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ABSTRACT 
Physical analog IC design has not been automated to the same 
degree as digital IC design. This shortfall is primarily rooted in the 
analog IC design problem itself, which is considerably more com-
plex even for small problem sizes. Significant progress has been 
made in analog automation in several R&D target areas in recent 
years. Constraint engineering and generator-based module ap-
proaches are among the innovations that have emerged. Our paper 
will first present a brief review of the state of the art of analog 
layout automation. We will then introduce active and open research 
areas and present two visions – a “continuous layout design flow” 
and a “bottom-up meets top-down design flow” – which could 
significantly push analog design automation towards its goal of 
analog synthesis. 

Categories and Subject Descriptors 
B7.2[Integrated Circuits]: Design Aids 

General Terms 
Algorithms, Design, Verification. 

Keywords 
Analog design; layout; constraint engineering; design methodology; 
physical design; analog layout automation 

1. INTRODUCTION 
While physical design automation of analog IC design has seen 
significant improvement over the past decade, it has not advanced at 
anything like the rate of its digital counterpart. This shortfall is 
primarily rooted in the analog IC design problem itself, which is 
very much more complicated even for small problem sizes: it deals 
with a large number of specific circuit classes; it requires a custom-
ized design approach for each circuit class; and analog circuits are 
very susceptible to noise and process variations. In particular, the 
work and costs involved in producing analog layout is a serious 
bottleneck in IC design, despite numerous attempts at automating 
the process. Furthermore, the analog design problem lacks a suffi- 
 

ciently comprehensive and exact descriptiveness in conventional 
CAD approaches [1-3]. 

Advances in analog layout automation have been made however 
in recent years in many R&D target areas, such as generator-based 
module approaches [8,9,11-13,16]; and we have witnessed the 
emergence of constraint engineering to support top-down design 
styles [2,6,10,18,19,24].  

Unfortunately, achievements made thus far fall way short of meet-
ing the needs of advanced analog layout automation. Active new 
research areas needed to bridge this deficiency gap include 

 The next generation of constraint engineering approaches; 
 Context-aware layout design; 
 Advanced methods for assisted layout design; 
 The development of top-down design approaches, tailored for 

analog circuits, and very powerful bottom-up design proce-
dures, such as module-generator-based and template-based de-
sign. 

The purpose of this paper is to give an up-to-date overview of ana-
log design automation, highlighting physical design, its specific 
characteristics and its current research areas from both an industrial 
and an academic perspective. Specifically, we will first review the 
analog layout design problem itself and discuss various aspects of 
today’s design flows. We then introduce active and open research 
areas and finally present two visions, a continuous layout design 
flow and a bottom-up meets top-down design flow. It is our hope 
that these new design paradigms will significantly enhance analog 
design automation and bring us one step closer to the long-
awaited goal of analog synthesis. 

2. THE LAYOUT OF ANALOG CIRCUITS 

2.1 Sources of Complexity 
The majority of today’s ICs are mixed signal designs, i.e., they 
consist of analog and digital circuits (blocks, partitions). Both 
analog and digital designers claim their design tasks are “highly 
complex”, and in fact both are right, but in a different sense.  

Analog designs are characterized by a much richer and more 
complex set of design constraints that need to be considered sim-
ultaneously and which may span several domains (e.g., electrical, 
electro-thermal, electro-mechanical, technological, geometrical 
domain). Therefore, in typical mixed signal ICs, the effort needed 
to design the analog part often matches or even exceeds the effort 
for the digital part by far. This is true despite the fact that analog 
modules typically contain only a small number of devices com-
pared to digital ones. 
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Therefore, when talking about complexity, we prefer to distin-
guish between (1) quantitative complexity, as observed in digital 
designs, referring mainly to the number of design elements 
(“More Moore”), and (2) qualitative complexity. The latter is 
rooted in the diversity of the requirements to be considered 
(“More than Moore”), as found in analog designs. 

2.2 Problem Description 
Any physical design process can be understood as a course of 
actions that aim at optimizing a layout with regard to design ob-
jectives while meeting design constraints. Constraints generally 
belong to one of the following four categories:  

(1) technological constraints that enable the fabrication and are 
derived from technological restrictions,  

(2) functional (or: electrical) constraints that ensure the desired 
electrical behavior of the design, 

(3) geometric (or: design-methodical) constraints that are intro-
duced to reduce the overall complexity of the design process, 
thus facilitating or even enabling the use of design tools, and  

(4) commercial constraints that arise from chip area or packag-
ing requirements, and the like.  

