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We describe a technique to generate imagery with improved sharpness for
individuals having refractive vision problems. Our method can reduce their
dependence on corrective eyewear. It also benefits individuals with normal
vision by improving visual acuity at a distance and of small details. Our
approach does not require custom hardware. Instead, the calculated im-
ages can be shown on a standard computer display, on printed paper, or
superimposed on a physical scene using a projector. Our technique uses a
constrained total-variation method to produce a deconvolution result which
upon observation appears sharp at the edges. We introduce a novel rela-
tive total variation term that enables controlling ringing reduction, contrast
gain and sharpness. The end result is the ability to generate sharper appear-
ing images, even for individuals with refractive vision problems including
myopia, hyperopia, presbyopia, and astigmatism. Our approach has been
validated in simulation, in camera-screen experiments, and in a study with
human observers.
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1. INTRODUCTION

We present a personalized computational method that modifies im-
ages to improve sharpness for observers with unaided eyes (e.g.,
no glasses, contacts, nor head-mounted displays) (Figure 1). Our
approach is useful for observers with refractive vision problems or
for observers with normal/corrected vision (e.g., improving sharp-
ness and contrast for distant reading of signs or small nearby de-
tails). Moreover, our computed image can be viewed on a computer
screen, with a projector, or on printed media so that upon direct ob-
servation it appears sharper than viewing the original unprocessed
image.

Recently, several hardware-based display frameworks have been
proposed for providing improved sharpness and focus for ob-
servers. On the one hand, adaptive optics has emerged as a field that
attempts to measure, in real-time, high-order continually changing
optical aberrations using custom refractive and reflective hardware
(e.g., [Bass et al. 2009; Hampson 2008]). On the other hand, light-
field and multi-layer displays have recently been proposed in com-
puter graphics to improve static long-term optical aberrations, such
as defocus and astigmatism in human vision systems. For example,
Pamplona et al. [2012] show a lightfield display that dynamically
adapts its content to the observer’s specific condition, causing it to
appear focused despite of his/her refractive vision problems. Their
prototype is only able to show a very small region of a person’s
field-of-view (FOV) – a more typical field-of-view is shown only in
simulation by assembling many different photographs a posteriori.
Huang et al. [2012] propose custom multi-layer display hardware
and a deconvolution-based method that yields imagery appearing
sharper for viewers with refractive vision errors. Nevertheless, their
solution yields results with significant contrast loss. Further, it cur-
rently does not produce color imagery visible to the naked eye -
their color images can only be obtained by long-exposure camera
photography. Because of the need of precisely calibrated custom
hardware and strong restrictions of observer movement, none of
these methods can be used in practical applications to improve fo-
cus and contrast upon direct observation. In comparison to these
and other previous works, our approach

(i) provides naked-eye color viewing that yields improved sharp-
ness despite refractive vision problems;

(ii) offers high contrast;
(iii) does not require glasses, contacts, or custom hardware (i.e.,

works with the unaided viewing of current displays and
printed content); and
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Fig. 1. Precorrection on Paper. a) We depict the scenario where an observer sees our precorrected image, without his corrective eyewear, and perceives a
sharper picture than viewing the original image; b) original image (kindly provided by the USC SIPI Image Database); In c-e, we show images from a scenario
where the human observer is at a distance of 2.5m from the image and suffers from -2.5D of refractive error; c) simulated result of the observer looking at ‘b’;
d) precorrected image; e) simulated result of the observer looking at ‘d’.

(iv) does not severely restrict observer movement.

Our methodology is based on a constrained total variation (TV)
deconvolution method which carefully controls the process of cre-
ating a precorrected image that when observed appears sharper
than directly viewing the original image. The refractive ability
of the observer, for example as estimated by NETRA [Pamplona
et al. 2010], can be modeled by a point-spread-function (PSF).
Our method supports, but is not restricted to, PSFs created us-
ing Zernike polynomials [Thibos et al. 2000] that are widely-
used in ophthalmology to model optical aberrations. Since one
can only have positive and bounded pixel valueson a display and
the PSF causes some spatial frequencies to be severely attenuated,
deconvolution-based methods are known to produce ringing arti-
facts (i.e., unwanted intensity oscillations) in the computed images.
Ringing is typically reduced at the cost of a severe reduction in
contrast. Our constrained TV-based method ensures pixel values
are optimized in the [0, 1] range and introduces a new term, called
relative total variation, which enables controlling the tradeoff of
ringing-reduction vs. contrast gain. In practice, our method can pro-
duce images with relatively high contrast and little ringing.

We demonstrate using our approach to yield improved sharp im-
agery in: (i) synthetic simulations, (ii) physical setups of premea-
sured lenses inserted between a camera and either a standard com-
puter display or a printed sheet of paper, (iii) captured images of
physical scenes where objects are altered to have their precorrected
appearances by the use of projectors, and (iv) under human obser-
vation. Our results show that our system is able to produce con-
siderably higher contrast than Huang et al.’s [2012] (e.g., seven
times more contrast using the same image content), Alonso and
Barreto’s [2003], Mohammadpour et al.’s [2012], and Lakshmi-
narayanan et al.’s [2011]. It also yields sharpness for high blur lev-
els (i.e., we show results up to six diopters of myopia or hyperopia).

The images produced by our method are the first full FOV high-
contrast color images to be tested by human observers (and pre-
ferred by most of observers as per our 22-person user study – see
Section 7.7). The impact of providing a computational-only method
to yield improved vision clarity is significant. Addressing refractive
vision problems is a component of the World Health Organization’s
(WHO) VISION 2020 program [VisionURL ]. It is estimated that
between 800 million to 2.3 billion people worldwide suffer from
refractive visual deficiencies, including 5 to 15 percent of children
most of them being untreated [Dunaway and Berger 2006]. While
our method does not avoid the need for glasses altogether, it does
reduce the dependency on them. Further, our approach provides a
passive way to obtain improved visual acuity and better visibility
at a distance even for people with normal/corrected vision.

In summary, our main contributions include:

• A constrained total-variation-based formulation for generating
personalized precorrected images, which upon observation by
an individual exhibit sharper edges compared to observing the
original unprocessed images and higher contrast in comparison
to previous methodologies; improvements are obtained both for
individuals with refractive errors as well as for those with nor-
mal/corrected vision;

• A novel relative TV term for controlling the tradeoff of ringing
reduction versus contrast gain in the precorrected images; and

• A closed-loop automatic algorithm for effective PSF estimation
and precorrected image calculation.
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2. PREVIOUS WORK

2.1 Perceptual and Rendering Approaches

A large body of perceptual and rendering experiments has been de-
scribed to improve the appearance of subtle details and/or to im-
prove perceived sharpness. Rendering techniques, such as shad-
ing exaggeration [Rusinkiewicz et al. 2006], attempt to produce
compelling and “clearer” content. Within perception [Cornsweet
1970], phenomena such as edge enhancement, opponent-color the-
ory, psychophysical reading aspects (e.g., [Legge et al. 1985]),
and numerous so-called visual illusions are exploited (e.g., [Wan-
dell 1995; Pizlo et al. 2007; Pizlo 2010]). Some approaches com-
bine perceptually-based and ophthalmologically-based techniques
for improving image viewing (e.g., [Peli and Woods 2009]) and
for improving resolution in videos and animations (e.g., [Didyk
et al. 2010; Berthouzoz and Fattal 2012a; Berthouzoz and Fat-
tal 2012b; Templin et al. 2013; Masia et al. 2013; Stengel et al.
2013]). For instance, the Cornsweet illusion has been exploited to
provide enhanced local contrast [Ritschel et al. 2008] and to pro-
vide a perceptually-based metric for achieving compelling and ef-
ficient stereo disparity [Didyk et al. 2011]. Metrics have also been
designed to quantify human sensitivity to blur (e.g., [Karunasek-
era and Kingsbury 1994; Marziliano et al. 2002; Marziliano et al.
2004]). However, none of these methods can compensate for the
significant amount of blur perceived by an observer with several
positive or negative diopters of refractive error, or by an observer
with normal vision seeing distant or small content.

