
An Experiment in Estimating Reliability Growth Under Both
Representative and Directed Testing

Brian Mitchell and Steven J. Zeil

Old Dominion University
Department of Computer Science

Norfolk, VA 23529-0162

mitch_c @ cs.odu.edu, zeil @ cs.odu.edu

Abstract

The Order Statistic model of reliability growth offers improved

• experimental design, and
• flexibility in testing methodology

compared to conventional reliability growth models. It permits pre-
diction of operational reliability without requiring that testing be
conducted according to the operation profile of the program input
space.

This paper presents the first experimental use of the Order Statistic
model under a test plan that combines both representative and di-
rected tests. Results suggest that this is an effective way to obtain
quantified measures of test quality without abandoning the advan-
tages of directed test methods.

1 Introduction

There is a substantial body of literature devoted to directed testing
methods, which manipulate the choice of test inputs so as to in-
crease the probability and/or rate of fault detection. These include
most well-known testing methods, including functional and struc-
tural testing, data flow coverage, mutation analysis, and domain
testing[l, 15]. Historically, a difficulty affecting the deployment
of these methods has been the lack of any quantified measure of
test effectiveness with external referents (i.e., that is not based upon
properties defined by the criterion itself).

In contrast, a variety of reliability growth models provide quantified
measures of test effectiveness in terms that are directly relevant to
project management [8, 10, 14], but at the cost of restricting testing
to representative selection, in which test data is chosen to reflect
the operational distribution of the program's inputs. During testing,
data is collected on the observed times between program failures

This work was supported by grant NAG- 1-439 from the NASA
Langley Research Center and grant CCR-9312386 from the Na-
tional Science Foundation.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, lne. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
ISSTA 98 Clearwater Beach Florida USA
Copyright 1998 0-89791-971-8/98/03..$5.00

(or, similarly, numbers of failures within a time interval). These
observations are fitted to one of various models, which can then be
used to estimate the current reliability of the program.

In [11, 13], we present an Order Statistic model of reliability
growth. This model can employ an arbitrary mixture of program
failure rate data, as in conventional reliability growth models with
fault failure rate information obtained via post-mortem analysis of
the debugged faults. The primary advantages of this model are:

• Test planners regain the flexibility to employ their best testing
practices, whether those involve directed testing, representa-
tive testing, or a mixture of the two. The choice of testing
method is no longer solely determined by the desire to predict
operational reliability.

• More robust experimental designs can be formulated by taking
advantage of a wider variety of options for data collection.

In [11], we introduced the Order Statistic model, and presented an
experiment in which it was employed on purely representative tests,
using program failure (interfallure time) data. The Order Statistic
model was shown to be competitive with conventional reliability
growth models "on their own turf". This result was reassuring, but
the experimental design deliberately did not take advantage of the
Order Statistic model's flexibility, as doing so would have prevented
comparison with the other models.

In [13], we presented an experiment in which the Order Statistic
model was employed with fault failure rate data obtained during
directed testing. Results of this experiment were mixed. The Order
Statistic model fitted well to the observed data, the model proved
useful in related data analysis such as the identification of outliers
in the observations. But the final predictions of program reliability
were unacceptably optimistic.

We speculate that a major reason for the poor prediction lies in
what we term an "integration effect". We were attempting to pre-
dict program failure rate based entirely upon observations of the
failure rates of individual faults. The program failure is (approx-
imately) the sum of the failure rates of the undetected faults. We
might make an analogy between this prediction procedure and an
attempt to predict the value of an unknown function given informa-
tion about its first derivative. Although the shape of the function
can be obtained via integration, the precise values can be offset by
an arbitrary constant. Similarly, we believe that exclusive use of
fault failure rate data in our model allows the estimate of program
failure rate to "drift" up or down in response to minor fluctuations
in the set of observations.

The obvious response to this possibility is to combine observations
of program failure rate with observations of fault failure rates. Be-
cause program failure rate information is easily obtained during

32

http://crossmark.crossref.org/dialog/?doi=10.1145%2F271775.271784&domain=pdf&date_stamp=1998-03-01

representative testing, such a combination suggests a test plan in-
volving both representative and directed testing, which we believe
has many advant~ ges from a methodological viewpoint anyway.

This paper preser,ts an experiment using the Order Statistic model
with a mixture of representative and directed testing. Section 2 re-
views the Order ~tatistic model. Section 3 describes our experi-
mental design, and Section 4 presents the results and our analysis.

2 The ModeI

2.1 Assumptions

The Order Statist! c model is based upon the following assumptions:

1. The fault dE section rate remains constant in the interval be-
tween corre(tions.

2. Faults are corrected "perfectly", without introducing new
faults into t~ ~ software.

3. The testing l'rocess is biased, tending to find faults with higher
failure rates zarlier.

4. Faults in a ~ rogram have failure rates ~ distributed with den-
sity f(q)) ar.d cumulative distribution F(~).

5. Failures are ndependent.

These assumption,s are equivalent to or, in some cases, consider-
ably relaxed froE those imposed by conventional reliability growth
models [5].

Assumption 1 is common to most reliability growth models, and
leads to the use c,f the exponential distribution to describe failure
times after each r~pair.