Whereas technological and functional constraints are mandatory, 
geometric constraints are in principal optional (depending on the 
layout design tools in use). Any given constraint can be assigned 
to a constraint type that defines the algorithms for its considera-
tion in the design. 

A constraint can be implicit or explicit. An implicit constraint is 
not clearly expressed: it may be a plain textual note; or it may 
arise from assumptions intrinsically built into circuit descriptions 
or layout generators. Explicitly defined constraints are visible and 
accessible to design algorithms. 

Explicitly defined functional constraints are the primary means for 
describing the designer’s intent. On average, each design object 
(instance, net, path, etc.) in an analog IC design must comply with 
a larger and more comprehensive set of functional constraints to 
fulfill its intended function than is the case with digital design. 
The primary reason for this observation is the higher level of 
functional abstraction achievable (and offered) in digital designs. 
This allows for more robust operation requiring fewer constraints 
to assure the intended function, compared to the quasi low-level 
mode of operation in analog designs. 

In addition, many constraints may still be unknown when the 
analog design process begins, due to the qualitative complexity 
described above. This often renders traditional automatic top-level 
design planning for analog IC designs impossible. It is one of the 
reasons that highly skilled design engineers are needed to plan and 
implement top-level design manually. 

This constraint-related problem also makes algorithm and tool 
development for analog IC design much more difficult as the 
number of specific design algorithms needed may increase with 
each new constraint type. Considering today’s conventional de-
sign algorithm development approach (one constraint type and 
one algorithm to handle it), its weakness becomes all too apparent 
when faced with new complex constraints affecting multiple 
design parameters simultaneously and vastly outnumbering simple 
constraints. This is one of the primary reasons why conventional 
analog design automation still lags behind its digital counterpart. 
We will make some suggestions on how to overcome this bottle-
neck in Sec. 5. 

Considering and verifying all mandatory constraints in analog 
design automatically is currently not possible, mainly for three 
reasons. First, the constraints are often used implicitly, i.e., based 
on the designer’s experience (expert knowledge), due to the lack 
of identical tool representation. Second, analog designers are 
constantly confronted with new requirements that are application 
specific and cannot be translated “on the fly” into functional 
constraints. Third, the number of constraints as well as the corre-
lations between them are increasing continuously with more and 
more contradictory constraints that cannot be met simultaneously. 
Sections 5.1 and 5.2 suggest new design flows that address this 
issue of incorporating complex and conflicting constraints. 

2.3 Today`s Analog Physical Design 

2.3.1 Design Flow: Digital vs. Analog 
While the design steps for digital circuits are mostly separated 
from each other and are performed sequentially, analog design 
steps typically overlap and several steps are performed simultane-
ously. For example, device generation, module placement and 
routing are usually executed simultaneously (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Simplified design flow for digital circuits (above) and 
for analog IC design (below) where steps typically overlap and 
are tightly linked. Both flows are also characterized by a reduc-
tion in the design freedom throughout the process. 

Any design flow is also characterized by a chronological reduction 
in the design freedom which is reduced stepwise in digital designs 
and continuously reduced in analog circuit designs (see Fig. 1). In 
general, a feasible solution for a specific design problem is obtained 
by sequentially removing all degrees of design freedom by sequen-
tially transforming functional representations with many degrees of 
design freedom into equivalent ones with fewer degrees. For exam-
ple, one may transform a given functional specification into a 
netlist, which is subsequently transformed into a floorplan, a place-
ment order, a wired layout and finally into a physical mask layout 
which contains no further degree of design freedom. 
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2.3.2 Design Evolution:  
           Schematic-Driven vs. Constraint-Driven 
Despite the advances that have been made over the past 10 years or 
so, current analog design tools cannot fully cover the entire design 
process for analog or mixed-signal circuits. They are either restrict-
ed to specific parts of the design flow or require the intervention of 
an expert designer. Thus, most analog circuits are currently de-
signed interactively, in terms of schematics, followed by layout 
design (“schematic-driven”) and several (iterative) verification 
steps.  

