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Social influence analysis has shown great potential for strategic marketing decision. It is well known that
people influence one another based on both their social connections and the social activities that they
have engaged in the past. In this paper we develop an innovative and high-performance social influence
based graph clustering framework with four unique features. First, we explicitly distinguish social con-
nection based influence (self-influence) and social activity based influence (co-influence). We compute the
self-influence similarity between two members based on their social connections within a single collabora-
tion network, and compute the co-influence similarity by taking into account not only the set of activities
that people participate but also the semantic association between these activities. Second, we define the con-
cept of influence-based similarity by introducing a unified influence-based similarity matrix that employs
an iterative weight update method to integrate self-influence and co-influence similarities. Third, we design
a dynamic learning algorithm, called SI-CLUSTER, for social influence based graph clustering. It iteratively
partitions a large social collaboration network into K clusters based on both the social network itself and
the multiple associated activity information networks, each representing a category of activities that people
have engaged. To make the SI-CLUSTER algorithm converge fast, we transform sophisticated nonlinear frac-
tional programming problem with respect to multiple weights into a straightforward nonlinear parametric
programming problem of single variable. Finally, we develop an optimization technique of diagonalizable-
matrix approximation to speed up the computation of self-influence similarity and co-influence similarities.
Our SI-Cluster-Opt significantly improves the efficiency of SI-Cluster on large graphs while maintaining
high quality of clustering results. Extensive experimental evaluation on three real-world graphs shows that,
compared to existing representative graph clustering algorithms, our SI-CLUSTER-OPT approach not only
achieves a very good balance between self-influence and co-influence similarities but also scales extremely
well for clustering large graphs in terms of time complexity while meeting the guarantee of high density,
low entropy and low DBI.
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1. INTRODUCTION

Social networks are popularly used to model and analyze the relationships and inter-
actions among individuals in many application domains, such as marketing networks,
communication networks, web blogs, and so forth. Social influence analysis is to study
how information, ideas, experiences and innovations are spread or diffused across so-
cial networks and influence their members. Social network analysis is gaining increas-
ing and renewed attention from multiple disciplines. Most of existing social network
analyses have focused on the topological structure of social networks for community
detection, entity classification and ranking, link prediction, social influence inference,
entity resolution, evolution analysis, to name a few.

Recently, social influence analysis has received a fair amount of attention [Domin-
gos and Richardson 2001], [Kempe et al. 2003], [Yang et al. 2005], [Ma et al. 2008],
[Anagnostopoulos et al. 2008], [Roth et al. 2010], [Chen et al. 2010] and [Myers
et al. 2012]. Marketing campaign on social networks has shown great potential for
success than traditional marketing techniques. According to eMarketer [ema ], Face-
book online display ad revenue growth will outperform Yahoo!, AOL, Microsoft and
Google combined. Although social influence analysis has shown great potential for s-
trategic marketing decision, we argue that social influence analysis should not only
take into account the explicit relationships and interactions in social networks but al-
so consider the implicit, deep and hidden correlations among members of a social net-
work. Concretely, we argue that social network clustering method should contemplate
both social interactions (such as friendships among people) within a single collabora-
tion network (self-influence) and activity-based interactions between the collaboration
network and other information networks (co-influence). The former reflects the col-
laboration patterns among people in the social collaboration network and the latter
reveals the activity patterns of people in the social network based on their partitions
in other information networks (such as sport events, entertainment activities, profes-
sional communities). For example, it is known that people influence one another in
terms of not only their social friendships but also their purchasing behaviors about
different categories of products or or participation behaviors about different categories
of activities. Self-influence together with activity-based co-influences from purchasing
or participating behaviors can be critical indicators for deeper understanding of how
people are socially connected and better predicting of individual purchase or participa-
tion tendency. Thus, full fledged social influence analysis should take into account not
only the topological structure and static attributes captured explicitly in social collab-
oration networks but also the multiple activity information networks that implicitly
connect the members of the social collaboration networks.

Social influence based clustering analysis over heterogeneous information network
involves clustering of a heterogeneous graph with various types of entities, links, stat-
ic attributes, dynamic and inter-connected activities, which demands for new distance
functions, clustering models and fast algorithms to address a number of new chal-
lenges.

— [Graph Propagation and Computational Complexity] The large scale cluster-
ing analysis over heterogeneous information networks often displays features of so-
cial complexity and involves substantial non-trivial computational cost. Concretely,
social influence based graph clustering over heterogeneous information networks in-
volves both self-propagation within a social collaboration network and the across-
propagation between the social collaboration network and multiple activity networks.
The computational cost for these graph propagation operations is often O(n?) where
n is the number of vertices in a network. For instance, to calculate a social influ-
ence similarity score between any pair of authors on the DBLP bibliography dataset,
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we not only need to check the direct connection (co-authorship) between them but
also have to inspect up to n-hop indirect interactions through the circle of other co-
authors. Thus, a highly efficient algorithm for computing pairwise self-influence and
co-influence similarities is critical.

— [Interaction over Heterogeneous Information Networks] Each type of entities
usually associates to one primary social world but participates in many other social
worlds, each with domain-specific semantics. How to make good use of the information
from various social worlds to provide more informative views of how people influence
one another in a given social network? For example, we may want to utilize the o-
riginal facebook people network as well as the associated activity networks in the
facebook dataset to generate a better clustering of people based on their social influ-
ence in terms of both their circle of friends (i.e., self-influence) and their participations
in multiple domain-specific activity networks (i.e., multiple types of co-influence).

— [Integration and Context-Awareness] As multiple social networks may be from
arbitrary domains, it is challenging to efficiently integrate the multiple types of influ-
ences from multiple information networks into a unified distance space simultaneous-
ly. Moreover, social network clustering can be more meaningful if it is context-aware
and only the activity networks that are relevant to the context of interest will be u-
tilized to perform the social influence based clustering analysis. For instance, if the
objective of clustering the facebook people graph is to find out the most influential
people on particular subject, say sport, then instead of utilizing multiple social net-
works from arbitrary domains, we advocate to consider only the people network and
the sport related information networks in the clustering analysis and exclude those
activity graphs on music, cooking and other non-sport events.

— [Bidirectional Information Flow] The information flow between two social worlds
may be bidirectional so that we should be careful in differentiating them when we
integrate the results from different information networks. For example, Bob may in-
fluence his circle of friends (direct or indirect) by his blogs on certain subject and his
participation in some tennis tournaments. On the other hand, direct links from a blog
(or a tournament) to other blogs (or tournaments) can serve as a recommendation by
Bob to its circle of friends.

Bearing the above problems in mind, we develop an innovative social influence
based graph clustering approach for heterogeneous information networks, called SI-
CLUSTER, which captures not only the static attributes of people (vertices) in the social
collaboration network but also the nested and dynamic relationships between people
and other types of entities in different information networks in terms of their par-
ticipations in different activities of interest. To better position the SI-CLUSTER de-
velopment, in comparison with conventional graph clustering approaches, we identify
three types of social interactions for graph modeling that are vital for social influence
based graph clustering: (i) social interactions (such as friendship among people) with-
in a single collaboration network (self-influence), (ii) single-valued and multi-valued
vertex attributes that represent relatively stable and static state of the vertices in
the social network (such as name, sex, age, birth place, and multiple education de-
grees a person may achieve), and (iii) domain-specific network-wise interactions (such
as multiple different activities one may have participated or are currently engaged)
between the collaboration network and other information networks. We show that, in
contrast to conventional graph clustering algorithms, SI-CLUSTER is by design a dy-
namic social influence based graph clustering method with two new criteria: First, we
characterize social entities (vertices) by their stable attributes and social connections
and model activities of different categories engaged by the social entities as different
activity graphs. Thus, the activities engaged by social entities are represented as com-
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plex relationships between the social collaboration graph and its multiple associated
activity graphs. Second, we introduce the concept of self-influence similarity between
two members to capture their direct and indirect social connection patterns within a
single collaboration network and the concept of co-influence similarity to capture the
social activity based influence similarity. To adequately model the social activity based
influence, we take into account not only the set of activities that people participate
but also the semantic association between these activities by considering multiple
activity-based information networks (such as sport events, entertainment activities,
professional communities). A unique characteristic of SI-CLUSTER is its ability of in-
tegrating the self-influence and multiple types of co-influences into a weighted unified
influence-based similarity measure, ensuring fast clustering convergence through dy-
namic weight refinement at each of the clustering iterations.

This paper makes four unique contributions. First, we define the concept of
influence-based vertex similarity using heat diffusion based influence propagation on
both social collaboration graph and each of associated activity graphs. We compute a
self-influence similarity matrix based on direct and indirect social connections in the
social collaboration graph. For each influence graph, we propose to model and refine a
co-influence similarity matrix based on the dynamic characteristics of social influence
propagation patterns that evolve in the chosen influence graph over time. Second, we
develop a dynamic weight tuning method to combine various influence-based similar-
ities through an iterative learning algorithm, SI-CLUSTER, for social influence based
graph clustering, such that each cluster produced by SI-CLUSTER contains a dense-
ly connected group with similar collaborative patterns among themselves and similar
interaction patterns with activity networks. Third, SI-CLUSTER dynamically refines
the K initial clusters by continuously quantifying and adjusting the weighted contri-
butions from different kinds of similarities until reaching convergence. A theoretical
analysis is provided to quantify the contributions of social graph and multiple influ-
ence graphs to the unified influence-based similarity for measuring vertex closeness
in the social graph, and prove that the weights are adjusted towards the direction of
clustering convergence. To make the clustering process converge fast, a sophisticat-
ed nonlinear fractional programming problem with multiple weights is transformed
to a straightforward parametric programming problem of a single variable. Fourth
but not the least, to scale the computation of the influence-based similarity matri-
ces, we propose an optimization technique of diagonalizable-matrix approximation to
speed up the computation of propagating heat kernel and influence-based similarity.
We refer to this optimized SI-CLUSTER algorithm as SI-CLUSTER-OPT and our exper-
imental results show that SI-CLUSTER-OPT is significantly faster than SI-CLUSTER
and the state-of-the-art graph clustering mechanisms. We perform extensive evalua-
tion by our proposed clustering approach on large-scale real graphs, demonstrating
that SI-CLUSTER-OPT not only achieves a very good balance between self-influence
and co-influence similarities but also scales extremely well for clustering large graphs
in terms of time complexity while meeting the guarantee of high density, low entropy
and low DBI.

The rest of the paper proceeds as follows. Section 2 briefly summarizes related
work. Section 3 gives an overview of our social influence based clustering framework.
Section 4 introduces a unified influence-based similarity measure to integrate self-
influence similarity and co-influence similarities. Section 5 presents our baseline so-
cial influence based clustering algorithm SI-CLUSTER. Section 6 describes our opti-
mized algorithm SI-Cluster-Opt, which employs diagonalizable-matrix approximation
to speed up the computation of influence-based similarity in SI-CLUSTER. Section 7.3
makes complexity analysis for SI-Cluster-Opt and several state-of-the-art graph clus-

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.



Social Influence Based Clustering and Optimization over Heterogeneous Networks 39:5

tering algorithms. We present our experimental evaluation in Section 7, and conclude
the paper in Section 8.

2. RELATED WORK

The novelty of our social influence based graph clustering approach lies in social in-
fluence analysis, heat diffusion kernel, vertex similarity definition, fast matrix compu-
tation, heterogeneous network analysis and graph clustering. In this section we will
briefly overview the related work in these areas.

Social influence analysis. Social influence analysis has received increasing atten-
tion over the last decade [Domingos and Richardson 2001], [Kempe et al. 2003], [Yang
et al. 2005], [Ma et al. 2008], [Anagnostopoulos et al. 2008], [Roth et al. 2010], [Chen
et al. 2010] and [Myers et al. 2012]. As marketing techniques, social influence analysis
holds the potential to utilize social influence to increase brand or product awareness
through word-of-mouth promotion. [Domingos and Richardson 2001] proposed a cas-
cading viral marketing algorithm, which tries to find such a subset of individuals that
if these individuals adopt a new product or innovation, then they will trigger a large
cascade of further adoptions. [Kempe et al. 2003] pioneered the concept of social in-
fluence by modeling the selection of influential sets of individuals in a social graph
as a discrete optimization problem. It utilizes the provable greedy approximation al-
gorithm for maximizing the spread of influence in a social network. By imitating the
way that heat flows in a medium with a geometric structure, [Yang et al. 2005] pro-
posed two novel classification algorithms to employ the heat kernel to construct the
kernel-based classifier directly. [Ma et al. 2008] proposed a heat-diffusion based viral
marketing model with top &£ most influential nodes which utilizes the heat diffusion
theory from Physics to describe the diffusion of innovations and help marketing com-
panies divide their marketing strategies into several phases. [Anagnostopoulos et al.
2008] applied statistical analysis on the data from a large social system to identify and
measure social influence as a source of correlation between the actions of individuals
with social ties. A novel friend suggestion algorithm proposed in [Roth et al. 2010] uses
a user’s implicit social graph to generate a friend cluster, given a small seed set of con-
tacts. [Chen et al. 2010] proposed a new heuristic influence maximization algorithm to
maximize the spread of influence under certain influence cascade models. [Myers et al.
2012] presented a model in which information can reach a node via the links of social
network or through the influence of external sources. None of existing work, to the best
of our knowledge, has modeled social influence patterns based on iteratively combining
self-influence and co-influence similarities throughout the clustering process.

Heat kernel. Recently, the idea of heat kernel has been successfully applied to
multiple areas [Kondor and Lafferty 2002], [Belkin and Niyogi 2003], [Lafferty and
Lebanon 2005], [Yang et al. 2007] and [Ma et al. 2008]. [Kondor and Lafferty 2002]
presented a natural approach to constructing diffusion kernels on graphs, which are
based on the heat equation on Riemannian manifolds and can be regarded as the dis-
cretization of the familiar Gaussian kernel of Euclidean space. [Belkin and Niyogi
2003] utilized a heat kernel to construct the weight of a neighborhood graph, and ap-
ply it to nonlinear dimensionality reduction that has locality-preserving properties.
[Lafferty and Lebanon 2005] introduced a family of kernels that is intimately based
on the heat equation on the Riemannian manifold defined by the Fisher information
metric associated with a statistical family, and generalize the Gaussian kernel of Eu-
clidean space. DiffusionRank [Yang et al. 2007] presented a ranking algorithm, which
is a generalization of PageRank, using heat diffusion model. [Ma et al. 2008] proposed
a heat-diffusion based viral marketing model with top ¥ most influential nodes which
utilizes the heat diffusion theory from Physics to describe the diffusion of innovations
and help marketing companies divide their marketing strategies into several phases.
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However, to the best of our knowledge, our SI-Cluster is the first to employ multi-
ple heat diffusion kernels to learn different types of social influence similarities and
combine multiple social influence based similarities through a weight function with
iterative weight refinement during each of the clustering iterations.

Vertex similarity definition. The vertex similarity definition lies in the center
of graph analysis. We can classify existing works into local topology based vertex
similarity and global topology based vertex similarity . Several known local topology
based measures, such as Jaccard coefficient [Tan et al. 2005], Salton Cosine coefficien-
t [Salton 1989] and Dice coefficient [Dice 1945], are based on the intuition that two
vertices are more similar if they share more common neighbors. The Adamic/Adar’s
inverse log-weighted coefficient [Adamic and Adar 2003] refined the measures by as-
signing more weights to the vertices with fewer degrees. However, these measures
have significant shortcomings: two vertices may be highly similar even if they share
no common neighbors. The HITS algorithm [Kleinberg 1999] motivated the importance
and the significance of global topology based measures. [Blondel et al. 2004] provided
a general HITS-based method to identify the vertex similarity in the directed graph.
[Katz 1953] proposed a measure based on the total number of simple paths between
vertices with lower weights to longer paths. Several global topology based measures,
such as SimRank [Jeh and Widom 2002], Leicht-Holme-Newman (LHN) [Leicht et al.
2006], and P-Rank [Zhao et al. 2009] define the similarity measures recursively: t-
wo vertices are similar if their immediate neighbors in the network are themselves
similar. Although global topology based measures offer a boarder perspective of how
vertices are similar in the context of the whole network, they are known to be computa-
tionally very expensive. PathSim [Sun et al. 2011] presented a novel meta path-based
similarity measure for heterogeneous information networks, which captures the sub-
tle similarity semantics among peer objects in heterogeneous networks. To the best of
our knowledge, SI-Cluster is the first work that introduces the social influence based
vertex similarity measure over heterogeneous information networks, with progressive
weight refinement throughout the iterative clustering process.

Efficient matrix multiplication. The computation of influence-based similarity
is related to research in fast matrix multiplication and higher power computation. S-
trassen’s algorithm [Strassen 1969] made the startling discovery that one can multiply
two n x n matrices in only O(n?%°7) field operations, compared with 2n? for the stan-
dard algorithm. It is based on a way of multiplying two 2 x 2-matrices which requires
only 7 multiplications (instead of the usual 8), at the expense of several additional
addition and subtraction operations. The Coppersmith-Winograd algorithm [Copper-
smith and Winograd 1990] with an asymptotic complexity of O(n?37%7) is similar to
Strassen’s algorithm: a way is devised for multiplying two n x n-matrices with fewer
than n? multiplications, and this technique is applied recursively. [Cohn et al. 2005]
recently proposed a group-theoretic approach to bounding the exponent of matrix mul-
tiplication to at least O(n?*!) if families of wreath products of Abelian groups with
symmetric groups satisfying certain conditions exist. The Summation Formula of the
Matrix Neumann Series [Strang 2005] proposed a fast solution of calculating the sum
of the finite Neumann series of a square matrix A. [Larsen and McAllister 2001]
proposed a fast and scalable technique for multiplying large matrices using the graph-
ics hardware found in a PC. The method is an adaptation of the parallel computing
technique by distributing the computation over a logically cube-shaped lattice of pro-
cessors and performing a portion of the computation at each processor. [Bodrato 2010]
presented a new sequence for Strassen-like matrix multiplication, which is not worse
than the Winograd sequence for multiplications. When computing chain products or a
power, the algorithm can further reduce the number of linear combinations, collating
the post-combination sequence of partial results with the precombination needed for
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the next multiplication. In our social influence based clustering framework, we develop
diagonalizable-matrix approximation to effectively reduce the computational complex-
ity of the baseline SI-Cluster algorithm [Zhou and Liu 2013] by enabling high quality
approximation and fast computation of influence-based similarity.