Assumption 2 in aae.ny models takes the stronger form:

2 s Faults are cc,rrected perfectly and instantaneously.

The Order Statis;ic model is not coupled to a particular test and
debug process, as d so does not require instantaneous repair. It does
assume perfect correction, a common requirement, though not a
universal one.

Assumption 3 replaces the more common assumption that

3' Test selection is performed in a manner consistent with the
distribution af inputs under eventual operation.

This assumption generally regarded as central to reliability growth
modeling [5], anti is used to conclude that

3a ~ Faults are f(,und in decreasing order of failure rate (except in
the Jelinski. Moranda and related models that assume, even
less realistkai~y, that all faults have identical failure rates.),
and

3b s The rate of tailure during testing is identical to the rate of fail-
ure under ol,eration.

But 3a ~ is simpl) the most likely among many possible detection
orders, and devi~ :ions from this order are almost certain in prac-
tice. Our weaker assumption 3 leads to the same ranking of proba-
ble detection ord.~rs. Furthermore, the use of order statistics allow
the Order Statisti: model to correct many deviations from the most
probable ordering: and to detect many serious deviations that cannot
be corrected.

3b ~ leads to the exclusive use of time to first failure as the observable
quantity during reliability modeling. But time to first failure data is
inherently noisy (the standard deviation of each observation is equal
to its expected value). The Order Statistic model can be used with
a variety of observables that provide estimates of fault or program
failure rates.

Assumption 4 simply indicates that the fault failure rates follow
some distribution. In practice, applying the Order Statistic model
currently requires a further assumption as to the particular distri-
bution involved. To date, we have employed the log-normal dis-
tribution because of its flexibility and its affinity for data sets that
span many orders of magnitude. This can be compared to Little-
wood's choice of the gamma distribution, for its similar flexibility
[9] and can be contrasted with several models that assume that all
fault failure rates are equal [5].

Assumption 5 is also nearly, if not completely, universal among
reliability growth models. Although interactions among faults are
known in practice, there is surprisingly little data indicating whether
these interactions are statistically significant. Hoppa and Wilson
have examined these interactions, but do not isolate their effects
from differences in the fault detection order [6].

2.2 Definitions

In the process of developing a software artifact, there are many po-
tential faults that could be injected into the code. Given a set Z of
potential faults, let the operational failure rates, ~, associated with
the faults in Z be distributed with density f(~) and cumulative dis-
tribution F(~). As the software is written, some of the faults from
Z are inserted into the code. We model this as a selection o fn faults
from the set Z.

At any point in the test process, we will have detected and removed
zero or more of these faults. Let [q)i]n=l be the debugging sequence,
the sequence of operational fault failure rates in the order in which
the corresponding faults have been (or will be) repaired.l

Fault failure rates and program failure rates (~,) are related. Assum-
ing independent behavior by different faults, then after repairing k
faults, we have:

n
xk = 1 - I-I <1 -* i)

i=k+l
If the fault failure rates are small,

~'k ~' ~ ~i
i=k + 1

From ~'k we can easily obtain estimates of the time to next failure
and of the program reliability. Unfortunately, this is not a partic-
ularly useful expression of Xk because it depends upon the failure
rates of the faults that remain undetected. We therefore move to
consider the derivation of alternate estimators for ~,k.

2.3 Order Statistics

The debugging sequence [~i]in=l is ordered according to the order in
which faults are repaired. Consider the possibility of sorting these

lit is actually only essential that the observed faults be so or-
dered, but it is convenient to extrapolate this sequence so that we
can describe our progress at any time in terms of the number of
faults detected.

33

failure rates into ascending order by value. 2 Let [~i:n]in=l denote
the sequence obtained by sorting the debugging sequence into as-

cending order. ~i:n is called the i th order statistic of the debugging
sequence for a sample of size n.

The distribution of the ~r:n is characterized by the density function
[3]

(n)Fr-l(~)f(,) (l_F(d~))n-r (1) fr:n(~P) = r r

with the cumulative distribution

Fr:n({~) : ~ rt • i Fi(~)(1 - F(Cp)) n-i (2)

After repair of k faults, we can therefore predict the failure rate of
the next fault as E(~n-k:n), and can estimate the current program
failure rate as

n

~k : 1-- l"I (1-E(~n-i:n))
i=k + 1

or, if the remaining fault failure rates, are small,

~'k : ~ E(l~n-i:n)
i=k+ l

2.4 A Debugging-Based Modeling Process

We advocate a reliability estimation process in which

1. Programs are tested using mixture of representative and di-
rected tests. The choice of mixture would be made largely for
economic and test quality reasons, rather than simply to facil-
itate reliability modeling.

2. As repairs are made, data is collected on ~,'s and/or ~'s, as
appropriate.

3. Periodically, the ~, and ~ data are fitted to the ordered statistic
reliability growth model.

Inputs to the Order Statistic model fitting process consist of esti-
mates of program failure rates after the repair of k faults and/or
estimates of the failure rates of individual faults.

These estimates can be performed in a variety of ways as described
in [11, 13].

