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Abstract 

The Order Statistic model of reliability growth offers improved 

• experimental design, and 
• flexibility in testing methodology 

compared to conventional reliability growth models. It permits pre- 
diction of operational reliability without requiring that testing be 
conducted according to the operation profile of the program input 
space. 

This paper presents the first experimental use of the Order Statistic 
model under a test plan that combines both representative and di- 
rected tests. Results suggest that this is an effective way to obtain 
quantified measures of test quality without abandoning the advan- 
tages of directed test methods. 

1 Introduction 

There is a substantial body of literature devoted to directed testing 
methods, which manipulate the choice of test inputs so as to in- 
crease the probability and/or rate of fault detection. These include 
most well-known testing methods, including functional and struc- 
tural testing, data flow coverage, mutation analysis, and domain 
testing[l, 15]. Historically, a difficulty affecting the deployment 
of these methods has been the lack of any quantified measure of 
test effectiveness with external referents (i.e., that is not based upon 
properties defined by the criterion itself). 

In contrast, a variety of reliability growth models provide quantified 
measures of test effectiveness in terms that are directly relevant to 
project management [8, 10, 14], but at the cost of restricting testing 
to representative selection, in which test data is chosen to reflect 
the operational distribution of the program's inputs. During testing, 
data is collected on the observed times between program failures 
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(or, similarly, numbers of failures within a time interval). These 
observations are fitted to one of various models, which can then be 
used to estimate the current reliability of the program. 

In [11, 13], we present an Order Statistic model of reliability 
growth. This model can employ an arbitrary mixture of program 
failure rate data, as in conventional reliability growth models with 
fault failure rate information obtained via post-mortem analysis of 
the debugged faults. The primary advantages of this model are: 

• Test planners regain the flexibility to employ their best testing 
practices, whether those involve directed testing, representa- 
tive testing, or a mixture of the two. The choice of testing 
method is no longer solely determined by the desire to predict 
operational reliability. 

• More robust experimental designs can be formulated by taking 
advantage of a wider variety of options for data collection. 

In [11], we introduced the Order Statistic model, and presented an 
experiment in which it was employed on purely representative tests, 
using program failure (interfallure time) data. The Order Statistic 
model was shown to be competitive with conventional reliability 
growth models "on their own turf". This result was reassuring, but 
the experimental design deliberately did not take advantage of the 
Order Statistic model's flexibility, as doing so would have prevented 
comparison with the other models. 

In [13], we presented an experiment in which the Order Statistic 
model was employed with fault failure rate data obtained during 
directed testing. Results of this experiment were mixed. The Order 
Statistic model fitted well to the observed data, the model proved 
useful in related data analysis such as the identification of outliers 
in the observations. But the final predictions of program reliability 
were unacceptably optimistic. 

We speculate that a major reason for the poor prediction lies in 
what we term an "integration effect". We were attempting to pre- 
dict program failure rate based entirely upon observations of the 
failure rates of individual faults. The program failure is (approx- 
imately) the sum of the failure rates of the undetected faults. We 
might make an analogy between this prediction procedure and an 
attempt to predict the value of an unknown function given informa- 
tion about its first derivative. Although the shape of the function 
can be obtained via integration, the precise values can be offset by 
an arbitrary constant. Similarly, we believe that exclusive use of 
fault failure rate data in our model allows the estimate of program 
failure rate to "drift" up or down in response to minor fluctuations 
in the set of observations. 

The obvious response to this possibility is to combine observations 
of program failure rate with observations of fault failure rates. Be- 
cause program failure rate information is easily obtained during 
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representative testing, such a combination suggests a test plan in- 
volving both representative and directed testing, which we believe 
has many advant~ ges from a methodological viewpoint anyway. 

This paper preser,ts an experiment using the Order Statistic model 
with a mixture of representative and directed testing. Section 2 re- 
views the Order ~tatistic model. Section 3 describes our experi- 
mental design, and Section 4 presents the results and our analysis. 

