

Automation of Analog IC Layout – Challenges
and Solutions

Juergen Scheible
Robert Bosch Center for Power Electronics

Reutlingen, Germany
juergen.scheible.de@ieee.org

Jens Lienig
Dresden University of Technology

Dresden, Germany
jens@ieee.org

ABSTRACT
Physical analog IC design has not been automated to the same
degree as digital IC design. This shortfall is primarily rooted in the
analog IC design problem itself, which is considerably more com-
plex even for small problem sizes. Significant progress has been
made in analog automation in several R&D target areas in recent
years. Constraint engineering and generator-based module ap-
proaches are among the innovations that have emerged. Our paper
will first present a brief review of the state of the art of analog
layout automation. We will then introduce active and open research
areas and present two visions – a “continuous layout design flow”
and a “bottom-up meets top-down design flow” – which could
significantly push analog design automation towards its goal of
analog synthesis.

Categories and Subject Descriptors
B7.2[Integrated Circuits]: Design Aids

General Terms
Algorithms, Design, Verification.

Keywords
Analog design; layout; constraint engineering; design methodology;
physical design; analog layout automation

1. INTRODUCTION
While physical design automation of analog IC design has seen
significant improvement over the past decade, it has not advanced at
anything like the rate of its digital counterpart. This shortfall is
primarily rooted in the analog IC design problem itself, which is
very much more complicated even for small problem sizes: it deals
with a large number of specific circuit classes; it requires a custom-
ized design approach for each circuit class; and analog circuits are
very susceptible to noise and process variations. In particular, the
work and costs involved in producing analog layout is a serious
bottleneck in IC design, despite numerous attempts at automating
the process. Furthermore, the analog design problem lacks a suffi-

ciently comprehensive and exact descriptiveness in conventional
CAD approaches [1-3].

Advances in analog layout automation have been made however
in recent years in many R&D target areas, such as generator-based
module approaches [8,9,11-13,16]; and we have witnessed the
emergence of constraint engineering to support top-down design
styles [2,6,10,18,19,24].

Unfortunately, achievements made thus far fall way short of meet-
ing the needs of advanced analog layout automation. Active new
research areas needed to bridge this deficiency gap include

 The next generation of constraint engineering approaches;
 Context-aware layout design;
 Advanced methods for assisted layout design;
 The development of top-down design approaches, tailored for

analog circuits, and very powerful bottom-up design proce-
dures, such as module-generator-based and template-based de-
sign.

The purpose of this paper is to give an up-to-date overview of ana-
log design automation, highlighting physical design, its specific
characteristics and its current research areas from both an industrial
and an academic perspective. Specifically, we will first review the
analog layout design problem itself and discuss various aspects of
today’s design flows. We then introduce active and open research
areas and finally present two visions, a continuous layout design
flow and a bottom-up meets top-down design flow. It is our hope
that these new design paradigms will significantly enhance analog
design automation and bring us one step closer to the long-
awaited goal of analog synthesis.

2. THE LAYOUT OF ANALOG CIRCUITS

2.1 Sources of Complexity
The majority of today’s ICs are mixed signal designs, i.e., they
consist of analog and digital circuits (blocks, partitions). Both
analog and digital designers claim their design tasks are “highly
complex”, and in fact both are right, but in a different sense.

Analog designs are characterized by a much richer and more
complex set of design constraints that need to be considered sim-
ultaneously and which may span several domains (e.g., electrical,
electro-thermal, electro-mechanical, technological, geometrical
domain). Therefore, in typical mixed signal ICs, the effort needed
to design the analog part often matches or even exceeds the effort
for the digital part by far. This is true despite the fact that analog
modules typically contain only a small number of devices com-
pared to digital ones.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the owner/author(s).
ISPD'15, March 29–April 1, 2015, Monterey, CA, USA.
ACM 978-1-4503-3399-3/15/03.
http://dx.doi.org/10.1145/2717764.2717781

33

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2717764.2717781&domain=pdf&date_stamp=2015-03-29

Therefore, when talking about complexity, we prefer to distin-
guish between (1) quantitative complexity, as observed in digital
designs, referring mainly to the number of design elements
(“More Moore”), and (2) qualitative complexity. The latter is
rooted in the diversity of the requirements to be considered
(“More than Moore”), as found in analog designs.

2.2 Problem Description
Any physical design process can be understood as a course of
actions that aim at optimizing a layout with regard to design ob-
jectives while meeting design constraints. Constraints generally
belong to one of the following four categories:

(1) technological constraints that enable the fabrication and are
derived from technological restrictions,

(2) functional (or: electrical) constraints that ensure the desired
electrical behavior of the design,

(3) geometric (or: design-methodical) constraints that are intro-
duced to reduce the overall complexity of the design process,
thus facilitating or even enabling the use of design tools, and

(4) commercial constraints that arise from chip area or packag-
ing requirements, and the like.

Whereas technological and functional constraints are mandatory,
geometric constraints are in principal optional (depending on the
layout design tools in use). Any given constraint can be assigned
to a constraint type that defines the algorithms for its considera-
tion in the design.

A constraint can be implicit or explicit. An implicit constraint is
not clearly expressed: it may be a plain textual note; or it may
arise from assumptions intrinsically built into circuit descriptions
or layout generators. Explicitly defined constraints are visible and
accessible to design algorithms.

