 Page 101 Volume XVII. Number 5

In Ada 95, the Buffer task would be replaced
by a protec ted object. However, the problem for the
consumer remains.

P rog ramming te rmina t ion in concurrent sys-
tems is non-trivial. Tokens must be passed from
producers to consumers to indicate tha t a p roducer
is about to t e rmina te (this is the approach tha t is of-
ten taken with occam programs (Burns, 1988), for
example) . In Ada, each client could register wi th
the server, and the server could keep t rack of all
its registered clients. Clients would also de-register
when they have finished with the server or when
they t e rmina te (using Ada 's finalisation facility).
Servers can then t e rmina te when all their clients
no longer need their services. However, it was jus t
these types of ad hoc algori thms tha t Ada 83 was
t ry ing to avoid wi th its t e rmina t ion opt ion on the
select s ta tement .

3 T e r m i n a t i o n in A d a R e v i s i t e d

In this section we reconsider t e rmina t ion in Ada 95.
In part icular , we address whe the r t e rmina t ion can
be suppor ted by a change in the language definition.

3.1 E n t r y C a l l w i t h a T e r m i n a t i o n Op-
t i o n

An al ternat ive approach to requir ing the user to
p rogram te rmina t ion is to require tha t the language
be ex tended to provide au tomat ic te rminat ion . One
way to provide this capabil i ty is to add a t e rmina te
option to the en t ry call facility.

Consider again the simple p r o d u c e r / c o n s u m e r
program. Consumers would be s t ruc tu red as fol-
lows:

talk type Consumer;

task body Consumer is

begin
loop

select

Buffer.Get(-..);

- - C onstL~le

o = teEllnate ;

end ssle=t ;

end loop;

end Consumer;

-- NOT VALID Ada

The t e rmina te opt ion would be mutua l ly exclusive
wi th the delay, else and then abor t options.

There are two cases to consider:

1. the Buffer object is a task

2. the B u f f e r object is a protected object

In bo th of these cases, a task wait ing on an ent ry
call wi th the t e rmina te opt ion will t e rmina te if and
only if all tasks which have the same mas te r as the
target p ro tec ted (or task) object are ei ther termin-
ated or similarly wait ing on an en t ry call wi th a
t e rmina te option. If one of these tasks is wait ing
on a different object t h a n the first one considered,
then the same t e rmina t ion check has to be per-
formed for t h a t object too. If the call wi th termin-
ate is done f rom wi th in an abor tab le par t (in some
dynamica l ly-nes ted level), then the calling task is
assumed to be "non-terminable" at tha t point.

Of course, p roduce r / c l i en t tasks can also termin-
ate in the normal way when they have finished their
al lot ted work (by reaching the end of their body) .

3.2 S e m a n t i c C h a n g e s / D i f f i c u l t i e s

The proposal made in this section raises some se-
mant ic issues tha t have to be s tudied further . Be-
low, we enumera t e those topics tha t immedia te ly
come to mind with our initial thoughts about them.

I n t e r a c t i o n w i t h u s e r - d e f i n e d f ina l i sa t ion

Before all tasks wait ing on an en t ry call wi th "ter-
minate" can te rminate , the cons t ruct tha t declares
the pro tec ted object (or an access to the protec-
ted type) must itself be comple ted or have issued
an en t ry call wi th " te rminate" . However, after a
construct is completed, it must finalize. This fi-
nalisation step may include user-defined finalisation
rout ines which may issue fur ther en t ry calls on the

Ada Letters. Sep/Oct 1997 Page 102 Volume XVII, Number 5

task or the protected object since the latter's entries
are still visible at this point. Such entry calls will
violate the termination condition which has already
been determined; this is, of course, unacceptable.
Note, however, that finalization routines must he at
the library-level and in most cases they will not see
the relevant object.

Extending the not ion of masters

In order to properly define the set of "all possible
tasks", the notion of masters will have to be used
(mainly because access values designating protected
objects can be passed around in a parti t ion). Cur-
rently, this concept is t ightly coupled to tasks and
their active nature. It is also an essential par t of the
language model, but still quite subtle. More work
is needed to determine if extending the concept of
a master is feasible.

I n t e r a c t i o n w i t h A s y n c h r o n o u s T r a n s f e r s
o f C o n t r o l

For this feature to work, the termination condition
defined above, must be relatively stable. That is,
in order to avoid the need for a complicated pro-
tocol, there should be a limited set of well-defined
events that can cause the calling task to leave the
"call-with-terminate" state. As we have discussed
above, two such events are currently recognised: one
is when the corresponding entry becomes open (and
then the entry call completes and the task contin-
ues execution). The other is when the termination
condition is reached causing the task to terminate.
Note that both of these cases are detected state
changes in the protected object itself (that is, when
its lock is held). They are not triggered asynchron-
ously from the outside. As a consequence, the al-
gorithm that is required to commit to termination
is fairly straight-forward.