2 The ModeI 

2.1 Assumptions 

The Order Statist! c model is based upon the following assumptions: 

1. The fault dE section rate remains constant in the interval be- 
tween corre( tions. 

2. Faults are corrected "perfectly", without introducing new 
faults into t~ ~ software. 

3. The testing l'rocess is biased, tending to find faults with higher 
failure rates zarlier. 

4. Faults in a ~ rogram have failure rates ~ distributed with den- 
sity f(q)) ar.d cumulative distribution F(~). 

5. Failures are ndependent. 

These assumption,s are equivalent to or, in some cases, consider- 
ably relaxed froE those imposed by conventional reliability growth 
models [5]. 

Assumption 1 is common to most reliability growth models, and 
leads to the use c,f the exponential distribution to describe failure 
times after each r~pair. 

Assumption 2 in aae.ny models takes the stronger form: 

2 s Faults are cc,rrected perfectly and instantaneously. 

The Order Statis;ic model is not coupled to a particular test and 
debug process, as d so does not require instantaneous repair. It does 
assume perfect correction, a common requirement, though not a 
universal one. 

Assumption 3 replaces the more common assumption that 

3' Test selection is performed in a manner consistent with the 
distribution af inputs under eventual operation. 

This assumption generally regarded as central to reliability growth 
modeling [5], anti is used to conclude that 

3a ~ Faults are f(,und in decreasing order of failure rate (except in 
the Jelinski. Moranda and related models that assume, even 
less realistkai~y, that all faults have identical failure rates.), 
and 

3b s The rate of tailure during testing is identical to the rate of fail- 
ure under ol,eration. 

But 3a ~ is simpl) the most likely among many possible detection 
orders, and devi~ :ions from this order are almost certain in prac- 
tice. Our weaker assumption 3 leads to the same ranking of proba- 
ble detection ord.~rs. Furthermore, the use of order statistics allow 
the Order Statisti: model to correct many deviations from the most 
probable ordering: and to detect many serious deviations that cannot 
be corrected. 

3b ~ leads to the exclusive use of time to first failure as the observable 
quantity during reliability modeling. But time to first failure data is 
inherently noisy (the standard deviation of each observation is equal 
to its expected value). The Order Statistic model can be used with 
a variety of observables that provide estimates of fault or program 
failure rates. 

Assumption 4 simply indicates that the fault failure rates follow 
some distribution. In practice, applying the Order Statistic model 
currently requires a further assumption as to the particular distri- 
bution involved. To date, we have employed the log-normal dis- 
tribution because of its flexibility and its affinity for data sets that 
span many orders of magnitude. This can be compared to Little- 
wood's choice of the gamma distribution, for its similar flexibility 
[9] and can be contrasted with several models that assume that all 
fault failure rates are equal [5]. 

Assumption 5 is also nearly, if not completely, universal among 
reliability growth models. Although interactions among faults are 
known in practice, there is surprisingly little data indicating whether 
these interactions are statistically significant. Hoppa and Wilson 
have examined these interactions, but do not isolate their effects 
from differences in the fault detection order [6]. 

2.2 Definitions 

In the process of developing a software artifact, there are many po- 
tential faults that could be injected into the code. Given a set Z of 
potential faults, let the operational failure rates, ~, associated with 
the faults in Z be distributed with density f(~)  and cumulative dis- 
tribution F(~). As the software is written, some of the faults from 
Z are inserted into the code. We model this as a selection o fn  faults 
from the set Z. 

At any point in the test process, we will have detected and removed 
zero or more of these faults. Let [q)i]n=l be the debugging sequence, 
the sequence of operational fault failure rates in the order in which 
the corresponding faults have been (or will be) repaired.l 

Fault failure rates and program failure rates (~,) are related. Assum- 
ing independent behavior by different faults, then after repairing k 
faults, we have: 

n 
xk = 1 -  I-I <1 -* i )  

i=k+l 
If the fault failure rates are small, 

~'k ~' ~ ~i 
i=k + 1 

From ~'k we can easily obtain estimates of the time to next failure 
and of the program reliability. Unfortunately, this is not a partic- 
ularly useful expression of Xk because it depends upon the failure 
rates of the faults that remain undetected. We therefore move to 
consider the derivation of alternate estimators for ~,k. 