Many experts agree that the ultimate goal of fully automated analog 
design (analog design automation) can only be achieved if the 
current schematic-driven layout (SDL) methodology first evolves 
into a constraint-driven design paradigm as a necessary intermedi-
ate step [4-7]. This is based on the belief that we first need a meth-
odology that enables the inclusion of “expert knowledge” in the 
form of constraints (i.e., specifying requirements). Secondly, based 
on this we need the ability to verify them (i.e., checking require-
ments). Only then (in a third step) will we be able to tackle the task 
of analog layout synthesis (i.e., fulfilling requirements) in a com-
prehensive and consistent manner. In other words, “analyzing” and 
“verifying” capabilities are a precondition for “synthesizing” [4] 
(Fig. 2). 

 

 

 

 

 

 

 

 

Figure 2.  The evolution of analog physical design methodolo-
gies towards the goal of a fully automated analog design flow. 

2.3.3 Design Styles: Top-Down vs. Bottom-Up  
The existing layout design styles can be divided into “top-down” 
and “bottom-up”.1 A top-down design approach addresses the 
design problem from a high-level strategic perspective. Here it is 
assumed that each design object itself is (mainly) independent of 
its design context such as neighboring design elements and con-
text-specific design rules. Thereby, explicitly defined design 
constraints are often used to enforce the designer’s intent. When-
ever the requirements of a design problem can be completely 
described by such a set of constraints, this top-down approach is 
the preferred design style. Examples are simple standard analog 
circuits, such as current mirrors, cascodes, and bandgaps. 

There are however many cases where this approach doesn’t lead 
to viable solutions. Designs that depend on design context infor-
mation, such as RF designs, signal sensing designs, power-stage 
designs and the majority of advanced node designs, are required to 
embrace a bottom-up design style in order to include necessary 
external information during layout implementation. A bottom-up 

                                                                 
1 In this context the term “top-down” is not used in the usual sense 

of relating to a design hierarchy, but to denote the approach to a 
design solution. 

design approach addresses the design problem from a more tacti-
cal perspective while assuming that multiple design objects are 
required to cooperate in concert to achieve a desired design result. 
Today, these designs primarily rely on expert knowledge and 
manual work while using implicit constraints. 

Commercial tool chains address both design styles. For example, 
while schematic-driven layout (SDL) tools are top-down ap-
proaches, the widely used concept of parameterized cells (see Sec. 
2.3.4) uses the bottom-up style. 

2.3.4 Design Automation:  
           Optimization vs. Procedures 
As already indicated, design automation of analog circuits is cur-
rently characterized by two different design styles – top-down vs. 
bottom-up. Both represent different paths towards fully automated 
analog design: an optimizing approach vs. a procedural approach. 
While so-called “optimizers” perform design automation top-down, 
the procedural approaches (“procedures”) generate the final layout 
with the bottom-up style.  

As illustrated in Fig. 3, the top-down approach makes use of opti-
mization-based tools similar to conventional digital flows. Their 
overall structure is given by an optimization engine generating 
solution candidates and an evaluation engine selecting the “best” 
candidates based on design objectives in a loop-wise manner [23]. 
An optimizer is capable of producing new (genuine) design solu-
tions.  

In contrast, procedures re-use expert knowledge with the result of 
solutions previously conceived and captured in a procedural de-
scription by a human expert, thus imitating the expert’s decisions in 
a straight-forward manner. Typical examples are the widely used 
concepts of parameterized cells as provided by Cadence’s PCells 
[14] or Synopsys’ PyCells [15]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Top-down optimization vs. bottom-up procedures. The 
top-down approach makes use of optimization-based tools 
similar to conventional digital flows. The bottom-up way of 
automation reproduces a design solution previously conceived 
and captured in a procedural description by a human expert. 
The grey arrows indicate the data flow of the layout design 
process. Whereas optimizers are built by EDA experts, proce-
dures are built by layout experts (blue arrows). 

Most of the attempts at automatizing analog designs focus on 
migrating digital design strategies into the analog world. Hence, 
the above-mentioned top-down “optimizing approach” – success-
fully applied in digital designs – has been modified and deployed 
to address analog requirements. However, despite various initia-
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tives, no viable “analog synthesis solution” has emerged as yet. In 
our opinion, this is mainly due to the fact that analog “expert 
knowledge” cannot be translated into formal expressions of high-
level, abstract design requirements (constraints). Hence, we be-
lieve “bottom-up automation” based on the above mentioned 
procedural approach is an indispensable element in any future 
“analog synthesis flow” (see Sec. 5).  