2.2 Custom Hardware

We refer the reader to a recent survey by Masia et al. [2013] on
custom display technologies. The most relevant hardware solutions
are those of Pamplona et al. [2012] and Huang et al. [2012]. How-
ever, the prototype shown by Pamplona et al. [2012] is limited to
a very small FOV (e.g., would require a gigapixel display for stan-
dard desktop viewing) and requires careful positioning (or track-
ing) of the viewer in front of the display. Huang et al. [2012] use
a multi-layer display that helps to recover some frequencies lost
by the eye’s refractive problems. Their solution improves upon a
single-layer display solution but still produces very low-contrast
images. Their current prototype cannot show color images and does
not operate fast enough to exceed the human flicker fusion thresh-
old required by their method; thus, it is currently not usable for
humans or user studies. Zhang and Nayar [2006] address a related
problem where digital projectors are improved so that the projected
image appears more in focus to the naked eye.

2.3 Constrained Deconvolution

Our approach is based on a constrained deconvolution process,
which unlike standard image deconvolution, is a less studied topic
(e.g., [Krishnan et al. 2009; Beck and Teboulle 2009]). In particu-
lar, defocus phenomena caused by refractive errors or by observing
far away (or very small) objects can be modeled using convolu-
tion. The inverse operation of convolution is known as deconvolu-
tion. Many variations of image deconvolution have been proposed
in computer graphics and computer vision (e.g., [Joshi et al. 2009;
Krishnan and Fergus 2009; Yuan et al. 2008; Fortunato and Oliveira
2014]) using one of several methodologies (e.g., Wiener filtering,
Richardson-Lucy).

Thus, at first sight the problem of generating a precorrected im-
age may appear to be a standard application of image deconvolution
to the original image. In practice, however, they are significantly

different. The optimal solution of standard deblurring has pixel val-
ues similar to those of the blurred image. However, the optimal so-
lution for a precorrected image, that upon blurring becomes sharp,
is usually very dissimilar to the original image. In fact, it often con-
tains pixels with negative and very large intensity values which are
not suitable for a computer display or printed media. Succinctly,
the deconvolution challenges are the following:

• Stability: Inverting a convolution operator is well known to be
highly sensitive to small amounts of noise in the image or in
the PSF. The modulation transfer function (MTF) may contain
zeros or very small values, leading to unstable deconvolution and
noisy results. Because of this instability, deconvolution is an ill-
conditioned operation and may introduce strong visual artifacts
in the resulting images.

• Non-Negativity and Bounded Values: Since we ultimately
seek to display an image, its pixel values must be constrained to
be non-negative and are limited by the maximum intensity of the
display or by the maximum amount of light that can be reflected
off a printed precorrected image. Enforcing this constraint tends
to severely reduce contrast.

• Post-Deconvolution Sensitivity: A precorrected image will be
seen by a human eye, which is very sensitive to ringing artifacts.
Thus, we must control the level of ringing in the precorrected
image. This control, however, cannot be done by only inspecting
the sharpness of the synthetically convolved precorrected images
(Figure 2).

The simplest approach to constrained deconvolution is to first
obtain a solution by regular deconvolution and then to restrict the
solution to a fixed range in a second step. For example, Alonso and
Barreto [2003], Brown et al. [2006], Marchand et al. [2011], Oya-
mada et al. [2007], and Huang et al. [2012] use or extend Wiener
filtering to compute either a deblurred image or a precorrected im-
age. All of these bring the solution into a valid pixel range (e.g.,
[0, 1]) by either clamping values, re-scaling the full range, or re-
ducing enough the contrast of the original image. These methods
suffer from ringing artifacts and/or very low contrast images. Al-
though Huang et al. [2012] does use multi-layer displays to increase
the obtained contrast, there is still a significant loss as compared to
the original.

Total Variation. In our work, we explicitly address the con-
strained deconvolution problem using a total variation method. The
TV approach was first introduced by Rudin et al. [1992] as a reg-
ularization technique capable of handling edges for the denoising
problem. Since then there have been many applications of TV reg-
ularization to different problems including deblurring. We refer the
reader to Chan and Shen [2005], Vogel [2002] and to the refer-
ences within for a comprehensive study. While most TV algorithms
have been proposed to deal with unconstrained minimization, we
focus our treatment to the objective of precorrected image gener-
ation which necessitates non-negativity and bounded value con-
straints. We adapt and extend the dual-approach method of Beck
and Teboulle [2009] to find an optimal solution. By considering
the problem as a constrained deconvolution from the beginning, we
find an optimal precorrected solution for constrained pixel values.
Our result exhibits higher contrast than previous works and does
not require multi-layer displays to improve contrast or to reduce
ringing artifacts.

2.4 Deconvolution Comparison

To illustrate differences from previous approaches, Figure 3 shows
several representative solutions under the same amount of -2.5D
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Fig. 2. Post-Deconvolution Sensitivity. We illustrate how different levels
of ringing in the precorrected images (left column) for a fixed contrast range
viewed under -2.5D result in similar synthetically convolved precorrected
images (right column). Thus, controlling ringing is an important deconvo-
lution issue to address. (These simulations were created using our tech-
nique applied to the Lena picture, kindly provided by the USC SIPI Image
Database).

of defocus blur at 3 meters. Previous methods use either inverse
Fourier transform (e.g., [Alonso Jr. and Barreto 2003]) or a Wiener
filtering based extension (e.g., [Alonso Jr. et al. 2006; Mohammad-
pour et al. 2012; Lakshminarayanan 2012; Huang et al. 2012])
with pixel values clamped or rescaled to the valid range (e.g.,
[0, 1]). Some methods perform additional denoising schemes (e.g.,
[Alonso Jr. et al. 2008]) or edge tapering (e.g., [Mohammadpour
et al. 2012]) as a post-process to reduce ringing - the results are
slightly improved. The first and second columns of Figure 3 show
original and blurred images. The third column contains precor-
rected images. The fourth and fifth columns are the synthetically
convolved precorrected image and a camera-captured picture of the
precorrected image (under -2.5D of blur).