2.5 Applicability

2.5.1 Representative Testing

Representative testing clearly satisfies our assumption that the test-
ing process by biased by failure rate. Conventional reliability
growth models have assumed that the debugging sequence (the or-
der in which faults are found) occurs in decreasing order of failure
rate. In practice, exact adherence to this order is unlikely. Hoppa
and Wilson have argued that many models are extremely sensitive
to permutations in the debugging sequence [6].

Under the Order Statistic model, however, even if faults are found
out of order, the explicit sorting of ~'s eventually corrects this per-
mutation. (If only ~, data has been collected, then we are no better
off nor worse than conventional models.)

2Descending order would be more appropriate for a testing sce-
nario, but the traditional definition of order statistics employs as-
cending order.

2.5.2 Directed Testing

Advocates of representative testing have frequently assumed that
directed testing finds faults in an arbitrary order unrelated to their
operational failure rates [2, 7]. We are unaware of any experimen-
tal support for this assumption, and, in [11], we discuss a number
of reasons for regarding this assumption with skepticism. The Or-
der Statistic model can actually be applied without invoking the
assumption of a biased test process, though we do not expect the
results to be as useful in practice [11].

We believe it far more reasonable that some correlation will exist
between the order in which faults are detected during directed test-
ing and the operational failure rates of those faults. We propose the
following:

Ordered Testing Property: For a given directed testing method,
as we approach coverage of the method, the set of k faults
revealed will be approximately the k faults with the largest
individual operational failure rates.

This property allows for the possibility that testing to some cov-
erage criterion may indeed find faults in unpredictable orders (e.g.,
depending upon the order in which the testers choose to cover state-
ments, branches, data flow interactions, or whatever). But the ag-
gregate set of faults found under a criteria should exhibit the desired
bias toward more frequently occurring faults.

In [11] we report on one project for which the hypothesis that the
orders of fault detection under directed and representative testing
are uncorrelated was rejected with a statistical confidence of 99.7%.

3 Experimental Design

3.1 The Data Set

The basis for this study was a data set obtained in prior research
conducted by Wild, Zeil, et al.[16], where the authors tested the
Launch-Intercept-Control (LIC) software system [4] using both
representative methods and a particular directed testing method
known as Knowledge-Driven Functional Testing (KDFT), a tech-
nique that combines expert information about the software domain
with conventional functional testing.

In the original experiment, 100,000 tests were generated according
to the operational input distribution and the number of occurrences
of each discovered fault was recorded. The resulting operation fault
failure rate estimates appear in the "Random" column of Figure 1.

The KDFT technique produces a number of test categories, each of
which must be exercised at least k times for a level-k KDFT cover-
age. 100 test cases were randomly generated for each test category.
Again, the number of failures for each fault was observed. The
highest failure rate for a given fault in any test category is appears
in the "KDFT" column of Figure 1. In this experiement, this rate is
used to estimate the probability of a fault's being detected during
a 1-test-per-category KDFT coverage. (This estimate, in fact, is bi-
ased toward lower rates, because it takes only a single category into
account for any fault.)

As noted earlier, most reliability models assume that faults are
found in decreasing order of failure rate, but deviations from this
sequence are almost certain in practice. To examine the effects
that different debugging sequences can have upon reliability esti-
mation, simulated debugging sequences were generated from the
failure rate data and the resulting failure rate data was used as input

34

Faut

--E5
3.1
3.2
3.3
3.4
6•I
6.2
6.3
7.1
8,1
8,2
9,1
9.2
11.1
12.1
12.::
13.1
14.1
14.:;
16.1
16.:;
17.1
17.:~
18.1
19.1
20.1
20.2
21.1
21.2
22.1
22.2
22.3
23. l
23.2
24.1
25.1
25.2
25.3
26•1
26•2
26.3
26•4
26•5
26.6
26•7

Failures / # Tests
KDFr Random

(100 tests) (106 tests)
0 .000002

1.0 .000135
1.0 .000195
1.0 .000537

0 .000006
1.0 .000607
.89 .000511
1.0 .000032

0 .000071
1.0 .000225
1.0 .000098
.71 .000047
.15 .000006
.46 .000554
1.0 •000356

0 .000071
0 .000004

1.0 .001297
0 .000071

1.0 .000028
0 .000034
0 .000201
0 .000076
0 .000008

1.0 .000264
1.0 .000323
.46 .000697
1.0 .000085

0 .000007
1.0 .006551
1.0 .001735
1.0 .001735
1.0 .000072

0 .000008
1.0 .000260
1.0 .000014
1.0 .000080
• 19 .000003
1.0 .000140
1.0 .000009

0 .000001
1.0 .000006
1.0 .000004
• 15 .000368
.15 .000243

Figure 1: Directed (KDFT) versus Representative [16]

into selected reliability growth models. The process of generating
the simulated debugging sequences is described in the next section.

3.2 Mixed Testing Methods

Four simulated debugging sequences for both representative testing
and a mixed representative-and-direct approach to testing were gen-
erated from the failure rate data of Figure 1. The mixed approach
was modeled as using representative methods at the start of test-
ing and switching to directed methods later. Although somewhat
unconventional, this plan offers significant advantages especially
when very high reliability is sought [11, 13].