Heterogeneous network analysis. Recent studies on heterogeneous social net-
work analysis combine links and content into heterogeneous information networks to
improve the quality of querying, ranking and clustering. [Taskar et al. 2001] proposed
a general class of models for classification and clustering in relational domains that
capture probabilistic dependencies between related instances in a relational database
containing both attributes and links. [Cai et al. 2005] proposed to learn an optimal
linear combination of different relations on heterogeneous social networks in terms of
their importance on a certain query. [Yang et al. 2009] proposed a unified model to
combine link and content analysis for community detection. The conditional link mod-
el and the discriminative content model are combined via a probabilistic framework
through the shared variables of community memberships. [Ji et al. 2011] groups ob-
jects into pre-specified classes, while generating the ranking information for each type
of object in a heterogeneous information network. It is therefore beneficial to integrate
classification and ranking in a simultaneous, mutually enhancing framework. [Yu
et al. 2012] presented a query-driven discovery system for finding semantically similar
substructures in heterogeneous networks. A filter-and-verification search framework
is proposed to generate promising subgraph candidates using off-line indices, and veri-
fy candidates with a recursive pruning matching process. [Zhou et al. 2013] proposed a
unified random walk distance measure integrating various types of entities, links and
attributes for a heterogeneous service network. A reinforcement algorithm is provided
to tightly integrate ranking and clustering by mutually and simultaneously enhanc-
ing each other. [Zhou and Liu 2014] presented an activity-edge centric multi-label
classification framework for analyzing heterogeneous information networks by doing
multi-label classification of friendship multigraph based on activity-based edge classi-
fication. To the best of our knowledge, our social influence based clustering framework
is the first one to perform social influence based clustering over heterogeneous net-
works by dynamically combining self-influence from social graph and multiple types of
co-influences from activity graphs.

Graph clustering. Graph clustering has attracted active research in the last
decade. Most of existing graph clustering techniques have focused on the topological
structure based on various criteria, including normalized cuts [Shi and Malik 2000],
modularity [Newman and Girvan 2004], structural density [Xu et al. 2007], stochas-
tic flows [Satuluri and Parthasarathy 2009] or clique [Macropol and Singh 2010]. The
clustering results often contain densely connected components within clusters. Howev-
er, such methods usually ignore vertex attributes in the clustering process. On the oth-
er hand, K-SNAP [Tian et al. 2008] and CANAL [Zhang et al. 2010] presented OLAP-
style aggregation approaches to summarize large graphs by grouping nodes based on
the user-selected attributes. [Kenley and Cho 2011] exploited an information-theoretic
model for clustering by growing a random seed in a manner that minimizes graph en-
tropy. This kind of methods achieve homogeneous attribute values within clusters, but
ignore the intra-cluster topological structure. Recently, [Shiga et al. 2007] presented a
clustering method which integrates numerical vectors with modularity into a spectral
relaxation problem. SA-Cluster [Zhou et al. 2009] and Inc-Cluster [Zhou et al. 2010]
perform clustering based on both structural and attribute similarities by incorporat-
ing attributes as augmented edges to its vertices, transforming attribute similarity to
vertex closeness. BAGC [Xu et al. 2012] constructs a Bayesian probabilistic model to
capture both structural and attribute aspects. GenClus [Sun et al. 2012] proposed a
model-based method for clustering heterogeneous networks with different link types
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and different attribute types. PathSelClus [Sun et al. 2012] utilizes limited guidance
from users in the form of seeds in some of the clusters and automatically learns the
best weights for each meta-path in the clustering process. Our experimental results
over three real-world large graph datasets show that SI-Cluster-Opt is significantly
faster and more effective compared to the representative state-of-the-art graph clus-
tering algorithms.

3. OVERVIEW

In this section, we first introduce the problem formulation, followed by an overview
of our social influence based graph clustering framework illustrated by a walkthrough
example.

3.1. Problem Statement

We consider three types of information networks in defining a social influence based
graph clustering method: (1) the social collaboration network, which is the target of
graph clustering and typically a social network of people, such as friend network, co-
author network, to name a few; (2) the associated activity networks, such as product
purchasing activity network, sport activity network or conference activity network; (3)
the influence networks representing bipartite graphs connecting social network and
activity networks. We formally define the three types of networks as follows.

A social graph is denoted as SG = (U, E), where U is the set of vertices represent-
ing the members of the collaboration network, such as customers or authors, and F
is the set of edges denoting the collaborative relationships between members of the
collaboration network. We use Ng¢ to represent the size of U, i.e., Ngg = |U]|.

An activity graph is defined by AG; = (V;,S;), where v € V; denotes an activity
vertex in the i*" associated activity network AG;, and s € S; is a weighted edge repre-
senting the similarity between two activity vertices, such as functional or manufacture
similarity. We denote the size of each activity vertex set as Nag, = |Vi|.

An influence graph is denoted as IG; = (U,V;,T;), where U and V; have the same
definitions in the social graph SG and the activity graph AG; respectively. Every edge
t € T;, denoted by (u,v), connecting a member vertex u € U to an activity vertex
v € V;, representing an influence flow between SG and AG;, such as a purchasing or
publishing activity. Thus, I/G; is a bipartite graph.

Given a social graph SG, multiple activity graphs AG; and various influence graphs
IG; (1 < i < N), the problem of Social Influence-based graph Clustering (SI-
CLUSTER) is to partition the member vertices U into K disjoint clusters U;, where
U= Ufil Uiand U;NU; = ¢ for V1 < i,j < K,i # j, to ensure the clustering result-
s in densely connected groups and each has vertices with similar activity behaviors.
A desired clustering result should achieve a good balance between the following two
properties: (1) vertices within one cluster should have similar collaborative patterns
among themselves and similar interaction patterns with activity networks; (2) ver-
tices in different clusters should have dissimilar collaborative patterns and dissimilar
interaction patterns with activities.

Figure 1 (a) provides an illustrating example of a heterogeneous information net-
work extracted from the DBLP dataset. It consists of two types of entities: authors
and conferences and three types of links: co-authorship, author-conference, conference
similarity. In our social influence based clustering framework, we reorganize a hetero-
geneous information network into a social graph, multiple activity graphs and multiple
influence graphs without loss of information. The heterogeneous network in Figure 1
(a) is divided into three subgraphs: a social collaboration graph of authors, a confer-
ence activity graph, and an influence graph about author’s publishing activity in con-
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Fig. 1. A Heterogeneous Network Example from DBLP

ferences, as shown in Figures 1 (b), (¢) and (d), respectively. A red number associated
with a red dashed edge quantifies the number of publications that an author published
in a conference. A green number on a green edge measures the similarity score between
conferences. For ease of presentation, we remove the conference similarities with less
than 0.005. A number of mechanisms can be used to compute similarity of conferences.
We use RankClus [Sun et al. 2009] to partition activities into clusters. According to
activity’s clustering distribution and ranking in each cluster, we calculate the similar-
ities between activities in activity graph. Black numbers in the bracket represent the
total amount of publications of an author. Other black numbers on co-author edges
denote the number of co-authored papers. For ease of presentation, we also ignore the
co-author edges representing the co-authored papers less than 5. A more complex ex-
ample of influence graph with 12 authors and 12 conferences (or keywords) is presented
in Figure 2.

3.2. Design Framework

The overall design of the social influence based graph clustering framework consists of
three components: (a) Selection of the associated information networks and construc-
tion of the corresponding influence networks, (b) Defining the influence-based simi-
larity and the co-influence model, (¢) Designing an iterative learning based clustering
algorithm that can integrate multiple influence networks and their co-influence.

The first component can be viewed as the preparation step for the social influ-
ence based graph clustering. The choice of associated information networks is usu-
ally domain-specific and clustering goal specific. For instance, if we want to partition
facebook people based on their sport events, then all activity networks that are sport-
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Fig. 2. An Illustrating Example of Influence Graphs

related are chosen, such as sport product network, sport news network, sport blog
network. At the same time, sport vertices (sport news or blogs) should be connected
based on their similarities in terms of sport categories or players of sport news or
blogs. The other irrelevant information networks such as music, debate, cooking will
not be selected.

In this paper, we aim to partition a social graph SG based on self influence similar-
ity and co-influence similarity for each pair of vertices in SG. The second component
is thus to perform the social influence similarity computation in three steps before
executing the clustering algorithm on SG.

— The self-influence similarity is computed on SG itself by taking into account both
topological structure and static attributes. The result is a Ngg¢ x Ngg matrix of Wy
with each entry representing the self-influence similarity score of a pair of vertices in
SG.

— The co-influence similarity is computed on /G, by utilizing SG, AG; and the links
between U and V;. The result is a Ngg x Ngg matrix of W; with each element specifying
the co-influence similarity score of a pair of vertices in SG. If we have N number of
AG;s, then we can generate N co-influence similarity matrices denoted as Wy, --- , Wy.

— The unified influence-based similarity between any pair of vertices in the social graph
SG can be computed by combining the self-influence similarity weighted by a with the
N weighted co-influence similarity scores, w; for W; (i = 1,--- , N). The weight for each
influence-based similarity matrix is defined based on its contribution to the clustering
convergence (overall clustering objective).

The third component is to perform the following tasks to complete the social influ-
ence based clustering process.

— Centroid Initialization and Refinement. Our social influence based clustering algorith-
m follows the K-Medoids clustering method [Kaufman and Rousseeuw 1987] by using
the unified influence-based similarity with the initial weights assigned of o and w;
(i=1,---,N) as an input. In each iteration, we select the most centrally located point
in a cluster as a centroid, and assign the rest of points to their closest centroids.

— Dynamic Weight Update. Although it is simple to integrate the self-influence simi-
larity and the co-influence similarities into a unified similarity space with the static
weight assignment, we argue that the static weighted similarity function often re-
sults in incorrect and rather biased clustering results. The weight function should
capture the fact that different activity graphs may contribute to the clustering of the
social graph differently, i.e., assigning large weights to important activities and smal-
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1 weights or zero weights to irrelevant activities. Furthermore, the weights for both
the self-influence similarity and all NV co-influence similarity scores should be dynam-
ically tuned at each iteration of the clustering process to continuously improve the
clustering quality and the clustering convergence.

— Maximization of Clustering Objective. The original clustering objective corresponds to
a sophisticated nonlinear fractional programming problem with respect to multiple
weights. It is very hard to perform function trend identification and estimation to
determine the existence and uniqueness of solutions. Thus we need to transform the
original objective function to a monotonic function with a unique solution to maximize
the clustering objective.

Our social influence based graph clustering framework consists of two algorithms:
SI-Cluster and SI-Cluster-Opt. The later improves the former by reducing the compu-
tational complexity of SI-Cluster baseline algorithm through two novel optimizations
to speed up the computation of influence-based vertex similarity. In the subsequent
sections, we will first describe the influence-based similarity (Section 4) and introduce
the social influence based clustering framework (Section 5), followed by the optimiza-
tion techniques for fast computation of propagating heat kernel (Section 6).

4. INFLUENCE-BASED SIMILARITY

In SI-Cluster, we define social influence-based similarity for each pair of vertices in
the social graph SG based on the self-influence similarity scores computed on the so-
cial graph SG itself (Section 4.1) and N co-influence similarity scores computed on N
activity graphs AG; and N influence graphs /G; (Section 4.2 and Section 4.3). Then we
combine the N + 1 pairwise influence-based similarity scores by defining a weighted
unified influence-based similarity measure (Section 4.4).

4.1. Heat Diffusion on Social Graph

Heat diffusion is a physical phenomenon that heat always flows from an object with
high temperature to an object with low temperature. Heat diffusion kernel has re-
ceived increasing attention in recent years [Kondor and Lafferty 2002], [Belkin and
Niyogi 2003], [Lafferty and Lebanon 2005], [Yang et al. 2007], and [Ma et al. 2008]. In
this paper, we define our heat diffusion based influence propagation model to capture
multiple kinds of social influence based similarity scores between member vertices in
the social graph. Based on the conventional heat diffusion kernel [Ma et al. 2008], we
define two propagating heat diffusion kernels, one for computing self-influence simi-
larity in the social graph in this section and one for computing co-influence similarity
in each of the activity graphs in the next sections.

In a large social graph SG, experts with many publications often influence other
late authors. Consumers purchasing many products may influence other consumers
with little purchasing. Thus the spread of influence resembles the heat diffusion phe-
nomenon. Early adopters of a product with many friends or experts on a subject with
many coauthors may act as heat sources, transfer their heat to others and diffuse their
influence to other majority.

To effectively measure vertex closeness in the social graph in terms of heat diffusion
model, we first define the non-propagating heat diffusion kernel on social graph.

Definition 4.1. [Non-propagating Heat Diffusion Kernel on Social Graph] Let SG =
(U, E) denote a social graph where U is the set of member vertices and F is the edge
set denoting the collaborative relationships between members. Let o be the thermal
conductivity (the heat diffusion coefficient) of SG. The heat change at vertex u; € U
between time ¢ + At and time ¢ is defined by the sum of the heat that it receives from
all its neighbors, deducted by what it diffuses.
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0, otherwise.

where f;(t) is the vertex u,;’s temperature at time ¢ and vertex u; is an neighbor of ;.
pi; denotes the probability of heat diffusion from u; to u;. n;; denotes the weight on
edge (u;,u;), e.g., the number of co-authored publications, and n; (or n;) denotes the
amount of heat/influence that u; (or u;) has within the social graph, e.g., the number of
authored publications. Fox example, in the social graph of DBLP, p;; actually denotes
the Geometric mean between the proportion of the number of co-authored publications
by u; and u; to the number of authored publications by u; and the proportion of the
number of co-authored publications by u; and u; to the number of authored publica-

. . _ [mg Cmag . nag i . . . .
tions by u;, i.e., p;; = ne X = e The non-negative heat diffusion coefficient

« determines the conduction velocity of heat within the social graph, i.e., has an im-
portant effect on the convergence of heat diffusion process. If « is relatively large, heat
will diffuse very quickly. Otherwise, heat will diffuse slowly. In the extreme case, if
a is equal to zero, then heat will never diffuse among vertices. On the other hand, if
« is infinite, then heat will diffuse from one vertex to other vertices immediately. We
express the above heat diffusion formulation in a matrix form.

f(t + At) — £(2)
At
where H is a Ngg x Ngg matrix, called a non-propagating heat diffusion kernel on SG,
as the heat diffusion process is defined in terms of one-hop neighbors of heat source.

= Hf(t) )

Hij= ¢ -7, i=}, (3)
0, otherwise.
where 7; = 37, e iz Pij- Ti denotes the amount of heat diffused from u; to all its
neighbors.

For the social graph of Figure 1 (b), the black numbers in the bracket represent the
total amount of publications of an author. Other black numbers on co-author edges
denote the number of co-authored papers. Let vertices u, us, us, vy and us represent
Philip S. Yu, Jiawei Han, Charu C. Aggarwal, Kun-Lung Wu and Haixun Wang re-
spectively. Thus, ny = 622, Nng = 472, ns = 139, ng = 106, ny = 123, N1z = 46, niz = 73,
niy = 78, n15 = 46 and ny3 = 8. We have H for Figure 1 (b) defined as follow.

—0.8033 0.0849 0.24827 0.30377 0.16631

0.0849 —0.1161 0.03123 0 0

H=| 0.24827 0.03123 —0.2795 0 0 4)
0.30377 0 0 —0.30377 0
0.16631 0 0 0 —0.16631

If we use H to define self-influence similarity between vertices, then the similarity is
based on one-hop or direct influence. For those authors who have no joint publications,
they are considered to have zero influence on one another, which is unrealistic.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: March 2010.



Social Influence Based Clustering and Optimization over Heterogeneous Networks 39:13

This motivates us to utilize both direct and indirect influence paths between two ver-
tices in computing their vertex similarity. Thus, we define the self-influence similarity
using the propagating heat diffusion kernel, where the heat diffusion process contin-
ues until vertices’ temperatures converge or the system-defined convergence condition
is met. Concretely, by Eq.(2), we have the following differential equation when At — 0.

af(t)

Solving this differential equation, we obtain the following Eq.(6).

Definition 4.2. [Propagating Heat Diffusion Kernel on Social Graph] Let « denote
the thermal conductivity, H be the non-propagating diffusion kernel of SG and f(0)
denote an initial heat (influence) column vector at time 0, which defines the initial
heat distribution on SG. The vertex’s thermal capacity at time ¢, denoted by f(¢), is an
exponential function with variable ¢ for constant f(0).

f(t) = e“"Hf(0) (6)

We call e*H as the propagating heat diffusion kernel. According to Chapter I in
[Bhatia 1997], the matrix exponential can be expanded as a Taylor series. We thus

rewrite e*'H as the following Taylor series, where I is an identity matrix:
242 343
eatH:I+atH+a7H2+aTH3+--- (7)

where the heat diffusion reaches convergence, i.e., thermal equilibrium, at time ¢. S-
ince e*H captures both direct and indirect relationships between objects, it reflects
the vertex closeness on social graph. We treat it as the self-similarity matrix Wy, i.e.,
W, = e*H, Here, the thermal conductivity « is a user specific parameter. We use it
as a weight factor for the self-influence similarity in the unified similarity. Consider
the example in Figure 1(b), by setting « and time ¢ equal to 1, we can compute the
self-influence similarity, defined by e**H, on the social graph, as follow.

0.49977 0.05901 0.15172 0.18211 0.10736
0.05901 0.89358 0.03316 0.00907 0.00520
e — o — | 0.15172 0.03316 0.77673 0.02439 0.01400 (8
0.18211 0.00907 0.02439 0.76750 0.01693
0.10736 0.00520 0.01400 0.01693 0.85650

Figure 3 follows the example of Figure 1. Figure 3 (a) presents the above-mentioned
self-influence similarity matrix on the social graph in Figure 1(b) where ochre dashed
lines and associated blue numbers represent the corresponding self-influence similari-
ty scores. This example matrix shows that, in contrast to non-propagating heat kernel
based similarity computation (see Eq.(4), the authors who have no joint publications
now have small but non-zero self-influence similarity scores. This makes a lot of sense
since even if Charu C. Aggarwal and Kun-Lung Wu have no joint publications, both
are co-authors of Philip S. Yu and have published in the same conferences. Thus, they
may have some indirect self-influence similarity scores on one another. It is not only
inappropriate but also incorrect to model their self-influence similarity as zero.