3. ACTIVE RESEARCH AREAS 
In this section we describe some current research areas in analog 
design automation. We focus on aspects which we believe to have 
the largest impact on urgently needed improvements.  

3.1 Constraint Engineering 
The specification step in a design process defines certain design 
requirements, such as the operating frequency of a circuit or a 
symmetry requirement for a current mirror bank. Subsequently, 
these requirements are expressed as specific functional con-
straints. These functional constraints then have to be translated 
into geometric constraints in order to consider them properly in 
the layout design step. The required operating frequency could 
result in a maximum RC value, for example, which is subsequent-
ly translated into a maximum wire length of a net. The symmetry 
requirement for a current mirror bank would lead to a (preferably 
quantified) matching constraint attached to the set of related ele-
ments.  

The formal constraint representation is a key requirement for a 
constraint-driven design flow and – as the examples have shown – 
extra resources are needed to transform constraints automatically 
from the electrical to the physical domain. 

Specifically in the physical domain, the consideration of geometric 
constraints, such as alignment, placement pattern, orientation, dur-
ing design implementation has steadily improved over the last 
couple of years [6,10,19]. Unfortunately, despite this progress, we 
are still a far cry from advanced analog layout automation. Addi-
tionally, methods for checking the completeness of a set of con-
straints, their self-consistency as well as the verification coverage 
achieved, need to be developed further to assure IC functionality, 
reliability, robustness, etc. [5,6]. 

Other key enabling research areas are improved methods for con-
straint handling throughout hierarchies (transistor – block – chip 
levels) [25] and design domains (chip – board – system levels) [26]. 
Given that design domains today are characterized by different and 
almost independent tool environments, we are convinced that this 
requires tool-independent constraint data management to achieve 
consistency over the above domain levels (constraint propagation) 
[18,24]. 

3.2 Context-Aware Physical Design 
As in digital design, analog circuits face multiple design for man-
ufacturability (DFM) issues due to reduced structural dimensions. 
Examples are context-dependent design rules, layout-dependent 
effects and reliability problems caused by electromigration and 
electrical overstress. These issues can be addressed at the design 
implementation stage (1) by introducing context awareness to the 
layout generation tools and (2) by using query functionality to 
identify critical structures. For instance, a PCell placing a set of 
matching transistors might obtain its context (e.g., the distance to 
the trench) as a parameter value and then act accordingly to assure 
device matching (e.g., by adjusting the space between the set and 
the trench in order to avoid local proximity effects). 

3.3 Module Generators 
It is widely agreed that bottom-up layout design based on module 
generators is well suited for basic analog circuitry. Module gener-
ators, such as the PCells concept, should therefore be upgraded to 
include “higher-up” design levels.  

Basic layout devices are usually available as device generators 
that procedurally create the appropriate device layout based on 
device parameters. Augmenting this purpose, extensive research is 
going into the development of higher-level parameterized module 
generators. These are able to generate entire layouts for basic 
analog circuits by hierarchically employing other generators and 
creating in-between interconnections [8,11,16]. 

While this represents a smart way of incorporating valuable expert 
knowledge in the layout automation, it implies a trade-off between 
module re-usability and generator development effort. Thus, there 
are many on-going studies into improving the techniques for 
creating complex generators that have brought forth powerful new 
tools for PCell development such as PCell Designer [12,13] and 
others [8,11]. Accompanying this intention in the layout domain, 
complex procedural circuit generators have also emerged on the 
schematic side for circuit generation [17] and testbench genera-
tion, along with sophisticated novel approaches for their develop-
ment [8,9]. 

The advancement of module generator approaches is essential to 
achieve the overarching goal of elevating the seamless schematic-
driven-layout design flow to higher levels of abstraction (Fig. 4). 
This move accommodates a designer’s way of engineering circuit 
functions beyond that of basic devices. It also mirrors the level of 
functional abstraction achieved to date in the digital domain. 
Providing consistent module generators both in schematic and 
layout not only yields an immediate increase in design productivi-
ty in both domains, but also allows for the consideration of layout 
parasitics when initially sizing a schematic circuit, thus obviating 
the need for costly design recursions. 