The mixed method data was used as input into the Order Statistics
model• The representative testing data was used as input into the
Jelinski-Moranda model (or the Musa Basic model, which in this
treatment is equivalent), and the Musa Log model•

3.3 Generating Representative
Debugging Sequences

The generation of debugging sequences from representative test-
ing involved simulating the execution of 100,000 representative test
cases. This number of representative test cases is the same number
of cases generated and executed in [16]. For each simulated test
case in this experiment, the probability of exposing a given fault
was dictated by the operational failure rate of that fault.

For example, if given fault in the program had an operational fail-
ure rate of .000002, then on each iteration of the simulation (1-
100,000), a random number between 1 and 1,000,000 was gener-
ated. If the value of this random number was less than or equal to
2 (i.e., 1,000,000..000002), then this fault was considered to be
revealed by this simulated test case, and the failure time (iteration
number) was recorded.

Simulating 100,000 test cases iterations resulted in a set of sys-
tem failure times that were converted to interfailure times, and then
to program failure rates. The resulting debugging sequences are
shown in Figure 2. Note that for most faults there are significant dif-
ferences between the failure rates obtained by replicated measure-
ment (in the "Random" column of Figure I) and the rates obtained
by the simulated TTFF technique of Figure 2. These differences are
to be expected, given the exponential distribution of TTFF, and il-
lustrate our concern about the noise level associated with this, the
most common data collection technique for reliability modeling.

3.4 Generating Mixed Debugging Sequences

The process of simulating a mixed approach to testing was some-
what more involved than for purely representative testing.

3.4.1 Determining the Testing Cross-Over Point

Before simulating a mixed method testing process, the point at
which simulated testing would switch from representative methods
to directed methods had to be identified. The actual determination
of this cross-over point would, in practice, be made by testers when
they feel that representative testing is starting to"take too long". For
this experiment, the cross-over from representative methods to di-
rected methods was made when the first interfailure time exceeding
1000 tests was observed.

35

Sequence 1
Fault Failure Rate
12.2 0.3333333
24.1 0.0344828
22.2 0.0322581
22.1 0.0526316
22.3 0.0128205
14.2 0.1250000
20.2 0.0909091
14.1 0.0024390
6.2 0.0476190
8.2 0.0036232
26.6 0.0135135
20.1 0.0136986
3.2 0.0012953
12.1 0.0023041
6.1 0.0344828
3.3 0.0062893
6.3 0.1428571
11.1 0.0039370
3.1 0.0053763
19.1 0.0285714
21.1 0.0046296
8.1 0.3333333
26.1 0.0013245
17.1 0.0015432
7.1 0.0025974
17.2 0.0004836
26.7 0.0015152
23.1 0.0001931
13.1 0.0000548
25.1 0.0003589
9.1 0.0003834
26.2 0.0006345
3.4 0.0001058
16.1 0.0003194
25.3 0.0007133
23.2 0.0000544
18.1 0.0045872
16.2 0.0000851
9.2 0.0000910

Sequence 2 Sequence 3
Fault Failure Rate Fault Failure Rate
20.2 0.0232558 24.1 0.0500000
6.1 0.0312500 22.1 0.0172414
14.1 0.0079365 22.2 0.0027933
22.2 0.0108696 14.1 0.0588235
22.1 0.0208333 3.2 0.0434783
26.6 0.0109890 22.3 0.0714286
14.2 0.0066225 6.1 0.0035211
17.1 0.0086207 12.1 0.2500000
24.1 0.0119048 20.2 0.0082645
9.1 0.0030581 23.1 0.0031250
12.1 0.0833333 17.1 0.0034364
21.1 0.0400000 11.1 0.1250000
22.3 0.0043668 6.2 0.0022371
3.3 0.0038168 3.3 0.0022422
25.2 0.0049261 3.1 0.3333333
11.1 0.0036232 8.1 0.0106383
6.2 0.0029499 26.7 0.0016103
26.7 0.0027322 20.1 0.0025510
20.1 0.0007849 26.6 0.0021277
3.2 0.0003922 26.4 0.0004348
19.1 0.0625000 8.2 0.0035587
8.1 0.0004666 6.3 0.0013477
23.1 0.0081967 7.1 0.0019231
26.1 0.0003253 14.2 0.0112360
8.2 0.0006262 21.1 0.0005845
16.1 0.0009606 19.1 0.0019685
7.1 0.0013587 17.2 0.0009615
3.1 0.0004953 16.1 0.0019380
26.5 0.0000910 26.1 0.0005599
12.2 0.0007692 12.2 0.0002147
6.3 0.0001166 25.2 0.0003804
3.4 0.0001420 9.2 0.0002263
17.2 0.0000757 9.1 0.0001856
16.2 0.0001149 21.2 0.0001381
25.1 0.0000329 25.3 0.0001907

16.2 0.0004218
13.1 0.0001182
23.2 0.0000231

Sequence 4
Fault Failure Rate
22.1 0.0476190
24.1 0.0555556
14.1 0.0121951
22.2 0.0103093
26.6 0.0072464
3.3 0.0555556
6.1 0.0054054
26.7 0.2000000
22.3 0.0147059
16.2 0.0227273
19.1 0.0588235
12.1 0.0011198
17.1 0.0034483
11.1 0.0013699
8.1 0.0072464
23.1 0.0033898
6.2 0.0277778
20.2 0.0078125
8.2 0.0020080
3.1 0.0029762
21.1 0.0029940
20.1 0.0026954
9.1 0.0007225
7.1 0.0009681
25.2 0.0027701
26.1 0.0007862
17.2 0.0016129
3.2 0.0001279
14.2 0.0005299
12.2 0.0058480
26.5 0.0004502
26.4 0.0000615
6.3 0.0000967
26.2 0.0000799
25.1 0.0000845
18.1 0.0002861

Figure 2: Simulated Debugging Sequences m Representative Testing

Repr.

