
Dl&P L’An Intern@, Pr6tocol For -
Shared Virtual Environments .# I’ ‘.

/ I
’ Wolfgang Broil ./ 3

GMD -German National Research Center for Tnfoimation Technology
Institute for Applied Infornration Technology (FIT)

Abstract . ,

VRh4L (the Vii~ Reality Modeling Language) has brought 3D
objects and virtual worlds to a large number_of Internet users.
While it provides a suitable basis for-the platform independent
description of virtual worlds, an appropriate network architec-
ture required to realize shared virtual worlds on the Internet is
still an open issue<

In this paper we will introduce DWTP (the Distributed,Worlds
Transfer and communication Protocol). DWTP is an application
layer protocol for shared virtual environments on the Internet. It
provides a scalable network architecture for large-scale distrib-
uted virtual worlds.

CR Categories and Subject Descriptors: C.2.2’ [Computek
Communication Nktworks]: Network Protocols; C.2.4’ [Com-
puter Cohuntinication Networks]: Distributed Systems -,D~.F
tributed applihions; H.5.1 [Information IntCfaces’ a’nd Prk-
sentation] Multimedia Information Systems - Artificial
Realities; 1.3.2’ [Computer Grhphics]: Graphics Systems - ‘DS
tributedlnetwork graphics; 1.3.7. [Computer Graphic& Thrtk-
Dimensional Graphics and Realism - VirtmI Realityf - :b

i,

Additional Keywords Virtual reality .modeling language
(VRML), distributed virtual environments, IP multica&ng.,

1 INTRODUCTION 11
..I

Research on distributed virtual environments has been stretched
out for several years with remarkable success on various aspects
of it [8] [151. Most systems realized did, not achieve,a large
spread however, since they were limited to certain platforms or
specific networks. VRML+he Virtual Reality Modeling Lan-
guage- gives us for the first time the opportun’ity,to develop
large scale virtual worlds inhabited by world-wide distributed
participants independent of a specific platform or operating sys:
tern. %

The current VRML standard [l] however, does not provide
any support for sharing VRML worlds with other users. While a

GMD - FlT.CSCW, D-53754 Sankt Augustin, Gemany
emal$wolfgang.broll@gmd.de , , -;

i
Permission to make digital/hard copies of all or part ofthis m,Wi$ for
personal or classroom u?e is granted w$hcut.f~t: provided that the copia
are not made or distributed for profit or comme~$al advantage, $e copy=
right notice, the title oftbe publication iuld its date sppesw ‘and no!& 1s
given that copyright is by permission ofthe +FM, Inc. To FQP~ othctwise,
to republish, to post on senws or to redistrdW IQ Ii$ requires ~peci!k _
permission andlor fee. .f _

VRML 98 Monterey CAUSA * . . I
Copyright 1998 l-~8113-022-8/98/2.,%5.0[)

number of approaches have been-made to extend VRML in order
to support multiple users 1121, their representation by avatars as
well asthe sharing of objects [Y], most of them rely on simple
network architectures based on cehtral servers [6]. An appropri-
ate scalable network protocol for large distributed virtual envi-
ronments on the Internet is still an open issue.

More recent proposals for new network protocols or arcbitec-
lures such as VRTP [5] and ISTP [2] indicate,.that a flexible,
scalable and universal network protocol for shared virtual worlds
will be based on a heterogeneous approach including several ba-
sic intemet protocols- rather than using a single distribution
scheme. _ ;‘-

In this paper we will present our approach of an application
independent network protocol for shared virtual environments.
Our approach was guided by the following considerations:

’ l the protocol should be application (content) independent
(not limiting it to a specific VRML version or VI&IL at
a

l the protocol should not rely on a-particular underlying
network layer

l the user (application programmer) should not have to deal
with the underlying network layers

l the protocol should be scalable to a large number of
world-wide distributed users

l the protocol should support the transfer of all data types
required for sharing virtual worlds and realizing collabo-
rative viihtal environments

In the second section of this paper we will identify the require-
ments for network protocols for distributed virtual environments
and compare those with existing application layer protocols for
the Internet. In the thiid section we will introduce the basic ar-
chitecture and components of DWTP-the Distributed Worlds
Transfer and communication Protocol. The fourth section finally
shows how the DWTP components can be used to create distrib-
uted VE app!ic&ms, ,

s - ,
8 . .