The first four rows are representative ideal results from the afore-
mentioned methods using Wiener filtering (SNR= 0.0016). In the
first row, the precorrected image computed by Wiener filtering has
a dynamic range of [−19,+19] (note: the image we see in this doc-
ument is implicitly rescaled to [0, 1]). We also repeated this experi-

[0.465, 0.535]

[0, 1]

original blurred precorrected simulated camera

[-19, +19]

[-9, +9]

[0.15, 0.85]

[0.12, 0.89]

Mc=0.29

Mc=0.36

Mc=0.89

[0, 1]

[0, 1]

[0, 1]

[0.3,0.7]

Mc=0.41

Mc=0.37

Fig. 3. Deconvolution Comparison. We show several results for decon-
volution. Top four rows use Wiener filtering. Bottom row is our approach.
1st / 2nd row: full/half precorrected image range (which is not physically
possible, so captured observation is unsatisfactory). 3rd row: precorrected
image rescaled results in very low contrast. 4th row: input contrast range is
reduced so that precorrected image fits the available range - still low con-
trast. 5th row: our approach yields clearly superior contrast.

ment using a standard TV-based (unconstrained) deconvolution and
the result is very similar. In the second and third rows, we rescale
the dynamic range of the precorrected image to [−9,+9] and to
[0.15, 0.85], respectively. In the fourth row, we reduce contrast at
input sufficiently so that the precorrected image has values within
the [0, 1] range. In all rows, the convolved precorrected image is
computed synthetically and thus pixel values outside [0, 1] can be
used. The results are good though at a lower contrast as the pixel
range of the precorrected image is reduced. However, the occur-
rence of negative values in the precorrected images demonstrate
how such pixel values cannot be used by a physical system. It is
worth noting that the third row is effectively the single layer solu-
tion implemented by Alonso et al. [2008].

The fifth (bottom) row of Figure 3 gives a prelude to our tech-
nique. In particular, our precorrected image is optimized within
the [0, 1] range for a reduced-contrast input image in the [0.3, 0.7]
range. The synthetically-convolved precorrected image and the
captured precorrected image both show notably improved output
contrast as opposed to the previous rows; in fact, a 2x improvement
or more in this example as per the Michelson contrast ratio (i.e., the
ratio between the difference and the sum of the highest and lowest
luminance values) [Michelson 1995].
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Fig. 4. Physical and Optical Systems. a) Depiction of human optical sys-
tem and b) setup for our experiments with a camera-screen system.

3. VISION MODELING AND PRECORRECTION

3.1 Image Formation

The image formation process within the human eye is conceptually
well understood (e.g., Trevor et al. [1984]). Light from the exterior
world goes through the cornea, aqueous humour, lens, and interior
of the eye, until reaching the retina. Figure 4a shows a concep-
tual simplification of this process using a thin-lens. If an object is
too far (or too near) for a person to visually resolve its details, it
appears blurred because the focal point is not on the retina. For ex-
ample, a myopic person (i.e., nearsighted) focuses distant objects
at a point in front of the retina. The opposite occurs with hyperopia
(i.e., farsightedness). For astigmatism, the eye has different focal
points for different meridians. Other aberrations, such Keratoconus
and cataracts, occur due to a combination of additional factors. In
the case of a person with normal vision, light coming from afar
focus on a small point on the retina [Saladin 2007].

3.2 Convolution and Precorrection

Although human focusing is complex, spatially-variant, and
distance-dependent [Villegas et al. 2008], the perceived blur can
be well modeled by convolving a 2D PSF with the original im-
age. Our experimental setup uses a digital camera with a chosen
amount of defocus (via added lenses) observing an LCD screen
(Figure 4b). Table I summarizes the main terminology defined in
this section and in our approach. We denote by L1(R2) the set of
functions defined in R2 such that the integral of their absolute value
is finite. The convolution of the in-focus (single-channel) original
image t ∈ L1(R2) with the kernel k ∈ L1(R2), that models the
eye’s PSF, simulates defocus

b = k ∗ t. (1)

The image b is the blurred version of the original image. More-
over, if we consider the function K(t) = k ∗ t, then by Young’s
inequality K(t) : L1(R2) → L1(R2). For RGB color images,
Equation (1) is evaluated once for each of the three color channels.
We use the term convolved image when b is computed with a nu-

Table I. Terminology.

Name and Notation Description

Original image t In focus image

Point spread function k Models individual vision

Precorrected image p Image such that k ∗ p ≈ t
Convolved precorrected k ∗ p Synthetically convolved image

Captured image Captured by the camera

Observed image Observed by an individual

We summarize the main terminology used in this article and in our system.

merical simulation and captured image for pictures acquired by our
digital camera. The PSF is defined by the observer’s aperture (i.e.,
pupil size) and refractive behavior.

An individual’s PSF can be modeled by using Zernike polynomi-
als (e.g., [Lakshminarayanan and Fleck 2011]). In our implementa-
tion, we use second-order Zernike polynomials (i.e., Z−22 , Z0

2 , and
Z2

2 ) which are able to capture defocus and astigmatism aberrations.
Thibos et al. [2000] lists the standard equations and notation for
2nd order Zernike’s (Equation 1 and Table 2 in that reference) and
example PSFs are shown in our video. Although we use Zernike
polynomials, our method is not dependent on any particular PSF
formulation or equation set – thus it can be used with other PSF
representations.

The objective of precorrection is to generate a precorrected im-
age p that when observed appears sharper than directly observing
the original image t. The problem becomes to invert the functional
K(t) : L1(R2) → L1(R2). To invert K, it is natural to consider
the Fourier Transform of a function f ∈ L1(R2) given by

f̂(w) =
1

2π

∫
e−iw·zf(z)dz, (2)

where z = (x, y). The absolute value of the Fourier Transform
is known as the modulation transfer function (MTF) of f . If we
assume that the MTF of k is non zero in the support of t, the optimal
precorrected image p∗ is given by

p∗(z) =
1

2π

∫
eiw·z

t̂(w)

k̂(w)
dw. (3)

Our method seeks to compute a precorrected image p that is as
close as possible to the aforementioned p∗ and thus leads to a con-
volved precorrected image k ∗ p similar to k ∗ (p∗) = t.