Directed,
pass 1

pass 2
pass 3
pass 4
pass 5

Debugging Sequence
1 2 3 4

Faults Detected Faults Detected Faults Detected Faults Detected
12.224.1 22.222.1 22.3
14.2 20.2 14.1 6.2 8.2
26.6 20.1 3.2 12.1 6.1
3.3 6.3 11.1 3.1 19.1
21.1 8.1 26.1 17.1 7.1
17.2

~ .26 .1 14.122.222.1
26.614.217.124.19.1
12.121.122.33.325.2
11.16.226.720.1

24.1 22.1 22.2 14.1 3.2
22.3 6.1 12.1 20.2 23.1
17.1 11.1 6.23.3 3.1 8.1
26.7 20.1 26.6 26.4

22.1 24.1 14.1 22.226.6
3.3 6.1 26.7 22.3 16.2
19.1 12.1 17.1 11.1 8.1
23.1 6.2 20.2 8.2 3.1
21.1 20.1 9.1

9.2 16.1 23.1 25.1 25.2 3.1 3.2 6.3 8.1 8.2 16.1 6.3 8.2 9.2 16.1 19.1 3.2 6.3 16.1 25.1 25.2
25.3 26.2 26.4 26.5 19.1 23.1 25.1 25.3 26.1 21.1 25.1 25.2 25.3 26.1 26.1 26.2 26.4 26.5

26.2 26.4 26.5 26.2 26.5
9.1 26.7 9.2 9.1

25.3

9.2

Figure 3: Simulated Debugging Sequences m Mixed Representative and Directed Testing

36

3.4.2 Determining Fault Exposure Under Mixed
Testing

For each mixed debugging sequence, the representative failure rate
data for the seq:ence is taken from the corresponding generated
representative debugging sequence. Thus, the data in each gener-
ated mixed testi~lg set matches the data in the corresponding gen-
erated represents.tire testing set up until the crossover point. For
example, in the first pair of generated debugging sequences, the
first 26 values ol the representative data set are identical to the first
26 values of the r'nixed data set.

After reaching Qe cross-over point (1000 tests without a failure),
the behavior of :he software when executing five passes through
the refined funcl onal test cases of [16] was simulated. (Although
most coverage cl~teria are satisfied by a single instance of each dis-
tinct test class, tae KDFT method specifically explored the effects
of requiring mul:iple instances.) Typically, the first pass through
the directed test ;uite usually ended up finding over ninety percent
of the faults that were found during the five iterations.

For each pass, th ~ probability of that fault's being revealed is taken
from the occurre ace rate listed in the "KDFT" column of Figure 1.
The resulting dd~ugging sequence s are given in Figure 3. This fig-
ure presents the ;~st of faults detected, in the order of detection. For
the purpose of t lis experiment, faults found under representative
testing are assuned to have been observed with the same program
failure rates as i a the corresponding debugging sequence of Fig-
ure 2. The rate al which faults are detected during directed testing is
not used by the Order Statistic model. Faults found under directed
testing are assoc.ated with fault failure rates from the "Random"
column of Figur: 1. This is consistent with the use of a focussed,
replicated sampling process to determine the fault failure rate, as
described in [11, 13]. Note that some directed test passes after the
first did not reve:.l any new faults.

3.5 Fitting

After the data se"s had been generated, they were used as input to
several reliabilit3 models and the results were compared. Maximum
likelihood estim~ tots for the Order Statistic model are unknown, so
we employ least• squares estimation. For consistency, we chose to
employ least-squ ares for all models in this study.

The fitting error : n all cases was computed as

~ (predictedi-observedi ~ 2
e = ~, observedi) '

i=l

(3)

normalizing all e'rors to treat each prediction with equal weight.

4 Results

The analysis of t ae models consisted of generating OP (Observed
versus Predicted~ plots for each model for each data set, comparing
the best fits for e~ch model for each complete data set, and compar-
ing the stability c.f the models using parameter progression plots.

4.1 Predictive Accuracy Of The Models

Figures 4-7 shov~ the OP plots that were obtained for each model
for each debuggiag sequence. Looking at these plots, it is evident
that Order Statis:ics model has fewer points plotted than do the

I t

0.1

~c 0,01

0,001

0.0001

1 e-05

1e-Q6
le-06

O r d e r S t a t ~ k : s M o d e l

.,...
! ' "

• . , I

DJrocte~l."+
. , "

, f J

• j . . " "
....-"

• .." ..,," % • • o

y - "

y , . . 'Y

Y
y , "

10-05 0.0001 0.001 0,01 0.1
O b s e r v e d P r o g r a m F a i l u r e Rate

J e l i n s k i - M o r s n d a M O d e l

0,1

0.01

0.001

o.