2.3 Order Statistics 

The debugging sequence [~i]in=l is ordered according to the order in 
which faults are repaired. Consider the possibility of sorting these 

lit  is actually only essential that the observed faults be so or- 
dered, but it is convenient to extrapolate this sequence so that we 
can describe our progress at any time in terms of the number of 
faults detected. 
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failure rates into ascending order by value. 2 Let [~i:n]in=l denote 
the sequence obtained by sorting the debugging sequence into as- 

cending order. ~i:n is called the i th order statistic of the debugging 
sequence for a sample of size n. 

The distribution of the ~r:n is characterized by the density function 
[3] 

( n )Fr-l(~)f( , ) ( l_F(d~))n-r  (1) fr:n(~P) = r r 

with the cumulative distribution 

Fr:n({~) : ~ rt • i Fi(~)(1 - F(Cp)) n-i (2) 

After repair of k faults, we can therefore predict the failure rate of 
the next fault as E(~n-k:n), and can estimate the current program 
failure rate as 

n 

~k : 1-- l"I (1-E(~n-i:n)) 
i=k + 1 

or, if the remaining fault failure rates, are small, 

~'k : ~ E(l~n-i:n) 
i=k+ l 

2.4 A Debugging-Based Modeling Process  

We advocate a reliability estimation process in which 

1. Programs are tested using mixture of representative and di- 
rected tests. The choice of mixture would be made largely for 
economic and test quality reasons, rather than simply to facil- 
itate reliability modeling. 

2. As repairs are made, data is collected on ~,'s and/or ~'s, as 
appropriate. 

3. Periodically, the ~, and ~ data are fitted to the ordered statistic 
reliability growth model. 

Inputs to the Order Statistic model fitting process consist of esti- 
mates of program failure rates after the repair of k faults and/or 
estimates of the failure rates of individual faults. 

These estimates can be performed in a variety of ways as described 
in [11, 13]. 

2.5 Applicability 

2.5.1 Representative Testing 

Representative testing clearly satisfies our assumption that the test- 
ing process by biased by failure rate. Conventional reliability 
growth models have assumed that the debugging sequence (the or- 
der in which faults are found) occurs in decreasing order of failure 
rate. In practice, exact adherence to this order is unlikely. Hoppa 
and Wilson have argued that many models are extremely sensitive 
to permutations in the debugging sequence [6]. 

Under the Order Statistic model, however, even if faults are found 
out of order, the explicit sorting of ~'s eventually corrects this per- 
mutation. (If only ~, data has been collected, then we are no better 
off nor worse than conventional models.) 

2Descending order would be more appropriate for a testing sce- 
nario, but the traditional definition of order statistics employs as- 
cending order. 

2.5.2 Directed Testing 

Advocates of representative testing have frequently assumed that 
directed testing finds faults in an arbitrary order unrelated to their 
operational failure rates [2, 7]. We are unaware of any experimen- 
tal support for this assumption, and, in [11], we discuss a number 
of reasons for regarding this assumption with skepticism. The Or- 
der Statistic model can actually be applied without invoking the 
assumption of a biased test process, though we do not expect the 
results to be as useful in practice [11]. 

We believe it far more reasonable that some correlation will exist 
between the order in which faults are detected during directed test- 
ing and the operational failure rates of those faults. We propose the 
following: 

Ordered Testing Property: For a given directed testing method, 
as we approach coverage of the method, the set of k faults 
revealed will be approximately the k faults with the largest 
individual operational failure rates. 

This property allows for the possibility that testing to some cov- 
erage criterion may indeed find faults in unpredictable orders (e.g., 
depending upon the order in which the testers choose to cover state- 
ments, branches, data flow interactions, or whatever). But the ag- 
gregate set of faults found under a criteria should exhibit the desired 
bias toward more frequently occurring faults. 