.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F271897.274370&domain=pdf&date_stamp=1998-02-01

ual participants and the distribution of all changes made to these
contents. To transfer the worlds contents a scene description lan-
guage such as VRML is required. The descriptions themselves
will usually consist of one or several rather large files. Once
these files have been transmitted and a local database has been
created all changes to the worlds contents have to be transmitted
to all other participants in order to keep the distributed scene
data bases consistent and by that achieving the impression of
single shared virtual world. These changes usually consist of
rather small events, changing e.g. the transformation or the color
of a object. If new objects can be introduced by participants,
those have to be transmitted as well. The same applies if partici-
pants (users) are able to provide their own avatars. The latter
have to be distributed to all other participants as well;but require
usually a much larger amount of data to be transferred than
events. In coilaborative virtual environments additional services
might be necessary. In order to support cooperation between
participants audio and video streams might be transmitted
between-some or all participants.

-In addition’to the different types of data which have to be
transferred; there exist individual requirementsfor the reliability
of the services. While for example events containing the current
transformation of a user’s avatar are transmitted quite frequently
and for that reason do not require a reliable transmission, other
events might be essential for keeping the impression of a shared
virtual world-and therefore have to be guaranteed to be transmit-
ted. . . . *

Thus we can identify the following data types to be trans-
ferred over the Internet for realizing .shared virtual environ-
ments:

l reliable peer-to-peer transfers of (large) files ~
l reliable and unreliable transmission of.(small) events
l reliable transfer of(medium-sized) files to.a group ’
l unreIiable transfer of stream data to a group -
l unreliable p&to-peer transfer (optional) -I

2.2 Related Network Protocpls

We will nowintroduce some existing Internetprotocols and
review their suitability on supporting shared’ virtual environ-
ments. tq. ,-

.: 8, _.

2.2.1 I-ilGTP
. .

HTTP (the Hypertext Transfer Protocol) and FTP (the File
’ Transfer Protocol) are the well established protocols for reliable
file transfers over the Internet. Both protocols are based on TCP/
IP connections which establish a direct (reliable) connection
between twohosts. TCP/IP connections however, do not scale
very well.

2.2.2 UDP patagrams
,_,

In contrast to TCP/IP based protocols, UDP datagrams do not
establish a connection between the sender and the recipient of a
network package. That is why UDP is called a connectionless
service. Thus each package transmitted might be routed differ-
ently &o.the destination. Neither the order of packages nor their
reception at all is guaranteed. UDP datagrams can either be
transferred by unicast (peer-to-peer) or IP muIticasting [ill. IP
multicasting is an experimental Internet protocol which allows

_ - _.. --.--

messages to be transferred to a group of recipients rather than a
single host. To achieve this, the datagram has to be sent to one of
the special IP addresses representing multicast groups. Hosts
can join these groups in order to receive those messages. The
messages are distributed via a subnet of the actual Internet called
the MBone (multicast backbone). The MBone consists of multi-
cast routers.

2.2.3 Multicast Based Protocols

IP multicasting is the only protocol to be scalable to a large
number of distributed users. Due to the fact that only UDP data-
grams can currently be transferred, it only provides an unreliable
trammission of data. While this is sufficient for many multi-user
applications such as audio/video conferencing tools, it is not
acceptable for many other shared applications. For that reason a
number of reliable protocols on top of IP multicasting have been
developed during the past years. Most of these protocols how-
ever, were realiied and optimized to support a particular applicti-
tion area. Among those protocols are SRM [7], RAMP [lo], and
PMp 1161.

2.2.4 DIS 1

DIS [13] is a network protocol based on IP multicasting and
used for distributed simulation of military scenarios. It is so far
the only existing standard for shared virtual environments. DIS
is used by the NPSNET [14] system. It defines a number of units
(PDU’s) which are transferred to all other participants of the
simulation to transfer the state of each object. While the protocol
is very suitable for the specific application area, most PDU’s are
not suitable for general purpose virtual environments. The con-
cept of transferring the state of each object frequently allows
new participants or temporarily disconnected participants easily
to catch up with the current state of the virtual world. However it
puts a permanent network Ioad on the network, even if object
states arenot changed.