It is worth noting that when we use the publication vector of authors as the initial
temperature to execute heat diffusion propagation on the social graph in Figure 1(b),
we observe some interesting phenomenon. As shown in Table I, f(¢) denotes the tem-
perature of authors at time ¢. The heat vector f(0) is initialized with the total number of
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Fig. 3. Co-influence Model

publications of each author on six conferences of ICDM, KDD, SDM, SIGMOD, VLD-
B and ICDE. f(t)(1), f(t)(2), f(¢)(3), f(¢t)(4) and f(¢)(5) correspond to the temperature
at time ¢ for Philip S. Yu, Jiawei Han, Charu C. Aggarwal, Kun-Lung Wu and Haix-
un Wang respectively. Although both Philip S. Yu and Jiawei Han have high initial
temperatures, Philip S. Yu’s temperature decreases quickly when ¢ increases. This is
because he has more coauthors compared to Jiawei Han and his heat diffuses more
quickly. Similarly, although Charu C. Aggarwal and Haixun Wang have the same ini-
tial temperature, the former’s temperature increases quickly when ¢ increases. This is
because Charu C. Aggarwal receives the heat diffused from both Philip S. Yu and Ji-
awei Han but Haixun Wang gains the heat diffusion from only Philip S. Yu. Although
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Table I. Influence Propagation on Social Graph Based on
Publications of Authors

t 0 1 2 20 200
flt)(1) | 211 | 133.88 | 107.95 | 103.88 | 104.71
f(t)(2) | 180 | 175.74 | 168.67 | 110.86 | 104.74
flt)@3) | 61 86.48 95.63 | 104.47 | 104.72
flt4) | 11 51.02 68.54 | 103.08 | 104.71
flt)(5) | 61 76.88 83.21 | 101.68 | 104.71

the heat diffusion speed are quite different, the entire system can achieve a stable
thermal equilibrium after enough time.

4.2. Heat Diffusion on Influence Graphs

We have presented the use of propagating heat diffusion kernel to measure the self-
influence vertex closeness on social graph. In this section we describe how to compute
pairwise co-influence similarity for vertices in SG based on one of N associated influ-
ence graphs.

Similarly, we first need to define the non-propagating heat kernel on an influence
graph. By the definition of influence graph in Section 3, we should consider four types
of one-hop influence diffusion path in defining the non-propagating heat kernel H;.

Definition 4.3. [Non-propagating Heat Diffusion Kernel on Influence Graphs] We
formulate H; on the influence graph IG; associated to the social graph SG and the
activity graph AG; by splitting it into four blocks.

A B
h-[33 o
where B = By, - - ,BNAGi]T is a Nag, x Nsg matrix representing the social influence

of vertices in AG; on members in SG, defined by Eq.(10); C = [Cy, -+ ,Cng]” is a
Nsa X Njg, matrix denoting the social influence of members in SG on vertices in AG;,
defined by Eq.(11); A is an Nag, X Nag, matrix representing the activity similarities,
defined by Eq.(12); and D is a Ngg x Ngg diagonal matrix.

Nik
#a (ug,v;) € T;
Bjk = =1 "Nk (10)

0, otherwise.

where n,j; is the weight on edge (uy,v,;) and Bj; computes the influence of v; on SG
through u; and is defined by n,; normalized by the sum of weights on (uy,v;) for any
vy in AG;. For example, the influence of a conference v; on the social graph through an
author, say Philip S. Yu, is defined by the number of papers he published in v; normal-
ized by the total number of papers authored by him and published in any conference
of the conference graph.

Nk

o (uj, k) €T,
Cjr = 25 T (11)
0, otherwise.

where n;; denotes the weight on edge (u;,v;) and Cj; computes the influence of u;
on AG; through v, and is defined by n;; (the amount of papers u; published in v)
normalized by the sum of the weights on (u;, v;) for any ;.
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njk,  (vj,v8) € S;
Ajp=14 -7, =k (12)
0, otherwise.

where n;;, represents the similarity between two activity vertices v; and v, in the ac-
tivity graph. 7; = 3, . )es, 125 At T 2 (w0 er, Bit Where 7; summarizes the influence
of activity vertex v; on other activity vertices and associated member vertices.

In the diagonal matrix D, the diagonal entry D;; in each row is equal to —7; where
Tj = 2(uym)er; Cii- 7j summarizes the influence of member vertex u; on all activity

vertices.

Heonf =

—0.64606 0.00967  0.00897  0.00408  0.00397  0.00464 ' 45/211 28/180 0 0 15/61
0.00967 —0.77344 0.00905  0.00407  0.00393  0.00460 | 37/211 43/180 20/61 0 0
0.00897  0.00905 —0.53857 0.00408  0.00392  0.00443 | 32/211 14/180 17/61 0 0
0.00408  0.00407  0.00408 —0.51132 0.00977  0.00947 ~ 20/211 28/180 0 0 14/61
0.00397  0.00393  0.00392  0.00977 —0.57204 0.00937 | 26/211 28/180 9/61 0 7/61 (13)
0.00464 _ 0.00460  0.00443  0.00947  0.00937 —2.14662 | 51/211 39/180 15/61 11/11 25/61
~ 45/88 ~ 37/100  32/63 20/62  26/70  51/141 —244501 o o0 0 0
28/88 43/100 14/63 28/62 28/70 39/141 0 —2.09861 0 0 0
0 20/100 17/63 0 9/70 15/141 | 0 0 —0.70480 0 0
0 0 0 0 0 11/141 0 0 0 —0.07801 0
15/88 0 0 14/62 7/70 25/141 0 0 0 0 —0.67357

The non-propagating heat diffusion kernel H.,,r on the conference influence graph in
Figure 1(d) is given as Eq.(13) where each dimension in H, represents six conference
vertices ICDM, KDD, SDM, SIGMOD, VLDB and ICDE and five author vertices Philip
S. Yu, Jiawei Han, Charu C. Aggarwal, Kun-Lung Wu and Haixun Wang, respectively.
The top left block represents the conference similarities, the top right block specifies
the influences of conferences on the social graph through authors, and the bottom
left block denotes the influences of authors on the conference activity graph through
conferences. For example, the sixth row represents the ICDE conference, it has large
similarities with SIGMOD (0.00947) and VLDB (0.00937) but has small similarities
with ICDM (0.00464), KDD (0.00460), and SDM (0.00443). 26/211, 28/180, 9/61, 0 and
7/61 in the fifth row represent the influence of VLDB on the social graph through Philip
S. Yu, Jiawei Han, Charu C. Aggarwal, Kun-Lung Wu and Haixun Wang, respectively.
The seventh row specifies the influence of Philip S. Yu on the conference activity graph
through ICDM (45/88), KDD (37/100), SDM (32/63), SIGMOD (20/62), VLDB (26/70)
and ICDE (51/141). The minus entries in each row represent the amount of diffused
influences.

Definition 4.4. [Propagating Heat Diffusion Kernel on Influence Graphs] Let IG;
denote the i*" influence graph associated to SG and AG;, o denote the thermal conduc-
tivity, H; denote the non-propagating diffusion kernel of IG; and f(0) be an initial heat
distribution on IG;. The vertex’s thermal capacity at time ¢ is defined by an exponen-
tial function f(¢) with variable ¢ for constant f(0).

fi(1) = eo‘Hifi(O)
. = fi(t) = e*"Hif;(0) (14)
fi(t) = e*Mfi(t —1)

atH

where i represents the it influence graph. e®*fi can be expanded as a Taylor series.

2t2 3t3

e — T4 otH; +
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where Iis a (Nag, + Nsg) X (Nag, + Ns¢) identity matrix.

Based on the non-propagating heat diffusion kernel H.,¢r in Eq. 13, we calculate the
propagating heat diffusion kernel e*'Henr for the conference influence graph shown in
Figure 3 (b), where both o and ¢ are set to 1. For presentation clarity, we only show
the bidirectional influence flow between authors and conferences in e*‘Hert, Associat-
ed blue numbers in red edges quantify the influences of authors on the conference
activity graph through conferences in e®Hent, Agsociated green numbers measure the
influences of conferences on the social graph through authors in e®*Hent,

In the next subsection, we will execute the iterative label propagation to infer the
class membership of each member vertex with respect to the activity-based clusters.
We perform the classification by using the propagating heat diffusion kernel e“Hi as the
classifier and the clustered activities as the training data. It is known that a random
walk on a graph with its transition matrix will converge to a stationary distribution.
Many multi-label relational classification methods [Bhagat et al. 2011] are based on
random walk model by iteratively propagating the class labels through performing
random walks on the graph. Thus, we transform the propagating heat diffusion kernel
eHi into a transition matrix by removing the negative entries and followed by row-
wise normalization. Concretely, we first find the smallest element in the matrix e®H,
denoted by min(e®Hi). If min(e®ti) > 0, then all entries in e*Hi are non-negative and
we directly perform the row-wise normalization (e.g., using the sum of all elements
of the row as the denominator) such that each row of the normalized e*H sums to
1. Otherwise, we add — min(e®H) to each entry of e®Hi such that all entries are non-
negative. Then we perform the row-wise normalization to turn e“™i into a transition
matrix and perform the multi-label relational classification on the normalized e,

4.3. Co-influence Model

Our co-influence model is to define pairwise activity-based influence similarity for
members of the social graph. For example, in the DBLP dataset, author A has papers
on KDD and SIGIR, and author B has publications on KDD. During the heat propa-
gation process, the heat will be transferred from SIGIR to author B through the path
SIGIR — A — KDD — B. We call this kind of activity-based influence phenomenon the
co-influence. We have defined the propagating heat diffusion kernel e®*Hi for the influ-
ence graph IG; (1 < i < N). According to Eq.(14), in order to conduct heat diffusion
on an influence graph and compute pairwise co-influence similarity, we need both e**H
and f;(0) on IG;. f;(0) defines the heat sources from which the propagating heat kernel
starts its diffusion process.

We observe that the co-influence between a pair of member vertices in the social
graph can only be established through their interactions with activity vertices in one
of the activity graphs. Intuitively, we can figure out a co-influence similarity score be-
tween two member vertices in terms of the social influence between any of two mem-
bers and each of activities in the influence graph. Suppose that Ngg is the number of
member vertices in the social graph SG and Na¢, is the number of activity vertices
in the activity graph AG;, the computational cost of computing co-influence similarity
scores will be approximately equal to N2, x Nag,. When N, is very large, the com-
putation of the co-influence similarity is similar to DNA microarray calculation. Thus
it causes a non-trivial cost and the final co-influence similarity matrix is very dense.
For example, a recent version of the DBLP bibliography data contains 964, 166 au-
thors, 6,992 conferences, 363, 352 keywords and 31,962, 786 heterogeneous links. When
we compute keyword influence graph for this DBLP dataset, the final author-author
co-influence similarity matrix based on the keyword influence graph will have 964, 166
non-zero entries and it is a full matrix.
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To make good use of the topological information of AG;, find good heat sources from
AG; and reduce the computational cost for large-scale activity graph, we propose to
start by partitioning AG; into M; disjoint activity clusters, denoted by c¢;1, c;2, . .., cin,-
This partitioning operation also helps us have a better understanding of the social
interactions of member vertices in each category of activities. SI-Cluster combines the
self-influence and the multiple co-influence similarity scores, one per activity network,
into a unified influence similarity scores, through weight assignment and iterative
weight refinement, to performance iterative graph clustering until the convergence
condition is met.

Based on these activity clusters, the initial heat distribution column vector with the
size of (Nag, + Ns¢) x 1 is defined as follow.

fl(o) = (pijlapian e 7pijNAGi7O707 e 7O)T (16)

where p; ;1 is the probability of activity vertex v; belonging to cluster ¢;; (1 < k < Nag,,
1 < j < M. If p;jj, > 0, then the activity vertex v, in cluster ¢;; is chosen as an
initial heat source. Note that for each activity vertex vy, there exists one and only one
¢i; cluster among the M; disjoint activity clusters, to which vertex v, belongs. Thus
we have p;;;, = 1 in f};(0). The last Ng¢ entries in f;;(0) represent the initial heats of
member vertices in SG with all zeros. The total number of entries in f;;(0) is Nag, + Nsa
and the last Ngq entries have the initial values of 0. Thus, the initial heat distribution
matrix f;(0) for the propagating heat diffusion kernel ¢*'fi in Eq.(15) is defined as
follow.

Pi11 Di21 s Dim;1
Pi12 Di22 . Din;2
fi(0) = [£i1(0),£i2(0), - - - , fing, (0)] = DilNac, Di2Nac, -+« DPiM;Nag,
Pi1(Nag,;+1) Pi2(Nag;+1) -+ DPiMi(Nag,;+1)
_pil(NAGi—O—NSG) piQ(NAGi+ng) s p’i]\f,;(NAGi—O—NSG)_

17

where each column in f;(0) corresponds to one of the M; disjoint activity clusters, such
as conference clusters DB and DM in Figure 3 (c).

Consider Figure 3 (c), we have the initial conference influence distribution matrix
feont(0) below.

T
11100000000
fconf(o):[fDM(O)afDB(O)]: (0 001110000 0> (18)

where 2 columns represent the conference classes DM and DB and 11 rows represent
six conference vertices /CDM, KDD, SDM, SIGMOD, VLDB and ICDE), and five au-
thor vertices (Philip S. Yu, Jiawei Han, Charu C. Aggarwal, Kun-Lung Wu and Haixun
Wang).

We argue that two members are similar if both of them participate in many activities
in the same clusters. We propose a probability based co-influence classification method
to classify members into the activity-based clusters and generate the co-influence sim-
ilarity between members based on the member distribution in each class. We first
use £;(0) (1 < j < M;) as the training data and the e*'!li as the classifier to execute
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influence propagation to generate member’s probability in each activity class in the
influence graph IG; until approaching convergence, i.e., stable heat distribution. The
heat distribution f;(¢) at time ¢ is then defined as follow.

fi(t) = [fi (t)a fio (t)’ T ’fiMj (t)] = et [fl (O)a fio (0)’ T 7fiMi(0)] (19)

where f;(t)(j, k) denotes the probability of j*" activity vertex or member vertex in the
class c;;, based on the i*" influence graph IG;. Also the first N 4¢, rows in f;(¢) represent
the probability distribution of activity vertices in each activity class and the last Ng¢g
rows represent the probability distribution of member vertices based on activity class
labels.

By setting o and time ¢ equal to 1, we can generate the final heat distribution matrix
feonte(t) for them, which serve as their influence-based probabilities belonging to each of
DM and DB.

feont(t) = 5atHC°nffconf(0) = EHconffconf(o)

_ ( 0.62537 0.59262 0.68311 0.07281 0.09125 0.09832 0.39837 0.31718 0.26773 0.00361 0.11046 T
— \ 0.10230 0.09606 0.06515 0.68725 0.64891 0.22615 0.27052 0.33491 0.11775 0.03455 0.25032

(20)
Given that the goal of our social influence based graph clustering is to partition the
member vertices in the social graph (e.g., the coauthor graph or the consumer graph)
into clusters, we further reduce the final heat distribution matrix f;(¢) with the size of
(Nag, + Nsc) x M; to a Ngg x M; matrix f;(t) by removing the redundant training rows
and normalize the remaining test rows for f;(¢) without loss of quality. This reduction
also helps to reduce the computational complexity and improve memory consumption.
The final influence-based classification matrix fi(¢) is given as follow.

Pi1t(Nag,;+1) Pi2(Nag,+1) -+ DPiM;(Nag,+1)
fi(t) = : : : : 21)
pil(NAGiJFNSG) pi2(NAG1.+NSG) e pi]\/fi(NAGi-‘rNsc)

The reduced formula of f,,(t) is given as follow.

f,

Cf

(22)

(1) = 0.59557 0.48641 0.69454 0.09460 0.30617 "
onfi®/ ™ | 10.40443 0.51359 0.30546 0.90540 0.69383

Figure 3 (d) shows the heat distribution f,, ¢(¢) in the two different conference class-
es: DM and DB. The larger the blue number is, the more influence that the corre-
sponding author has on the conference class. Charu Aggarwal has more influence on
DM (0.69454) than DB (0.30546). Note that there is a red line between Kun-Lung Wu
and DM with the value of 0.09460, even though Kun-Lung Wu does not have any publi-
cations on DM conferences. The influence between Kun-Lung Wu and ICDM is derived
from the influence between Kun-Lung Wu and ICDE and the similarity between ICDE
and ICDM in terms of the common set of authors who publish in both conferences,
even if the similarity score between ICDE and ICDM is relatively small.

The pairwise vertex closeness is an important measure of clustering quality. Let
W; denote the co-influence vertex similarity matrix for influence graph IG;, M; be
the number of activity classes in IG;, and f;,,(t)(j) denote the row-wise normalized
influence distribution of member u; € U on /G; at time ¢, i.e., the probability of u; in the
mt" class of AG;. W;(j, k) representing the co-influence similarity between members u;
and uy, is defined below.
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VEN L (En()(5) ~ Fn (5 ()2
S fea(8)(5) + £ (1) (k)

M
\/Zmizl(pim(NAGiJrj) - pim(NAGiJrk))Q

Wz(]vk) = Wz(kvj) =1-

(23)

=1

M
Zm,-,zl pim(NAci +7) + pim(NAci +k)

The green numbers in Figure 3 (e) represents the co-influence similari-
ty between author vertices based on the conference influence graph. Philip
S. Yu and Charu C. Aggarwal have a higher co-influence similarity of 1 —
/(0.59557 — 0.69454)2 + (0.40443 — 0.30546)2 /((0.59557+0.69454)+(0.40443+0.30546) ) =
0.93002 since they both have more influence in DM than that in DB. On the other
hand, Philip S. Yu and Kun-Lung Wu have a smaller co-influence similarity of 1 —
/(0.59557 — 0.09460)2 + (0.40443 — 0.90540)2 /((0.59557+0.09460)(0.40443+0.90540)) =
0.64572 since Kun-Lung Wu has much more influence in DB than that in DM.