Explicitly defined functional constraints are the primary means for
describing the designer’s intent. On average, each design object
(instance, net, path, etc.) in an analog IC design must comply with
a larger and more comprehensive set of functional constraints to
fulfill its intended function than is the case with digital design.
The primary reason for this observation is the higher level of
functional abstraction achievable (and offered) in digital designs.
This allows for more robust operation requiring fewer constraints
to assure the intended function, compared to the quasi low-level
mode of operation in analog designs.

In addition, many constraints may still be unknown when the
analog design process begins, due to the qualitative complexity
described above. This often renders traditional automatic top-level
design planning for analog IC designs impossible. It is one of the
reasons that highly skilled design engineers are needed to plan and
implement top-level design manually.

This constraint-related problem also makes algorithm and tool
development for analog IC design much more difficult as the
number of specific design algorithms needed may increase with
each new constraint type. Considering today’s conventional de-
sign algorithm development approach (one constraint type and
one algorithm to handle it), its weakness becomes all too apparent
when faced with new complex constraints affecting multiple
design parameters simultaneously and vastly outnumbering simple
constraints. This is one of the primary reasons why conventional
analog design automation still lags behind its digital counterpart.
We will make some suggestions on how to overcome this bottle-
neck in Sec. 5.

Considering and verifying all mandatory constraints in analog
design automatically is currently not possible, mainly for three
reasons. First, the constraints are often used implicitly, i.e., based
on the designer’s experience (expert knowledge), due to the lack
of identical tool representation. Second, analog designers are
constantly confronted with new requirements that are application
specific and cannot be translated “on the fly” into functional
constraints. Third, the number of constraints as well as the corre-
lations between them are increasing continuously with more and
more contradictory constraints that cannot be met simultaneously.
Sections 5.1 and 5.2 suggest new design flows that address this
issue of incorporating complex and conflicting constraints.

2.3 Today`s Analog Physical Design

2.3.1 Design Flow: Digital vs. Analog
While the design steps for digital circuits are mostly separated
from each other and are performed sequentially, analog design
steps typically overlap and several steps are performed simultane-
ously. For example, device generation, module placement and
routing are usually executed simultaneously (Fig. 1).

Figure 1. Simplified design flow for digital circuits (above) and
for analog IC design (below) where steps typically overlap and
are tightly linked. Both flows are also characterized by a reduc-
tion in the design freedom throughout the process.

Any design flow is also characterized by a chronological reduction
in the design freedom which is reduced stepwise in digital designs
and continuously reduced in analog circuit designs (see Fig. 1). In
general, a feasible solution for a specific design problem is obtained
by sequentially removing all degrees of design freedom by sequen-
tially transforming functional representations with many degrees of
design freedom into equivalent ones with fewer degrees. For exam-
ple, one may transform a given functional specification into a
netlist, which is subsequently transformed into a floorplan, a place-
ment order, a wired layout and finally into a physical mask layout
which contains no further degree of design freedom.

Specifi‐
cation

Floor‐
planning

Place‐
ment

Routing

V
e
ri
fi
ca
ti
o
n

D
eg

re
es

 o
f

F
re

ed
om

Digital Circuits
D

eg
re

es
 o

f
F

re
ed

om

Analog Circuits

Time

Time

Stepwise Reduction
of Degrees of Freedom

Continuous Reduction
of Degrees of Freedom

34

2.3.2 Design Evolution:
 Schematic-Driven vs. Constraint-Driven
Despite the advances that have been made over the past 10 years or
so, current analog design tools cannot fully cover the entire design
process for analog or mixed-signal circuits. They are either restrict-
ed to specific parts of the design flow or require the intervention of
an expert designer. Thus, most analog circuits are currently de-
signed interactively, in terms of schematics, followed by layout
design (“schematic-driven”) and several (iterative) verification
steps.

Many experts agree that the ultimate goal of fully automated analog
design (analog design automation) can only be achieved if the
current schematic-driven layout (SDL) methodology first evolves
into a constraint-driven design paradigm as a necessary intermedi-
ate step [4-7]. This is based on the belief that we first need a meth-
odology that enables the inclusion of “expert knowledge” in the
form of constraints (i.e., specifying requirements). Secondly, based
on this we need the ability to verify them (i.e., checking require-
ments). Only then (in a third step) will we be able to tackle the task
of analog layout synthesis (i.e., fulfilling requirements) in a com-
prehensive and consistent manner. In other words, “analyzing” and
“verifying” capabilities are a precondition for “synthesizing” [4]
(Fig. 2).

Figure 2. The evolution of analog physical design methodolo-
gies towards the goal of a fully automated analog design flow.

2.3.3 Design Styles: Top-Down vs. Bottom-Up
The existing layout design styles can be divided into “top-down”
and “bottom-up”.1 A top-down design approach addresses the
design problem from a high-level strategic perspective. Here it is
assumed that each design object itself is (mainly) independent of
its design context such as neighboring design elements and con-
text-specific design rules. Thereby, explicitly defined design
constraints are often used to enforce the designer’s intent. When-
ever the requirements of a design problem can be completely
described by such a set of constraints, this top-down approach is
the preferred design style. Examples are simple standard analog
circuits, such as current mirrors, cascodes, and bandgaps.