ISTP (Interactive Sharing Transfer Protocol) [2] uses a heteroge-
neous communication infrastructure to support shared virtual
environments. It is built on four existing underlying protocols:
HTTP, RTP, TCP/IP and multicast UDP. While HTTP is used to
transfer files and other large amounts of data, RTP is used for the
transmission of streams such as audio. Short messages, such as
state synchronization are realixed via unreliable multicast UDR
Additional TCP connections between servers and clients are
used for reliable message transmission and recovery from UDP
failures.

2.2.5 ISTP

3 DWTP

50

/

In this section we want to introduce DWTP -the Distributed
Worlds Transfer and communication Protocol. DWTP is an
application layer network protocol for shared virtual environ-
ments on the Internet [4]. It is based on top of standard Internet
protocols such as TCPlIP and UDP/IP (unicast and multi-
cast)(see figure I).

DWTP enables a virtual environment to transfer and receive
several typesofdataz

l events

I Ethernet, Modem, ATM, etc. I/J

Figure 1: Network Layers

l messages
l files
l streams

Events are used to keep distributed copies of shared virtual
worlds consistent by transmitting appropriate synchronization
data. Events may contain any kind of data and are usually rather
small. The application can specify the required reliability for the
transfer of events. Messages are actually a number of predefined
events such as used for joining or leaving a shared virtual world.
Some messages can contain additional data (e.g. for chatting,
transmitting URL’s, or sending requests). Files are heavy weight
(large) objects, which require a reliable transfer. Examples are
scene descriptions, avatar descriptions and VR applications.
Files might be transferred peer-to-peer or to a group of recipi-
ents. Streams are used to transmit a continuous flow of data as
used for audio or video. Streams do not require reliable trans-
mission. DWIP provides a simple interface for these data types
to the application or virtual environment, hiding the underlying
network protocols.

Similar to other application layer prqtocols (such as HTTP)
DWTP is based on different components: daemons and partici-
pants (peers). Daemons provide services to the participants of
shared virtual worlds. In contrast to most other protocols DWTP
uses several different daemons to realize the services required to
support distributed virtual environments.

Figure 2: Network architecture of DWTP .

Currently DWI’P uses the following daemons:
l reliability daemons, to detect transmission failures (pack-

age loss) for unreliable protocol connections (UDP)
*recovery daemons, to provide unicast connections for

recovering lost packages ,I

; world daemons, to transmit virtual world contents
(including users/avatars) to new participants

l unicast daemons, to realize a scalable architecture even
for non multicast capable participants of the shared vir-
tual world” ‘)

Using four different daemons seems to make DWTP rather com-
plex. Nevertheless we preferred different daemons in contrast to
one central daemon to make the overall approach scalable and
tailorable (see also 3.4 Achieving Scalability). This does not
necessarily mean, that four different programs on different hosts
are required to provide the services for sharing a virtual world
(see 4.3 The Prototype Implementation).

When using DWTP each shared virtual world is represented
by one or several multicast groups. All daemons require access
to multicasting to keep the overall architecture scalable (see
figure 2). Each shared virtual world usually requires one reliabi-
lity daemon, and at least one recovery and one world daemon
(this assumes that participants do not necessarily have a copy of
the world description before connecting to the world and that at
least some messages require reliable transmission). Similar to
HTTP daemons which can serve many HTMJL pages, daemons
might serve more than one shared virtual world. Participants can
be users (browsers/viewers), agents, (VR) applications, etc.

3.1 Data Transfers

In DWTP reliability is realized by the three daemons: reliability
daemons, recovery daenions, and world daemons. DWT’P splits
application data to be transferred into small packages (see
figure, 3). While large objects such as files usually consist of a

Figure 3: Splitting data into packages

large number of packages, most events as well as audio samples
will usually fit into a single package. The package size is not
fixed; but there is a m&mum length for each package. The first
package always contains a description of the data. This descrip-
tion is similar to a MIME type but specific to the needs of virtual
environments.
Each package has a unique identifier. This identifier allows the
recipients of the package to reassemble the complete message (if
consisting of more than one package). Additionally this unique
identification of a single packet is requirejl’for recovery pur-
poses. The identifierconsists of __

l thehostid, ;

l the sender id (identifying the application on the sending
host, e.g: the process id),

l the message id (a number incremented for each message)
l and the package sequence number (identifying the pack-
, age within a multi-package message)

Additionally each package contains the total number of pack-
ages of the transmitted data and a flag i.ndicating if a reliable
transfer of the package is required.