4.4. Unified Influence-based Similarity Measure

The problem of integrating the influence-based similarities on both social graph and
multiple influence graphs into a cohesive and unified similarity measure is quite chal-
lenging. In this paper, we propose to use a unified influence-based similarity measure
together with an iterative learning algorithm to address this problem.

Let W, denote the self-influence similarity from the social graph SG with the weight
factor a, W; denote the co-influence similarity from the influence graph IG; (1 <i < N)
with the weight w;. The unified similarity function W is defined as follow.

W=Wo+wiWi+- - +wnyWn (24)
where W, zeo‘tH,a—FZi\;lwi =N+1l,a>20,w; >20,i=1,---,N.
By assigning an equal initial weight « = w; = ... = wy = 1 for each kind of so-

cial influence-based similarity matrices, we assume that each kind of social influence-
based similarity matrices has the same degree of importance. However, different types
of similarity scores may have different degree of contributions in calculating the uni-
fied influence-based similarity matrix, thus we need to adaptively update the weights
after each clustering iteration in terms of their contributions towards the clustering
convergence, i.e., under the fixed constraint of o + vaz Lw; = N + 1. Such dynamic
weight update may continuously increase the weights to important influence-based
similarities and decrease the weights or assign zero weights to trivial influence-based
similarities in terms of the result of each clustering iteration.

The unified similarity between any pair of member vertices in SG is defined based
on the set of N 4 1 influence-based similarities.

s(ui, ug) = W(i,5) = e*™ (4, §) + i Wi (i, ) + - - + wy W (4, §)
2t2

2!

(67

= (I(lu]) +OétH(i,j) + Hz(ivj) +) +W1W1(i’j) +"'+WNWN(i7j>

o) Oék’tk . N
=D H D) + Y Wi )
k=0 k=1

(25)
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Fig. 4. A Unified Influence-based Similarity

The main challenge for the computation of the unified influence-based similarity is
to set and tune the weight parameters o and w; (1 < i < N) as well as interpret the
weighted similarity function. Figure 4 integrates the self-influence similarity in Figure
3 (a) and the co-influence similarity in Figure 3 (e) into a unified influence-based simi-
larity. As previously mentioned, the blue numbers represent the self-influence similar-
ity scores between authors based on the social graph SG. The green numbers, which
are calculated in terms of Eqs.(22) and (23), specify the co-influence similarity scores
between authors based on the conference influence graph. It is not clear to a user
whether the weight of self-influence similarity matrix should be larger or smaller than
the weight of conference-influence similarity matrix. It is even harder for the user to
decide the weights quantitatively. We will discuss how to find an optimal solution for
a nonlinear programming model with weight parameters in the next section.

5. SOCIAL INFLUENCE BASED CLUSTERING FRAMEWORK

We have presented our approach to compute the weighted unified social influence
based similarity by combining the self-influence similarity matrix and the N activity-
based co-influence similarity matrices for each pair of member vertices in the so-
cial graph. In this section we present our social influence based clustering frame-
work, called SI-Cluster, which follows the K-Medoids clustering method [Kaufman
and Rousseeuw 1987] by using the unified influence-based similarity with the initial
weights as an input. It partitions a social graph SG by iteratively combining both self-
influence and co-influence similarities with refined weight assignment through our
unified similarity model on SG, its associated N activity graphs AG;, and N influence
graphs IG; (1 < i < N). At each iteration, we perform three tasks: (1) assign the ver-
tices to their closest centroids, (2) select the most centrally located point in a cluster as
a centroid, and (3) update the N + 1 weights using the weight update method, which
computes the weighted contribution by each influence-based similarity to the cluster-
ing objective for the social graph and the NV associated activity-based influence graphs.
The clustering process is repeated until the convergence condition is met.

We will first discuss the weight and centroid initialization of the SI-Cluster algorith-
m in Section 5.1, and the vertex assignment and centroid update in Section Section 5.3.
Then we describe the clustering objective function in Section 5.2, the parameter-based
optimization in Section 5.4 and iterative weight adjustment in Section 5.5, followed by
the clustering algorithm in Section 5.6.

5.1. Initialization

In the initialization step of our SI-Cluster algorithm, we need to address two issues:
(1) initial weight setup and (2) cluster centroid initialization.
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Good weight assignment for our unified influence-based similarity measure is cru-
cial to produce a good clustering result. Recall Equation (24) in Section 4.4, @ > 0
is the weight for self-influence similarity and w; > 0 (1 < ¢ < N) are the N
weights for activity-based co-influence similarity scores and they satisfy the constraint
a+ YN wi = N +1. In SI-Cluster, we assign the initial value of 1 to all N + 1 weight-
s, l.e., « = w; = --- = wy = 1, based on the assumption that each kind of social
influence-based similarity matrices has the same degree of importance. By assigning
an equal initial weight, we start to combine the self-influence similarity matrix and
the N co-influence similarity matrices into a unified influence-based similarity matrix
with equal contributions. We will update the N + 1 weight values in the subsequent
iteration of the clustering process using our dynamic weight update scheme, which con-
tinuously quantify and adjust the weights on self-influence similarity and on multiple
co-influence similarity scores towards the clustering convergence, while maintaining
the constraint o + Zf\il w; = N + 1. As a result, at each iteration, weights to impor-
tant influence-based similarities are increased while weights to trivial influence-based
similarities are decreased or become zero, ensuring the clustering process progresses
towards the convergence. Note that choosing a weight assignment randomly often re-
sults in incorrect clustering results. In Sections 5.4 and 5.5, we will show that there
exists one and only one optimal weight assignment to maximize the clustering objec-
tive.

Good initial centroids are essential for the success of partitioning clustering al-
gorithms. There are a number of studies by using various criteria, such as DEN-
CLUE [Hinneburg and Keim 1998] and K-Means++ [Arthur and Vassilvitskii 2007].
The idea of K-Means++ [Arthur and Vassilvitskii 2007] is that the first center is chosen
uniformly at random and each subsequent center is chosen from the remaining data
points with probability proportional to its squared distance from the closest existing
center. DENCLUE produces good cluster characteristics from noisy data by choosing
the local maxima of the density function as centers. SI-Cluster follows the same moti-
vation of DENCLUE to initialize cluster centroids. Concretely, in SI-Cluster, we first
compute the density for each member vertex in the social graph and then find the local
maxima of the density function as the centroids.

Definition 5.1. [Density Function] The density function of one vertex u; is the sum
of the unified similarity scores between u; and all other vertices in U.

D(u;) = Z s(ui, uj) (26)

u; €U, uj7#u;

If one member vertex u; has a large density value, it means that, either u; connects
to many member vertices through the links within the social graph SG, say coauthor
links, or u; has the similar activity participation behaviors with many member vertices
through the links between SG and the activity graph AG; (i = 1,..., N). Based on the
density value of each member vertices, we find the member vertices with a local maxi-
mum of the density value by following the same hill-climbing strategy in DENCLUE.
A member vertex which has a local maximum of the density value often can diffuse its
heat to many member vertices along multiple paths. A centroid-based cluster is thus
formed when heat is diffused to the margin of the social graph. We sort all such mem-
ber vertices in the descending order of their density values and select top-K member
vertices as the initial K centroids {c{, ..., c%}.

5.2. Clustering Objective Function

The clustering objective function in SI-Cluster is defined by considering both the intra-
cluster similarity and the inter-cluster similarity. Similar to most existing work, we
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define the intra-cluster similarity with the sum of the similarity scores between ver-
tices and their centroid within each cluster. There are two common ways to define
inter-cluster similarity: (1) the sum of the similarity scores between pairwise centroid-
s across clusters and (2) the sum of the similarity scores between pairwise vertices
across clusters, both of which are used to quantitatively measure the extent of sim-
ilarity between two clusters. Given that the pairwise vertex similarity in SI-Cluster
is defined based on a complex weighted unifying similarity function, each cluster may
have more representative points than just its centroid. Thus, SI-Cluster adopts the
second definition as our inter-cluster similarity. Compared to traditional K-Means or
K-Medoids, whose objective functions only consider the intra-cluster distance (similar-
ity), SI-Cluster defines the objective function as the ratio of the intra-cluster similarity
to the inter-cluster similarity to better capture the complexity of clustered graphs. We
below formally define the inter-cluster similarity and our objective function.

Definition 5.2. [Inter-cluster Similarity] Let SG = (U, E) be the social graph,
W (i,j) be the unified influence-based similarity between u; and u;, and U, and U,
be two clusters of U, the inter-cluster similarity between U, and Uy is defined as follow.

S(Uanq) = Z S(ui’uj) = Z W(Zv]) (27)

u; €Up,u;j €Uq ui#u; u; €Up,u;j €Uq ui#u;

We below formally define the objective function as the ratio of the intra-cluster sim-
ilarity to the inter-cluster similarity.

Definition 5.3. [Graph Clustering Objective Function] Let SG = (U, E) be a social
graph with the weight a and 1G4, IG>, ..., IGy be N influence graphs with the weights
w1,...,wy Where w; is the weight for IG;, and K is a number of clusters, the goal of

SI-CLUSTER is to find K partitions {U;}X, such that U = Ufil Uiand U;,NU; = ¢
for V1 < i,j < K,i # j, and the following objective function O({U;}X |, a,ws,...,wy) is
maximized.

et [T Dows €l gy s asy S (s Ug)
E;I)(:l Ef:l,q;ép 5(Up, Ug)

e T Lty ey, (Do S H(1,9) + YA we Wi )

e E ey ety ev, (Do S HE (G 5) + Sy wxWi(i, )

subjectto a + SN jw; =N +1,a>0,w; >0,i=1,---,N.

O({Ul}llihavwh o ,CUN) =
(28)

The numerator of Eq.(28) captures the intra-cluster similarity by aggregating the
intra-cluster similarities from all K clusters. The denominator of Eq.(28) represents
the aggregated inter-cluster similarity of all K clusters. We define the clustering ob-
jective is to maximize the above objective function, i.e., maximize the ratio of the intra-
cluster similarity to the inter-cluster similarity.

We model the graph clustering problem as the optimization of three subproblems: (1)
vertex assignment, (2) centroid update, and (3) weight adjustment, each with the goal
of maximizing the objective function. The first two problems are common to all parti-
tioning clustering algorithms in literature. The weight adjustment is unique because
SI-Cluster defines pairwise vertex similarity by combining self-influence similarity s-
core and co-influence similarity scores from multiple activity networks. In addition to
improve the objective function for vertex assignment and centroid update in each iter-
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ation, SI-Cluster also dynamically refines all weighting parameters towards the goal
of maximizing the objective function.

5.3. Vertex Assignment and Centroid Update

Given that the goal of SI-Cluster is to maximize the ratio of the intra-cluster similar-
ity to the inter-cluster similarity, which is different from that of traditional K-Means
and K-Medoids, in order to guarantee that the objective function of SI-Cluster is im-
proved by vertex assignment, we need to verify both the intra-cluster condition and the
inter-cluster condition for vertex assignment. Given K centroids in the t*" iteration, we
perform the intra-cluster similarity test on each vertex u; € U by computing its closest
centroid ¢* = argmaxcz_st(ui, ct), i.e., a centroid c* € {cf, ..., ¢k} with the largest uni-
fied similarity from u;. We perform the inter-cluster similarity test by introducing an
additional verification condition for vertex assignment.

Concretely, for each candidate vertex u; to be assigned to a new centroid cfl, we first
find ¢ = argmawcj_st(ui,c;) such that s'(u;, ¢, ') < s'(us, ), and ¢! # ¢!, where

cﬁfl is the centroid to which u; was assigned in the last iteration. Then we make the

final decision of whether to assign u; to this new ch by checking whether the con-
dition of >°, i/ zu, st(ug, uj) > Dy €Uy it s'(u;,u;) is satisfied. This is because
when this condition is satisfied, by assigning u; to the cluster with the new centroid
cy» then the inter-cluster similarity between U, and U, in the denominator in the ob-
jective function will be reduced from s'(Uy, Uy) to s'(Up, Uy) — o, v, uitu; S (Wiru5) +
2w, €U, usu; S (Ui u;) or remain unchanged. At the same time, the intra-cluster sim-
ilarity about u; in the numerator of the objective function will be increased from
s'(ug, ¢! to s'(uj, ¢) or remain unchanged. Thus, the total clustering objective func-
tion will be improved by vertex assignment. When u; passes both tests during the
vertex assignment phase, we will assign u; to its closest centroid ¢/,

Centroid update in SI-Cluster is similar to traditional K-Means and K-Medoids ex-
cept that our pairwise vertex similarity is unique by combining both self-influence sim-
ilarity score and co-influence similarity scores from multiple activity networks. When
each vertex is assigned to some cluster, the centroid will be updated with the most
centrally located vertex in each cluster. To find such a vertex, we first compute the
“average point” a; of a cluster U; in terms of the unified similarity matrix as

1

= ] Z s(ug,uj),Yu; € U; (29)

ur€U;

s(ai, uj)

Thus, s(a;, :) is the average unified similarity vector for cluster U;. Then we find the
new centroid ¢!*! in cluster U; as

%

t1
G

= argmingeu,||s(u;,:) — s(as,:)|| (30)

Therefore, we find the new centroid ¢! in the (¢ + 1)*" iteration whose unified sim-
ilarity vector is the closest to the cluster average.

Note that the numerator in the objective function is the sum of the similarity scores
between vertices and their centroid. Thus, the centroid update operation will make the
numerator increased or keep it unchanged. According to the definitions of the inter-
cluster similarity and the objective function, the centroid update operation does not
have any affect on (no change to) the denominator. Thus, the centroid update will
improve the clustering objective function.
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5.4. Parameter-based Optimization

The objective of our clustering algorithm is to maximize intra-cluster similarity and
minimize inter-cluster similarity, i.e., maximize a quotient of two functions of mul-
tiple variables. We cannot directly solve this sophisticated nonlinear fractional pro-
gramming problem (NFPP). Then we show that the NFPP problem is equivalent to
a polynomial programming problem with polynomial constraints (PPPPC). The poly-
nomial constraints of PPPPC make it very hard to solve. Thus, we further simplify
the dynamic weight update problem as a nonlinear parametric programming problem
(NPPP), which can obtain optimal weights through parameter-based optimization.

Definition 5.4. Suppose that flaywy, ..., wN) =
K o0 ak k .. N ..
Zp=1 Mﬁ ZUieUpvuj=vaui?éuj (Zk=0 TfHk (i,5) + Zk:l we Wi (i, ) and

K K 0o aftk . N ..
gla,wr, ..., wN) = Zp:l Zq:lﬂl#l) ZuiEUp,quUq (Zk=0 TItHk(Z’]) + Zk:l weWi (2, 7)),
the original clustering goal is rewritten as the following optimization problem (NFPP).

f(a,w1,~~«,wN)
Ma K =0 1
az O({Ui}1L, @, w1, W) gla,wi, ... ,wN) GV

subjecttoa+2£vzlwi:N+1,a>0,wi20,2':1,...,N.

The preliminary knowledge of convexity/concavity can be found in Chapters 2, 3, 4,
5 and 32 in [Rockafellar 1997].

THEOREM 5.5. f(o,wi,...,wn) is either or both of convex and concave on the set
S = {(a,wl,...,wN)\oz—i—Ei]ilwi =N+1l,a>20w;>20,i=1,--- ,N}.
Proof. We first prove that the set S is a convex set. Suppose that two arbitrary (n +

D-vectors © = (u1,p2,...,pn+1) and &' = (vi,va,...,Uny1) Satisfy the following two

constraints:Zf\Qllui:NJrl, Wi =0, Zf\fllyi:N+1, v; >20,i=1,--- N+1.

For an arbitrary X € [0,1], the (n + 1)-vector (1 — Nz + Az’ = (1 — MNp1 + Avq, (1 —
Mps + Avg, -+ (1= Npuns1 + Avnt1). The sum of each dimension for this (n + 1)-vector

isequal to (1 — NN + AN 0, = 1= NN+ 1)+ AN + 1) = N + 1. Thus,
(1 =MXNax+ A\’ isstill in S and S is a convex set.

We then calculate the Hessian matrix of | as follow.

H(f)qjj(Oé,Wl,...,(.UN) = DiDjf(aawla"'va) (32)

where D; is the differentiation operator with respect to the i'" argument and the Hessian
becomes

82f &% f i
Oa? Oadwi 7" Oadwn
i &%f i
Ow10a Ow? T Qwi0wpn
() =1 . . . (33)
82f 8%f 82f
OwnOa OwnOwi “°° awﬁ,

. . . K 1 o aktk ki -
Since there is only one non-linear term szl =T ZuieUp,chp,uﬁéuj > heo - H" (1, 9),
the final Hessian matrix is
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0 k—2,k L.
Z;zl;{:l Mﬁ ZuiGUp,uj:cp,uﬂﬁuj Zk:O k(k - 1) < k! t Hk (Z’J) 0...0
0 0...0
II(f) = - T (39
0 0...0

Since this Hessian matrix is a diagonal matrix, all of its -eigenval-

ues are non-negative (non-positive or zero) if the only diagonal entry
k—2,k . oy .

fo:l TTIT Qs €Uy sy —ep iy 2ohco Rk — 1) 7= HN(i, j) is positive (negative or
zero). Thus, it is positive-semidefinite (negative-semidefinite, both positive-semidefinite
and negative-semidefinite) for Vo, wi, ..., wy € S if the only diagonal entry in the
Hessian matrix is positive (negative or zero). Accordingly, f(a,wi,...,wN) Is convex
(concave, both convex and concave) on the convex set S.

THEOREM 5.6. ¢g(a,wi,...,wn) is either or both of convex and concave on the set
S = {(a,wl,...,wN)\a—&—ZfV:lwi =N+1l,a>0,w; 20,i=1,--- ,N}.