4. IMAGE-BASED PRECORRECTION

4.1 Formulation Overview

We use a total-variation-based deconvolution method to calculate
a precorrected image that upon observation appears sharper than
looking at the original image. The solution also has no more than
a user-specified amount of ringing τ ∗ and the maximum contrast
range possible [clow, chigh]. A precorrected image calculated by
our approach is denoted by p = p(θ, tc) and defined as

p(θ, tc) = argmin
0≤‖p‖∞≤1

(‖k ∗ p− tc‖L2 + θ‖∇p‖L1) , (4)

where θ > 0 is a regularization weight and tc = t·(chigh−clow)+
clow is a rescaled version of the original image t to the contrast
range [clow, chigh]. The term ‖k∗p−tc‖L2 in Equation (4), ensures
the convolved precorrected image is visually similar to the original
image in an L2-sense. The term ‖∇p‖L1 is the TV-norm of p, i.e.,

‖∇p‖L1 =

∫ ∫
|∇p| dxdy, (5)

where | · | denotes the absolute value in R2 [Chan and Shen 2005].
To quantify ringing, we introduce a term called relative total

variation τ = τ(p, tc) that measures the additional amount of ring-
ing in the precorrected image p as compared to the rescaled contrast
image tc. We define τ as

τ(p, tc) =
‖∇p‖L1 − ‖∇tc‖L1

‖∇tc‖L1

, if tc 6= constant. (6)

In Equation (6), note that when tc is constant (i.e., an image of con-
stant color),∇tc = 0 and hence the division is not well-defined. In
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Fig. 5. Relative TV vs. Contrast. a) Array of captured precorrected images of varying relative TV and contrast ranges under -4.75D of refractive error at
1.5m. The changing contrast range is obtained by increasing the contrast loss CL along the vertical axis. b) The corresponding precorrected images for a) are
shown. These two arrays illustrate the tradeoff between contrast and ringing.

practice, this situation does not occur. Further, note that τ depends
on tc and p which in turn depends on θ. Hence in the following, we
succinctly write this as τ(θ, tc). Moreover, given tc Equation (4)
tell us that τ is decreasing w.r.t. θ > 0 and thus

− 1 = lim
θ→∞

τ(θ, tc) ≤ τ(θ, tc) ≤ τ(0+, tc) = max
θ>0

τ(θ, tc). (7)

Given a user-specified amount of ringing τ ∗ (Section 4.2), our
method seeks the minimum reduction in contrast such that

|τ ∗ − τ(θ, tc)| ≤ ε, (8)

for some θ > 0, where ε is a small tolerance error. If at a given con-
trast the solution cannot be found, i.e., τ ∗ −maxθ>0 τ(θ, tc) > ε,
it implies that the desired amount of ringing does not occur at the
specified contrast range. Thus, we reduce the contrast range (by
either increasing clow, decreasing chigh, or both) until inequality
(8) is met. Since the contrast range can ultimately be reduced until
clow = chigh (e.g., a constant image), this process converges for
reasonable values of τ ∗. To quantify the contrast loss we define the
percentage contrast loss by CL = (clow + (1− chigh)) · 100.

Intuitively, as we decrease the contrast range of the original im-
age, larger amount of ringing (i.e., larger τ ) can be achieved in the
precorrected image. This occurs because the bounded pixel value
constraint becomes less stringent, which in turns provides more
freedom to form a sharper k ∗ p. This agrees with the effect seen
in Huang et al. [2012] and Mohammadpour et al. [2012], where
lower-contrast original images are able to be seen with improved
sharpness. Further, small θ values essentially ignore the regular-
ization and large values cause the image to be “washed out”. As
per Equation (4), the pixel values of p are constrained to the [0, 1]
range so as to ensure that a precorrected image can be correctly dis-
played or printed. Algorithm 1 presents pseudo code to explain our
technique.

4.2 Relative Total Variation

In the previous section we introduced the relative TV value τ that
measures the relative gain in total variation of the precorrected im-
age as compared to the original image. We show the effectiveness
of τ as a parameter to measure the ringing in the precorrected im-
ages. Moreover, we illustrate the existence of an optimal value τ ∗
that balances contrast reduction in the original image t, ringing ar-
tifacts in the precorrected image p, and sharpness in the convolved
precorrected k ∗ p.

Figure 5 shows two arrays of images depicting various precor-
rected and convolved precorrected images at different contrast lev-
els. All images have as the original image a sharp “N” placed in
the middle of the image. The right image array shows several ver-
sions of the precorrected image p. The left image array shows the
corresponding convolved precorrected images, all using the same
Zernike-based PSF. Within each array, the contrast range decreases
along the vertical axis and ringing increases along the horizontal
axis. The labels on the horizontal axis show the approximate val-
ues of τ . As expected, the amount of perceived ringing is about
the same along each column. For any contrast range, the details of
the convolved precorrect image increases with relative TV as well
as ringing and additional artifacts in the image (Figure 5). We ob-
served that there is a value τ ∗ for the relative TV that corresponds
to an optimal balance of ringing and sharpness. This optimal value
depends on the inherent characteristics of the image. Once a desired
τ ∗ has been selected, we find the maximal contrast that allows this
relative TV value.

In our current system, the desired value τ ∗ is selected by the user.
Empirically, we observe that for text images a larger relative TV is
acceptable since the simple image content can afford it. For a busy
color image, smaller values of τ are preferred, and any introduced
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Algorithm 1 Pseudocode. A summary of our overall formulation.
Input: user desired level of ringing (τ ∗); ringing error tolerance
to desire value (ε); contrast reduction step (δ, typically 0.05); mini-
mum θ value to explore (a, typically 10−10); and maximum θ value
to explore (b, typically 1).
Output: precorrected image p

1: // Compute a precorrected image with the minimum CL
2: clow := 0; . find minimum CL that reaches τ ∗
3: chigh := 1;
4: tc := t;
5: while (!DOESCONTRASTLEVELREACHTAU(tc, τ

∗, a)) do
6: clow := clow + δ;
7: chigh := chigh − δ;
8: tc := t · (chigh − clow) + clow;
9: return COMPUTEPRECORRECTED(τ ∗, tc, a, b); . compute p

10: // Auxiliary functions
11: function DOESCONTRASTLEVELREACHTAU(tc, τ ∗, a)
12: θ := a;
13: p(θ, tc) := argmin0≤‖p‖∞≤1 (‖k ∗ p− tc‖L2 + θ‖∇p‖L1);

14: τ(p, tc) :=
‖∇p‖

L1−‖∇tc‖L1

‖∇tc‖L1
;

15: return τ(p, tc) < τ ∗; . return true if can be reached
16: function COMPUTEPRECORRECTED(tc, τ ∗, a, b)
17: θ := a+b

2
;

18: p(θ, tc) := argmin0≤‖p‖∞≤1 (‖k ∗ p− tc‖L2 + θ‖∇p‖L1);

19: τ(p, tc) :=
‖∇p‖

L1−‖∇tc‖L1

‖∇tc‖L1
;

20: if |τ − τ ∗| ≤ ε then
21: return p;
22: else if τ < τ ∗ then
23: return COMPUTEPRECORRECTED(tc, τ

∗, θ, b);
24: else
25: return COMPUTEPRECORRECTED(tc, τ

∗, a, θ);
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Fig. 6. Contrast Loss Graph. The vertical axis corresponds to increasing
relative TV. The horizontal axis indicates the TV weight of Equation (4).
Each colored curved represents a different contrast loss (CL). As we reduce
contrast, the range of possible relative TV values τ is increased.

ringing is very distracting. In Section 7.7, our user study provides
feedback about the visual tolerance of ringing for human observers.

4.3 Regularization

The term θ‖∇p‖L1 of Equation (4) is the regularization term that
represents the TV of the precorrected image p. As expected, this
regularization term allows us to control ringing. A less obvious ob-

servation is that it also serves to enforce sharp edges in the con-
volved precorrected image k ∗ p.