There are however many cases where this approach doesn’t lead
to viable solutions. Designs that depend on design context infor-
mation, such as RF designs, signal sensing designs, power-stage
designs and the majority of advanced node designs, are required to
embrace a bottom-up design style in order to include necessary
external information during layout implementation. A bottom-up

1 In this context the term “top-down” is not used in the usual sense

of relating to a design hierarchy, but to denote the approach to a
design solution.

design approach addresses the design problem from a more tacti-
cal perspective while assuming that multiple design objects are
required to cooperate in concert to achieve a desired design result.
Today, these designs primarily rely on expert knowledge and
manual work while using implicit constraints.

Commercial tool chains address both design styles. For example,
while schematic-driven layout (SDL) tools are top-down ap-
proaches, the widely used concept of parameterized cells (see Sec.
2.3.4) uses the bottom-up style.

2.3.4 Design Automation:
 Optimization vs. Procedures
As already indicated, design automation of analog circuits is cur-
rently characterized by two different design styles – top-down vs.
bottom-up. Both represent different paths towards fully automated
analog design: an optimizing approach vs. a procedural approach.
While so-called “optimizers” perform design automation top-down,
the procedural approaches (“procedures”) generate the final layout
with the bottom-up style.

As illustrated in Fig. 3, the top-down approach makes use of opti-
mization-based tools similar to conventional digital flows. Their
overall structure is given by an optimization engine generating
solution candidates and an evaluation engine selecting the “best”
candidates based on design objectives in a loop-wise manner [23].
An optimizer is capable of producing new (genuine) design solu-
tions.

In contrast, procedures re-use expert knowledge with the result of
solutions previously conceived and captured in a procedural de-
scription by a human expert, thus imitating the expert’s decisions in
a straight-forward manner. Typical examples are the widely used
concepts of parameterized cells as provided by Cadence’s PCells
[14] or Synopsys’ PyCells [15].

Figure 3. Top-down optimization vs. bottom-up procedures. The
top-down approach makes use of optimization-based tools
similar to conventional digital flows. The bottom-up way of
automation reproduces a design solution previously conceived
and captured in a procedural description by a human expert.
The grey arrows indicate the data flow of the layout design
process. Whereas optimizers are built by EDA experts, proce-
dures are built by layout experts (blue arrows).

Most of the attempts at automatizing analog designs focus on
migrating digital design strategies into the analog world. Hence,
the above-mentioned top-down “optimizing approach” – success-
fully applied in digital designs – has been modified and deployed
to address analog requirements. However, despite various initia-

Polygon
Pushing

Technology

Schematic

1980 1990 2000

DRC

LVS

Schematic-driven
Layout (SDL)

Constraints / Expert Knowledge

Constraint-driven
Design

Analog Design
Automation

2010

Constraint
Verification

2020

precondition
for

precondition
for

Verification of …

Optimization Engine

Evaluation Engine

CandidateSelection

EDA Expert
Knowledge

Objectives,
Constraints

Layout Expert
Knowledge

Layout
„Solution“

The Top-Down Way
of Automation

The Bottom-Up Way of Automation

Layout
„Result“

Layout
Problem

Layout
Problem

Solution Strategy,
Implicit Constraints

Optimizer Procedure

Parameters
Layout Expert
Knowledge

35

tives, no viable “analog synthesis solution” has emerged as yet. In
our opinion, this is mainly due to the fact that analog “expert
knowledge” cannot be translated into formal expressions of high-
level, abstract design requirements (constraints). Hence, we be-
lieve “bottom-up automation” based on the above mentioned
procedural approach is an indispensable element in any future
“analog synthesis flow” (see Sec. 5).

3. ACTIVE RESEARCH AREAS
In this section we describe some current research areas in analog
design automation. We focus on aspects which we believe to have
the largest impact on urgently needed improvements.

3.1 Constraint Engineering
The specification step in a design process defines certain design
requirements, such as the operating frequency of a circuit or a
symmetry requirement for a current mirror bank. Subsequently,
these requirements are expressed as specific functional con-
straints. These functional constraints then have to be translated
into geometric constraints in order to consider them properly in
the layout design step. The required operating frequency could
result in a maximum RC value, for example, which is subsequent-
ly translated into a maximum wire length of a net. The symmetry
requirement for a current mirror bank would lead to a (preferably
quantified) matching constraint attached to the set of related ele-
ments.

The formal constraint representation is a key requirement for a
constraint-driven design flow and – as the examples have shown –
extra resources are needed to transform constraints automatically
from the electrical to the physical domain.

Specifically in the physical domain, the consideration of geometric
constraints, such as alignment, placement pattern, orientation, dur-
ing design implementation has steadily improved over the last
couple of years [6,10,19]. Unfortunately, despite this progress, we
are still a far cry from advanced analog layout automation. Addi-
tionally, methods for checking the completeness of a set of con-
straints, their self-consistency as well as the verification coverage
achieved, need to be developed further to assure IC functionality,
reliability, robustness, etc. [5,6].

Other key enabling research areas are improved methods for con-
straint handling throughout hierarchies (transistor – block – chip
levels) [25] and design domains (chip – board – system levels) [26].
Given that design domains today are characterized by different and
almost independent tool environments, we are convinced that this
requires tool-independent constraint data management to achieve
consistency over the above domain levels (constraint propagation)
[18,24].