However, an entry call (with terminate) issued
by the client, may itself be dynamical ly nested

wi thin an outer abortable part. The code tha t
makes the call may not even be aware of the fact
tha t it is inside such an abortable construct 1. If
the abortable par t aborts, thus cancelling the entry
call, the calling task may continue executing on
a different path. This will make the terminat ion
condition transient which will require a much more
complex synchronisat ion protocol implementat ion.
Note that the construct in question may be aborted
by a totally unrela ted task (i.e. a task tha t is not ne-
cessarily in the "possible tasks" set). It may also be
triggered by the opening of an entry of an unrela ted
protected object. This problem does not exist for
the selective-accept with te rminate construct. The
language does not allow accept s tatements to be
nested (dynamically or statically) inside an abort-
able part. The motivat ion for this restriction was
par t ly due to similar problems.

There does not seem to he a simple solution
to this problem. The implementa t ion cost may be
quite significant.

I n t e r a c t i o n w i t h t h e r e q u e u e s t a t e m e n t

Clearly, the semantic meaning of requeuing a task
with and without the abort option needs to be
defined when an entry has been called with a
te rminate option. Presumably, requeuing with
abort should allow the task to terminate, whereas
wi thout abort would remove the terminat ion option.
However, fur ther consideration is needed to determ-
ine whether any other interactions exist.

3.3 Usabi l i ty Issues

In addi t ion to semantic problems introduced above,
the result of adding a te rminate option to an entry
call means that:

• some programs which previously would dead-
lock would now terminate if the entry is called
with a te rminat ion option, as i l lustrated be-
low:

1Here, we are only concerned with abortable constructs which are not the entire task. No special problem is introduced if
the calling task is aborted as a whole.

Ada Letters, Sep/Oct 1997 Page 103 Volume XVII. Number 5

task A is

entzy One;

end A;

task B;

task b o d y A i s
begin

esle=t

when False =>

a = c e ~ t One d o

end;

or

t e ~ m i ~ t e ;

end select ;

end A;

task body B i s
begin

select

A_One;

OF

tez~Inate;

end select;

er~ A;

-- NOT VALID Ads

* a t a s k w h i c h p r ev ious ly h a d T a s k i n g _ E r r o r
raised, w o u l d now wai t for t e r m i n a t i o n if it
cal led a c o m p l e t e d t a s k w i t h t he t e r m i n a t e al-
t e r n a t i v e specif ied, as i l l u s t r a t ed below:

task A is

entz~r One;

ena A;

task B;

task]~dy A is

b e g i n

if False t h e n

a c c e p t O ne d o

end;

e l s e
null;

end If;

end A;

t a s k b o d y B i s
begin

s e l e c t
A . O n e ;

o E

teznm.lnate; -- NOT VALID Ada

encl select;

end A;

Final ly , cons ide r w h a t w o u l d h a p p e n w i t h t he
fol lowin N code:

t a s k A is

entz7 One;

emzl A;

t a s k B;

t a s k b o d y A i s
~ e g i n

s e l e c t
B c c e p t One d o

e z ~ ;
OF

t o z ~ i m a t e ;

e ~ s e l e c t ;

end A;

t a s k]~o4y B i s
b e g i n

. o .

s e l e c t

A . O n e ;
OE

Ada Letters, Sep/Oct 1997 Page 104 Volume XVII, Number 5

tozmimmto ;

ore41 select ;

e~ A;

- - NOT VALID Ada

In this situation, the rendezvous would occur and
no terminat ion would take place. However, if the
accept s ta tement was guarded and the guard evalu-
ated to false, then te rminat ion would take place (if
all other tasks are te rmina ted or waiting at a select
s ta tement with a te rminate option open).

U.S. Depar tment of Defense (1983). Reference
manual for the Ada programming language,
ANSI/MIL-STD 1815 A, U.S. Depar tment of

Defense.

4 C o n c l u s i o n

In this paper we have revisited task te rminat ion in
Ada 95. We conclude tha t te rminat ion of tasks in-
volved in asynchronous communicat ion is more dif-
ficult than for those involved in synchronous com-
munication.

One potential solution to this problem is to add
a te rminate alternative to the entry call facility. Al-
though this initially appears to be an at tractive
solution, there are semantic problems which need
to be considered further (in particular, the interac-
tions with finalisation and asynchronous transfer of
control). Moreover, the addit ion of such a feature
to the language is likely to add a significant cost to
the implementat ion. A similar mechanism already
exists for the selective-accept construct, but there
it seems more justified since a task is inherently a
more heavy-weight construct. A protected object
is intended to serve as a light-weight and efficient
mechanism, and therefore, every small addit ion to
its implementat ion cost is much more noticeable.
Also, there is a danger tha t cost will be incurred
even if the feature is not used by a program.

References

Burns, A. (1988). Programming in occam P, Ad-
dison Wesley.

Intermetrics (1995). Ada 95 reference manual,
A NSI/IS O/IE C-8652:1995, Intermetrics.

Ada Letters, Sep/Oct 1987 Page 105 Volume XVII, Number 5