4.3.1 Ringing Control of Precorrected Image.
We illustrate with an example how the regularization term controls
ringing in the precorrected image. Figure 8a depicts a portion of a
1D step signal with a sharp edge at zero with intensity difference
of h. For a < 0 < b, we approximate the signal by the function p,
that is, 0 for x ≤ a, h(x − a)/(b − a) for a < x < b; and h for
x > b. As illustrated in Figure 8a the TV-norm of p is

‖∇p‖L1 =

∫ b

a

h

b− a
dx = h. (9)

Note that the result is independent of a and b; it only depends on
the magnitude of the jump in intensity. To visualize what happens
when there is more ringing, Figure 8b shows an original (top) and
precorrected (bottom) image pair. For each image, a 1D slice cor-
responding to a line at the center of the image is also shown. It can
be observed (Figure 8b right) that the amount of ringing in the pre-
corrected image is roughly “three times” that in the original image.
Using the graph (Figure 8b left), the total variation can be com-
puted to be ‖∇p||L1 ≈ 3‖∇t‖L1 = 6h (three times 2h). Hence,
this regularization term is a good indicator of the amount of ringing
and can be used to control it during deconvolution.

4.3.2 Edge Sharpening of Convolved Precorrected.
One clearly desirable property is that the convolved precorrected
image k ∗ p (i.e., the observation by the viewer) presents sharp
edges. Upon close inspection, we observe that the ringing in k∗p is
due to the instability of deconvolution, the bound constraints, and
Gibbs phenomenon (e.g., the difficulty inherent in approximating
a signal with sharp edges by a finite series of continuous waves).
In particular, Gibbs phenomenon occurs as oscillations that decay
away from an edge. Hence, a consequence of Gibbs phenomenon
is that ringing is stronger near edges of p. Thus, the areas where
ringing occurs are also precisely where edge sharpness is most de-
sired. From this reasoning, a tentative regularization parameter for
the optimization Equation (4) would be to use

‖∇(k ∗ p)‖L1 , (10)

instead of ‖∇p‖L1 , to reduce ringing in k ∗ p and thus encourage
edge sharpness. We will show that the effect of using the regular-
ization term ‖∇(k ∗ p)‖L1 will in fact also be accomplished by
using ‖∇p‖L1 .

4.3.3 Ringing Controls Sharpening.
We show that the TV-norm of the convolved precorrected k ∗ p is
bounded by the product of the L1-norm of the PSF kernel k and the
TV-norm of the precorrected image p, i.e.,

‖∇(k ∗ p)‖L1 ≤
√
2‖k‖L1‖∇p‖L1 . (11)

Since theL1-norm of the PSF k is typically normalized to 1, this in-
equality implies that if the ringing in p is reduced then sharpness in
k ∗ p is also improved. It is worth noting that the reverse inequality
of (11) is not true in general (e.g. for k with small L1-norm).

To prove inequality (11), we use two facts. First, from Young’s
inequality for convolution it follows

‖∇(k ∗ p)‖L1 ≤ ‖k‖L1‖∇p‖L1 . (12)

Second, we use the following inequalities√
|u|2 + |v|2 ≤ |u|+ |v| ≤

√
2
√
|u|2 + |v|2, (13)
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Figure 9 
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Fig. 7. PSF Comparison. a) A Zernike PSF, its vertical profile, its DFT, the blurred observation, a precorrected image, a convolved precorrected image, and
a captured precorrected image. b) Similar sequence but with a spline curve found via optimization (see text). c) Similar sequence using a best-fitting Gaussian.
Comparing the convolved precorrected and captured precorrected, Zernike PSF produces the most similar result.
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Fig. 8. Regularization Terms. a) Our regularization term encourages the
presence of sharp edges; and b) quantifies the amount of ringing.

for u, v real numbers. These inequalities can be verified by squaring
them. Using Equations (12-13), we get the following inequalities

‖∇(k∗p)‖L1 ≤
∥∥∥∥k ∗ ∂p∂x

∥∥∥∥
L1

+

∥∥∥∥k ∗ ∂p∂y
∥∥∥∥
L1

≤
√
2‖k|‖L1‖∇p‖L1 .

These last inequalities prove (11), a detail proof can be found in
Montalto [2014] .

We saw in Figure 2 that two precorrected images with very
dissimilar ringing could give a similar convolved precorrected.
An advantage of using the regularization term ‖∇p‖L1 instead of
‖∇(k ∗ p)‖L1 is that we can better monitor the ringing of p. By
measuring the ringing of the precorrected rather than the convolved
precorrected k∗p, we can better differentiate between solutions and
allow each individual to select its desired level of ringing. In addi-
tion, using ‖∇p‖L1 as a regularization term compensates for model
inaccuracies of the visual aberrations by the PSF.

4.4 Point Spread Functions

Analytically, Equation (2) guarantees existence and uniqueness of
the precorrected image p, under the assumption that the MTF of k
has no zeros in the support of t. However, when the MTF of k is
zero (or close to zero) in the support of t, the problem of recover-
ing p becomes very unstable. Hence, the shape of the PSF has an
obvious impact on the precorrection ability.

An important observation is that Zernike-based PSF and TV-
based regularization can produce sharp edges despite having val-
ues close to zero in the corresponding MTF. A Gaussian-based PSF
has no zeros in the lower frequencies but attenuates the higher fre-
quency components. In contrast, a Zernike-based PSF exhibits a
wave-like form whose MTF has near zeros in the lower and higher
frequencies, but the higher frequencies are not completely omit-
ted. Hence, since TV-based regularization Equation (4) encourages
sharper edges in the reconstruction of p, we are able to capitalize on
the higher frequencies of the Zernike-based PSF despite the zeros.

We performed an informal experiment that optimizes the PSF
shape (Figure 7). We captured an image tc under -4.75D of refrac-
tive error at 1.5D, i.e., image b (synthetically, b = k ∗ tc). We then
let the system optimize the shape of the PSF (k) so as to maximize
the sharpness of the (synthetically) convolved precorrected image
but maintain a similar amount of blur in the convolved image (b) as
in the captured image. More precisely, we alter k and recompute p
so as to minimize Equation (4), subject to the additional constraint
‖k ∗ tc− b‖L2 → 0 for a fixed value of θ. The shape of k is altered
by varying the control points of an interpolating spline that defines
a circularly symmetric 2D PSF. For several images and different re-
fractive errors, the optimization always converged to a PSF whose
shape roughly mimicked the oscillating nature of Zernike-based
PSFs and yielded a similar level of sharpness in the convolved pre-
corrected image. For comparison, we also show a Gaussian-based
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PSF - the width of the Gaussian is set to imitate as best as pos-
sible the observed amount of blur. It is worth noting that Raskar
et al. [2006] and Veeraraghavan et al. [2007] also identified PSFs
with similar non-Gaussian, irregular-like appearances for obtaining
superior deblurring/deconvolution performance.