The detailed proof is omitted due to space limit. This theorem can be testified by using
the above-mentioned similar method.

According to Theorems 5.5-5.6, we know that it is very difficult to identify whether

fla,wr,...,wn) or g(a,wy, ..., wy) is convex or concave on the set S. According to Defi-
nition 5.4, we know that our clustering objective is equivalent to maximize a quotient of
fla,wy,...,wy) and g(a,wi,...,wn). It is very hard to decide whether this quotient is

convex or concave. We cannot easily perform function trend identification and estima-
tion to determine the existence and uniqueness of solutions of the clustering objective
such that we can not directly solve this sophisticated nonlinear fractional program-
ming problem (NFPP). Therefore, we need to convert the original NFPP to an easily
solvable optimization problems to improve the efficiency of SI-Cluster.

THEOREM 5.7. The NFPP problem is equivalent to a polynomial programming
problem with polynomial constraints (PPPPC).

Maz vf(a,wi,...,wN) (35)

subject to 0 < v < 1/g(a,w1,...,wN),oz—&—Zf\;lwi:N—i—l,a}O, w; 20,i=1,---,N.
Proof If (a,w, . ..,WnN,7) is a possible solution of PPPPC, then ¥ = 1/g(a, w1, ..., ON).

Thus 7f(a,w1,...,ony) = f(a,w1,...,on)/9(@,w1,...,0N). For any feasible so-
lution (a,wy,...,wy) of NFPP, the constraints of PPPPC are satisfied by set-
ting v = 1/g9(a,wr,...,wn), so ~vf(a,wr,...,wny) <  7Ff(@,w1,...,0Nn), Le.
f(Oé7W1,...,(/JN)/g(Ol,wl,...,WN)<f(a,wl,...751\[)/9(5,@1,...,@]\[).

Conversely, if (a,wyi,...,wy) solves NFPP, then for any feasi-
ble solution (a,wr,...,wn,7) of PPPPC we have ~f(a,wi,...,wN)
f(Oé7W1,...,(}JN)/g(Ol,wl,...,WN) < f(auwlw"7wN)/g(a7wla"'7wN)
Ff(a,wy,...,0N) withy =1/g(a,wy,...,0N).

/A

Although PPPPC is a polynomial programming problem, the polynomial constraints
make it very hard to solve. We further simplify it as an nonlinear parametric program-
ming problem (NPPP).

THEOREM 5.8. A nonlinear parametric programming problem (NPPP) is defined
as F(B) = Max {f(a,wr,...,wn) — Bg(a, w1, ...,wN)} subject to o + Zil\;ﬂﬂi =N+1,
a>0,w >0,i=1,---,N. The NFPP problem of Eq.(31) is equivalent to this NPPP,
i.e., B is a maximum value of NFPP iff I (3) = 0.
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Proof. If (a,wy,...,wn) is a possible solution of F () = 0, then f(a,w1,...,wN) —
/69(67517"'751\7) = 0. Thus f(a,(Ul,...,WN)_69(04,(411,.. OJN) < f(aw awN)_
Bg(@,wy,...,wn) = 0. We have f = f(a,wl,...,wN)/g(a Wiy, 0N) =
flaywr,...,wn)/g(a,wr, ..., wN). Therefore, § is a maximum value of NFPP and

(a,wy,...,wnN) is a feasible solution of NFPP.
Conversely, if (a,wi,...,won) solves NFPP, then we have f =
.,wn). Thus

f@,w1,...,on)/g9(@,@1,...,0N) > floywi, .. ,wn) /g,
f(a7w1a"'awN) - 69(047(*}17"'7(*]]\/) < f(a wl)" N) ﬁg(aw ,GN) = 0.
We have [ (8) = 0 and the maximum is taken at (a,wy, ..., wN).

Recall Eq.(24), we define a compact constraint of o+ ZZIL w; = N +1. One necessary
condition of Theorem 5.8 is that two equivalent problems in Theorem 5.8 should be
defined on the same compact constraint space, i.e., the constraint space of the NFPP
problem and the NPPP problem is a compact space, i.e., closed and bounded space.
We have explained that it is very hard to solve the original NFPP problem. To ease the
solving of the NFPP problem, we introduce a compact constraint space of o+ Zfil w; =
N+1 and transform the NFPP problem into the NPPP problem. In addition, the weight
learning process may not converge if there is no compact constraint.

Now we have successfully transformed the original NFPP in Eq.(31) into the s-
traightforward NPPP. This transformation can help the algorithm converge in a finite
number of iterations. Although it is not clear whether the original objective is concave
or convex, the objective f () of NPPP has the following properties.

THEOREM 5.9. F(p) is a convex function.
Proof. Suppose that (a,w;,...,wWn) is a possible solution of F((1 — N\)B1 + Af2)
with f1 # B and 0 < A < 1L F(1 = NG + \32) = f(owi,...,.w

((1 - A)Bl + A52).g(a7wla7w]\7) = A(f(a7wla7wN) - /829(@7@1’"'751\7 +
(]‘ - )‘)(f(avwla"wwN) - ﬁlg(aawla"'va)) < A m(lflj(f(a,wl,...,w]\]) -
Bog(@,wy,...,on)) + (1 — A) - max(f(a,©1,...,0n) — fig(@,@i,...,0N))

AF (B2) + (1 — N)F (81). According to the definition of convexity in Chapter 4 in [Rock

afellar 1997], we know that F (j3) is convex.

THEOREM 5.10. [ () is a monotonic decreasing function.

Proof. Suppose that 81 > 2 and (a,ws,...,wn) is a possible solution of F ($1). Thus,
FEBl% = f(aawh e ,EN) - Blg(a7wla e awN) < f(a7wla cee 751\[) - 529(5,51, e 7wN) <
F(B2).

THEOREM 5.11. F(8) = 0 has a unique solution.
Proof. Based on the above-mentioned theorems, we know F (8) is continuous as well
as decreasing. In addition, limg_, ;o F (8) = —oc0 and limg_,_ooF () = +o0.

5.5. Adaptive Weight Adjustment

The procedure of solving this NPPP optimization problem includes two parts: (1) find
such a reasonable parameter 5 (F () = 0), making NPPP equivalent to NFPP; (2)
given the parameter 3, solve a polynomial programming problem about the original
variables. Our weight adjustment mechanism is an iterative procedure to find the so-
lution of F(8) = 0 and the corresponding weights «, wy, ..., wx after each iteration
of the clustering process. We first generate an initial unified similarity matrix W with
equal weights to initialize cluster centroids and partition the social graph. Since F (3)
is a monotonic decreasing function and F(0) = Maz {f(a,w1,...,wn)} is obviously
non-negative, we start with an initial 5 = 0 and solve the subproblem F (0) by using
existing fast polynomial programming model to update the weights o, w1, ..., wy. The
updated parameter by 5 = f(«,w1,...,wn)/g9(a,w1,...,wn) helps the algorithm enter
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ALGORITHM 1: Social Influence-based Graph Clustering

Input: a social graph SG, multiple influence graphs /G;, a cluster number K, initial weights
a=wi =...=wpy = 1 and a parameter S = 0.
Output: K clusters Uy, ..., Uk.

1: Calculate Wy, W1, Wy, -+, Wy, and W;

2: Select K initial centroids with a local maximum of the density value;

3: Repeat until the objective function [ (3) converges:

4:  Assign each vertex u; to a cluster C* with a centroid c* where ¢* = argmaz.; s(us, c;);
5.  Update the cluster centroids with the most centrally located point in each cluster;

6: Solve the NPPP of 1 (5);

7. Update o, w1, ..., wn;

8: Refine 8 = f(a,w1,...,wn)/g(a,wr,...,wN);

9: Update W;

10: Return K clusters Uy, ...,Uk.

the next round. The algorithm repeats the above-mentioned iterative procedure until
F (B) converges to 0.

5.6. Clustering Algorithm

By assembling the vertex assignment, centroid update and adaptive weight adjust-
ment together, we provide the pseudo code of our clustering algorithm - SI-CLUSTER
in Algorithm 1. Our SI-Cluster algorithm is a variant of K-Medoids [Kaufman and
Rousseeuw 1987] in the sense that we divide the original optimization problem into
three optimization subproblems and iteratively solve each subproblem with the goal of
optimizing the clustering objective.

THEOREM 5.12. The objective function in Algorithm 1 converges to a local maxi-
mum in a finite number of iterations.

Proof. Similar to the divide-and-conquer framework of K-Medoids [Kaufman and
Rousseeuw 1987], SI-Cluster solves the optimization problem by iteratively solving the
following three subproblems: (1) given cluster centroids and weight assignment, the
vertex assignment step will assign each vertex to its closest centroid; (2) given vertex as-
signment and weight assignment, the centroid update step will update cluster centroids
with the most centrally located point in each cluster; and (3) given vertex assignment
and cluster centroids, the weight adjustment step will refine the weight for each kind of
influence-based similarity matrix with the optimal weight assignment.

Let t be the current iteration, O} be the clustering objective before vertex assign-
ment in the t'" iteration, O} be the clustering objective before centroid update, O}
be the clustering objective before weight adjustment, and O} be the clustering objec-
tive after weight adjustment, then O} = OS“. As discussed in Section 5.3, the first

K 1

subproblem (vertex assignment) will make 3 . | =5 D e, uy—cpuitu, (Wi Uj) -
- P T pr%g—Cpr e j

creased or keep unchanged, and make Zle Zle’ op S(Up, Uq) decreased or keep un-
changed. Thus, Of < O. In addition, the second subproblem (centroid update) will
make Zle ‘Upﬁ D i €Uy uy=cyuitu; S(Wir Uj) increased or keep unchanged, and keep

the denominator of the objective function, Z:f:l fo:l’ g#p 3(Up, Uy), unchanged. There-
fore, Ot < O%.

Now we show that solving the subproblem (3) in SI-Cluster can also optimize the
clustering objective of SI-Cluster. Note that the original clustering objective function
in Eqs.(28) and (31) is f(a,wi,...,wn)/g(a,wi,...,wN), i.e., the ratio of the intra-
cluster similarity to the inter-cluster similarity. On the other hand, (3 is updated
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with = f(a,wi,...,wn)/g9(a,w1,...,wN) at each iteration. Essentially, § is equiv-
alent to the original clustering objective function. The algorithm starts with o =
wi = ... = wny = 1 to calculate the unified influence-based similarity matrix W and
do the graph clustering. Based on the initial 3 = 0, we solve the NPPP in Theo-
rem 5.8 to generate the new weights a,wy,...,wy and update 5 with the new ratio
B = fla,w,...,wn)/g(a,w1,...,wN) of the intra-cluster similarity to the inter-cluster
similarity. Notice that F (8) is monotonic decreasing in terms of Theorem 5.10. Thus,
[ (B) keeps decreasing but ( keeps increasing, i.e., the original clustering objective func-
tion in Eq.(31) keeps increasing and O < O%. In each iteration, SI-Cluster repeats the
above process until | (3) converges to zero: utilize § obtained at the last iteration to
figure out the new weights o, ws, ... ,wn with the goal of maximizing the clustering ob-
Jective, and update 3 with the new weights o,w,...,wy helps the algorithm enter the
next iteration. Thus, 3 constantly keeps increasing, i.e., the original clustering objective
function in Eq.(31) continuously keeps increasing during the clustering process. To sum
up, Of <01 <O, <Ot < -,

In summary, the entire algorithm iteratively executes the above three tasks until con-
vergence: (1) utilize improved cluster centroids and weight assignment to assign vertices
through both intra-cluster similarity test and inter-cluster similarity test; (2) use refined
vertex assignment and weight assignment to update centroids, improving intra-cluster
similarity without changing inter-cluster similarity; and (3) make use of elevated ver-
tex assignment and cluster centroids to refine the weights for self-influence similarity
score and co-influence similarity scores such that the pairwise vertex similarity is im-
proved towards the clustering objective. As a result, the overall objective function keeps
increasing and can converge to a local maximum in a finite number of iterations.

6. SPEED UP PROPAGATING HEAT KERNEL COMPUTATION

In real applications, the non-propagating heat kernel H or H; may be a high dimen-
sion matrix and very dense (recall Egs.(4) and (13). To compute the propagating heat
diffusion kernel e in Eq.(7) or ¢*Hi in Eq.(15), we have to calculate H?, H*, H?, - - -,
or Hi2, Hf’ , Hf, -+, 1.e., a mass of matrix multiplication operations in total. To improve
the computational cost of self-influence similarity matrix and co-influence similarity
matrices, we develop diagonalizable-matrix approximation to speed up the computa-
tion of propagating heat kernels. For a symmetric non-propagating kernel, by directly
utilizing similarity transformation in Chapter 3 in [Arfken et al. 2005] to convert it to
a diagonal matrix, the computational cost of exact propagating kernel is reduced from
O((I = 1)N3g) to O(Ngg) for e or from O((I —1)(Nsc + Nag,)?) to O((Nsc + Nag,)?)
for e®Hi where [ is the highest order of the power of H in e*'H or H; in e*Hi, For an
asymmetric non-propagating kernel, by proposing diagonalizable-matrix approxima-
tion to generate its diagonalizable approximation, the computational cost of approx-
imate propagating kernel is reduced from O((l — 1)N3,) to O(N2) for e** or from
O((l = 1)(Nse + Nag,)?) to O(Nig. + 2(Nsg + Nag,)?) for e*™i. Extensive experi-
mental evaluation demonstrates that our SI-Cluster-Opt approach can achieve a good
approximation of SI-Cluster while meeting the guarantee of high density, low entropy
and low DBI.

6.1. Undirected Heat Kernel Computation

Notice that the non-propagating kernel H or H; for an undirected graph is often a
symmetric matrix. In this subsection, based on the symmetric non-propagating kernel,
we aim to calculate the propagating kernel by using the similarity transformation to
reduce the number of matrix multiplication operations.
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We first introduce some preliminary concepts before discussing the fast computation
of propagating heat kernel. Given a square matrix A, > .° ¢;A" is called the Power
Series of A (assume A” = I). In particular, when all coefficients ¢; (i = 0,1, ...) are equal
to the reciprocal of factorial of 7, the Power series of A is converted to ) ;- %Al We call

it the Taylor series for the exponential function . In related literature, we can find
the following theorems on diagonal transformation. Theorems 6.2-6.15, Corollaries 6.4
and 6.16, and the detailed proofs can be found in Chapters 1, 2 and 4 in [Horn and
Johnson 1990], Chapters 5 and 7 in [Golub and Loan 1996], Chapters 2, 4-7 in [Strang
2005] and Chapter 18 in [Manning et al. 2008].

Definition 6.1. Two n-by-n square matrices A and B are called similar if B = P~ AP
for some invertible n-by-n square matrix P.

Similar matrices represent the same linear transformation under two different
bases, with P being the change of basis matrix. Similarity is an equivalence relation
on the space of square matrices. Thus,

THEOREM 6.2. A real symmetric matrix A can always be diagonalized in the form

of A =PDP !, where P is a orthogonal matrix and D is diagonal with n eigenvalues of
A as diagonal entries.

The non-propagating kernel H or H; for an undirected graph is often a real symmet-
ric matrix. Theorem 6.2 provides a feasible method to transform a dense matrix A with
at most n? non-zero elements into a sparse diagonal matrix B with up to n non-zero
entries. Thus, the computation of the power of A with the complexity of O(n?) can also
be reduced to the calculation of the power of B with the complexity of O(n).

The Gram-Schmidt algorithm in Chapter 3 in [Arfken et al. 2005] implements di-
agonalization by computing its eigenvalues, orthogonal matrix and diagonal matrix
of a diagonalizable matrix. Due to the space constraint, we only present the detailed
speed-up formulae for the propagating heat diffusion kernel e®*Hi. We can adopt the
similar steps to compute the speed-up formulae for e®*H.

D, =P 'HP (36)
A1 O 0
0 X ... 0
Di= | . . ) ®D
0 0 ... A(NeotNac,)
where A1, \g, -+ -, A(Nsa+Nag,) 8re Nsa + Nag, eigenvalues of H;.

The calculation of power of non-propagating heat kernel is then simplified as follow.

H' =PD!'P' (38)

Thus, we revise the propagating heat kernel ¢®*Hi in Eq.(15) with diagonal transfor-

mation as e®*Hi in Eq.(39), where \i, \o, - - -, A(Nsa+Nag,) re Nsg + Nag, eigenvalues
of Hj. The invertible matrices P is used to do similarity transformation for H;.

Our optimization techniques can dramatically reduce the computational complex-
ity and the memory consumption through diagonalization of dense matrix since the
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matrix exponential can be computed simply by taking each diagonal entry to the ex-
ponential in question. Suppose that [ is the possible highest order for the power of H;.
To compute e*'H or e*™Hi | we need to calculate H>, H?, ..., H, or H, H}, - -, H.. Thus
the number of matrix multiplication operations can be reduced from (I — 1) to 2 which
is the cost of diagonal-to-symmetric transformation. However, these two matrix mul-
tiplications include one multiplication between one regular matrix and one diagonal
matrix, and one regular multiplication. The first regular-diagonal matrix multiplica-
tion has the complexity of O((Nsg + Nag,)?). In addition, the cost of the exponential of
eigenvalues is equal to O(Ngg + Nag, ). We can safely ignore the computational cost of
these two operations since both are < O((Nsg + Nag,)?). The additional cost refers to
the Gram-Schmidt computation for generating its eigenvectors, eigenvalues, orthogo-
nal matrix and diagonal transformation. When there are m principal eigenvectors to
be determined, it has a complexity of O((Nsg + Nag,)m?) [Trefethen and Bau 1997],
which is also < O((Nsg + Nag,)?). To sum up, the total cost of propagating heat kernel
computation is reduced from O((I — 1)(Nse + Nag,)?) to O((Nsa + Nag,)?).