3.2 Context-Aware Physical Design
As in digital design, analog circuits face multiple design for man-
ufacturability (DFM) issues due to reduced structural dimensions.
Examples are context-dependent design rules, layout-dependent
effects and reliability problems caused by electromigration and
electrical overstress. These issues can be addressed at the design
implementation stage (1) by introducing context awareness to the
layout generation tools and (2) by using query functionality to
identify critical structures. For instance, a PCell placing a set of
matching transistors might obtain its context (e.g., the distance to
the trench) as a parameter value and then act accordingly to assure
device matching (e.g., by adjusting the space between the set and
the trench in order to avoid local proximity effects).

3.3 Module Generators
It is widely agreed that bottom-up layout design based on module
generators is well suited for basic analog circuitry. Module gener-
ators, such as the PCells concept, should therefore be upgraded to
include “higher-up” design levels.

Basic layout devices are usually available as device generators
that procedurally create the appropriate device layout based on
device parameters. Augmenting this purpose, extensive research is
going into the development of higher-level parameterized module
generators. These are able to generate entire layouts for basic
analog circuits by hierarchically employing other generators and
creating in-between interconnections [8,11,16].

While this represents a smart way of incorporating valuable expert
knowledge in the layout automation, it implies a trade-off between
module re-usability and generator development effort. Thus, there
are many on-going studies into improving the techniques for
creating complex generators that have brought forth powerful new
tools for PCell development such as PCell Designer [12,13] and
others [8,11]. Accompanying this intention in the layout domain,
complex procedural circuit generators have also emerged on the
schematic side for circuit generation [17] and testbench genera-
tion, along with sophisticated novel approaches for their develop-
ment [8,9].

The advancement of module generator approaches is essential to
achieve the overarching goal of elevating the seamless schematic-
driven-layout design flow to higher levels of abstraction (Fig. 4).
This move accommodates a designer’s way of engineering circuit
functions beyond that of basic devices. It also mirrors the level of
functional abstraction achieved to date in the digital domain.
Providing consistent module generators both in schematic and
layout not only yields an immediate increase in design productivi-
ty in both domains, but also allows for the consideration of layout
parasitics when initially sizing a schematic circuit, thus obviating
the need for costly design recursions.

Figure 4. Analog design flows illustrated by design views and
compared by levels of abstraction. (I) Today’s schematic-driven
flow: schematic and layout design at transistor level. (II) Layout
module generators (e.g., “module-PCells”) improve automation
in layout design but encounter a second hierarchical break in
the flow. (III) Schematic module generators improve automation
in circuit design; additionally they eliminate hierarchical breaks
by elevating the entire flow to a higher level of abstraction.

Further works in this context focus on the task of migrating mod-
ule generators to other semiconductor technologies using tem-
platization [11]. This effort addresses the challenges of incorporat-
ing high-level layout generators into the SDL-design flow by
means of circuit structure recognition [27], and by combining
PCells with other automation approaches. A particular problem

Module

Transistor

Electrical

Functional
Blocks

„Flat“ Schematic „Flat“ Layout

Behaviour
(Functional view)

Schematic
(Structural view)

Layout
(Physical view)

Levels of
Abstraction

Parameterized
Schematic Generator

I, II

I

II

III III

Views

Parameterized
Layout Generator

36

with hierarchical module generators is the necessity to verify input
parameters for sub-entities of the module at the module level and
efficiently pass them down through the hierarchy [13].

3.4 Assisted Physical Design
As previously mentioned, algorithmic approaches aiming for fully
automated layout synthesis have not established themselves to any
great extent in an industrial setting to date. Nevertheless there is
great interest in algorithmic approaches that assist the layout
designer in his or her daily routine. Some promising approaches
are described below.

Online DRC support is already widely used. Current development
efforts are aimed at improving calculation speed and functionality.
Selected applications of these solutions focusing on specific de-
sign steps lead to guided placement (e.g., [20]) and guided routing
(e.g., [21]) with automatic recognition of relevant design rules and
constraints.

Closely related to guided placement is interactive compaction.
Although online compactors already exist, there is a demand for
further improvements because, as mentioned in Sec. 3.2, the
distance rules are getting more and more complicated. Improving
the state of the art could also lead to sophisticated decompactors
which can repair incorrect layout distances or overlaps.

Although powerful routing engines are available in analog layout
environments, the use of these “autorouters” is not very popular in
the analog community. One reason is that they are incapable of
calculating the net segments to comply with current density re-
quirements. On-going developments aim at improving routing
algorithms to understand current constraints, thus enabling cur-
rent-driven routing [22].

Assisted physical design leads to a growing number of “assistant
functions”; this tendency may worsen user-friendliness. This, in
turn, requires improvements in the human-machine (HM) inter-
face in order to keep the resulting increases in tool functionality in
sync with tool usability. A solution could be the application of
interactive user interfaces commonly found in other domains, such
as tablet computers.

4. OPEN RESEARCH ISSUES
Analog design automation is a very vibrant research topic. In our
opinion, the open research issues cited below are just a few of the
issues that will have the greatest impact on design automation in
the future.

Pursuing the goal of constraint-driven design [4,6,7], EDA re-
search has put considerable research effort into constraint engi-
neering over the past decade. Most elementary to this is the ques-
tion of constraint data management, which basically specifies how
constraints can be described in an abstract and uniform manner.
Next-generation design flows need to drive this generalization
towards the coalescence of circuit, layout and constraint data, such
that constraints can be consistently used across various domains,
between different applications, and throughout all design steps in
the flow [6,18,24,25].