5. PRECORRECTION SYSTEM

In the following, we describe our automatic framework implement-
ing the aforementioned precorrection computation for a given orig-
inal image t and relative total variation τ ∗. We designed and exper-
imented with three deployment system types:

• camera-screen system: color precorrected images are displayed
on a standard LCD screen or a printed sheet of paper; a pre-
measured lens is placed in front of a digital camera in order to
simulate a prescribed amount of positive or negative diopters of
blur (Figure 4b);

• projector-camera system: compensation images are projected on
top of a colored physical object and the object is captured by a
digital camera with a premeasured lens in front of it; the com-
pensation images are such as to alter the visual appearance of
the object to that of the precorrected color image’s appearance;
and

• human observation: precorrected color images are displayed on
a computer screen or on a sheet of paper for observation; this
scenario was used for our user study.

For each system, our framework estimates a PSF, finds the largest
contrast range for a desired relative TV, and displays/prints a pre-
corrected image. The PSFs for the three system types are not identi-
cal; a precorrected image generated for the camera-screen system
is not suitable for human viewing and vice versa.

5.1 PSF Parameter Estimation

The first step is to obtain the Zernike-based PSF k of the opti-
cal system. We obtain the Zernike parameter values (see Thibos et
al. [2000]) either directly (e.g., from the refractive corrective pre-
scription of a person) or indirectly via an optimization. The lat-
ter is the case for the camera-screen and projector-camera system
whereby a photographic camera observes a standard LCD screen,
a sheet of paper, or a physical scene. The camera, with an approx-
imately known and fixed aperture, is focused on the content. Then,
we induce a refractive error by placing a lens (or set of lenses)
of known diopter immediately in front of the camera. We disable
as much of the camera processing machinery as possible and cap-
ture an image. Afterwards, we compute an affine transformation to
best align the captured original image b to image t and estimate the
Zernike’s pupil parameter value to best reproduce the blur in the
captured image.

5.2 Precorrection Calculation

In the next step, we seek to perform the optimization described by
Equations (4-8). Given an original image t, a desired τ ∗, and the
estimated PSF (from Section 5.1), we solve the optimization using
the following steps.

5.2.1 Contrast Level and θ Estimation.
First, we find the largest original-image contrast-range [clow, chigh]
and corresponding θ that can produce the precorrected image with
the desired relative TV τ ∗. There are multiple ways to alter the con-
trast (e.g., increase/decrease one or both of clow and chigh). By de-
fault for white text on black and for busy color images we increase

clow and decrease chigh. However, the user can select an alterna-
tive contrast reduction strategy. Our method performs a 1D binary
search to find the smallest θ value that generates a relative TV close
to the desired τ ∗ value. The chosen value for τ ∗ may not be feasible
for the given image (i.e., inequality of Equation (8) cannot be met).
In such cases, our method reduces the contrast range by a small
amount and iterates until a solution is found (see Algorithm 1).

5.2.2 PSF Tuning.
Second, once θ is calculated we compute the precorrected image
p and corresponding synthetically-computed k ∗ p for a range of
diopters and apertures (in the case of images captured by a cam-
era) near the estimated PSF values. Using a sharpness metric, we
choose from amongst these solutions the precorrected image that
yields the sharpest k ∗ p. By this mechanism, we can find a PSF
(i.e., k) that exhibits slightly better performance during precorrec-
tion.

Our sharpness metric automatically measures the magnitude of
high frequencies present near the edges of the original image. Using
an edge filter (e.g., Canny), we select original image pixels near an
edge. Then, we sum the magnitude of the frequencies in the Fourier
transform of p that are above the median value. The computed sum
is returned as the value of the sharpness metric for the entire image.

6. IMPLEMENTATION DETAILS

We implement our TV-based method by extending the algorithm
Fast Iterative Shrinkage/Thresholding Algorithm (FISTA) [Beck
and Teboulle 2009]. A variety of TV-based methods, including
the primal-dual method by Chan et al. [1999] and variable split-
ting method of Wang et al. [2008], have been proposed. Beck and
Teboulle employ a dual formulation of the minimization of Equa-
tion (4), as given by Chambolle [2004], which does not require an
extra regularization term of the TV norm itself.

Our system is mostly implemented in MATLAB and some parts
in C. It runs on a desktop PC equipped a 3.53 GHz processor. To
produce RGB color images, we perform precorrection per chan-
nel. It takes on average 30-60 seconds to compute a single precor-
rected image. When displaying images, we must take into account
the physical size of the pixels. For most of our results, we display
600x600 resolution images 1:1 on a 24 inch Flat LCD panel and
take pictures with a Canon EOS Rebel T2i camera. For precorrec-
tion on paper, we print images to the same size as on the screen.
For user studies, we displayed results on a 55 inch LCD. Overall,
we use lenses from -6D to +6D and apertures (or pupil diameters)
from 2 to 6 mm depending on the lighting conditions.

7. RESULTS AND DISCUSSION

We show results and insight into the behavior of our method. We
use concrete examples to illustrate different scopes and limitations.
Unless otherwise stated, all results are obtained using our experi-
mental camera-screen system to capture actual imagery. Figure 9
demonstrates a visual summary of our pipeline. A person with my-
opia (i.e., nearsightedness) that observes the target image (a) per-
ceives it similar to image (b). We generate a precorrected image
(c) which upon observation looks like (d), effectively reversing the
refractive aberrations and recovering image details. By additional
contrast reduction, we can sharpen even more the image and re-
store further details as in (e). Figure 18 shows the same content but
for human observation (as used by our user study). Our method is
stable under lateral and some distance displacement of the viewer
which makes the deployment (e.g., on paper) particularly attractive.
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Fig. 9. Pipeline. Our system pipeline where (a) is the original image t (kindly provided by the USC SIPI Image Database), (b) the captured original image b
when viewing t under -4.75D of refractive error at 1.5m, (c) the precorrected image p with clow = 0.1 and chigh = 0.9 for our camera-screen system, (d)
captured precorrected with clow = 0.1 and chigh = 0.9 and (e) the captured precorrected with clow = 0.3 and chigh = 0.7. Our captured precorrected
images show a clear improvement over direct observation of the original image.

7.1 Different Refractive Errors

Figures 10 and 11 show captured precorrected images for several
refractive aberrations. In Figure 10, we show images precorrected
for -6 to +6 diopters; e.g., potential corrective prescriptions for my-
opia, hyperopia, or presbyopia. Results for this amount of refrac-
tion have not been shown by any of the cited previous works. Some
of the observed graininess is because the images in the two leftmost
columns are photographs of an LCD screen showing the original or
precorrected images, respectively. Figure 11 shows an example of
medium-range astigmatism and myopia. In all cases we see a clear
improvement in sharpness and detail using our precorrected image.
As the number of diopters increases, resolving detail is more chal-
lenging because of the wider PSF.

7.2 Robustness

Figure 12 shows the robustness of a fixed precorrected image be-
ing observed under varying refractive amounts. The figure uses a
precorrected image designed for -4.5D of refractive error but is
observed under -1.5D to +1.5D away from its intended refractive
error. The quality of the captured image degrades with higher re-
fractive error discrepanices but does not seem overly sensitive to
small variations.