0.0001

le-OS

./"
Ie-06 ""

1o-06

1

0.1

, . - "
/,-"

. I "
..-"

, J
• . . " • •

• , / . , - / *
e ,,,,"

, , / •

/ , - " , *, • • •

. . / "
. . , "

. • l . . . n . . . t . • . , . . . , , .

10-05 0.0001 0.001 0.01 0.1
O b s e r v e d P r o g r a m F a i l u r e Rate

M U s e L o g M o d e l

l
n: 0.01

i 0,001

te-05

. / / /

le-C~ " "
Ie-06

¢,-"

• / 4 / o

• . . - •

/. ,"
/ %

7"" • • ~

10-05 0,0001 0.001 0.01 0.1
O b s e r v e d P r o g r a m Failtlre Rate

Figure 4: OP Plots For Debugging Sequence One

37

0,1

CC 0 .01

~ 0.001
E
~ 0.0001

1 ~ - 0 5

lO-06
le-06

0.1

0.01

0.001

0.0001

1 0 - 0 5

O r d e r S ta t i s t l c~ M o d e l

. R a p r e s e n t a t ~ v e . ~ " " ; "
D i r e c t e d " +

. . . * " "

../..'""

~ . b ' *

...- .+.."
....*'"

.-"
..."

...'"
o.." .."

. . . . ," ++

, , , I , , I - - - ' - - - ' • - - ' • •
1 e - 0 5 0 .0001 0 .001 0.01 0 .1

O b s e r v e d P r o g r a m Fa i l u re R a t e

J e l l n s k P M o r a n d a M o d e l
. . . , . . . , . . . , . . . , . . . , . - / .

/ 1 /

/ /

/ "
/ / 1

/ / "

/,.-/
• /

/ •

° •/'~°o° o °

. . , "

, . i . 1 . - / ' ' ' "

• . . , . . . , , , . B . . , i . . , , . .

l e - 0 5 0 ,0001 0 .001 0 .01 0.1
O b s e r v e d P r o g r a m F a i l u r e R a t e

M u s a L o g M o d e l

1 0 * 0 6

l e . 0 6

0 .01

E 0 .001

0 , 0 0 0 1

I e -O5

e ,
o / * / , j "

..,.~ • ° .
o . : •

3 . / ~ o °
/ "

/ ,

f /

, . 1 "

i / "

@
e

1 0 - 0 6 " " ' ' " " ' ' " " ' ' " " " ' " " " ~ " ' '

1 6 - 0 6 1 0 - 0 5 0 .0001 0 .001 0 .01 0.1
O b s e r v e d P r o g r a m Fa i l u re R a t e

O r d e r S ta t ~ t l c s M o d e l
1 . . . , - . - , • - . , . - . , • . . , • . ..

R e p r e s e n t a t i v e , ¢ ' ' "
D i r e c t e ~ . " +

. / , . . ' "

0.1 ...*"

../""
/"

.."
/..**

1 0 . 0 5 + . , . " " +

. . . ' " '

1 8 - 0 6 l e . 0 5 0 .0001 0 .001 0 .01 0.1
O b S e r v e d P r o g r a m F a i l u r e R a t e

J e t i n s k l - M o r a n d a M o d e l
1 • • , . • . , . . , • . , . . . , . . .

/ / "

, ./"

0.1 . ' "

77"
/ 7 "

/ /
/

• / * "

/ /

/ /
I e - 0 5 . i , -

1 0 - 0 6 " " ' " " " ' " " " ' " " ' " " " ' " "
l o - 0 6 l e * 0 S 0 .0001 0 .001 0 .01 0 .1

O b s e r v e d P r o g r a m F a i l u r e R a t e
MUSS L o g M o d e l

1 • - - , . - . , . . . , • . - , • . . , . . / ; ,

0 .1 . , "

/ "

• / ' /

/.~/~ • $ o o
o

• . ~ - ' ~ •

° / / "

I e.05 . . . , - ' I

/ . / ' /
l o - 0 6 • - ' - • - ' - - - ' - , , I , , I , ,

l o - 0 6 l o - 0 5 0 .0001 0 .001 0 .01 0.1
O b s e r v e d P r o g r a m Fa i l u re R a t e

0.01

0.001

0 .0001

0.01

E~ 0.001

0 .0001

0 .01

E
0.001

f
~ 0.0001

Figure 5: O P Plots For Debugging Sequence Two Figure 6: O P Plots For Debugging Sequence Three

38

0.1

~. 0.01

0.001

i 0.0001

1 e-05

, , Y

le-O6 "" '
le-06

1 •

Order Statistics Model

Represen ta t i ve P""
Dlrecte,d," +

.'"

y..
..-."

y-

....~"'+ ° , °
/ . . ."

,...."