If reliability is required, the reliability daemon is used to de-
tect transmission failures. In our protocol the reliability daemon
sends positive acknowledge messages (ACK’s) when receiving
packages. We do not use negative acknowledge messages
(NACK’s) as used in ISTP [2], RAMP [lo], or RlvIP [161, in or-
der to prevent the NACK expIosion effect (see figure. 4). This ef-

Figure 4: NACK explosion effect

feet usually occurs, if a large number of recipients’are located
behind a network router which fails to transmit a package. In
this case all these recipients will’send a NACK and by~that lead
to a partial congestion of the network. Since this already is the
reason for most transmission failures, such a failure detection
mechanisms would even intensify the problem rather tban solv-
ing it. By using a single component (the reliability daemon) to
send positive acknowledge messages the minimal network load
for reliable messages is higher than with NACK’s but does not
have any significant peak values.

Each sender keeps outgoing messages (requiring reliable
transfer) until it has received an acknowledge message for all
packages of the message. If appropriate acknowledge messages
are not received within a certain time, the corresponding pack-
ages are retransmitted. To reduce the amount of retransmissions
the sliding window technique (as used by TCP) is applied. This
technique interrupts the transmission of packages after a certain
number until acknowledge messages have been received. The
number of messages (the size Qf the windQw), which are sent be-
fore waiting for an acknowledge message is dynamically ad-
justed according to required F9tFansmissions. After a certain
numbeF of attempts package tmnsmission is aborted. Other par-
ticipants and d9emons can dttt@ transmission failures when Fe-
ceiving the a@c~&dga messages from the reliability daemon,
TQ ensu19 that the cormesti~n TV Ihe F9liability daempn is alive, it
sends (empty) &xmwled@ messages if lt has net received a.
rne$a@k after a certain periisd, Al1 acknswledgs messages are
sequentially np,mbered to dlaw pr!~tidpauts and other daemons
tO de&b I@3 ACK’s, Usually tic @K’s fQF S9~9~9l pa9kag9S
(9wn af diffeant messages) are sent whhln a single ACK mes-
saga. $xX jnes6&96 hQW9YCF will always CQPSht of a single
paakq@, @~~~,a @ipie~t a~ daemen, has reFeived, all pa~lyges
md the Cs‘uqy~@j c&m?wle$ges tie sr@nal message can
be r&semb!cd,

for empty (alive) acknowledge messages. It then has to contact a
recovery daemon (see figure 5). Recovery daemons cache net-

t--+ multicast connections
e unicast COMeCtiOnS (recovery)

Figure 5: Recovering from transmission failures

work packages for a certain time; The requested packets are then
sent to the participant or daemon by unicast. One probIem of
splitting the services between several daemons is, that all recov-
ery daemons might detect that they missed a certain package.
Although it has been acknowledged by the reliability daemon, it
could not be recovered in this case. For that reason the reliability
daemon always has to provide recovery services as well. To keep
the load at the reliability daemon low, it might be configured to
allow recovery from (recovery) daemons only rather than from
arbitrary participants.

Sometimes a requested package has already been removed at
the recovery daemon. This problem usually occurs when the net-
work connection to one or several participants breaks down for a
longer period. To overcome this problem, the participant has to
connect to a world daemon. By sending the URL of the shared
virtual world and a timestamp of the last received message, the
world daemon will transmit all changes of this world which oc-
curred after this timestamp as well as all pending messages
(messages not completely received at thls time).

3.2 Unicast Participants

Participants which are not multicast capable can communicate
with other participants of a shared virtual world by unicast con-
nections (UDP/IP or TCP/IP). Since all other participants as
well as the daemons communicate via multicast groups, a spe-
cial daemon is required to exchange messages between the uni-
cast participants and the multicast groups of a shared virtual
world. This task is performed by unicast daemons.