In Figure 13, we show the sensitivity of our solution to observer
displacement. The image in the left column of the third row is the
observation for the observer/camera at intended ideal location. We
show additional images corresponding to displacements of 0.25m
and 0.5m to the front, back, right, and diagonal offsets as well.
Observer locations maintaining the approximate same distance to
the screen seem to degrade the least. Pure forward/backward mo-
tion does yield noticeable artifacts faster than other displacements.
Moreover, forward displacement seems to degrade the quickest. We
do not show images for displacements to the left since the visual ef-
fect is similar to that to the right.

7.3 Reading and Visual Acuity

An important application of our algorithm is that it could be used
to automatically customize text for reading by people with refrac-
tive errors. We show two experiments. In Figure 14, we use a typ-
ical Snellen Chart to estimate visual acuity. In our experiment we
positioned the Snellen chart at 1.5m and captured images with an
induced blur of -5D. We observed a notable improvement in visual
acuity from 20/70 line and downwards, making the 20/20 line al-

most clearly visible, in this case. The contrast loss is due to the
initial reduction needed to achieve the desired total variation in the
precorrected image. A similar experiment was performed by Huang
et al. [2012]. Their results present images with less ringing artifacts
but significantly lower contrast and require a precisely calibrated
environment and customized hardware.

In Figure 15, we illustrate the appearance of a single letter at
multiple sizes (or equivalently at different distances). We capture
images of a letter at a distance of 1.5m with a blur of -5D. When
the letter is small (e.g., 60 pixels), the captured original image is un-
recognizable. In contrast, our captured precorrected image shows a
letter that begins to be distinguishable. As the font size increases,
the captured precorrected image becomes readable sooner than the
observation of the standard text. When the letter size is large (e.g.,
240 pixels), both images are readable. Nevertheless, our precor-
rected images show an enhanced sharpness. Special font could be
generated automatically using our algorithm so as to provide a bet-
ter reading experience.

7.4 Ringing and Contrast Tradeoff

Our approach is able to trade ringing for contrast as illustrated
in Figure 5, where various captured images of the letter ‘N’ are
shown. For each image, we alter the contrast range [clow, chigh]
and relative TV. Along the horizontal axis, τ increases from 1 (i.e.,
little ringing) to 260 (i.e., high ringing). Each column has a simi-
lar amount of ringing, demonstrating that τ is a good variable for
measuring it. As we increase τ , we increase sharpness as well as
ringing. In this example, a balance of these tradeoffs occurs for a
desired τ ∗ somewhere around τ = 15. When contrast is high (i.e.,
images corresponding to bottom right triangle of the table are not
possible), our method does not necessarily have room to increase τ
to τ ∗. Therefore, we decrease contrast until we find a precorrected
image with relative TV equal to τ ∗. Thus, we increase image sharp-
ness at the expense of reduced contrast (Section 4.2).

7.5 Displacement, Distant and Small Content

Another application for our method is improving visual acuity for
individuals with normal vision. We use the definition of standard
visual acuity (i.e., the ability to recognize a letter of size 5 min-
utes of an arc at a distance of 1 meter [Duane 1985]) to model an
individual with normal vision looking at distant objects. Figure 16
shows the comparison between small images captured by a camera
that was focus to simulate an individual with normal vision. The
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Fig. 10. Multiple Diopters. Captured original images, captured precor-
rected images, and precorrected images seen with -6D to +6D of refractive
error at 1.5m. (These simulations were created using our technique applied
to the Peppers picture, kindly provided by the USC SIPI Image Database).

ability to recognize details in the images is improved by using our
method.

7.6 Contrast Comparison

Our approach works with a variety of image types and at high con-
trast. Figure 17 shows several original images, captured original
images, and captured precorrected images all with -4.75D of re-
fractive error at 1.5m. We also show their corresponding Michel-
son contrast ratios. We make the original images have maximum
contrast ratio (i.e., minimum and maximum intensities are 0 and 1,
respectively). Our imagery shows noticeably improved sharpness
at almost the same contrast as the original images (e.g., the top row
is the same image from Huang et al. [2012] but our solution obtains
7.15x more contrast as per the Michelson contrast ratios reported in
their paper). While our resulting images may still suffer from some
artifacts, we obtain significantly higher contrast ranges and support
higher diopters than others.

F11 Astisma

c d

a b

e f

Fig. 11. Astigmatism & Myopia. Comparison for combined blur of -1D
of myopia and -2.5D of astigmatism (axis: 45 degrees): a-b) original and
convolved original images, c-d) precorrected and convolved precorrected
images using Wiener filter, e-f) our precorrected and convolved precor-
rected images.

7.7 User Study

We performed an informal user study to evaluate the performance
of our precorrection method. Our study is similar in spirit to that
performed by Pamplona et al. [2012], but we do not require custom
hardware. Huang et al. [2012] did not perform a user study. Our
study consisted of 22 people (65% male, 35% female) with an av-
erage age of 28.3 years. Subjects were voluntarily recruited from
a university campus. We performed five groups of tests. For each
test, subjects had normal vision and we induced -2.75D of myopia
by placing a lens in front of one eye (and covering the other eye).
Subjects stood 2.5m from the display and viewed images of sizes
ranging from 3cm (for text) to 31cm for the Lenna image. After a
short explanation and calibration session (to find the optimal loca-
tion for their individualized viewing), subjects were asked several
questions and a response form was filled out for them. The follow-
ing paragraphs provide a summary of these results.

• Study A - Precorrected vs. original: This first experiment
wants to verify whether our method improves the perceived
sharpness as compared to the original image. For this, we dis-
played side by side three pairs of images (one pair at a time):
one precorrected (from Fig. 18) and the original. We ordered
them randomly to prevent bias. The conclusion is that subjects
preferred observing a precorrected image over the standard orig-
inal image. We use a Likert-scale (where -3 means “strongly pre-
fer original image”, -2 means“prefer original image”, -1 means
“slightly prefer original image”, 0 means “similar”, +1 means
“slightly prefer our method”, +2 means “prefer our method”, and
+3 means “strongly prefer our method”) and the study resulted
in a mean score (over all participants and images in this study) of
1.13 and confidence interval (0.48, 1.78), critical-t 2.09 and stan-
dard error of 0.31 (95% confidence interval). Moreover, 95% of
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Fig. 12. Precorrection Robustness. Comparison of the same precorrected image (designed for -4.5D of refractive error) under different refractive errors rang-
ing -1.5D to +1.5D from the intended refractive error. (The 2nd row simulations were created using our technique applied to [Pamplona et al. 2012] c© 2012
ACM, Inc. Reprinted by permission).
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Fig. 13. Displacement Robustness. We present the effect of displacing
the observer away from the intended observation point of a precorrected
image. From the center (left column, third row), we show the captured pre-
corrected images as the camera/observer moves forward/backward and to
the right. The imagery resulting from moving to the left is similar and thus
not shown.

the people selected at least one of our precorrected images over
the original.