 

 

 

 

 

 

 

 

Figure 4.  Analog design flows illustrated by design views and 
compared by levels of abstraction. (I) Today’s schematic-driven 
flow: schematic and layout design at transistor level. (II) Layout 
module generators (e.g., “module-PCells”) improve automation 
in layout design but encounter a second hierarchical break in 
the flow. (III) Schematic module generators improve automation 
in circuit design; additionally they eliminate hierarchical breaks 
by elevating the entire flow to a higher level of abstraction. 

 

Further works in this context focus on the task of migrating mod-
ule generators to other semiconductor technologies using tem-
platization [11]. This effort addresses the challenges of incorporat-
ing high-level layout generators into the SDL-design flow by 
means of circuit structure recognition [27], and by combining 
PCells with other automation approaches. A particular problem 
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with hierarchical module generators is the necessity to verify input 
parameters for sub-entities of the module at the module level and 
efficiently pass them down through the hierarchy [13].  

3.4 Assisted Physical Design 
As previously mentioned, algorithmic approaches aiming for fully 
automated layout synthesis have not established themselves to any 
great extent in an industrial setting to date. Nevertheless there is 
great interest in algorithmic approaches that assist the layout 
designer in his or her daily routine. Some promising approaches 
are described below. 

Online DRC support is already widely used. Current development 
efforts are aimed at improving calculation speed and functionality. 
Selected applications of these solutions focusing on specific de-
sign steps lead to guided placement (e.g., [20]) and guided routing 
(e.g., [21]) with automatic recognition of relevant design rules and 
constraints. 

Closely related to guided placement is interactive compaction. 
Although online compactors already exist, there is a demand for 
further improvements because, as mentioned in Sec. 3.2, the 
distance rules are getting more and more complicated. Improving 
the state of the art could also lead to sophisticated decompactors 
which can repair incorrect layout distances or overlaps.  

Although powerful routing engines are available in analog layout 
environments, the use of these “autorouters” is not very popular in 
the analog community. One reason is that they are incapable of 
calculating the net segments to comply with current density re-
quirements. On-going developments aim at improving routing 
algorithms to understand current constraints, thus enabling cur-
rent-driven routing [22]. 

Assisted physical design leads to a growing number of “assistant 
functions”; this tendency may worsen user-friendliness. This, in 
turn, requires improvements in the human-machine (HM) inter-
face in order to keep the resulting increases in tool functionality in 
sync with tool usability. A solution could be the application of 
interactive user interfaces commonly found in other domains, such 
as tablet computers.  

4. OPEN RESEARCH ISSUES 
Analog design automation is a very vibrant research topic. In our 
opinion, the open research issues cited below are just a few of the 
issues that will have the greatest impact on design automation in 
the future. 

Pursuing the goal of constraint-driven design [4,6,7], EDA re-
search has put considerable research effort into constraint engi-
neering over the past decade. Most elementary to this is the ques-
tion of constraint data management, which basically specifies how 
constraints can be described in an abstract and uniform manner. 
Next-generation design flows need to drive this generalization 
towards the coalescence of circuit, layout and constraint data, such 
that constraints can be consistently used across various domains, 
between different applications, and throughout all design steps in 
the flow [6,18,24,25]. 

In addition to the generalization of constraints there is a need for 
further constraint standardization to enhance algorithmic verifia-
bility. This is analogous with design rule checking (DRC), where 
all rules must be described such that they can be verified with a 
predefined set of graphical functions. Thus, the constitution of 
these functions defines the description format of the rules. Equiva-

lently, the description format for constraints is best developed in 
absolute compliance with the methods that will be available for 
their verification. For example, [5] contributes a meta-verification 
environment where constraints are represented with a formal 
description based on Horn clauses. 

Another topic in this context is the universality of constraint-
description formats for the purpose of constraint extensibility. In 
order to promote a resolute usage of constraints in day-to-day 
design, designers ask for the means to introduce new, proprietary 
constraint types on their own account. This not only implies suffi-
ciently flexible constraint formalization, as presented in [24], for 
example, but also the availability of appropriate, user-friendly tool 
interfaces with intuitive constraint definition capabilities. 