Participants get the network address of one or several unicast
daemons from the world daemon when joining the world. This
infarmatlon is completely encapsulated within the protocol layer
and thus not visible for the application. If the partici ant is not
multicast capable it establishes a unicast connection P to one of
the unicast daemons (see figure 6). Once this connection has
been established, all messages from the participant are sent to
this daemon, The daemon forwards these messages to the multi-
cast grQup as well as to all other unicast participants connected
to the same daemon. Messages received from the multicast
group am distributed among all local participants. To guarantee

1, Far IJDF there 1s actually no real connection, but the partlclpant Is
rcgisnrcd at the unicast daemon and is assigned a specific port where to
send eutgclng packagos,

the reliable transmission of messages, the reliability daemon
connected to the multicast group(s) can be used. If the unicast
connection to the participants is a non reliable connection (UDP/
IP), the Micast daemon can provide its own reliability services
for these connections. This reduces the load of the reliability
daemon and allows us to detect transmission failures faster.

l ee

00

4---N mu&ast conxctions
d---b lmicast comlections

Figure 6: Unicast Connections

Accordmg to the unicast network parameters transmitted by
the world daemon, the protocol layer-might use individual uni-
cast daemons for different data types (e.g. one unicast daemon
for events and messages, and one for audio streams). Addition-
ally one unicast daemon might be connected to several multicast
groups at the same time. It can either transfer all messages be-
tween unicast participants and all multicast groups, or split mes-
sages according to the data type (i.e. one multicast group for au-
dio, one multicast group for events and messages, etc.)., _

3.3 Connecting to a Shared World

World daemons can transmit a description of the shared virtual
world on request and provide new participants with the required
network parameters to connect to that world and communicate
with other participants. By that mechanisms the persistence of
dynamically changing shared virtual worlds is guaranteed. For
that reason a local copy of the shared virtual world has to reside
on the host of the world daemon which is updated according to
received messages. The same applies to avatars and other partic-
ipants currently connected to the shared virtual world. World
daemons however, do not provide any application dependent
features themselves, but allow application servers to communi-
cate with the participants of a shared world. To make a shared
virtual world persistent at least one world daemon is required.
New participants join a shared virtual world by connecting to a
world daemon. This connection is specified by the world’s URL
(e.g. dwtp://world.daemon.com/worldname). This initial con-
nection is a TCP/IP connection, since TCP/IP is appropriate for
a one-to-one reliable transfer of large amounts of data. First of
all the world daemon sends the network connection parameters
(i.e. a multicast group and port as well as alternative network
connections for non-multicast capable participants) to the new
participant (see figure 7). The new participant connects to the
multicast group or one of the unicast addresses and sends a reply
to the world daemon. The daemon will then transmit all pack-
ages of incomplete messages it received until then and which
might not have been received by the new participant at this
point. This prevents the participant from missing any messages.
Then the virtual world contents are transmitted from a file. In
our prototype this is realized by transmitting VRML code. Since

53

the world’s contents continuously change, this description usu-
ally is not transferred from a static file but created from the cur-
rent state of the world by the application server (see “DWTP
Server Interface”). The participant however might request addi-
tional parts of the shared world by specifying their local URL.
This can include modifiable parts (e.g. descriptions of other par-
ticipants/avatars), which have to be provided by the application
server, or static files (such as texture images, or sound files)
which can be transmitted directly by the world daemon. After-
wards the TCP/IP connection is released (by the new participant
or after time-out) and all other communication is performed via
the regular network connection established by the participant.

_
new participant . ’ world daemon

world URL
b

connection parameters
(might include re-direction)

4
connection o.k.

+

4
packages of incomplete messages

scene desctiption (file)

(e.g. avatars, textures, inlines, audo files
addition~alURL‘s .3 :

Figure 7: Conn’ecting to a world daemon

If the participant has already connected earlier to the same
world, it can add a timestamp to the requested URL indicating
when its local copy of the world or participant description has
been modified for the last time. Depending on the individual ap-
plication server, the participant might rather receive a number of
update events than a file describing the requests scene.

‘.;

.$.4 Achieving Scalability

DTWP provides support for two basic mechanisms to realize
large-scale virtual environments.

l adding additional daemons (on additional hosts) to reduce
the load on the existing ones

l splitting worlds into smaller parts (regions), each part
using its own network connections

Since there is no direct connection between the individual dae-
mons (all daemons send and receive messages via the multicast
connection) unless transmission failures occur, adding daemons
usually reduces the load of the existing ones. Additional world
daemons might be used to provide additional dial in points (i-
tial downloads). Increasing the number of world daemons is use-
ful, if a large number of users, which cannot be handled in time
by the available world daemons, frequently join a shared virtual
world. Instead of publishing additional dial in points as DRL’s
for those world daemons, the original world daemon(s) can sim-
ply be configured to redirect requests to the new world daemons.