In [11] we report on one project for which the hypothesis that the 
orders of fault detection under directed and representative testing 
are uncorrelated was rejected with a statistical confidence of 99.7%. 

3 Experimental Design 

3.1 The Data Set 

The basis for this study was a data set obtained in prior research 
conducted by Wild, Zeil, et al.[16], where the authors tested the 
Launch-Intercept-Control (LIC) software system [4] using both 
representative methods and a particular directed testing method 
known as Knowledge-Driven Functional Testing (KDFT), a tech- 
nique that combines expert information about the software domain 
with conventional functional testing. 

In the original experiment, 100,000 tests were generated according 
to the operational input distribution and the number of occurrences 
of each discovered fault was recorded. The resulting operation fault 
failure rate estimates appear in the "Random" column of Figure 1. 

The KDFT technique produces a number of test categories, each of 
which must be exercised at least k times for a level-k KDFT cover- 
age. 100 test cases were randomly generated for each test category. 
Again, the number of failures for each fault was observed. The 
highest failure rate for a given fault in any test category is appears 
in the "KDFT" column of Figure 1. In this experiement, this rate is 
used to estimate the probability of a fault's being detected during 
a 1-test-per-category KDFT coverage. (This estimate, in fact, is bi- 
ased toward lower rates, because it takes only a single category into 
account for any fault.) 

As noted earlier, most reliability models assume that faults are 
found in decreasing order of failure rate, but deviations from this 
sequence are almost certain in practice. To examine the effects 
that different debugging sequences can have upon reliability esti- 
mation, simulated debugging sequences were generated from the 
failure rate data and the resulting failure rate data was used as input 
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Faut 
# 

--E5 
3.1 
3.2 
3.3 
3.4 
6•I 
6.2 
6.3 
7.1 
8,1 
8,2 
9,1 
9.2 
11.1 
12.1 
12.:: 
13.1 
14.1 
14.:; 
16.1 
16.:; 
17.1 
17.:~ 
18.1 
19.1 
20.1 
20.2 
21.1 
21.2 
22.1 
22.2 
22.3 
23. l 
23.2 
24.1 
25.1 
25.2 
25.3 
26•1 
26•2 
26.3 
26•4 
26•5 
26.6 
26•7 

# Failures / # Tests 
KDFr Random 

(100 tests) (106 tests) 
0 .000002 

1.0 .000135 
1.0 .000195 
1.0 .000537 

0 .000006 
1.0 .000607 
.89 .000511 
1.0 .000032 

0 .000071 
1.0 .000225 
1.0 .000098 
.71 .000047 
.15 .000006 
.46 .000554 
1.0 •000356 

0 .000071 
0 .000004 

1.0 .001297 
0 .000071 

1.0 .000028 
0 .000034 
0 .000201 
0 .000076 
0 .000008 

1.0 .000264 
1.0 .000323 
.46 .000697 
1.0 .000085 

0 .000007 
1.0 .006551 
1.0 .001735 
1.0 .001735 
1.0 .000072 

0 .000008 
1.0 .000260 
1.0 .000014 
1.0 .000080 
• 19 .000003 
1.0 .000140 
1.0 .000009 

0 .000001 
1.0 .000006 
1.0 .000004 
• 15 .000368 
.15 .000243 

Figure 1: Directed (KDFT) versus Representative [16] 

into selected reliability growth models. The process of generating 
the simulated debugging sequences is described in the next section. 

3.2 Mixed Testing Methods 

Four simulated debugging sequences for both representative testing 
and a mixed representative-and-direct approach to testing were gen- 
erated from the failure rate data of Figure 1. The mixed approach 
was modeled as using representative methods at the start of test- 
ing and switching to directed methods later. Although somewhat 
unconventional, this plan offers significant advantages especially 
when very high reliability is sought [11, 13]. 

The mixed method data was used as input into the Order Statistics 
model• The representative testing data was used as input into the 
Jelinski-Moranda model (or the Musa Basic model, which in this 
treatment is equivalent), and the Musa Log model• 

3.3 Generating Representative 
Debugging Sequences 

The generation of debugging sequences from representative test- 
ing involved simulating the execution of 100,000 representative test 
cases. This number of representative test cases is the same number 
of cases generated and executed in [16]. For each simulated test 
case in this experiment, the probability of exposing a given fault 
was dictated by the operational failure rate of that fault. 