Technological and functional constraints associated with layout 
solutions are verified with automated tools like DRC and LVS, 
which use graphical layout data. Therefore layout generators, 
which are in fact software, are verified by checking their layout 
results with these tools. For parameterized generators (e.g., 
PCells), a large number of instances are created for this verifica-
tion purpose, each with a differently permutated set of parameter 
values. However, an issue arising here is that the full parameter 
space of a layout generator cannot be explored; hence, the extent 
of test coverage is unknown. Against the backdrop of the ever-
increasing complexity of layout generators2, there is an urgent 
need for new approaches to solve this issue. The generator's code 
could be investigated, for example, as part of a solution. Another 
approach could be to model the behavior of generators in order to 
efficiently find critical parameter value sub-spaces. 

5. TWO VISIONS OF ANALOG LAYOUT 
The aforementioned open research issues are derived from a 
careful analysis of the state of the art in industrial analog design. 
In the following, we would like to expand on this analysis by 
adding two visions. While the first suggestion for a continuous 
layout design flow could significantly enhance the current interac-
tive layout style (Sec. 5.1), the second vision conflates the ad-
vantages of the top-down and bottom-up design styles (Sec. 5.2). 

5.1 A “Continuous” Layout Design Flow 

5.1.1 A Blind Spot in Today’s Analog Layout Flow 
As mentioned in Sec. 2.3.1 and illustrated in Fig. 1, the reduction 
of degrees of design freedom in today’s interactive analog layout 
design style seems to occur in a continuous way. Unfortunately 
however, this observation is not an intrinsic capability of this 
flow, rather it is the result of a vast number of recursions! These 
recursions result from repeating the same design steps, notably 
placement, routing and device generation, again and again in order 
to make necessary modifications. Previously determined parame-
ters, such as the folding characteristic of a transistor or the width 
of a wiring segment, have to be updated due to constraints which 
emerge at a later stage in the design process and therefore cannot 
be foreseen. These modifications account for the greatest amount 
of time and effort in analog layout work. The efficiency of the 
widely used interactive layout style can therefore be greatly im-
proved by reducing the number of these recursions.  

                                                                 
2 Module generators with up to 50 parameters are in use in the 

automotive electronics industry of today. 
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Before outlining our proposal for a solution we need to discuss the 
root cause of this problem, which is that the edit commands used 
in today’s layout editors are simple implementations of design 
steps for the purpose of interactive usage. The problem arising 
from this similarity can be best explained by looking at how the 
editor commands affect the degrees of design freedom.  

Each design parameter (i.e., the property of a design element such 
as a wire width) can be regarded as a degree of design freedom. 
When assigning a value to a design parameter, the related degree 
of freedom is eliminated. Two typical layout tasks and their corre-
sponding editor commands shall be considered next to exemplify 
their impact on the degrees of design freedom. 

The task “routing a net” is usually performed by drawing paths. A 
path command simultaneously eliminates all degrees of freedom 
an electrical connection can have (i.e., layer assignment, x- and y-
coordinates, Steiner nodes, wire width, and so on). This is an 
inevitable consequence of the command itself. The same thing 
happens when “placing” a device, where all related degrees of 
freedom (i.e., x-, y-coordinates of absolute position, orientation 
and, implicitly, all relations to other elements as well) are elimi-
nated with one single mouse click. 

The underlying reason for the recursions mentioned above is 
given by this “design-step-like” behavior of today’s layout editors, 
which only allows combined handling of the degrees of freedom 
resulting in their implicit elimination. Thus a designer is perma-
nently forced to make implicit decisions concerning the degrees of 
freedom without having the appropriate information at the deci-
sion time. This tends to lead to an unavoidable “trial and error 
mode” resulting in the said recursions.  

Despite this deficiency, this aspect of today’s layout editors is 
accepted by the analog-designer community as this behavior feels 
“natural” and everyone has got accustomed to it. We would like to 
raise awareness to this “blind spot” and outline a proposal for a 
new continuous layout design flow that addresses this issue. 

5.1.2 Direct Access to Degrees of Design Freedom 
One solution to this problem would be to sequentially remove 
only those degrees of design freedom that are fully defined at the 
current design stage. This would require that functions like place 
and route are decoupled from their respective fixed degrees of 
freedom such that these degrees can be accessed directly and thus 
managed independently. Hence, they are now eliminated continu-
ously during the layout process, but, each one only when it is 
necessary and appropriate according to its “definition status”. This 
intrinsic capability of the flow is performed until we reach the 
physical mask layout which contains no further degree of design 
freedom. In such a continuous layout design flow the layout would 
be generated first in an almost symbolic manner before getting 
more and more detailed with actual physical parameters until it 
finally “crystallizes” to a real physical design. 