It is recommended to use a single DWTP address as dial in point
and connecting all other world daemons of the same world by
redirection. ’

Additional recovery daemons can be used to reduce the num-
ber of recovery requests on a single daemonr This might be nec-
essary, if a large number of transmission failures occur. Adding
unicast daemonsprovides the possibility to support a large num-
ber of participants even if they do not have access to multicast-
ing. A single unicast daemon should not beconnected to a large
number of participants. Tests showed that the limit for the num-
ber of participants to be supported by a single unicast daemon is
between five and twenty depending on.the activity of the partici-
pants and the requested services (e.g. with/without audio). The
network load of unicast daemons can also be reduced by config-
u‘&g individual daemons for the transfer of events and stream
data. ,_ .

W multicast connections - - I

Figure 8: Splitting worlds into several parts _
In addition to increasing the number of daemons for a particu-

lar world, it often is more useful to split the whole virtual world
into smaller parts or regions. Each of these parts uses its own
network connections (see figure 8). Thus the load of the dae-
mons responsible for a certain part decreases. The VR applica-
tion has to niake’sure, that the participant of such a shared vir-
tual world is only connected to those parts, which arc currently
visible to him or her. Due to the update mechanism for world
contents already transmitted earlier (as provided by world dae-
mons), re-connecting to regions of a subdivided world is rather
simple. Splitting a world between several multicast groups, does
not necessarily mean that each part has to provide a full set of in-
dividual daemons. For a daemon splitting a single world into dii-
ferent parts is very similar to several independent worlds. Thus
one daemon service might be split among.several daemons for-a
single world, while other services for several worlds are realiid
by a single daemon. , _ . . . ‘_

4 USING D~WP ~0 CREATE SHARED
VIRTUAL ENVIRONMENTS

In this section we &ll show, how the different components of
DWI’P can be’used to support distributed shared virtual worlds
or collaborative virtual environments (WE’s). J

On the one hand the DWTP unicast. reliability and recovery
daemons ‘are completely independent of the realized shared vir-
tual environment and thus can run stand-alone. On the other
hand the DWTP peer component and world daemons have to
communicate with the application or application server respec-
tively.

scene/part
scene/part
events

JP
network connections

Figure 9: The DVVTP world daemon interface

4.1 DWTP Server Interface

The DWTP server interface allows world daemons to be inde-
pendent of a particular application or virtual environment. The
reason for separating world daemons from the application server
is that different applications will use individual description lan-
guages, file formats for worlds, sound, textures, etc., and differ-
ent synchronization mechanisms (e.g. locks, master entities,
tokens, etc.). Thus the world daemon receives and forwards all
application or environment related messages to a distributed vir-
tual environment server via its server interface (see figure 9).
This includes:

l descriptions of new participants (e.g. avatars) as files
9 events
l requests for worltiparticipant downloads (connection)
l requests for worldlparticipant updates (reconnection)
l messages (e.g. participant quit)

The application server will usually add new participants to the
local data base and update them similar td the world scene
according to the incoming events. In addition to changes to the
world contents or participants, the application server will use
events to receive requests for locks or other synchronization
mechanisms (if provided at all). When receiving a connection
request, the application server has to generate a world descrip-
tion which will then be transferred to the new participant by the
world daemon. Reconnection is very similar, but the application
server rather creates a list of events to be sent to the participant.

4.2 DWTP Peer Interface

Participants of shared virtual environments such as users (navi-
gating a browser’and represented by avatars), shared applica-
tions, agents, etc. use the D?VTP peer component and associated
mechanisms to connect to other participants and central services
via DWTP (see figure 10).