• Study B - Displacement: The second experiment seeks to eval-
uate the spatial robustness of our solution to displacement. For

this, we asked subjects to move 0.5m to the sides (left, right,
front, and back) and to compare the perceived sharpness in com-
parison with the initial location. Moving laterally, 84.2% of the
subjects claimed that this did not significantly affect image qual-
ity. Using a Likert-scale (where -2 means “much worse than cen-
ter”, -1 means “worse than center”, 0 means “similar than cen-
ter”, +1 means “better than center”, and +2 means “much better
than center”), the mean value of the questionnaire responses for
all participants was -0.052. Moving forward/backward, however,
did result in increased sensitivity, with 48% of the subjects indi-
cating moving forward or backward decreased image quality but
with a mean value of just -0.11. We conclude that the displace-
ment performed does not significantly affect solution quality.

• Study C - Reading: The third experiment tries to analyze
whether our system improves readability. For this, we presented
to the subjects in random order two different images of 3cm tall
text: one precorrected by our system (similar to Fig. 15) and the
corresponding original image, and ask them to read the letters.
82% of the people indicated it was easier to read our precorrected
text image over the original text.

• Study D - Contrast and Ringing Sensitivity: This experiment
analyzed whether the subjects would prefer to trade off contrast
with more sharpness. For this, we displayed a set of 9 precor-
rected randomly placed images and asked the volunteers to rank
them. The precorrected images (similar to left column of Fig.
2) presented three levels of contrast loss (20%/40%/60%) and
three different τ (low/mid/high). All subjects choose as first op-
tion the least contrast loss (20%), and the largest cluster of same-
respondents (45%) chose the middle τ . This implies that humans
prefer high contrast and suggests that either, lower or higher lev-
els of ringing, are counter-productive.

• Study E - Comparison: The last experiment wants to compare
our system with a Wiener filter alternative. For this, we display
the same text with three precorrections: one Wiener-filter based
(3rd row of Figure 3), one using inverse DFT, and one using our
method. No subject preferred the inverse DFT. 95% of the sub-
jects preferred our precorrected image and 5% chose the Wiener
filtered image. Moreover, 86% could read our precorrected text
while only 9% could read the Wiener-filtered image.
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Fig. 14. Snellen Eye Chart. (left) A captured original image under -5D at 1.5m. (right) A captured precorrected image under the same aberration. (center)
Close-ups of two regions of the eye chart. Our approach helps to improve visual acuity.

180

Size

60

120

240

original
observed 
original precorrected

captured 
precorrected

F14 Text

Fig. 15. Reading Improvement. We show an ‘A’ under -5D and at 1.5m.
The letter size in pixels is shown to the left. Our captured precorrected im-
ages show a clear improvement over directly observing the original image.

7.8 3D Scene

Finally, Figure 19 shows a novel application of our method to 3D
scene precorrection. We capture as the original image a 3D scene
as seen from a digital camera. Then, we precorrect the original im-
age and use a projector-camera system to alter the appearance of
the physical scene (e.g., object) to that of the precorrected image.
Thus, when we now look at the scene from the point of view of
the camera, and with the same amount of refractive error, the scene

F15

captured precorrectedcaptured original

Fig. 16. Distant and Small Content. We focus a camera simulating a
person with 20/20 vision on content of size 1.5cm at 3.1m. Even under
normal vision, our precorrected image is able to produce sharper edges and
details (right) as compared to viewing the original image (left). (The 1st row
simulations were created using our technique applied to the Lena picture,
kindly provided by the USC SIPI Image Database).

appears sharper. Our projector-camera system is based on a spatial-
augmented reality framework, such as that of Raskar et al. [2001],
but using colored objects as in Aliaga et al. [2008].

7.9 Limitations

Our method is not without limitations. To provide sharper text un-
der a refractive aberration we require sufficient “space” between
letters and “pixels per inch” in order to precorrect them properly
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F13  Michelson contrast

0.9100 0.9297

1.0000 0.9842

0.9444 0.9170

0.9753 0.8972

௖ܯ ൌ	1.0000

௖ܯ ൌ	1.0000

௖ܯ ൌ	1.0000

௖ܯ ൌ	1.0000

Fig. 17. Additional Examples & Contrast Comparison. We show sev-
eral more examples as well as their Michelson contrast ratio (Mc), under
-4.75D and at 1.5m. As comparison, the top right picture is shown with
Mc = 0.13 in Huang et al. [2012]. Overall, our approach yields sharper
imagery at only 10% contrast loss as compared to the original. (1st Row
Left: [Huang et al. 2012] c© 2012 ACM, Inc. Reprinted by permission; 2nd

Row Left: [Pamplona et al. 2012] c© 2012 ACM, Inc. Reprinted by permis-
sion; 3nd Row Left: c© 2009-Present http://www.pablopicasso.org/ ) .

(i.e., not all font styles and text sizes are suitable to our methodol-
ogy; we might need to increase font size a few times in order to sup-
port mid-range corrections). Our technique needs some amount of
contrast loss in order for the TV method to produce a precorrected
image that can mitigate the fundamental appearance of ringing. For
arbitrary images, the subtle details in between sharp edges are typ-
ically lost. Our method concentrates on improving the sharpness of
strong edges at the expense of blurring the space in between.

8. CONCLUSION

We have presented a constrained total-variation-based approach to
improve the visual perception of images under refractive aberra-
tions and under normal vision. Our method can reduce ringing arti-
facts in the precorrected images while sharpening edges of the cap-
tured precorrected images, and by doing so we can recover sharp
edges with high contrast. As compared to other methodologies, we
provide higher contrast and do not need specialized hardware. Fur-

a

b

c

Fig. 18. Precorrected Images for Human Observation. We show im-
ages used during our user study for human observation. All were seen 31cm
tall on a LCD with -2.5D of blur at 2.5m (assuming 5.6mm pupil). a) 20%
contrast loss; b) 15% contrast loss; c) 10% contrast loss. (These simula-
tions were created using our technique applied to the Lena picture, kindly
provided by the USC SIPI Image Database).

ther, we produce imagery that is preferred by humans as per our
user study. Our work makes significant strides towards printed and
displayed content that can be personalized to an individual.

As future work, we are pursuing several directions. First, we ini-
tially collaborated with a perceptual psychologist and now have
initiated a close collaboration with an ophthalmologist in order to
further improve our methodology to include perceptual issues. Sec-
ond, we would like to segment the original image in order to per-
form local TV analysis and potentially achieve an overall better
captured precorrected image. Third, we would like to explore the
option of hiding information within the deblurring. For example,
similar to watermarking, we could encode one (or more) hidden
original images into the precorrected image. Fourth, we are inter-
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a

b c

F18 3D scene

captured original captured precorrected

Fig. 19. 3D Scene Precorrection. a) A projector-camera setup, b) cap-
tured precorrected object and c) captured original object. This prototype
enables a glasses-free viewer to observe a 3D scene at increased sharpness
(-4.75D at 2m).

ested in applying our technique directly to videos, while maintain-
ing temporal coherence. Finally, our current solution produces the
same result for each eye; thus, we are interested in exploring how
to provide binocular correction.
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