. " "

. - ' "

..- +
. - -

y " ÷

. . l . . . , . , , l . . . ,

le-C 0.0001 0.001 0.01
Observed Program Failure Rate

JeltnskFMoranda Model
• . , . . . , . . . ,

~. 0,01

. ,e~ ¢ • 0.001 " o
o

/ " : o
o.oooti .:.(

.•.-• $
, f

1 o-05 / - /

lo-06 • • - , . , , , I • . • ' - - - '
le-06 le~31 0.0001 0.001 0.01

Observed Program Failure Rate
Muse Log Mode l

. * * I . I ,

0.1

. . . , • . . -

. ~ , P "

I • . - ,

0.1

0.01

~ 0.001

f
~ 0.0001

/ - "

. / . "

1 e-O5

• . I *

0.1

1 e -06

1o-O0

. . . , . . . , . " / ~

/ , "

I
/ , / "

, j "
• 7 "

o . / e " ~ ' , ¢
j / • < t

• / ' / " o~

. . / , " $

f -

/ Y "
/.."

./,,"

10-1) 0.0001 0.001

e

. . i . . . , . .

0,01 0.1
Observed Program Failure Rate

Figure 7: OP Plots For Debugging Sequence Four

Model
Set 1
Set 2
Set 3
Set 4

JM ML OS
21.9155 18.43406 15.24542
15.91654 8.871714 7.095273
15.46484 13.69872 11.33527
17.21274 13.63313 10.99466

Figure 8: Average Error For The OP Plots

other models. This difference stems from the Ordered Testing Prop-
erty. Under purely representative testing, every fault that is found
is represented on the OP plot by its program failure rate. The Order
Directed Testing Property, however, dictates that predicted program
failure rates will only have meaning under directed testing as test-
ing nears coverage. For this reason, instead of plotting 10-15 points
corresponding to the faults found under directed testing, only 1-5
points are plotted on the OP plot - one for each prediction made
following a directed testing coverage pass that revealed additional
faults.

The sum of the squared normalized error (Equation 3) for each
model was averaged over the number of predictions. These average
errors are shown in Figure 8. It is difficult to tell much difference
between the models simply by looking at the plots, but the data in
Figure 8 indicates that the Order Statistics model and the Musa Log
model perform similarly. Both of these models performed better
than the Jelinski-Moranda model.

4.2 Best Fits For Each Model

Figure 9 shows the fit of each model to the full data sets for de-
bugging sequence 1. (Plots for the other debugging sequences are
available in [12].)

One feature of note is the discontinuity present in the plots for the
Order Statistics model. This discontinuity is caused by the switch
from representative testing to directed testing in the mixed method
approach to testing. When representative testing is used, the pro-
gram failure rates are plotted. Once testing switches to directed
methods, fault failure rates are plotted. Therefore, the discontinuity
in the best fit plot reflects the fact that program failure rates values
are generally an order of magnitude (or more) larger than fault fail-
ure rate values. Combination of these two different quantities into a
single fitting process without biasing the results was accomplished
via the normalization of equation (3).

Upon examination of the best fit plots and the data in Figure 10,
it is apparent that performance of the Order Statistics model when
fitting to the entire data set compares favorably to the other models.
For all of the test sets, the error measure for the Order Statistics
model is similar to or better than the error measure for the Musa
Log model. The error measures for the Order Statistics model and
the Musa Log model are much better than the error measures for
the Jelinski-Moranda model.

One of the most important observations to be made about the best
fit plots is that the Order Statistics model does a very good job of fit-
ting to the fault failure rates present in the mixed method data sets.
The fact that the fault failure rates are sorted into descending order
by the Order Statistics model, along with the fact that the fault fail-
ure rate observations are visibly less noisy than the program failure
rate observations seems to improve the goodness of fit.

4.3 Parameter Progressions For Each Model

We examined the progressive values of the fitted model parameters
as successive data points were added to each debugging sequence.
Detailed plots can be found in [12]. These progressions provide
insight into the stability of each model in the face of perturbations
to the input.

None of the models exhibited particularly wild swings in parameter
values except for the initial stages of sequence 1. The final parame-
ter values of the Jelinski-Moranda and Order Statistic models were
largely unaffected by the debugging sequence, but the final parame-

39

G)

n-

0.1

0.01

0.001

0 . 0 ~ 1

1 e-05

1 e-06
0

LS Fit - S e q u e n c e 1
I i i i ! I i

Represen ta t i ve (p rogram fa i lu re rate) o
,~ Di rected (fau l t fa i lu re rate) +

O r d e r Stat ist ic
,~ <> Je l i nsk i -Moranda

<> M u s a Logar i thmic

~ , <' <> o

, ,~ .~ " , . @ 0 @

""":- ' : . : . . . ,e, ,¢,

"'':'::-:L: o ,e,
" '- .L:--.. <>

.. ~","..~ 0
. :,......~'.-:....::. , . , ~ : ¢ ,

+ + =.~ ~ o
<> + ~ ' ~ - . . '0'

'4- ~ . .

I I I I I I I

5 10 15 20 25 30 35
Fai lure N u m b e r

Figure 9: Best Fits For Debugging Sequence 1

40

ter values for the Musa log model showed more variation, indicating
that this model appears more sensitive to permutations in the debug-
ging sequence. Such sensitivity has been reported by Hoppa and
Wilson [6], though they found the Jelinski-Moranda model even
more sensitive. Factors that may account for this difference are:

• Our study uses debugging sequences that are much more likely
to occur in practice.