For example, if given fault in the program had an operational fail- 
ure rate of .000002, then on each iteration of the simulation (1- 
100,000), a random number between 1 and 1,000,000 was gener- 
ated. If the value of this random number was less than or equal to 
2 (i.e., 1,000,000..000002), then this fault was considered to be 
revealed by this simulated test case, and the failure time (iteration 
number) was recorded. 

Simulating 100,000 test cases iterations resulted in a set of sys- 
tem failure times that were converted to interfailure times, and then 
to program failure rates. The resulting debugging sequences are 
shown in Figure 2. Note that for most faults there are significant dif- 
ferences between the failure rates obtained by replicated measure- 
ment (in the "Random" column of Figure I) and the rates obtained 
by the simulated TTFF technique of Figure 2. These differences are 
to be expected, given the exponential distribution of TTFF, and il- 
lustrate our concern about the noise level associated with this, the 
most common data collection technique for reliability modeling. 

3.4 Generating Mixed Debugging Sequences 

The process of simulating a mixed approach to testing was some- 
what more involved than for purely representative testing. 

3.4.1 Determining the Testing Cross-Over Point 

Before simulating a mixed method testing process, the point at 
which simulated testing would switch from representative methods 
to directed methods had to be identified. The actual determination 
of this cross-over point would, in practice, be made by testers when 
they feel that representative testing is starting to"take too long". For 
this experiment, the cross-over from representative methods to di- 
rected methods was made when the first interfailure time exceeding 
1000 tests was observed. 
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Sequence 1 
Fault Failure Rate 
12.2 0.3333333 
24.1 0.0344828 
22.2 0.0322581 
22.1 0.0526316 
22.3 0.0128205 
14.2 0.1250000 
20.2 0.0909091 
14.1 0.0024390 
6.2 0.0476190 
8.2 0.0036232 
26.6 0.0135135 
20.1 0.0136986 
3.2 0.0012953 
12.1 0.0023041 
6.1 0.0344828 
3.3 0.0062893 
6.3 0.1428571 
11.1 0.0039370 
3.1 0.0053763 
19.1 0.0285714 
21.1 0.0046296 
8.1 0.3333333 
26.1 0.0013245 
17.1 0.0015432 
7.1 0.0025974 
17.2 0.0004836 
26.7 0.0015152 
23.1 0.0001931 
13.1 0.0000548 
25.1 0.0003589 
9.1 0.0003834 
26.2 0.0006345 
3.4 0.0001058 
16.1 0.0003194 
25.3 0.0007133 
23.2 0.0000544 
18.1 0.0045872 
16.2 0.0000851 
9.2 0.0000910 

Sequence 2 Sequence 3 
Fault Failure Rate Fault Failure Rate 
20.2 0.0232558 24.1 0.0500000 
6.1 0.0312500 22.1 0.0172414 
14.1 0.0079365 22.2 0.0027933 
22.2 0.0108696 14.1 0.0588235 
22.1 0.0208333 3.2 0.0434783 
26.6 0.0109890 22.3 0.0714286 
14.2 0.0066225 6.1 0.0035211 
17.1 0.0086207 12.1 0.2500000 
24.1 0.0119048 20.2 0.0082645 
9.1 0.0030581 23.1 0.0031250 
12.1 0.0833333 17.1 0.0034364 
21.1 0.0400000 11.1 0.1250000 
22.3 0.0043668 6.2 0.0022371 
3.3 0.0038168 3.3 0.0022422 
25.2 0.0049261 3.1 0.3333333 
11.1 0.0036232 8.1 0.0106383 
6.2 0.0029499 26.7 0.0016103 
26.7 0.0027322 20.1 0.0025510 
20.1 0.0007849 26.6 0.0021277 
3.2 0.0003922 26.4 0.0004348 
19.1 0.0625000 8.2 0.0035587 
8.1 0.0004666 6.3 0.0013477 
23.1 0.0081967 7.1 0.0019231 
26.1 0.0003253 14.2 0.0112360 
8.2 0.0006262 21.1 0.0005845 
16.1 0.0009606 19.1 0.0019685 
7.1 0.0013587 17.2 0.0009615 
3.1 0.0004953 16.1 0.0019380 
26.5 0.0000910 26.1 0.0005599 
12.2 0.0007692 12.2 0.0002147 
6.3 0.0001166 25.2 0.0003804 
3.4 0.0001420 9.2 0.0002263 
17.2 0.0000757 9.1 0.0001856 
16.2 0.0001149 21.2 0.0001381 
25.1 0.0000329 25.3 0.0001907 