For example, a net is laid out like this: First the net routing region 
is assigned, afterwards the preferred routing layer is determined, 
and at a later stage, when the current flows are known, the appro-
priate wire widths are assigned to their associated net sections.  

5.1.3 Constraint Handling and Re-Use Capabilities 
A continuous design flow would also deliver real benefits for 
constraint handling, and new ways of constraint recognition. With 
the direct access to the degrees of freedom, a detailed representa-
tion of the dependency of the layout-specific degrees of freedom 
on the functional constraints becomes possible. Hence, constraint 

verification and, thus, constraint-driven design (Sec. 2) become 
viable options. 

The re-use of previous layout solutions in current designs is a 
well-known problem. Some reasons are that (1) the design is too 
application-specific, (2) even small changes to the circuit may 
require large changes in layout, (3) a new technology node is 
used, and (4) the shape of a layout module does not fit. However, 
careful consideration reveals that the underlying reason is that the 
layout view does not encompass any remaining degrees of free-
dom. 

This problem can be addressed in an elegant manner in a continu-
ous design flow by re-using a layout at a symbolic stage defined 
as follows: A re-usable design may only contain design freedoms 
that do not impact constraints; hence, the remaining design free-
doms are unconstrained. In turn, the absence of constrained de-
grees of freedom indicates that all constraints are met. In other 
words, all design decisions induced by fulfilling a constraint are 
maintained, which is in fact the (long-sought-after) re-use of the 
implemented expert design knowledge (Fig. 5).  

 

 

 

 

 

 

 

 

Figure 5.  In the proposed design flow, the degrees of design 
freedom are continuously reduced. Re-using unfinished layout 
(i.e., symbolic level) supports the adjustment to new project-
specific requirements because the symbolic level still contains 
degrees of design freedom needed for the adjustment. 

The remaining degrees of freedom help modify the design for re-
use to meet project-specific requirements, thus overcoming the 
problems mentioned above. The greater the number of remaining 
degrees of freedom, the higher the remaining flexibility, and thus, 
the higher the “re-usability”. And the more the design problem to 
be solved resembles the re-use candidate, the fewer the remaining 
degrees of freedom that are needed for modifications and the less 
work is involved. This is a major advantage over current re-use 
methodologies which lack this ability to modify a design to suit a 
particular project. 

5.2 A “Bottom-Up Meets Top-Down” Layout 
Design Flow 

5.2.1 The Dilemma of Top-Down Automation 
Analog layout automation has been studied and investigated in-
tensely by EDA for over 30 years now, and almost exclusively in 
an attempt to solve the analog layout problem with techniques 
similar to those successfully deployed in the digital domain. These 
optimization-based “top-down” approaches require an abstraction 
of the design problem as a formalized mathematical model to 
which optimizing algorithms can be easily applied. Despite occa-
sional successes, an industry-wide breakthrough of optimization-
based approaches in the analog domain has not emerged so far. 
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This is due to the fact that the solutions generated by optimizers 
(see Fig. 3) suffer from either a weakness of the optimizing en-
gines (if the modeling is at a low level of abstraction, which is 
done in an attempt to mirror physical reality as closely as possi-
ble) or from the weakness of the modeling approach (done to 
enable the use of efficient algorithms).  

Fig. 6 illustrates this dilemma. The efficiency of optimizing algo-
rithms, often measured in speed and the ability to find a global 
optimum, is generally inversely proportional to the accuracy of 
the underlying mathematical model which is derived from the 
physical world. Designs of high qualitative complexity demand 
high modeling accuracy while those of high quantitative complex-
ity require high algorithmic efficiency. Hence, only design prob-
lems located below the curve can be satisfactorily solved by opti-
mizers. 
 

 

 

 

 

 

 

 

 

Figure 6.  Illustration of the efficiency of optimizing algorithms, 
which is generally inversely proportional to the accuracy of the 
underlying mathematical model (blue curve). Analog designs of 
high qualitative complexity demand high modeling accuracy. 
Digital designs that are usually of high quantitative complexity 
require high algorithmic efficiency. Only design problems locat-
ed below the curve can be satisfactorily solved by optimizers – 
which thus excludes most analog design problems. 

This observation leads to the conclusion that top-down automation 
alone cannot solve the analog layout problem in its entirety. 