In addition to the generalization of constraints there is a need for
further constraint standardization to enhance algorithmic verifia-
bility. This is analogous with design rule checking (DRC), where
all rules must be described such that they can be verified with a
predefined set of graphical functions. Thus, the constitution of
these functions defines the description format of the rules. Equiva-

lently, the description format for constraints is best developed in
absolute compliance with the methods that will be available for
their verification. For example, [5] contributes a meta-verification
environment where constraints are represented with a formal
description based on Horn clauses.

Another topic in this context is the universality of constraint-
description formats for the purpose of constraint extensibility. In
order to promote a resolute usage of constraints in day-to-day
design, designers ask for the means to introduce new, proprietary
constraint types on their own account. This not only implies suffi-
ciently flexible constraint formalization, as presented in [24], for
example, but also the availability of appropriate, user-friendly tool
interfaces with intuitive constraint definition capabilities.

Technological and functional constraints associated with layout
solutions are verified with automated tools like DRC and LVS,
which use graphical layout data. Therefore layout generators,
which are in fact software, are verified by checking their layout
results with these tools. For parameterized generators (e.g.,
PCells), a large number of instances are created for this verifica-
tion purpose, each with a differently permutated set of parameter
values. However, an issue arising here is that the full parameter
space of a layout generator cannot be explored; hence, the extent
of test coverage is unknown. Against the backdrop of the ever-
increasing complexity of layout generators2, there is an urgent
need for new approaches to solve this issue. The generator's code
could be investigated, for example, as part of a solution. Another
approach could be to model the behavior of generators in order to
efficiently find critical parameter value sub-spaces.

5. TWO VISIONS OF ANALOG LAYOUT
The aforementioned open research issues are derived from a
careful analysis of the state of the art in industrial analog design.
In the following, we would like to expand on this analysis by
adding two visions. While the first suggestion for a continuous
layout design flow could significantly enhance the current interac-
tive layout style (Sec. 5.1), the second vision conflates the ad-
vantages of the top-down and bottom-up design styles (Sec. 5.2).

5.1 A “Continuous” Layout Design Flow

5.1.1 A Blind Spot in Today’s Analog Layout Flow
As mentioned in Sec. 2.3.1 and illustrated in Fig. 1, the reduction
of degrees of design freedom in today’s interactive analog layout
design style seems to occur in a continuous way. Unfortunately
however, this observation is not an intrinsic capability of this
flow, rather it is the result of a vast number of recursions! These
recursions result from repeating the same design steps, notably
placement, routing and device generation, again and again in order
to make necessary modifications. Previously determined parame-
ters, such as the folding characteristic of a transistor or the width
of a wiring segment, have to be updated due to constraints which
emerge at a later stage in the design process and therefore cannot
be foreseen. These modifications account for the greatest amount
of time and effort in analog layout work. The efficiency of the
widely used interactive layout style can therefore be greatly im-
proved by reducing the number of these recursions.

2 Module generators with up to 50 parameters are in use in the

automotive electronics industry of today.

37

Before outlining our proposal for a solution we need to discuss the
root cause of this problem, which is that the edit commands used
in today’s layout editors are simple implementations of design
steps for the purpose of interactive usage. The problem arising
from this similarity can be best explained by looking at how the
editor commands affect the degrees of design freedom.

Each design parameter (i.e., the property of a design element such
as a wire width) can be regarded as a degree of design freedom.
When assigning a value to a design parameter, the related degree
of freedom is eliminated. Two typical layout tasks and their corre-
sponding editor commands shall be considered next to exemplify
their impact on the degrees of design freedom.

The task “routing a net” is usually performed by drawing paths. A
path command simultaneously eliminates all degrees of freedom
an electrical connection can have (i.e., layer assignment, x- and y-
coordinates, Steiner nodes, wire width, and so on). This is an
inevitable consequence of the command itself. The same thing
happens when “placing” a device, where all related degrees of
freedom (i.e., x-, y-coordinates of absolute position, orientation
and, implicitly, all relations to other elements as well) are elimi-
nated with one single mouse click.

The underlying reason for the recursions mentioned above is
given by this “design-step-like” behavior of today’s layout editors,
which only allows combined handling of the degrees of freedom
resulting in their implicit elimination. Thus a designer is perma-
nently forced to make implicit decisions concerning the degrees of
freedom without having the appropriate information at the deci-
sion time. This tends to lead to an unavoidable “trial and error
mode” resulting in the said recursions.

Despite this deficiency, this aspect of today’s layout editors is
accepted by the analog-designer community as this behavior feels
“natural” and everyone has got accustomed to it. We would like to
raise awareness to this “blind spot” and outline a proposal for a
new continuous layout design flow that addresses this issue.

5.1.2 Direct Access to Degrees of Design Freedom
One solution to this problem would be to sequentially remove
only those degrees of design freedom that are fully defined at the
current design stage. This would require that functions like place
and route are decoupled from their respective fixed degrees of
freedom such that these degrees can be accessed directly and thus
managed independently. Hence, they are now eliminated continu-
ously during the layout process, but, each one only when it is
necessary and appropriate according to its “definition status”. This
intrinsic capability of the flow is performed until we reach the
physical mask layout which contains no further degree of design
freedom. In such a continuous layout design flow the layout would
be generated first in an almost symbolic manner before getting
more and more detailed with actual physical parameters until it
finally “crystallizes” to a real physical design.

For example, a net is laid out like this: First the net routing region
is assigned, afterwards the preferred routing layer is determined,
and at a later stage, when the current flows are known, the appro-
priate wire widths are assigned to their associated net sections.