2 3t3
‘—I-‘rOth—f— HQ“FTI{[d
3
=PI + atD; + & D2 D" P!
... 0 athp 0 .. 0
01 ... 0 0 atho ... 0
— P +
0O 0 ... 1 0 0 oo at)\(NSG"FNAGi)
N0 0
0 e L 0
+
: : ‘ : (39)
2t2 y2
0 0 s 02‘ )\(NSG+NAC‘ )
o) 0 ... 0
3,3
0 N L. 0
+ 3. + .. )P—l
: i ‘ a®t3 3 '
0 0 AT A(NSGJFNAG )
atAy O 0
0 etrz 0
=p(| . . . P
0 0 ... Psariagy
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6.2. Directed Heat Kernel Computation

In the above computation defined in Eq.(39), we assume that the non-propagating ker-
nel H; is a symmetric matrix. Note that the non-propagating kernel H; for a directed
graph maybe an asymmetric matrix. If it is not symmetric or diagonalizable, the di-
agonal transformation formula can not be directly applied to solve the problem. In
this subsection, we will propose diagonalizable-matrix approximation to address this
problem. The core idea is to attempt to find multiple smaller symmetric matrices to
implement the diagonal transformation formula respectively.

Recall Subsection 4.3, we partition the activity graph AG; into M, disjoint activity
clusters of ¢;1, ci2, ..., cin,. To maintain a high-quality approximation, based on the
above-mentioned activity partitions, we split the non-propagating heat kernel H; for a
directed influence graph IG; into two matrices: H;; with all intra-cluster links and H;,
with all inter-cluster links. The intra-cluster matrix H;j; can be obviously organized as
the following block diagonal matrix.

H, O ... OO
OHy,... OO

Hij; = (40)

O O ...Hy O
O O0O... OD
where submatrices Hy, Hg, - - -, Hy, contain intra-cluster links in clusters ¢;1, ¢, .. .,
cim,, respectively. The submatrix D is the diagonal matrix D in the non-propagating
heat kernel H; in Eq.(9).

For the example of the non-propagating heat diffusion kernel H,r on the conference
influence graph in Eq.(13), we split it into the following two matrices.

H,

confl =

—0.64606 0.00967  0.00897 ' 0 0 0 ! 0 0 0 0 0
0.00967 —0.77344 0.00905 | 0 0 0 | 0 0 0 0 0
_0.00897 000905 05387, o0 _ _ o0 _ _ 0O ___©0 0 o o o
0 0 0 Z031132 0.00977 0.00947 0 0 0 0 0
0 I 0.00977 —0.57204 0.00937 ! 0 0 0 0 0
0 0 0 | 0.00947  0.00937 —2.14662 | 0 0 0 0 0
776777707777077‘770777707777077‘7—27.447507177077770777707777677
0 0 0 0 0 0 0 —2.09861 0 0 0
0 0 0 I 0 0 0 I 0 0 —0.70480 0 0
0 0 0 | 0 0 0 | 0 0 0 —~0.07801 0
0 0 0 ‘ 0 0 0 ‘ 0 0 0 0 —0.67357
41)
0 0 0 0.00408 0.00397 0.00464 45/211 28/180 0 0 15/61
0 0 0 0.00407 0.00393 0.00460 37/211 43/180 20/61 0 0
0 0 0 0.00408 0.00392 0.00443 32/211 14/180 17/61 0 0
0.00408 0.00407 0.00408 0 0 0 20/211 28/180 0 0 14/61
0.00397 0.00393 0.00392 0 0 0 26/211 28/180 9/61 0 7/61
Heonfe = 0.00464 0.00460 0.00443 0 0 0 51/211 39/180 15/61 11/11 25/61
45/88 37/100 32/63 20/62 26,70 51/141 0 0 0 0 0
28/88 43/100 14/63 28/62 28/70 39/141 0 0 0 0 0
0 20/100 17/63 0 9/70 15/141 0 0 0 0 0
0 0 0 0 0 11/141 0 0 0 0 0
15/88 0 0 14/62 770 25/141 0 0 0 0 0
(42)

Although Hj; is a block diagonal matrix, H;, Hy, -- -, Hy, and the inter-cluster ma-
trix H;; may be asymmetric matrices such that they may be non-diagonalizable ma-
trices. We attempt to find diagonalizable matrices Hj, Hy, - --, Hy and Hj; to approx-
imate these non-diagonalizable matrices respectively while minimizing the difference
between the two matrices.
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THEOREM 6.3. An n-by-n matrix A over the field F is diagonalizable if and only if
the sum of the dimensions of its eigenspaces is equal to n, which is the case if and only
if there exists a basis of F'™ consisting of eigenvectors of A.

Theorem 6.3 presents the necessary and sufficient condition whether a square ma-
trix is diagonalizable.

COROLLARY 6.4. An n-by-n matrix A is diagonalizable over the field F if it has n
distinct eigenvalues in F), i.e., if its characteristic polynomial has n distinct roots in F.
Opposite may be false.

Corollary 6.4 tells us that we can eliminate duplicate eigenvalues of a real asymmet-
ric matrix A to generate its diagonalizable approximation A’.

The following definitions and theorems give us the theoretical fundamental of find-
ing the eigenvalues of a real asymmetric matrix A by doing Schur Decomposition.

Definition 6.5. Two n-by-n square matrices A and B are called congruent if B =
PTAP for some invertible n-by-n square matrix P.

Definition 6.6. Two n-by-n real square matrices A and B are called orthogonally
similar if B = PTAP, i.e., if B = P"'AP, where P is orthogonal and B is upper quasi-
triangular.

Orthogonal similarity implies both similarity and congruence, i.e., Definition 6.6
implies Definition 6.5. An upper quasi-triangular matrix is a block upper triangular
matrix with either 1-by-1 or 2-by-2 blocks on the diagonal. Thus, B contains up to
(n? + 3n — 2)/2 non-zero elements. Definition 6.6 renders a possible solution to trans-
form a dense real matrix A with at most n? non-zero elements into a sparse matrix B
with at most (n? 4 3n —2)/2 non-zero entries. The orthogonal similarity transformation
is famous as Real Schur Decomposition, i.e., B is a real Schur form of A.

Definition 6.7. An n-by-n square matrix P is a unitary matrix if P'P = PP = 1
where I is an n-by-n identity matrix.

P is the conjugate transpose (or Hermitian transpose) of P. It is often used to trans-
form a regular matrix into an upper triangular matrix.

Definition 6.8. Two n-by-n complex square matrices A and B are called unitarily
similar if B = PHAP, i.e., if B = P 'AP, where P is unitary and B is upper triangular.

Definition 6.8 can be used to transform a dense complex matrix A with at most n?
non-zero elements into a sparse matrix B with at most n(n+1)/2 non-zero entries. The
unitary similarity transformation is also known as Complex Schur Decomposition, i.e.,
B is a complex Schur form of A.

THEOREM 6.9. If Bis a real Schur form of A, then the upper quasi-triangular ma-
trix B has a block upper triangular structure where each diagonal block is of size either
1-by-1, corresponding to a real eigenvalue, or 2-by-2, corresponding to a pair of complex
eigenvalues that are conjugates of one another.

Theorem 6.9 tells us that we can obtain all eigenvalues of A from the diagonal of B

by doing Schur Decomposition of B = P"'AP and eliminate duplicate eigenvalues to
generate a diagonalizable approximation of A. Formally, the Real Schur Decomposition
is defined as follow.

Definition 6.10. Real Schur Decomposition. If A is an n-by-n real matrix, then
there exists an n-by-n real orthogonal matrix P such that
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T (0] B22 e Bgm
PAP=B=| . . | . (43)
O O ..Bum
where B is a real upper quasi-triangular matrix, which is called a real Schur form of
A. Since B is similar to A, it has the same multiset of eigenvalues. Each diagonal block
matrix B;; is either 1-by-1 (in which case they represent real eigenvalues) or 2-by-2 (in
which case they are derived from complex conjugate eigenvalue pairs).

THEOREM 6.11. If A is an n-by-n real asymmetric matrix, then its eigenvalues are
either real or complex.

According to Theorem 6.11, there are two possible cases to be discussed separately
as follows.

Case 1: A with all real eigenvalues.

Thus, all Bjs in B are of size 1-by-1, corresponding to all eigenvalues.

B1i1 B2 ... Bin

T O By ... Bay

P AP=B=| . . | . (44)
O O ...Bmnm

According to Corollary 6.4, A is non-diagonalizable since it has duplicate eigenval-
ues. Suppose that A has s duplicate eigenvalues and n — s distinct eigenvalues, for ease
of presentation, we use a set S of positive integers represents the indices of duplicate
eigenvalues in B such that |S| =sandi € {1,2,...,n} for Vi € S.

Next, we will use Real Schur Decomposition to create a diagonalizable matrix A’
to approximate the non-diagonalizable matrix A. Since A’ is diagonalizable, we cal-
1 this problem the diagonalizable-matrix approximation problem. Recall Eq.(39), we
know that the exponential of a diagonalizable matrix can be reduce to the exponential
of eigenvalues. A good diagonalizable approximation is crucial to speed up the com-
putation of propagating heat diffusion kernel while meeting the guarantee of high-
quality approximation. Given D is a diagonal matrix consisting of eigenvalues of the
non-diagonalizable matrix A, and D’ is a diagonal form of the diagonalizable approxi-
mation A’, the matrix difference between D and D’ is measured by the Frobenius norm
of X = D’ — D. The Frobenius norm can be defined as:

IX|lr = (45)

Our goal is to find a new diagonal matrix D’ to approximate D, while constraining
A is diagonalizable. The following five steps are proposed to solve this diagonalizable-
matrix approximation problem.

— Step 1: Reduce a non-diagonalizable matrix A to an upper Hessenberg matrix H
which is zero below the first subdiagonal. The reduction can be implemented with
H-= QflAQ where Q is orthogonal.

— Step 2: Reduce the upper Hessenberg matrix H to a real Schur form B. The reduction
can be implemented with B = RTHR where R is orthogonal.
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— Step 3: A new matrix B’ is derived by substituting the s duplicate diagonal entries
By with By; +¢; for Vi € S, where e represents a very small positive number, i.e., ¢; > 0
and ¢; ~ 0, such that By; # Bj; for Vi, j € {1,2,...,n},i # j.

— Step 4: Calculate the diagonalizable-matrix approximation A" = (QR)B'(QR) .

— Step 5: Reduce the approximate matrix A’ to a diagonal matrix D’ = P~ *A’P where P
is orthogonal.

Theoretical analysis of this diagonalizable-matrix approximation is presented as fol-
low.

THEOREM 6.12. A’ is the diagonalizable approximation of A with a negligible error
represented by the Frobenius norm of X = D' — D where D' is a diagonal form of A, D
is a diagonal matrix consisting of eigenvalues of A, and diagonal entries in D' and
diagonal entries in D are in one-to-one correspondence.

Proof. Suppose that a set S of positive integers represents the indices of duplicate
eigenvalues in D such that |S| = s and i € {1,2,...,n} for Vi € S. Let D}; = Dy + ¢;
for Vi € S, where ¢; > 0 and ¢; ~ 0, the error of diagonalizable approximation can be
generated as follow.

D' —D|r =,|> (D —Dy)? (46)

i=1

Given the assumption that D}; = Dy + ¢; for Vi € S, the above equation is equivalent
to:

n n n n

> Di-Dy)?= | > Di-Dy)?+ > (Di-Dy)?=, > €e&=~0 @7

i=1 i=1,i€S i=1,igS i=1,i€S

Therefore, A’ is the diagonalizable approximation of A with a near-zero error repre-
sented by the Frobenius norm of X =D’ — D when ¢; > 0 and ¢; ~ 0 for Yi € S.

Case 2: A with both complex and real eigenvalues.
Therefore, each Bj; in B is either 1-by-1 (real eigenvalues) or 2-by-2 (complex eigen-
values).

THEOREM 6.13. Let A be an n-by-n real asymmetric square matrix. If A has com-
plex eigenvalues, then they must occur in complex conjugate pairs, meaning that if a+bi
is an eigenvalue, where a and b are real, then so is a — bi. Also the corresponding eigen-
vectors occur in conjugate pairs.

Theorem 6.13 describes that the eigenvalues of each 2-by-2 B;; are a complex conju-
gate eigenvalue pair.

Different from Case 1, A in this case has both duplicate complex eigenvalues and
duplicate real eigenvalues. In addition, its real Schur form is defined as Eq.(43) since
each diagonal block matrix B;; is either 1-by-1 or 2-by-2. Suppose that A has s duplicate
real eigenvalues, t duplicate complex eigenvalues, and n — s —t distinct eigenvalues, we
use a set S of positive integers represents the indices of 1-by-1 diagonal block contain-
ing duplicate real eigenvalues in B such that |S| = s and i € {1,2,...,m} for Vi € S.
Similarly, a set T" of positive integers denotes the indices of 2-by-2 diagonal block hold-
ing duplicate complex eigenvalues in B such that |T'| =¢tand i € {1,2,...,m} for Vi € T.
Notice that ¢ should be an even number in terms of Theorem 6.9 and Definition 6.10.
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The following nine steps are adopted to solve this diagonalizable-matrix approxima-
tion problem.

— Step 1: The same as Step 1 in Case 1.
— Step 2: The same as Step 2 in Case 1.
— Step 3: The same as Step 3 in Case 1.
— for each 2-by-2 diagonal block matrix B;; in B

—Step 4: Reduce Bj to a diagonal matrix Ej; = OjjlejjOjj where Oj; is orthogonal.

— Step 5: A new matrix EJ{J- is derived by substituting two complex conjugate eigen-
values of aj+bji and a; —bji with Ajj1 =a; —b;+9; and Ajj2 =a;—b; —9; respectively,
where a; and b; are real, J; represents a very small positive number, i.e., §; > 0 and
d; = 0, such that two approximate eigenvalues );;; and \;;, are different from other
actual or approximate eigenvalues of A.

— Step 6: Calculate the approximation ijj = OJJEJ'J Ojjfl.

—Step 7:  Substitute Bj; in B’ with Bj;.

— Step 8: The same as Step 4 in Case 1.

— Step 9: The same as Step 5 in Case 1.

THEOREM 6.14. A’ is the diagonalizable-matrix approximation of A with a negligi-
ble error represented by the Frobenius norm of X = D' — D where D' is a diagonal form
of A', D is a diagonal matrix consisting of eigenvalues of A, and diagonal entries in D’
and diagonal entries in D are in one-to-one correspondence.

Proof. Suppose that a set S of positive integers represents the indices of duplicate real
eigenvalues in D such that |S| = sand j € {1,2,...,n} forVj € S. Also a set T of positive
integers denotes the indices of duplicate complex eigenvalues in D such that |T| =t and
j€e{1,2,...,n} for Vj € T. Assuming that DJ{j = Djj +¢; for Vj € S, where ¢; > 0 and
€j = 0. Let aj, + bjri and aj, — bjii be the complex conjugate eigenvalues represented
by Dj; and Dy respectively, and aji, — b;i + 0, and a;i, — bji, — 051 be the corresponding
approximate real eigenvalues represented by DJ{j and Dy for Vj,k € T,j # k, Dj; = Dy,
where 65, > 0 and 0j;, ~ 0, the error of diagonalizable-matrix approximation can be
generated as follow.

n
D' D|jr = | > (Dj - Dy)?
j=1
n n n
= X @j-Dyr+ Y Dj-DyP+ Y (Dj-Dy)?
J=1,j€S,j¢T Jj=1,J€T,j¢S J=L1j¢S,i¢T
n
= >, (Df-Dy)?+ > (Dj; — Djj)? + (Digc — Di)?
J=1,j€S,j¢T D;j=Dyx.j,k€T,j,k&ZS
n
= Z 6? + Z (—bjk —bjri + 5jk)2 + (—bjk + bjrt — 5j;€)2
Jj=1,j€S,j¢T Djj=Du,j,k€T,5,kZS
n
= doooe+ > 2%, — 4bjidjpi ~ 0
J=1,j€8,j¢T Djj=Du,j,k€T,5,kZS

(48)
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Therefore, A’ is the diagonalizable-matrix approximation of A with a near-zero error
represented by the Frobenius norm of X = D' —D when ¢; > 0 and ¢; ~ 0 for Vj € S, and

Sk > 0and &, ~ 0 for Vi, k € T, j # k,Djj = Dig.

THEOREM 6.15. If A is a block diagonal matrix over the field F, A
diag|A1,As, - -, Ay], and the function f(t) is defined on the spectrum of A, then f(A)
dzag[f(Al), f(AQ)a e 7f(Ak)]

COROLLARY 6.16. If A is a block diagonal matrix over the field F, A =
diag[Ai, Ay, - -, Ay, then e = diag[e®, P2, ... e,

Theorem 6.15 and Corollary 6.16 describes the theoretical fundamental of fast com-
putation of matrix exponential. The exponential of H;; in Eq.(40) is thus rewritten as
follow.

eo‘tHl o ... (0] (0]
O evtHz O (0]
e(xtHu — . S (49)
0] O ...ewm QO
0 O ... O D

To sum up, we rewrite the propagating heat kernel e®Hi in Eq.(15) as diagonalizable-

matrix approximation as e*'ti in Eq.(50), where )‘S‘k represents the k** actual or ap-
proximate eigenvalue in the approximate matrix HJ' , D;; specifies the j'* diagonal

entries in the diagonal matrix D, and )}, A, ---, )\,(Nsc-‘rNAGi) are Nsg + Nag, ac-

tual or approximate eigenvalues of Hiy. Ny, Ny, ---, Ny, are the dimensions of Hj,
Hs, ---, Hy, respectively, i.e., the number of activity vertices in clusters ¢;1, ¢, ...,
cint,, respectively. The orthogonal matrices P’, P}, P, - - -, Py are used to do similarity
transformation for Hj,, H, Hy, - - -, Hy respectively. For the computation of ¢ in
Eq.(50), it is the worst case when M; = 1. In this situation, the number of matrix mul-
tiplication operations can be reduced from (I — 1) to 5 (2 regular-diagonal matrix mul-
tiplications and 3 regular matrix multiplications), which has an approximate cost of
O(N3g,+2(Nsa+Nag,)?). Therefore, we can make use of the diagonalizable-matrix ap-
proximation to speed up the propagating heat kernel computation of a directed graph.