The peer interface allows participants
l to connect to new shared virtual worlds
l to send requests for world parts/descriptions of other par-

ticipants

54

l to receive these worlds parts/participant descriptions
l to send events to all other participants .
l to receive events on connected worlds/parts
l to transfer local descriptions (e.g. the user’s avatar) to all

other participants
l to send stream data (audio/video) to some or all other par-

ticipants
Participants of shared virtual worlds will use the DWTP peer

network Connections

Figure 10: The DWTP pdrticipant (peer) interface
.

component to connect to shared virtual world defined by an ap-
propriate URL. They will then usually request additional (static)
files and (dynamic) world parts or descriptions of other partici-
pants currently connected to the same world. If a local descrip-
tion already exists, they might alternatively requesEthe update
events necessary to resynchronize these descriptions with their
current state. If the local participant wants to be represented in
the shared virtual world, it will usually proyide a representation
to be uploaded and transferred to all other participants. For users
this will be their avatar, for applications or agents these might be
an arbitrary description. All modifications of the world based on
local interactions of the participant have to be transferred to all
other participants. This is realized by sending appropriate events
over the network by the DTWP peer component. The participant
might specify the required reliability level for each event. Cur-
rently DTWP supports only two reliability levels (reliable and
unreliable transfer of data). Additional levels and types however,
will be supported in future’releases.

4.3 The Prototype Implementation

We have realized a prototype implementation of DTWR In its
second version the implementation is realized by a multi-
threaded shared library. This library includes the DTWP peer
component and the DWTP daemons (including the world dae-
mon interface).

The DWTP peer component is used by our VRML browser
SmallView [3] to connect and communicate with shared virtual
worlds. Joining a shared virtual world is realized by specifying
the appropriate URL (dwtp://...). When the world has been
downloaded, it is parsed by SmallView for additional downloads
(e.g. inlines, textures, avatars, etc.). When specified by a DWTP
address, those will then be requested and transmitted by DWTP.
Finally the browser will sent the local user profile (including the
participant’s avatar) to all other participants.

55

Consistency among the different distributed copies of the
VRML world is realized by sending synchronization events.
Synchronization events are sent by each individual VRML, node
to its replicated copies via DWTP whenever any of the node’s
fields is modified. To reduce the network load, a minimum time
period is required between two synchronization events issued by
the same VRh4L node. At the end of this period all fields which
have been modified are transmitted. In addition to the field val-
ues, timestamps indicating the last modification are transmitted.
When receiving a synchronization event, only those fields of the
VRML node with timestamps older than the corresponding
fields in the synchronization event are modified. To prevent sev-
eral synchronization messages resulting from a single VRML
event, all VRML events have been extended by an additional
synchronization state variable (in addition to the transmitted
value and the timestamp). The state variable shows, if an event
has already been synchronized within the current event cascade.
In the latter case no further synchronization is necessary, since
the transmitted synchronization event will continue the event
cascade in the replicated copies.

In addition to the VRML browser SmallView a universal con-
figurable daemon based on the DWTP library has been imple-
mented. This daemon includes all daemons provided by the
DWTP library (as presented in the third section of this paper).
thus it can be configured to realize any (arbitrary) combination
of those daemons. It would even be possible to configure a sin-
gle daemon to provide all daemon services for a shared virtual
world. Using a single daemon for. all services however, will
make this server the bottleneck of the system. That is why we
separate at least daemons providing peer-to-peer connections
(unicast daemons) from all other services by setting up two or
more daemons on different hosts. .

Finally we have realized an application server (the place
where always a copy of the shared world is kept). This applica-
tion server (SmallServ) is connected to DWTP by the DWTP
server interface. In addition to providing He descriptions or up-
date events of the worlds contents, SmallServ provides a mecha-
nism to resolve access conflicts between multiple participants of
the shared world.

5 CONCLUSIONS AND FUTURE
WORK

In this paper we introduced DWTP-the Distributed Worlds
Transfer and communication Protocol, an application layer pro-
tocol for connecting large scale virtual worlds and multiple users
on the Internet. DWT.P provides a set of daemons in order to
realize the individual requirements for realizing distributed VR
applications. Based on different network protocols it provides
the basis for a universal protocol for shared virtual worlds.

Our future work will further enhance DTWP in order to sup-
port participants connected via low bandwidth connections such
as modems and to provide additional mechanisms for peer to
peer communication. We will additionally work on more sophis-
ticated mechanisms to reduce the amount of recoveries. Espe-
cially smart mechanisms to select the appropriate daemon for a
certain service considering the load of the daemon and the net-
work connection will be subject to further investigation.

Acknowledgments

We wish to thank Daniel Schick for his work on comparing
DWTP with existing multicast based approaches and his Contri-

butions to the implementation ofthe tlrst version of DWTP. We
further would.Iike to thank the unknown reviewers of this paper
for the helpful&nnents.