5.2.2 Automated Delegation of Design Tasks to Pro-
cedures 
The obvious approach to overcome the deficiencies in top-down 
optimization strategies is to complement them with appropriate 
bottom-up procedures (e.g., PCells). This is based on our observa-
tion that bottom-up procedures have the potential to provide the 
missing features in optimization-based approaches. A common 
issue with top-down automation is that algorithmically “invented” 
layout solutions are rejected by expert designers because they do 
not meet their expectations. Thus, designers prefer to re-use exist-
ing, silicon-proof design solutions which usually incorporate years 
of design knowledge, both from a human expert’s personal expe-
rience and a company’s design group portfolio. 

In that regard, a particular strength of bottom-up automation is its 
intrinsic ability to augment the re-use of singular design solutions 
(i.e., “copy-paste”) to a more sophisticated manner of re-using 
design solution strategies. This is why novel techniques are need-
ed that enable circuit and layout designers to efficiently translate 
their design strategies into new automatic procedures. Only then 
will we see real progress with bottom-up procedures.  The closer 
these techniques match the designer’s way of thinking and the 
better they are adapted to his/her work style, the easier the tech-
niques will capture the valuable expert knowledge, skills and 

creativity that are mainly absent from mere top-down automa-
tisms. We believe that these techniques must be more than just 
novel description languages or tool wizards: They should be 
“schematic-like” for a circuit designer and “layout-editor-like” for 
a physical designer. 

As mentioned above, analog design automation is severely handi-
capped by the qualitative complexity of analog constraints (expert 
knowledge). By restricting top-down optimization to “strategic 
constraints”, such as high level design requirements, and by dele-
gating the remaining constraints to bottom-up procedures, this 
problem could be eliminated. The ability of bottom-up procedures 
to make use of implicitly integrated expert knowledge is an ideal 
supplement to optimization approaches. In this regard the opti-
mizers can be regarded as “senior tools”, which delegate special 
tasks to their “subordinate” procedural tools.  

An important step in this direction is the development of context-
aware generators and of parameterized module generators as 
introduced in Secs 3.2 and 3.3. Context-aware generators, in 
particular, have the potential to play a central role, because their 
“sensing ability” brings a new kind of intelligence to procedural 
generators, which is notably helpful when taking over tasks from 
(senior) tools rather than from human designers. 

5.2.3 Bridging the Gaps  
Despite the widely held assumption that procedural automation is 
just a matter of handcraft and thus of little interest to academia, 
we are convinced that developing the techniques mentioned above 
is an academically appealing and practically profitable challenge 
for future EDA research. Conflating the resulting bottom-up 
procedures with existing top-down automation may be the key to 
finally achieving the full analog synthesis flow that has been 
pursued for over three decades now.  

To make this vision a reality, we need at least two kinds of 
“bridges”: Firstly, sophisticated techniques need to be developed 
that enable human design experts to capture easily their design 
know-how in bottom-up automation procedures. Secondly, tech-
nical concepts are needed that intelligently combine the different 
automation paradigms of optimization-based (top-down) and 
procedural (bottom-up) approaches. 

6. SUMMARY AND OUTLOOK 
In this paper we presented an overview of the analog layout design 
problem and the state of the art of analog layout automation with 
respect to active and future research areas. Despite enormous re-
search effort in analog design automation, little progress has been 
made towards a fully automated design flow. We discussed some of 
the reasons for this, for example, the lack of uniform representation 
of design constraints in the analog design flow context. Thus, most 
of the constraints in today’s analog designs are still specified and 
considered manually by expert designers (expert knowledge). Fur-
thermore, analog constraints are often used implicitly (i. e., based on 
a designer’s experience) rather than being explicitly defined – 
thereby preventing their effective use in design automation. 

We also identified key factors relating to the next generation of 
analog design automation. Among them are techniques that reduce 
the degree of design freedom gradually rather than abruptly by 
providing direct and independent access to each degree of design 
freedom (continuous layout design flow). Another vision is to ex-
ploit the full potential of both bottom-up and top-down design 
styles. Conflating both styles to one bottom-up meets top-down 
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design flow should enable us to incorporate the aforementioned 
expert knowledge while also addressing high-level design require-
ments. 

While breaking with conventional design approaches, these two 
proposed paradigm changes could lead to a new class of (higher 
level) design techniques that brings us one step closer to the goal of 
full-scale analog design automation. 
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