7. EVALUATION

In this section we provide both experimental evaluation and complexity analysis of
our algorithms. We perform extensive experiments to evaluate the performance of
SI-CLUSTER on real graph datasets. All experiments were performed on a PC with
3.00GHz Core 2 Quad CPU and 8GB main memory running Red Hat Linux 5.7. To dif-
ferentiate the optimized SI-Cluster algorithm from the baseline SI-Cluster algorithm,
we refer to the optimized algorithm as SI-Cluster-Opt and our experimental result-
s show that SI-Cluster-Opt significantly improves the time complexity of SI-Cluster
baseline algorithm while maintaining high quality of clustering results. We report
the effectiveness and efficiency of our social influence based clustering algorithms:
SI-Cluster and SI-Cluster-Opt by comparing them with several state-of-the-art graph
clustering algorithms. We present three important results. First, our social influence
based clustering approach converges very quickly on several real datasets, while offer-
ing high quality of clustering results in terms of density, entropy and Davies-Bouldin
Index (DBI). Second, both SI-Cluster and SI-Cluster-Opt can scale to large graphs
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with good clustering performance and high quality clustering results, whereas exist-
ing algorithms suffer from “out of memory” problem and fail to complete due to large
intermediate result size. Third, SI-Cluster-Opt can effectively reduce the runtime of
SI-Cluster baseline algorithm by two-thirds for large datasets.
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(50)

7.1. Experimental Datasets

We use a full version of the DBLP bibliography data with 964,166 authors from all
research areas (dblp.xml, 836 MB, 05/21/2011). We build a social graph where vertices
represent authors and edges represent their collaboration relationships, and two asso-
ciated activity graphs: conference graph and keyword graph. We make use of a multi-
typed clustering framework, RankClus [Sun et al. 2009], to partition both conferences
and keywords into clusters respectively. According to the conference’s or keyword’s
clustering distribution and ranking in each cluster, we calculate the similarities be-
tween conferences or keywords. The two associated influence graphs capture how au-
thors in the social graph interact with the activity networks. We also use a smaller
DBLP collaboration network with 100,000 highly prolific authors. The third dataset
is the Amazon product co-purchasing network with 20,000 products. The two activity
networks are product category graph and customer review graph.

7.2. Comparison Methods and Evaluation

We compare SI-Cluster and SI-Cluster-Opt with three recently developed represen-
tative graph clustering algorithms, BAGC [Xu et al. 2012], SA-Cluster [Zhou et al.
2009] and Inc-Cluster [Zhou et al. 2010], and one baseline clustering algorithm, W-
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Cluster. The last three algorithms integrate entity, link and static attribute infor-
mation into a unified model. SI-Cluster is our proposed algorithm which incorporates
not only links, entities, static attributes but also multiple types of dynamic and inter-
connected activities into a unified influence-based model. The optimized version SI-
Cluster-Opt based on similarity transformation and diagonalizable-matrix approxi-
mation is also tested for the evaluation of both effectiveness and efficiency. BAGC con-
structs a Bayesian probabilistic model to capture both structural and attribute aspects
and transform the original clustering problem into a probabilistic inference problem
solved by an efficient variational algorithm. Both SA-Cluster and Inc-Cluster combine
both structural and attribute similarities in the clustering decisions by estimating the
importance of attributes. Inc-Cluster, a optimized version of SA-Cluster, generates the
same clustering results and differs only in time complexity. W-Cluster combines struc-
tural and attribute similarities using the equal weighting factors.

Evaluation Measures We use three measures of to evaluate the quality of clusters
{U,}£ | generated by different methods. The definitions of the metrics are given as
follows.

)up, ug € Ui, (up, uq) € B}

(51)
E|

‘ PR SN (R
density({U; }/21) Z

i=1

density measures the cohesiveness within clusters based on the self-influence simi-
larity (or topological structure) within the social collaboration graph. A large density
value means the clusters have cohesive intra-cluster self-influence (or structure).

An information-theoretic measure entropy reflects the homogeneity of individu-
al clusters in different semantic environments, i.e., measures how the various co-
influences (or static attributes) with individual semantics are distributed within each
cluster.

N
entropy({U ) = Z Z |U7|ent7“0py (ai, Uj) (52)
=1 Zp 1 p Jj=1 | ‘
where w; is the weight of influence graph IG;, entropy(a;,U;) = — > " | pijnlogopijn,

n; (or attribute a;) is the number of IG;’s activities (or the number of a;’s values) and
pijn 1s the percentage of vertices in cluster U; which participate in the n'" activity in
IG; (or have value a;;, on a;). entropy({U;}/£,) measures the weighted entropy from all
influence graphs (or attributes) over K clusters. A small entropy value indicates the
generated clusters have higher co-influence (or attribute) homogeneity.

Davies-Bouldin Index (DBI) measures the uniqueness of clusters with respect to the
unified similarity measure integrating the self-influence similarity and multiple co-
influence similarities. It tends to identify set of clusters that are compact and well
separated in terms of the unified similarity.

¢)

0+JJ

(53)

DBI({U}E) Z maz;i

where ¢, is the centroid of U, s(c;, ¢;) is the unified similarity between ¢; and ¢;, o,
is the average similarity of vertices in U, to c,. A clustering with high intra-cluster
similarity and low inter-cluster similarity will have a low DBI value.
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7.3. Complexity Analysis

In this subsection, we will perform some complexity analysis to demonstrate how SI-
Cluster-Opt is significantly faster than SI-Cluster and the state-of-the-art graph clus-
tering approaches. Let Ngg be the number of vertices in the social graph, N be the
number of influence graphs, Nag, be the number of vertices in the i'" activity graph,
be the highest order of Taylor series in the heat diffusion kernel calculation process in
SI-Cluster-Opt or SI-Cluster, or be the length limit of a random walk in SA-Cluster or
Inc-Cluster, K be the number of member clusters, M; be the number of activity clusters
of the i*" activity graph in SI-Cluster-Opt or SI-Cluster, ¢; be the number of iterations
in the process of influence propagation based on the non-propagating heat diffusion
kernel Hj, and ¢ be the number of iterations in the clustering process.

(1) SI-Cluster-Opt and SI-Cluster. The total cost of SI-Cluster can be expressed
as Tdiffusion,kernel + Enfluence,propagation + Tinfluence,similarity + t(Tunified,similarity +
E}ertew,assignment + Tcentroid,update + Tweight,update): where Tdiffusion,kernel is the cost
of computing N + 1 propagating heat diffusion kernels e™H eotiHi ... eotnHy
Tin fluence propagation 15 the cost of executing the influence propagating on each of N
heat diffusion kernels Hy,--- ,HN, Tinfiuence_simitarity 1 the cost of computing N co-
influence similarity matrices W1, Wa, - - - , Wy, Tyunified_similarity 15 the cost of combining
N + 1 influence-based similarity matrices, Tyerter assignment 1S the cost of assigning all
vertices to cluster centroids, Teentroidupdate 1S the cost of updating cluster centroids,
and Tiyeightupdate 15 the cost of updating weights.

Tunificd.similarity 1S equal to O(2NNZ.) since there are N scalar multiplication-
s of matrix and N matrix additions. Tyertes_assignment 1S bounded by O(KNsg) s-
ince the operation performs a linear scan of the graph vertices for each centroid.
Teentroidupdate 1S equal to O(N2;) since it needs to calculate an average similari-
ty score between each vertex and other vertices within each cluster. Tcight update 18
bounded by O(l — 1 + N) since the KKT condition calculation of a polynomial pro-
gramming problem is dominated by the solving of the variable with the highest or-
der and the solving of a linear equation is bounded by O(1). As the co-influence sim-
ilarity score between any pair of vertices based on the influence graph IG; is gen-
erated by comparing the member distribution in each of M; class, Tj, fiuence_similarity
is equal to Zf\;l N52‘GM1 T‘influence,propagation is bounded by Zfil ti(NSG + NAGi)QJ\/[i
since the influence propagation is executed on M; class synchronously in each iter-
ation. According to Eqs.(7) and (15), Tyif fusion_kerner 18 bounded by O((I — 1)N2. +
Zf\il(l —1)(Nsa + Nag,)® + 2IN3q + 27:111 21(Nsg + Nag,)?) because the propagating
heat diffusion kernel calculation consists of a series of matrix multiplications and ad-
ditions. It is clear that Tt fusion_kerner 18 the dominant factor in the clustering pro-

cess. Since T’influence,propagationa Tinfluence,similaritya Tunified,similaritya Tvertem,assignmenty
Tcentroid,update: Tweight,update < Tdiffusion,k:ernela the total cost of SI-Cluster is approxi-

mately equal to O((I — 1) N3, + Zi]il(l —1)(Nsg + Nag,)?) by only focusing on the cube
terms in sz’ffusion,kernel-

We adopt two optimization techniques, aiming at optimizing the computation of
Taylor series for the computation of propagating heat diffusion kernel: similari-
ty transformation and diagonalizable-matrix approximation in SI-Cluster-Opt. Re-
call that the similarity transformation technique is defined in Section 6.1, for any
positive order [ even if | — 400, SI-Cluster-Opt can make the total cost of prop-
agating heat kernel computation reduced from O((I — 1)N2,) to O(N2s), or from
O((I — 1)(Nsg + Nag,)?) to O((Nsg + Nag,)?) for undirected non-propagating heat
kernel. On the other hand, in terms of the diagonalizable-matrix approximation in
Section 6.2, the time complexity of propagating heat kernel computation is reduced
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to O(N3g) or O(N3g, + 2(Nsa + Nag,)?) for directed non-propagating heat kernel at
the worst case. To sum up, the total cost of SI-Cluster-Opt is approximately equal to
O(N3, + Zfil(NﬁGi +2(Nsg + Nag,)?)) at the worst case.

(2) SA-Cluster and Inc-Cluster. The total cost of SA-Cluster is equal to

t(Trandomwalk:,similarity + Tvertew,assignment + Tcentroid,update + Tweight,update)- The
cost Of Inc-Cluster 18 equal to Trandomwalk,similarity + (t - 1)Tz’ncremental,s1',milar1',ty +

t(Tverte:v,assignment + Tcentroid,update + Tweight,update)- Slmllarly, due to
Tvertem,assignment; Tcentroid,updatey Tweight,update < Trandomwalk:,similarity or
Tincremental,similarity, we mainly focus on Trandomwalk,similarity and Tincremental,similm’ity~
Trandomwalk,similarity is bounded by O((Z - 1)(NSG + Zfil NAGi)B + (2l - ]-)(NSG +
Zf\il NAGi)Q) and Tincremental,similarity is equal to Trandom'walk,similm'ity at the
worst case. We have observed that Tj.crementaisimilarity 15 about 1/3 - 2/3 of
T andomwalk_similarity 1N our experiments. Thus, by only keeping the terms with
the highest order, the total cost of SA-Cluster is approximately bounded by
O(t(l — 1)(Nsg + ZZJ\; 1 Nac,)?) and the total cost of Inc-Cluster is approximately
equal to O(t(l — 1)(Nsg + Zf\;l Nag,)?) at the worst case. However, the cost of SI-
Cluster is totally independent of the value of ¢. In addition, even if we overlook ¢, we
have noticed that (I — 1)(Nse + Y2, Nag,)? > (1= 1)N3, + SN, (1 = 1)(Nsg + Nag,)?
when each activity graph contains a lot of activities, or there are a mass of values for
each vertex attribute.

(3) BAGC. Assuming that Tg, Ty, Ty, Ty and TE represents the time complex-

ity of computing the mentioned parameters &, 7, 1, v and E respectively in Al-
gorithm 2 in the BAGC paper [Xu et al. 2012], the cost of BAGC can be ex-
pressed as t(Tg +T5+ T +Tp + TE)‘ Ts 15, T, T and T} are equal to O(KNgsg),
O(KNsg Y Nac,), O(K2N2s), O(K2NZs), and O(K Nsa Yon , Nag, + K2N32,) re-
spectively. Thus, the total cost of BAGC is equal to O(t(2K Nsg Ef\; 1 Nag, +3K2N2. +
KNsa)) ~ O(#(2KNsa SN | Nag, + 3K2N2.)). Notice that [ (the highest order of
Taylor series in SI-Cluster) is comparable to ¢t (the number of clustering iterations
in BAGC). If we ignore [ and ¢, then the cost of BAGC is approximately bound-
ed by O(2KNsg 32N, Nac, + 3K2N2,) and the cost of SI-Cluster is approximate-
ly equal to O(N3, + Zfil(NSG + Nag,)?). When K, N and N,g, are very large,
O(2KNsg Y| Nag, + 3K2N2;) > O(N3, + YV (Ns¢ + Nag,)?). For the DBLP
964,166 dataset containing 6,992 conferences and 363,352 keywords, K2N32, =
10,0002 x 964, 166% > N3 = 964,166 or K? N2, = 10,000? x 964, 1662 > Zjvzl(NAGi +
Nse)? = (6,992 + 964, 166)3 + (363, 352 + 964, 166)° when K = 10,000. When K is rela-
tively small, say K < v/Ngg, the cost of BAGC is comparable to the cost of SI-Cluster.
BAGC works very well when K, N and N,g, are very small.

7.4. Cluster Quality Evaluation

Figure 5 (a) shows the density comparison on Amazon 20,000 Products by varying the
number of clusters K = 40, 60, 80,100. The density values achieved by SI-Cluster and
SI-Cluster-Opt are very similar at different K values. This is because the Amazon
product co-purchasing network is an undirected graph and the non-propagating heat
kernel H on social graph is thus a symmetric matrix. We can directly make use of di-
agonal transformation to compute the accurate propagating heat kernel ¢®*H through
Eq.(39). Therefore, both algorithms can achieve the same self-influence similarity ma-
trix such that the similar density values are obtained by them at each of different
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Fig. 5. Cluster Quality on Amazon 20,000 Products

K values. The density values by SI-Cluster, SI-Cluster-Opt, BAGC, Inc-Cluster and
SA-Cluster remains 0.89 or higher even when K is increasing. This demonstrates that
these methods can find densely connected components. The density values of W-Cluster
is relatively lower, in the range of 0.72-0.85 with increasing K, showing that the gener-
ated clusters have a very loose intra-cluster structure. Figure 5 (b) shows the entropy
comparison on Amazon 20,000 Products with K = 40,60, 80, 100. SI-Cluster has the
lowest entropy, while SI-Cluster-Opt achieves slightly higher entropy values. Although
the Amazon product co-purchasing network is an undirected graph, recall Eq.(13), the
non-propagating heat kernel H; on influence graph is often an asymmetric matrix.
We need to utilize diagonalizable-matrix approximation to generate an approximate
propagating heat kernel ¢®Hi through Eq.(50). Thus, the generated co-influence sim-
ilarity matrix by SI-Cluster-Opt is also approximate. Other four algorithms have a
much higher entropy than SI-Cluster and SI-Cluster-Opt, since our social influence
based graph clustering framework considers not only static attributes but also mul-
tiple types of dynamic and inter-connected activities during the clustering process.
Other methods can not handle dynamic activities and only treat them as static and
isolated attributes. Figure 5 (c¢) shows the DBI comparison on Amazon 20, 000 Products
with different K values. SI-Cluster and SI-Cluster-Opt have the lowest DBI of around
0.000008 — 0.000028, while other methods have a much higher DBI than them. This
demonstrates that SI-Cluster and SI-Cluster-Opt can achieve both high intra-cluster
similarity and low inter-cluster similarity. This is because they integrate self-influence
similarity as well as co-influence similarity with the optimal weight assignment by
parameter-based optimization. They both fully utilize the connections between activ-
ities and the interactions between members and activities such that the generated
clusters not only own similar collaborative patterns but also have similar interaction
patterns with activities.

Figures 6 (a), (b) and (c) show density, entropy and DBI on DBLP with 100,000 au-
thors when we set K = 400,600,800, 1000. These three figures have similar trends
with Figures 5 (a), (b) and (c) respectively. SI-Cluster and SI-Cluster-Opt obtain al-
most the same density values, and the similar entropy values with different K values.
As shown in the figures, SI-Cluster and SI-Cluster-Opt achieve high density values
(> 0.61), which are slightly lower than that of BAGC since the probabilistic clustering
method partitions vertices into each possible cluster such that the density value by
it often increases with K. SI-Cluster and SI-Cluster-Opt achieve a very low entropy
around 2.86-3.77, which is obviously better than the other methods (> 6.35). As K in-
creases, the entropy of SI-Cluster and SI-Cluster-Opt remains stable, while the density
by them decreases. In addition, SI-Cluster and SI-Cluster-Opt achieve the lowest D-
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Fig. 7. Cluster Quality on DBLP 964,166 Authors

BI (< 0.000007) among different methods, while the DBI values by other methods are
obviously larger than > 0.000005.

Figures 7 (a), (b) and (c) show density, entropy and DBI comparisons on DBLP with
964,166 authors by varying K = 4000, 6000, 8000, 10000. Other four methods except
SI-Cluster and SI-Cluster-Opt do not work on this large dataset due to the “out of
memory” problem with our 8G main memory machine. Thus, we do not plot these four
methods in Figures 7 (a), (b) and (c¢). On the other hand, SI-Cluster and SI-Cluster-Opt
still show good performance with varying K. They achieve similar high density values
(> 0.49), much lower entropy of about 2.45-2.85, and very low DBI (= 0) for different K.