16.2 0.0004218 
13.1 0.0001182 
23.2 0.0000231 

Sequence 4 
Fault Failure Rate 
22.1 0.0476190 
24.1 0.0555556 
14.1 0.0121951 
22.2 0.0103093 
26.6 0.0072464 
3.3 0.0555556 
6.1 0.0054054 
26.7 0.2000000 
22.3 0.0147059 
16.2 0.0227273 
19.1 0.0588235 
12.1 0.0011198 
17.1 0.0034483 
11.1 0.0013699 
8.1 0.0072464 
23.1 0.0033898 
6.2 0.0277778 
20.2 0.0078125 
8.2 0.0020080 
3.1 0.0029762 
21.1 0.0029940 
20.1 0.0026954 
9.1 0.0007225 
7.1 0.0009681 
25.2 0.0027701 
26.1 0.0007862 
17.2 0.0016129 
3.2 0.0001279 
14.2 0.0005299 
12.2 0.0058480 
26.5 0.0004502 
26.4 0.0000615 
6.3 0.0000967 
26.2 0.0000799 
25.1 0.0000845 
18.1 0.0002861 

Figure 2: Simulated Debugging Sequences m Representative Testing 

Repr. 

Directed, 
pass 1 

pass 2 
pass 3 
pass 4 
pass 5 

Debugging Sequence 
1 2 3 4 

Faults Detected Faults Detected Faults Detected Faults Detected 
12.224.1 22.222.1 22.3 
14.2 20.2 14.1 6.2 8.2 
26.6 20.1 3.2 12.1 6.1 
3.3 6.3 11.1 3.1 19.1 
21.1 8.1 26.1 17.1 7.1 
17.2 

~ .26 .1  14.122.222.1 
26.614.217.124.19.1 
12.121.122.33.325.2 
11.16.226.720.1 

24.1 22.1 22.2 14.1 3.2 
22.3 6.1 12.1 20.2 23.1 
17.1 11.1 6.23.3 3.1 8.1 
26.7 20.1 26.6 26.4 

22.1 24.1 14.1 22.226.6 
3.3 6.1 26.7 22.3 16.2 
19.1 12.1 17.1 11.1 8.1 
23.1 6.2 20.2 8.2 3.1 
21.1 20.1 9.1 

9.2 16.1 23.1 25.1 25.2 3.1 3.2 6.3 8.1 8.2 16.1 6.3 8.2 9.2 16.1 19.1 3.2 6.3 16.1 25.1 25.2 
25.3 26.2 26.4 26.5 19.1 23.1 25.1 25.3 26.1 21.1 25.1 25.2 25.3 26.1 26.1 26.2 26.4 26.5 

26.2 26.4 26.5 26.2 26.5 
9.1 26.7 9.2 9.1 

25.3 

9.2 

Figure 3: Simulated Debugging Sequences m Mixed Representative and Directed Testing 
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3.4.2 Determining Fault Exposure Under Mixed 
Testing 

For each mixed debugging sequence, the representative failure rate 
data for the seq:ence is taken from the corresponding generated 
representative debugging sequence. Thus, the data in each gener- 
ated mixed testi~lg set matches the data in the corresponding gen- 
erated represents.tire testing set up until the crossover point. For 
example, in the first pair of generated debugging sequences, the 
first 26 values ol the representative data set are identical to the first 
26 values of the r'nixed data set. 