5.1.3 Constraint Handling and Re-Use Capabilities
A continuous design flow would also deliver real benefits for
constraint handling, and new ways of constraint recognition. With
the direct access to the degrees of freedom, a detailed representa-
tion of the dependency of the layout-specific degrees of freedom
on the functional constraints becomes possible. Hence, constraint

verification and, thus, constraint-driven design (Sec. 2) become
viable options.

The re-use of previous layout solutions in current designs is a
well-known problem. Some reasons are that (1) the design is too
application-specific, (2) even small changes to the circuit may
require large changes in layout, (3) a new technology node is
used, and (4) the shape of a layout module does not fit. However,
careful consideration reveals that the underlying reason is that the
layout view does not encompass any remaining degrees of free-
dom.

This problem can be addressed in an elegant manner in a continu-
ous design flow by re-using a layout at a symbolic stage defined
as follows: A re-usable design may only contain design freedoms
that do not impact constraints; hence, the remaining design free-
doms are unconstrained. In turn, the absence of constrained de-
grees of freedom indicates that all constraints are met. In other
words, all design decisions induced by fulfilling a constraint are
maintained, which is in fact the (long-sought-after) re-use of the
implemented expert design knowledge (Fig. 5).

Figure 5. In the proposed design flow, the degrees of design
freedom are continuously reduced. Re-using unfinished layout
(i.e., symbolic level) supports the adjustment to new project-
specific requirements because the symbolic level still contains
degrees of design freedom needed for the adjustment.

The remaining degrees of freedom help modify the design for re-
use to meet project-specific requirements, thus overcoming the
problems mentioned above. The greater the number of remaining
degrees of freedom, the higher the remaining flexibility, and thus,
the higher the “re-usability”. And the more the design problem to
be solved resembles the re-use candidate, the fewer the remaining
degrees of freedom that are needed for modifications and the less
work is involved. This is a major advantage over current re-use
methodologies which lack this ability to modify a design to suit a
particular project.

5.2 A “Bottom-Up Meets Top-Down” Layout
Design Flow

5.2.1 The Dilemma of Top-Down Automation
Analog layout automation has been studied and investigated in-
tensely by EDA for over 30 years now, and almost exclusively in
an attempt to solve the analog layout problem with techniques
similar to those successfully deployed in the digital domain. These
optimization-based “top-down” approaches require an abstraction
of the design problem as a formalized mathematical model to
which optimizing algorithms can be easily applied. Despite occa-
sional successes, an industry-wide breakthrough of optimization-
based approaches in the analog domain has not emerged so far.

D
eg

re
es

of
F

re
ed

om

Time

Eliminated Degrees
of Freedom
Induced by Constraints

Re-usable
„Symbolic“ Layouts

Physical Implementation by
Continuous Reduction
of Degrees of Freedom

Point of Highest Flexibility

Fixed Layout (No Flexibility)

38

This is due to the fact that the solutions generated by optimizers
(see Fig. 3) suffer from either a weakness of the optimizing en-
gines (if the modeling is at a low level of abstraction, which is
done in an attempt to mirror physical reality as closely as possi-
ble) or from the weakness of the modeling approach (done to
enable the use of efficient algorithms).

Fig. 6 illustrates this dilemma. The efficiency of optimizing algo-
rithms, often measured in speed and the ability to find a global
optimum, is generally inversely proportional to the accuracy of
the underlying mathematical model which is derived from the
physical world. Designs of high qualitative complexity demand
high modeling accuracy while those of high quantitative complex-
ity require high algorithmic efficiency. Hence, only design prob-
lems located below the curve can be satisfactorily solved by opti-
mizers.

Figure 6. Illustration of the efficiency of optimizing algorithms,
which is generally inversely proportional to the accuracy of the
underlying mathematical model (blue curve). Analog designs of
high qualitative complexity demand high modeling accuracy.
Digital designs that are usually of high quantitative complexity
require high algorithmic efficiency. Only design problems locat-
ed below the curve can be satisfactorily solved by optimizers –
which thus excludes most analog design problems.

This observation leads to the conclusion that top-down automation
alone cannot solve the analog layout problem in its entirety.

5.2.2 Automated Delegation of Design Tasks to Pro-
cedures
The obvious approach to overcome the deficiencies in top-down
optimization strategies is to complement them with appropriate
bottom-up procedures (e.g., PCells). This is based on our observa-
tion that bottom-up procedures have the potential to provide the
missing features in optimization-based approaches. A common
issue with top-down automation is that algorithmically “invented”
layout solutions are rejected by expert designers because they do
not meet their expectations. Thus, designers prefer to re-use exist-
ing, silicon-proof design solutions which usually incorporate years
of design knowledge, both from a human expert’s personal expe-
rience and a company’s design group portfolio.

In that regard, a particular strength of bottom-up automation is its
intrinsic ability to augment the re-use of singular design solutions
(i.e., “copy-paste”) to a more sophisticated manner of re-using
design solution strategies. This is why novel techniques are need-
ed that enable circuit and layout designers to efficiently translate
their design strategies into new automatic procedures. Only then
will we see real progress with bottom-up procedures. The closer
these techniques match the designer’s way of thinking and the
better they are adapted to his/her work style, the easier the tech-
niques will capture the valuable expert knowledge, skills and

creativity that are mainly absent from mere top-down automa-
tisms. We believe that these techniques must be more than just
novel description languages or tool wizards: They should be
“schematic-like” for a circuit designer and “layout-editor-like” for
a physical designer.