7.5. Clustering Efficiency Evaluation

Figures 8 (a), (b) and (c) show the clustering time on Amazon 20,000 Products, DBLP
100,000 and 964, 166 Authors respectively. SI-Cluster-Opt outperforms all other algo-
rithms in all experiments. When facing with an extremely large dataset, such as DBLP
964, 166 Authors, other algorithms can not work due to the “out of memory” problem,
while SI-Cluster-Opt and SI-Cluster scale well with large graphs and show good per-
formance with varying K. Thus, for BAGC, Inc-Cluster, SA-Cluster and W-Cluster we
plot their running time with oo in Figure 8 (c). We make the following observations on
the runtime costs of different methods. First, SI-Cluster-Opt significantly reduces the
runtime cost of SI-Cluster to around 1/3-1/2, while achieving almost the same cluster-
ing quality. This result shows that, with the speed-up techniques of similarity trans-
formation and diagonalizable-matrix approximation, SI-Cluster-Opt only leads to a
relatively small overhead compared with SI-Cluster. Second, SA-Cluster is obviously
worst than other methods since it needs to perform the repeating random walk dis-
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Fig. 8. Clustering Efficiency

tance calculation during each iteration of the clustering process and the distance com-
putation takes more than 80% of the total clustering time. Third, Inc-Cluster, an op-
timized version of SA-Cluster, is much slower than SI-Cluster-Opt, SI-Cluster, BAGC
and W-Cluster since it still needs to incrementally calculate the random walk distance.
Fourth, although W-Cluster compute the random walk distance only once, it still runs
on a large scale matrix. Fifth, the performance by BAGC is better than other approach-
es except SI-Cluster-Opt and SI-Cluster. Although it does not need to repeatedly com-
pute the distance matrix, it needs to iteratively update lots of temporary matrices or
interim variables and its computational cost is proportional to K2 so that it may not
work well when facing large K value. In comparison, SI-Cluster-Opt and SI-Cluster
reorganize a large scale heterogeneous network into multiple small scale subgraphs
without loss of information. They reduce the computational cost by partitioning activ-
ities into clusters with the topological information of the activity graph. Furthermore,
SI-Cluster-Opt and SI-Cluster calculate influence-based similarity matrices only once.
According to Theorems 5.8-5.11, solving [ () for a given [ is a polynomial program-
ming problem which can be sped up by existing fast polynomial programming model,
such as gradient algorithms or sequential approximation algorithms in Chapter 13
in [Hillier and Lieberman 1995].

We address the memory consumption of SI-Cluster or SI-Cluster-Opt in two steps.
First, we use an in-memory compression technique with fast compression and decom-
pression speed for handling large-scale graphs. For the DBLP 964,166 dataset con-
taining 6,992 conferences, 363,352 keywords, and 31, 962,786 heterogeneous links,
the original adjacency list storage (a txt file which is from the original dblp.xml af-
ter removing irrelevant information) is 471.7MB. With our in-memory compression,
it is only 107.7MB and reduces to less than a quarter of the original size. In addi-
tion, it takes only 1.736 seconds for read and 4.237 seconds for write on a regular
hard disk when we sequentially access this entire DBLP dataset with in-memory com-
pression turned on. This in-memory compression technique is very useful to address
large-scale graphs. Notice that we calculate the influence-based similarity matrices
Wo, W1, -, Wy in Eq.(24) only once. If there is not enough working memory, we will
write the compressed influence-based similarity matrices to disk. Similarly, we use
the same strategy to address the P matrix in SI-Cluster-Opt. We found that with com-
pression, the I/O cost is trivial compared to the computational cost. For example, the
running time by SI-Cluster and SI-Cluster-Opt on the DBLP 964,166 dataset ranges
between around 2400-6500 seconds while it takes only 1.736 seconds to sequentially
read this compressed DBLP dataset from disk to memory.

Figures 9 (a), (b) and (c) compare the clustering performance among different meth-
ods on different datasets for a fixed K = 400. The density value or the entropy value
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Fig. 9. Clustering Comparison on Different Datasets

by each of different methods increases with the dataset scalability since the bigger
the dataset with the same K is, the more vertices are included in each cluster. Thus,
the clusters from the bigger dataset are obviously denser. On the other hand, vertices
within each cluster on the bigger dataset may have more different attribute values or
more co-influences on different activities such that the generated clusters have low-
er homogeneity. To avoid to achieve the extreme clustering results, the choice of the
cluster number K should be proportional to the dataset scalability and should be in
a suitable range. According to DBI values, K = 400 fits well with DBLP 100, 000 Au-
thors. In addition, the runtime by each of different methods increases quickly with
the dataset scalability since the matrix multiplication is the dominant factor in the
clustering process and it has the time complexity of o((Nsg)?).

7.6. Clustering Convergence

Figure 10 (a) exhibits the trend of clustering convergence in terms of the £ () value on
DBLP 964,166 Authors. The f (3) value keeps decreasing and has a convex curve when
we iteratively perform the tasks of vertex assignment, centroid update and weight
adjustment during the clustering process. f (/) converges very quickly, usually in three
iterations. These are consistent with Theorems 5.8-5.11.

Figure 10 (b) shows the trend of weight updates on DBLP 964, 166 Authors with dif-
ferent K values: the social graph (red curve), the conference influence graph (green
curve) and the keyword influence graph (blue curve). We observe that the graph
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Fig. 10. Clustering Convergence on DBLP 964,166 Authors

weights converge as the clustering process converges. An interesting phenomenon is
that both the social weight and the keyword weight are increasing but the conference
weight is decreasing with more iterations. A reasonable explanation is that people
who have many publications in the same conferences may have different research top-
ics but people who have many papers with the same keywords usually have the same
research topics, and thus have a higher collaboration probability as co-authors.

7.7. Case Study

In this experiment, we examine some details of our social influence clustering results
on DBLP 964,166 Authors when we set k¥ = 100 for both conferences and keywords.
Given the predefined keyword similarity and the precalculated keyword partitions,
Table II exhibits influence scores of authors based on the social influence propagation
between a part of DBLP authors and partitions of all DBLP keywords. We only present
most prolific DBLP experts (#publications > 190) who have publications in the area
of database or data mining for ease of presentation. The influence scores in Table II
are normalized by different authors for each keyword partition. When social influence
propagation converges, each column specifies the influence distribution of different
authors in the same keyword category. This influence distribution is considered as a
local ranking result. For example, Christos Faloutsos achieves a higher ranking score
than Hector Garcia-Molina in the keyword category DM since Christos Faloutsos has
more publications with respect to DM topics and more influence interactions with DM
keywords.

Table III presents influence scores of authors normalized by different partitions of
all DBLP conferences for each author. Each row represents the social influence dis-
tribution in each conference category when the social influence propagation achieves
a equilibrium after enough time. We can look upon this social influence distribution
as a multi-label classification result with conference clusters as the training dataset.
For example, Jeffrey D. Ullman is assigned into the cluster DB with the probability of
0.8369 and partitioned into DM with the probability of 0.1631.

Table IV shows influence scores of authors normalized by different partitions of se-
lected top conferences for each author. We choose three top conferences from four re-
search areas of database (DB), data mining (DM), information retrieval (IR) and artifi-
cial intelligence (AI), respectively. The detailed conference list is, DB: SIGMOD, VLDB,
ICDE; DM: KDD, ICDM, SDM; IR: SIGIR, CIKM, ECIR; Al: IJCAI, AAAI, ECAI Ta-
ble III actually presents an unbalanced social influence propagation result since the
propagation process is based on the complete DBLP conference list. We know academic
research in the area of database has a longer history than data mining research and
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Table II. Influence Scores of Authors Normalized by Different Authors
Based on Partitions of All Keywords from DBLP

Author Cluster 1 (DB) | Cluster 2 (DM)
Elisa Bertino 0.0568 0.0249
Michael J. Carey 0.0515 0.0023
Christos Faloutsos 0.0465 0.0746
Jiawei Han 0.0585 0.0960
Theo Harder 0.0386 0.0136
Won Kim 0.0405 0.0176
Vipin Kumar 0.0146 0.0545
Tao Li 0.0116 0.0604
Bing Liu 0.0153 0.0511
Ling Liu 0.0386 0.0249
David Maier 0.0474 0.0079
Hector Garcia-Molina 0.0603 0.0047
S. Muthukrishnan 0.0323 0.0136
M. Tamer Ozsu 0.0408 0.0111
Jian Pei 0.0386 0.0653
Raghu Ramakrishnan 0.0509 0.0343
Elke A. Rundensteiner 0.0561 0.0236
Dan Suciu 0.0496 0.0111
Jeffrey D. Ullman 0.0391 0.0136
Ke Wang 0.0305 0.0572
Wei Wang 0.0192 0.0314
Xindong Wu 0.0192 0.0561
Qiang Yang 0.0201 0.0527
Philip S. Yu 0.0606 0.0991
Jeffrey Xu Yu 0.0478 0.0567
Chengqi Zhang 0.0159 0.0431

Table Ill. Influence Scores of Authors Normalized by Different Confer-
ence Partitions Based on Partitions of All Conferences from DBLP

Author Cluster 1 (DB) | Cluster 2 (DM)
Elisa Bertino 0.8034 0.1966
Michael J. Carey 0.9877 0.0123
Christos Faloutsos 0.5273 0.4727
Jiawei Han 0.5215 0.4785
Theo Hérder 0.8352 0.1648
Won Kim 0.8048 0.1952
Vipin Kumar 0.3237 0.6763
Tao Li 0.2562 0.7438
Bing Liu 0.3237 0.6763
Ling Liu 0.7351 0.2649
David Maier 0.9150 0.0850
Hector Garcia-Molina 0.9234 0.0766
S. Muthukrishnan 0.8093 0.1907
M. Tamer Ozsu 0.8677 0.1323
Jian Pei 0.5137 0.4863
Raghu Ramakrishnan 0.7265 0.2735
Elke A. Rundensteiner 0.8097 0.1903
Dan Suciu 0.8885 0.1115
Jeffrey D. Ullman 0.8369 0.1631
Ke Wang 0.4876 0.5124
Wei Wang 0.5215 0.4785
Xindong Wu 0.3790 0.6210
Qiang Yang 0.3956 0.6044
Philip S. Yu 0.5223 0.4777
Jeffrey Xu Yu 0.6010 0.3990
Chengqi Zhang 0.3970 0.6030
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Table IV. Influence Scores of Authors Normalized by Different Conference Partitions Based on
Partitions of Selected Top Conferences from DBLP

Author AT Cluster | DB Cluster | DM Cluster | IR Cluster
Elisa Bertino 0.0047 0.7135 0.0055 0.2763
Michael J. Carey 0.0015 0.9820 0.0133 0.0032
Christos Faloutsos 0.0012 0.4267 0.3950 0.1771
Jiawei Han 0.0883 0.3724 0.3766 0.1628
Theo Héirder 0.0024 0.6102 0.0044 0.3830
Won Kim 0.0133 0.8155 0.1667 0.0045
Vipin Kumar 0.2511 0.1342 0.5198 0.0949
Tao Li 0.1781 0.0673 0.3983 0.3563
Bing Liu 0.2648 0.1001 0.4004 0.2347
Ling Liu 0.0842 0.4125 0.1883 0.3150
David Maier 0.1570 0.8290 0.0117 0.0023
Hector Garcia-Molina 0.0031 0.8217 0.0075 0.1677
S. Muthukrishnan 0.0011 0.8456 0.1446 0.0087
M. Tamer Ozsu 0.0017 0.5506 0.1080 0.3397
Jian Pei 0.0876 0.3768 0.3717 0.1639
Raghu Ramakrishnan 0.0756 0.6635 0.1852 0.0756
Elke A. Rundensteiner 0.0747 0.5790 0.0056 0.3407
Dan Suciu 0.1205 0.7009 0.0034 0.1752
Jeffrey D. Ullman 0.0122 0.7183 0.1409 0.1387
Ke Wang 0.0749 0.2901 0.4368 0.1982
Wei Wang 0.0024 0.5036 0.2908 0.2032
Xindong Wu 0.3001 0.1415 0.4584 0.1000
Qiang Yang 0.3741 0.0807 0.2965 0.2487
Philip S. Yu 0.0972 0.3504 0.3763 0.1761
Jeffrey Xu Yu 0.0012 0.4860 0.2881 0.2248
Chengqi Zhang 0.3208 0.2198 0.4539 0.0067

there are more academic conferences or forums focusing on database research. Thus,
we choose the same number of top conferences for each research area to better evalu-
ate the quality of our co-influence model. For instance, Jiawei Han is assigned into the
cluster DM with the probability of 0.3766 and partitioned into DB with the probability
of 0.3724. Notice both Jiawei Han and Philip S. Yu have higher influence scores on the
conference category DB shown in Table III. However, they both achieve higher influ-
ence scores on the conference cluster DM in Table IV when we adopt a more balanced
strategy to execute the social influence propagation.

Table V exhibits the top-4 cluster list for each author on DBLP 100,000 Authors
by four graph clustering algorithms. According to [Chakraborty et al. 2013], we set
K = 24, i.e, partition authors into 24 computer science fields: AI, AIGO, ARC, BIO,
CV, DB, DIST, DM, EDU, GRP, HCI, IR, ML, MUL, NLP, NW, OS, PL, RT, SC, SE,
SEC, SIM, WWW. Thereinto, the computer science fields of AI, ALGO, DB, DIST, D-
M, IR, ML, NW, OS, PL, SEC and WWW in Table V represent Artificial Intelligence,
Algorithms and Theory, Databases, Distributed and Parallel Computing, Data Min-
ing, Information Retrieval, Machine Learning and Pattern Recognition, Networking,
Operating Systems, Programming Languages, Security and Privacy, and World Wide
Web, respectively. Since Inc-Cluster, a optimized version of SA-Cluster, generates the
same clustering results and differs only in time complexity, we put SA-Cluster and
Inc-Cluster into the same rows. In addition, SI-Cluster, BAGC, SA-Cluster and Inc-
Cluster are all partitioning-based clustering methods, i.e., each author is partitioned
into one and only one cluster. However, we can modify the above clustering algorithm-
s to generate a ranking list of the possible clusters for each vertex. For SI-Cluster,
SA-Cluster and Inc-Cluster, we sort the closest centroids for each vertex in the de-
scending order of their similarity scores and generate the ranking list of clusters. For

BAGC, we sort the variational parameter §;; (cluster membership) for each vertex in
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Table V. Top-4 Clusters for Each Author by Different Graph Clustering Algorithms

Cluster Rank 1 2 3 4
SI-Cluster DB SEC DIST | WWW
Elisa Bertino BAGC DB SEC WWW IR
SA-Cluster/Inc-Cluster DB SEC WWW IR
SI-Cluster DM DB IR Al
Jiawei Han BAGC DB DM IR Al
SA-Cluster/Inc-Cluster DB DM IR Al
SI-Cluster IR DM NW Al
Tao Li BAGC DM IR NW Al
SA-Cluster/Inc-Cluster IR DM Al NW
SI-Cluster DM IR Al ML
Bing Liu BAGC DM Al IR ML
SA-Cluster/Inc-Cluster DM IR Al DB
SI-Cluster DB DIST | WWW IR
Hector Garcia-Molina BAGC DB IR DIST | WWW
SA-Cluster/Inc-Cluster DB IR WWW | DIST
SI-Cluster DB DIST DM IR
M. Tamer Ozsu BAGC DB 0S DIST R
SA-Cluster/Inc-Cluster DB DIST 0S DM
SI-Cluster DB ALGO PL SEC
Dan Suciu BAGC DB ALGO SEC IR
SA-Cluster/Inc-Cluster DB ALGO SEC DM
SI-Cluster DB ALGO PL DM
Jeffrey D. Ullman BAGC ALGO DB PL DM
SA-Cluster/Inc-Cluster | ALGO DB PL 0S
SI-Cluster Al DM IR ML
Qiang Yang BAGC Al DM IR ML
SA-Cluster/Inc-Cluster Al DM ML IR
SI-Cluster DM DB DIST SEC
Philip S. Yu BAGC DM DB IR NW
SA-Cluster/Inc-Cluster DB DM IR NW

the descending order of their values and generate the ranking list of clusters. The
clustering results by SI-Cluster are consistent with the main research topics of each
author and the corresponding orders of research topics. However, other three cluster-
ing approaches can not always produce the correct results. This is because SI-Cluster
treats conference and keyword as author’s dynamic and inter-connected activities and
pre-partition conferences and keywords into clusters. On the other hand, other three
clustering approaches treat conference and keyword as author’s static attribute such
that they often can not generate a good similarity measure and produce a good clus-
tering result. For example, suppose that there are only two authors: A with 5 papers
on “KDD” and B with 2 publications on “ICDM”, other three clustering approaches
can not discover the relationship between two authors based on the static attributes,
since there does not exist a path between A and B through conference, whether “KDD”
or “ICDM”. However, in our SI-Cluster framework, we first partition partition “KDD”
and “ICDM?” into cluster DM, shrink multiple data mining conference vertices into a
supernode (conference cluster DM), and summarize the links between authors and con-
ference vertices as the links between authors and conference supernode. Thus, there
exists a path between A and B through this conference supernode and we will generate
a positive co-influence similarity score between A and B. In Table V, Jiawei Han has
more publications on database conferences than data mining conferences. However, by
examining the keyword similarity network, most of title keywords in his papers are
DM specific. Most importantly, SI-Cluster derives a lot of co-influence similarity scores
between Jiawei Han and other DM researchers through keyword cluster supernode.
However, in other three clustering approaches, Jiawei Han are reachable to other DM
researchers through individual keyword vertices. As discussed above, we may not gen-
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erate the correct relationship between Jiawei Han and other experts. Similar example
is Jeffrey D. Ullman, who has more publications on theory conferences and journals
than database conferences and journals. However, most of title keywords in his papers
are DB specific.

8. CONCLUSIONS

We have presented an efficient approach for social influence based clustering over het-
erogeneous information networks with four unique features. First, we define the con-
cept of influence-based similarity in terms of propagating heat diffusion kernel on both
social collaboration graph and its associated multiple influence graphs to capture mul-
tiple types of social influences through both direct and indirect social relationships.
Second, we introduce a weighted unified influence-based similarity matrix that uti-
lizes a weight function with an iterative weight refinement method to integrate self-
influence and co-influence similarities. Third, we design a dynamic learning algorithm
for social influence based graph clustering, which dynamically refines the K clusters by
continuously quantifying and adjusting the weighted contributions from different in-
formation networks until reaching convergence. Finally, we develop the SI-Cluster-Opt
algorithm to further speed up the performance of the SI-CLUSTER baseline algorithm.
We transform a sophisticated nonlinear fractional programming problem with respect
to multiple weights into a straightforward nonlinear parametric programming prob-
lem of single variable. We develop two optimization techniques on the computation of
both self-influence similarity and co-influence similarities to make the influence-based
similarity computation more efficient. Extensive experimental evaluation on three re-
al graphs demonstrates that our social influence based graph clustering approach not
only achieves a very good balance between self-influence and co-influence similarities
but also scales extremely well for clustering large graphs in terms of time complexity.
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