After reaching Qe cross-over point (1000 tests without a failure), 
the behavior of :he software when executing five passes through 
the refined funcl onal test cases of [16] was simulated. (Although 
most coverage cl~teria are satisfied by a single instance of each dis- 
tinct test class, tae KDFT method specifically explored the effects 
of requiring mul:iple instances.) Typically, the first pass through 
the directed test ;uite usually ended up finding over ninety percent 
of the faults that were found during the five iterations. 

For each pass, th ~ probability of that fault's being revealed is taken 
from the occurre ace rate listed in the "KDFT" column of Figure 1. 
The resulting dd~ugging sequence s are given in Figure 3. This fig- 
ure presents the ;~st of faults detected, in the order of detection. For 
the purpose of t lis experiment, faults found under representative 
testing are assuned to have been observed with the same program 
failure rates as i a the corresponding debugging sequence of Fig- 
ure 2. The rate al which faults are detected during directed testing is 
not used by the Order Statistic model. Faults found under directed 
testing are assoc.ated with fault failure rates from the "Random" 
column of Figur: 1. This is consistent with the use of a focussed, 
replicated sampling process to determine the fault failure rate, as 
described in [11, 13]. Note that some directed test passes after the 
first did not reve:.l any new faults. 

3.5 Fitting 

After the data se"s had been generated, they were used as input to 
several reliabilit3 models and the results were compared. Maximum 
likelihood estim~ tots for the Order Statistic model are unknown, so 
we employ least• squares estimation. For consistency, we chose to 
employ least-squ ares for all models in this study. 

The fitting error : n all cases was computed as 

~ ( predictedi-observedi ~ 2 
e = ~, observedi ) ' 

i=l 

(3) 

normalizing all e'rors to treat each prediction with equal weight. 

4 Results 

The analysis of t ae models consisted of generating OP (Observed 
versus Predicted~ plots for each model for each data set, comparing 
the best fits for e~ch model for each complete data set, and compar- 
ing the stability c.f the models using parameter progression plots. 

4.1 Predictive Accuracy Of The Models 

Figures 4-7 shov~ the OP plots that were obtained for each model 
for each debuggiag sequence. Looking at these plots, it is evident 
that Order Statis:ics model has fewer points plotted than do the 
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Figure 7: OP Plots For Debugging Sequence Four 

Model 
Set 1 
Set 2 
Set 3 
Set 4 

JM ML OS 
21.9155 18.43406 15.24542 
15.91654 8.871714 7.095273 
15.46484 13.69872 11.33527 
17.21274 13.63313 10.99466 

Figure 8: Average Error For The OP Plots 

other models. This difference stems from the Ordered Testing Prop- 
erty. Under purely representative testing, every fault that is found 
is represented on the OP plot by its program failure rate. The Order 
Directed Testing Property, however, dictates that predicted program 
failure rates will only have meaning under directed testing as test- 
ing nears coverage. For this reason, instead of plotting 10-15 points 
corresponding to the faults found under directed testing, only 1-5 
points are plotted on the OP plot - one for each prediction made 
following a directed testing coverage pass that revealed additional 
faults. 

The sum of the squared normalized error (Equation 3) for each 
model was averaged over the number of predictions. These average 
errors are shown in Figure 8. It is difficult to tell much difference 
between the models simply by looking at the plots, but the data in 
Figure 8 indicates that the Order Statistics model and the Musa Log 
model perform similarly. Both of these models performed better 
than the Jelinski-Moranda model. 

4.2 Best Fits For Each Model 

Figure 9 shows the fit of each model to the full data sets for de- 
bugging sequence 1. (Plots for the other debugging sequences are 
available in [12].) 