As mentioned above, analog design automation is severely handi-
capped by the qualitative complexity of analog constraints (expert
knowledge). By restricting top-down optimization to “strategic
constraints”, such as high level design requirements, and by dele-
gating the remaining constraints to bottom-up procedures, this
problem could be eliminated. The ability of bottom-up procedures
to make use of implicitly integrated expert knowledge is an ideal
supplement to optimization approaches. In this regard the opti-
mizers can be regarded as “senior tools”, which delegate special
tasks to their “subordinate” procedural tools.

An important step in this direction is the development of context-
aware generators and of parameterized module generators as
introduced in Secs 3.2 and 3.3. Context-aware generators, in
particular, have the potential to play a central role, because their
“sensing ability” brings a new kind of intelligence to procedural
generators, which is notably helpful when taking over tasks from
(senior) tools rather than from human designers.

5.2.3 Bridging the Gaps
Despite the widely held assumption that procedural automation is
just a matter of handcraft and thus of little interest to academia,
we are convinced that developing the techniques mentioned above
is an academically appealing and practically profitable challenge
for future EDA research. Conflating the resulting bottom-up
procedures with existing top-down automation may be the key to
finally achieving the full analog synthesis flow that has been
pursued for over three decades now.

To make this vision a reality, we need at least two kinds of
“bridges”: Firstly, sophisticated techniques need to be developed
that enable human design experts to capture easily their design
know-how in bottom-up automation procedures. Secondly, tech-
nical concepts are needed that intelligently combine the different
automation paradigms of optimization-based (top-down) and
procedural (bottom-up) approaches.

6. SUMMARY AND OUTLOOK
In this paper we presented an overview of the analog layout design
problem and the state of the art of analog layout automation with
respect to active and future research areas. Despite enormous re-
search effort in analog design automation, little progress has been
made towards a fully automated design flow. We discussed some of
the reasons for this, for example, the lack of uniform representation
of design constraints in the analog design flow context. Thus, most
of the constraints in today’s analog designs are still specified and
considered manually by expert designers (expert knowledge). Fur-
thermore, analog constraints are often used implicitly (i. e., based on
a designer’s experience) rather than being explicitly defined –
thereby preventing their effective use in design automation.

We also identified key factors relating to the next generation of
analog design automation. Among them are techniques that reduce
the degree of design freedom gradually rather than abruptly by
providing direct and independent access to each degree of design
freedom (continuous layout design flow). Another vision is to ex-
ploit the full potential of both bottom-up and top-down design
styles. Conflating both styles to one bottom-up meets top-down

Efficiency of
Optimizing
Algorithms

Accuracy of
Mathematical
Modelling

Increase of Design Complexity
quantitative … ... qualitative

Digital Design Problems

Analog Design Problems

39

design flow should enable us to incorporate the aforementioned
expert knowledge while also addressing high-level design require-
ments.

While breaking with conventional design approaches, these two
proposed paradigm changes could lead to a new class of (higher
level) design techniques that brings us one step closer to the goal of
full-scale analog design automation.

ACKNOWLEDGEMENTS
We would like to thank Daniel Marolt, Andreas Krinke, Vinko
Marolt and Göran Jerke for the numerous fruitful discussions relat-
ed to the topic of this paper.

REFERENCES
[1] H. Chang, E. Charbon, U. Choudhury, et al. A Top-down, Con-

straint-driven Design Methodology for Analog Integrated Circuits,
Springer Verlag, Norwell, MA (1997) ISBN: 978-0792397946.

[2] E. Malavasi, E. Charbon, E. Felt, A. Sangiovanni-Vincentelli, “Au-
tomation of IC layout with analog constraints,” IEEE Trans. CAD of
Integr. Circuits and Systems, 15, 8 (1996) 923–941. DOI=
http://dx.doi.org/10.1109/43.511572

[3] R. Rutenbar, J. Cohn, “Layout tools for analog ICs and mixed-signal
SoCs: a survey,” Proc. Int. Symp. on Physical Design (ISPD) (2000)
76–83. DOI= http://dx.doi.org/10.1145/332357.332378

[4] J. Scheible, “Constraint-driven Design – Eine Wegskizze zum
Designflow der nächsten Generation,” Proc. of ANALOG ’08, 2008,
VDE Verlag, Berlin, Offenbach (2008) ISBN 978-3800730834.

[5] J. Freuer, G. Jerke, J. Gerlach, W. Nebel, “On the verification of
high-order constraint compliance in IC design,” Proc. Design, Auto-
mation and Test in Europe (DATE) (2008) 26–31. DOI=
http://dx.doi.org/10.1109/DATE.2008.4484655

[6] G. Jerke, J. Lienig, J. B. Freuer, “Constraint-driven design method-
ology: A path to analog design automation,” Analog Layout Synthe-
sis — A Survey of Topological Approaches H. Graeb (ed.) Springer
Verlag, New York, ISBN 978-1-4419-6931-6, (2011) 271-299.
DOI= http://dx.doi.org/10.1007/978-1-4419-6932-3_7

[7] G. Jerke, J. Lienig, “Constraint-driven design — the next step to-
wards analog design automation,” Proc. of the Int. Symp. on Physical
Design (ISPD) (2009) 75–82. DOI=
http://dx.doi.org/10.1145/1514932.1514952