• Our use of least-squares estimators may be more robust than
the numerical procedures for maximum likelihood used by
Hoppa and Wilson, which frequently failed to find any fit for
some models.

The Jelinski-Moranda and Order Statistic models assume that a pro-
gram contains a finite number of faults, while the Musa Logarithmic
model assumes that the number of faults is infinite. The progression
of predicted values for N, the number of faults, under the two finite
methods is interesting. A typical progression for Jelinski-Moranda
(Figure 11) exhibits thresholding: the estimate for N almost always
increases as new data is added.

For the Order statistic model, similar thresholding was seen on de-
bugging sequences 2 and 3, but on the other sequences the Order
Statistic model tended to establish a more conservative "plateau"
(Figure 12) until late in the process when a series of much smaller
failure rates was encountered.

5 Conclusions

The data presented here support the contention that the Order Statis-
tic model is a viable approach when combining directed and repre-
sentative testing.

Model JM ML OS
Le t 1 30.3649 24.8865 18.738
Set 2 22.0017 11.7156 11.7305
Set 3 24.0289 20.3609 15.9356
Set 4 25.1962 17.5946 13.5606

Figure 10: Er ror For The Fits To The Full Data Set

160

140

120

100

80

6O

40

20,
18

Sequence 2 - JelinskI-Mora~la MOdel

• ~ • • o • e o

o r o T " , , , ,
Number Of Failures

Figure 11: Jelinski-Moranda N Progression

3 6

40

160

140

120

100

80

• • •
e

60

4O

i
20 18 20 16

Sequence 4 - OS Model

o o o o o o o o

. e
e *

Number Of Failures

Figure 12: Order Statistic N Progression

The quality of pre.tictions from the Order Statistics model under
mixed testing and t he Musa Log model under representative testing
are very similar. E a ~ of these models seem to provide better fits
and predictive perf. ~rmance than the Jelinski-Moranda model.

An important diffel ence between the Order Statistics model and the
Musa Log model,]" awever, is that the the Order Statistics Model re-
quired far fewer te~,: cases to generate its failure set, because it used
a mixed method alvroach to testing that utilized directed testing.
Of course, since it i s more expensive to generate a directed test case
than a representati~ ~ test case, this advantage may be somewhat off-
set or negated. Nor etheless, the use of multiple testing methods for
reliability assessmt,nt should yield a more robust and comprehen-
sive testing process than would be obtained if a single method were
used.

References

[1] B. Beizer. Software Testing Techniques. Van Nostrand Rein-
hold, second ~xlition, 1990.

[2] R. H. Cobb lnd H. D. Mills. Engineering software under
statistical qmlity control. IEEE Software, 7(6):44-54, Nov.
1990.

[3] H. A. David. Order Statistics. John Wiley and Sons, New
York, NY, sec and edition, 1981.

[4] J. R. Dunhat~l. Experiments in software reliability: Life-
critical applications. IEEE Transactions on Software Engi-
neering, pages 110-123, Jan. 1986.

[5] W. Farr. Soft,~vare reliability modeling survey. In M. R. Lyu,
editor, Handbook of Software Reliability Engineering, pages
71-I 17. IEEE Computer Society Press, 1996.

[6] M.A. Hoppa and L. W. Wilson. Some effects of fault recovery
order on soft.~,are reliability models. In Fi32h International
Symposium o,z Software Reliability Engineering (ISSRE 94),
pages 338-3L2, Monterey, CA, Nov. 1994. IEEE Computer
Society press

[7] R. C. Linger Cleanroom process model. IEEE Software,
11(2):50-58, Mar. 1994.

[8] B. Littlewood. Theories of software reliability: How good are
they and how can they be improved? IEEE Transactions on
Software Eng?neering, SE--6(5):489-500, Sept. 1980.

[9] B. Littlewood. Stochastic reliability-growth: A model for
fault-removal in computer-programs and hardware-designs.
IEEE Transactions on Reliability, R-30(4):313-320, Oct.
1981.

[10] M. R. Lyu, editor. Handbook of Software Reliability Engi-
neering. IEEE Computer Society Press, 1996.

[11] B. Mitchell and S. J. Zeil. A reliability model combining rep-
resentative and directed testing. In Proceedings of the 18t h In-
ternational Conference on Software Engineering, pages 506-
514, Berlin, Mar. 1996. IEEE Computer Society Press.

[12] B. Mitchell and S. J. Zeil. An experiment in estimating reli-
ability growth under both representative and directed testing.
Technical Report TR-97-31, Old Dominion University, July
1997.

[13] B. Mitchell and S. J. Zeil. Modeling the reliability growth of
non-representative testing. Annals of Software Engineering,
4:11-29, 1997.

[14] J. D. Musa, A. Iannino, and K. Okumoto. Software Relia-
bility: Measurement, Prediction, Application. McGraw-Hill,
New York, NY, 1987.

[15] L. J. White. Software testing and verification. In M. Yovits,
editor, Advances In Computers, volume 26, pages 335-391.
Academic Press, Inc., London, UK, 1987.

[16] C. Wild, S. Zeil, J. Chen, and G. Feng. Employing accumu-
lated knowledge to refine test cases. Software Testing, Verifi-
cation, and Reliability, 2(2):53-68, July 1992.

41