,I ti -

[l] L.A. Ames, D.R., Nadeau, and J.L. Moreland, The VRML 2.0
sourcebook, John Wiley & Sons, New York, 1997.

[2]’ R.C. Waters, D.B. Anderson, and D.L. Schwenke. Design of
the Interactive Sharing Transfer Protocol. Proceedings of
Siith IEEE Workshops on Enabling Technologies:‘Znj?a-
struciure for Collaborative Enterprises (June 18-20, 1997,
MIT, Cambridge, Massachusetts), pages 140-147. Los
Alamitos, California: IEEE Computer Society Press, 1997. -

[3] W:Broll. Populating the Internet: Supporting Multiple Users
and Shared Applications with VRML. Proceedings of the
VRML’97 Symposium, pages 33-40. ACM, Feb. 1997.

, :
[4] W. Broll, and D. Schick. DWTP-A Basis for Networked VR

on, the Internet. Proceedings of IS&TISPZE’s Symposium on
.Rlectronic Imaging: Science & Technology 1998 (EI’98):
(S&I Jose, January24-30,1998). ’ ‘j I

[S] D. Bnitzman; M. Zyda, K. Watsen; and M,Macedonia. Vii
, tual reality transfer protocol (vrtp) Design Rationale. Pro-
ceedings Sixth IEEE Workshops on Enabling Technologies:
Infrastructure foi Collaborative Enterprises (June~lg-20,
1997, MIT, Cambridge, Massachtisetts), pages 179-186. Los
Alamitos, California: IEEE Computer Society Press,,1997.

[6] Cyberhub, Blaxxun Interactive. [www] http://www.black-:
sun.com’ .1 ,_ . : 8
,I I-. s,,li.’

[7] S. Floyd, V Jacobsen, C. Liu,.,S. McCanne;and L.‘Zhang. A
Reliable Multicast Framework for Light-Weight Sessions
and Application Level Framing, Scalable Reliable Multicast
(SF&l). ACM SIGCOMM 95.

[8] T. A. Funkhouser. RING: A Client-Server System for Multi-
User Viial Environments. ACM SIGGRAPH Special Issue
on I995 Symposium on Interactive 30 Graphics; pages 85
92. New York, 1995. l

1 i

[9] Yasuaki Honda, Y., Mitra, B. Rockwell, B. Roehl. Living
Worlds, Draft2.0, April 13,1997, [www] http://www.living-
worlds.comldraf~2/index.htm

[lo] Ai Koifman, and S. Zabele. RAMP: A Reliable Adaptive
Multicast Protocol. Proceedings of IEEE INFOCOM ‘96,
San Francisco, CA., March 1996. [www] http://
www.tasc.com:80/simweb/papers/RAMP/ramp.htm

[l l] Y Kumar, MBone: Interactive Multimedia on the Internet.
New Riders, Indianapolis, Indiana, 1995.

[12] R. Lea, Y. Honda, K. Matsuda K., S. Matsuda. Community
Place: Architecture and Performance. Proceedings ofthe
VRML’97 Symposium, pages 41-49. ACM, 1997.

[13] J. Locke, “‘An Introduction to the Internet Networking Envi-
ronment and SIMNET/DIS”, [www] http://www-nps-
netcs.nps.navy.mil/npsnet/publications/DI.psZ

[143 M. R. Macedonia, M. J. Zyda, D. R. Pratt, et al, “Exploiting
Reality with Multicast Groups: A Network Architecture for
Large-Scale Virtual Environments”, Proceedings of the
IEEE VRAIS’95, pages 2-10. IEEE Computer Society Press,
Las Alamitos, CA, March 1995.
,I -, ‘1

[ls] Q. Wang,,M. Green, and C. Shaw. EM’-An Environment
Manager For Building Networked Virtual Environments.
Proceedings of the IEEE VRAIS95 Conference, pages 1 l-
18. IEEE Computer Society Press, Las Alamitos, CA,
Match i995. ,

[16] Brian Whetten, Todd L. Montgomery, and Simon Kaplan. A
High Performance Totally Ordered Multicast Protocol, The-
ory and Practice in Distributed Systems. Springer Verlag
LCNS 938. .

,i :