[8] J. Crossley, et al., “BAG: A designer-oriented integrated framework
for the development of AMS circuit generators,” Proc. IEEE/ACM
Conference on Computer-Aided Design (ICCAD) (2013) 74-81.
DOI= http://dx.doi.org/10.1109/ICCAD.2013.6691100

[9] D. Marolt, J. Scheible, G. Jerke, “PCDS: A new approach for the
development of circuit generators in analog IC design,” Proc. 22nd
Austrian Workshop on Microelectronics (Austrochip) (2014). DOI=
http://dx.doi.org/10.1109/Austrochip.2014.6946310

[10] V. Meyer zu Bexten, M. Tristl, G. Jerke, H. Marquardt, D. Medhat,
“Physical verification flow for hierarchical analog IC design con-
straints,” Proc. Asian and South Pacific Design Automation Confer-
ence (ASPDAC) (2015).

[11] IPGen 1Stone, Internet: http://ipgenme.de/

[12] G. Jerke, T. Burdick, P. Herth et al. “Visual PCell programming with
Cadence PCell Designer,” Proc. CDNLive! EMEA 2013, Munich,
2013.

[13] G. Jerke, T. Burdick, P. Herth et al. “Hierarchical module design
with Cadence PCell Designer,” Proc. CDNLive! EMEA 2015, Mu-
nich, 2015.

[14] R. Arora, A. Ginetti, R. Bishop, G. Lamant, S. Gangwar, “Virtuoso
Express Pcells for better interoperability and performance on OA,”
Proc. CDNLive! India 2007. Internet: http://www.cadence.com/rl/
Resources/conference_papers/4.5_presentationIndia.pdf

[15] Synopsys, “PyCell Studio,” Internet: http://www.synopsys.com/cgi-
bin/pycellstudio/req1.cgi

[16] D. Marolt, J. Scheible, G. Jerke, “A practical layout module pcell
concept for analog IC design,” Proc. CDNLive! EMEA 2013, Mu-
nich, Germany, paper nr. CUS01. Internet:
http://www.cadence.com/cdnlive/eu/2013/pages/proceedingssummar
y.aspx

[17] P. Bhushan, R. Mitra, “Schematic Pcell implementation in Virtuoso
platform,” Proc. of International Cadence Users Group Conference,
Santa Clara, 2004.

[18] A. Krinke, M. Mittag, G. Jerke, J. Lienig, “Extended constraint
management for analog and mixed-signal IC design,” Proc. of the
21th European Conf. on Circuit Theory and Design (ECCTD) (2013)
1-4. DOI= http://dx.doi.org/10.1109/ECCTD.2013.6662319

[19] A. Nassaj, J. Lienig, G. Jerke, “A new methodology for constraint-
driven layout design of analog circuits,” Proc. of the 16th IEEE Int.
Conference on Electronics, Circuits and Systems (ICECS) (2009)
996-999. DOI= http://dx.doi.org/10.1109/ICECS.2009.5410838

[20] K. Krishnamoorthy, S. C. Maruvada, F. Balasa, “Topological place-
ment with multiple symmetry groups of devices for analog layout
design,” IEEE Int. Symp. Circuits and Systems. (2007) 2032–2035.
DOI= http://dx.doi.org/10.1109/ISCAS.2007.378437

[21] P.-C. Pan, H.M. Chen, Y-K. Cheng, J. Liu, W. Yi Hu, “Configurable
analog routing methodology via technology and design constraint
unification,” IEEE/ACM Int. Conf. Comput.-Aided Design, (2012)
620–626.

[22] J. Lienig, “Electromigration and its impact on physical design in
future technologies,” Proc. of the ACM 2013 Int. Symposium on
Physical Design (ISPD'13), Stateline, Nevada, (2013) 33-40. DOI=
http://dx.doi.org/10.1145/2451916.2451925

[23] R. Rutenbar, “Design automation for analog: The next generation of
tool changes,” 1st IBM Academic Conf. on Analog Design, Technolo-
gy, Modelling and Tools (2006).

[24] A. Krinke, G. Jerke, J. Lienig, “Adaptive data model for efficient
constraint handling in AMS IC design,” Proc. of the 20th IEEE Int.
Conf. on Electronics, Circuits and Systems (ICECS), (2013) 285-
288. DOI= http://dx.doi.org/10.1109/ICECS.2013.6815410

[25] M. Mittag, A. Krinke, G. Jerke, W. Rosenstiel, “Hierarchical propa-
gation of geometric constraints for full-custom physical design of
ICs,” Proc. of Design, Autom. & Test in Europe Conf. (DATE)
(2012) 1471-1474. DOI=
http://dx.doi.org/10.1109/DATE.2012.6176599

[26] C. Katzschke, M.-P. Sohn, M. Olbrich, V. Meyer zu Bexten, M.
Tristl, E. Barke, “Application of mission profiles to enable cross-
domain constraint-driven design,” Proc. of Design, Autom. & Test in
Europe Conf. (DATE), (2014) 1-6. DOI=
http://dx.doi.org/10.7873/DATE.2014.079

[27] D. Marolt, J. Scheible, “The Application of layout module generators
upon circuit structure recognition,” Proc. CDNLive! EMEA 2011,
Munich, Germany, paper nr. AC13. Internet:
http://www.cadence.com/cdnlive/eu/2011/pages/proceedings.aspx

40