One feature of note is the discontinuity present in the plots for the 
Order Statistics model. This discontinuity is caused by the switch 
from representative testing to directed testing in the mixed method 
approach to testing. When representative testing is used, the pro- 
gram failure rates are plotted. Once testing switches to directed 
methods, fault failure rates are plotted. Therefore, the discontinuity 
in the best fit plot reflects the fact that program failure rates values 
are generally an order of magnitude (or more) larger than fault fail- 
ure rate values. Combination of these two different quantities into a 
single fitting process without biasing the results was accomplished 
via the normalization of equation (3). 

Upon examination of the best fit plots and the data in Figure 10, 
it is apparent that performance of the Order Statistics model when 
fitting to the entire data set compares favorably to the other models. 
For all of the test sets, the error measure for the Order Statistics 
model is similar to or better than the error measure for the Musa 
Log model. The error measures for the Order Statistics model and 
the Musa Log model are much better than the error measures for 
the Jelinski-Moranda model. 

One of the most important observations to be made about the best 
fit plots is that the Order Statistics model does a very good job of fit- 
ting to the fault failure rates present in the mixed method data sets. 
The fact that the fault failure rates are sorted into descending order 
by the Order Statistics model, along with the fact that the fault fail- 
ure rate observations are visibly less noisy than the program failure 
rate observations seems to improve the goodness of fit. 

4.3 Parameter Progressions For Each Model 

We examined the progressive values of the fitted model parameters 
as successive data points were added to each debugging sequence. 
Detailed plots can be found in [12]. These progressions provide 
insight into the stability of each model in the face of perturbations 
to the input. 

None of the models exhibited particularly wild swings in parameter 
values except for the initial stages of sequence 1. The final parame- 
ter values of the Jelinski-Moranda and Order Statistic models were 
largely unaffected by the debugging sequence, but the final parame- 
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ter values for the Musa log model showed more variation, indicating 
that this model appears more sensitive to permutations in the debug- 
ging sequence. Such sensitivity has been reported by Hoppa and 
Wilson [6], though they found the Jelinski-Moranda model even 
more sensitive. Factors that may account for this difference are: 

• Our study uses debugging sequences that are much more likely 
to occur in practice. 

• Our use of least-squares estimators may be more robust than 
the numerical procedures for maximum likelihood used by 
Hoppa and Wilson, which frequently failed to find any fit for 
some models. 

The Jelinski-Moranda and Order Statistic models assume that a pro- 
gram contains a finite number of faults, while the Musa Logarithmic 
model assumes that the number of faults is infinite. The progression 
of predicted values for N, the number of faults, under the two finite 
methods is interesting. A typical progression for Jelinski-Moranda 
(Figure 11) exhibits thresholding: the estimate for N almost always 
increases as new data is added. 

For the Order statistic model, similar thresholding was seen on de- 
bugging sequences 2 and 3, but on the other sequences the Order 
Statistic model tended to establish a more conservative "plateau" 
(Figure 12) until late in the process when a series of much smaller 
failure rates was encountered. 

5 Conclusions 

The data presented here support the contention that the Order Statis- 
tic model is a viable approach when combining directed and repre- 
sentative testing. 

Model JM ML OS 
Le t  1 30.3649 24.8865 18.738 
Set 2 22.0017 11.7156 11.7305 
Set 3 24.0289 20.3609 15.9356 
Set 4 25.1962 17.5946 13.5606 

Figure 10: Er ror  For The Fits To The Full  Data Set 
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The quality of pre.tictions from the Order Statistics model under 
mixed testing and t he Musa Log model under representative testing 
are very similar. E a ~  of these models seem to provide better fits 
and predictive perf. ~rmance than the Jelinski-Moranda model. 

An important diffel ence between the Order Statistics model and the 
Musa Log model, ]" awever, is that the the Order Statistics Model re- 
quired far fewer te~,: cases to generate its failure set, because it used 
a mixed method alvroach to testing that utilized directed testing. 
Of course, since it i s more expensive to generate a directed test case 
than a representati~ ~ test case, this advantage may be somewhat off- 
set or negated. Nor etheless, the use of multiple testing methods for 
reliability assessmt,nt should yield a more robust and comprehen- 
sive testing process than would be obtained if a single method were 
used. 
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