
Software Agents and Intelligent Object Fusion
Cyrus F. Nourani

Revised October 1997

Abstract Techniques for modular software design are presented applying software
agents. The conceptual designs are domain independent and make use of specific
domain aspects applying Multiagent AI. The stages of conceptualization, design and
implementation are defined by new techniques coordinated by objects. Software systems
are designed by knowledge acquisition, specification, and multiagent implementations.
Multiagent implementations are defined for the modular designs, applying our recent
projects which have lead to fault tolerant AI systems. A new high level concurrent syntax
language is applied to the designs. A novel multi-kernel design technique is presented.
Communicating pairs of kernels, each defining a part of the system, are specified by
object-coobject super-modules. New linguistics constructs are defined for object level
programming with String and Splurge functions treating object visibility and messages.
Treating objects as abstract data types and a two level programming approach to OOP
allows us to define Pull-up abstractions to treat incompatible objects.
Keywords Abstract Objects, Intelligent Syntax, MJOOP, Multi Agent Object Level
Programming, Multi Kernel Design With OOP, Software Agent Diffusion, Intelligent
Object Fusion
Project METAAI@CompuSrv.Com
Copyright © Photo reproduction for noncommercial use and conferences is permitted without
payment of royalty provided that the reference and copyright notice are included on the first
page.
Academic Address USA UCSB when at University

2

1. Introduction
An AI and software system design paradigm is presented which incorporates a novel
implementation method based on what we have called Abstract Intelligent
Implementations ,A.I.I.[16] , put forth by this author[1,3] for an applied version).
Intelligent implementation of software, that is design and implementation of software by
AI techniques, is due to be an area of crucial importance[11]. The new design techniques
combined with AI are applied to the real software engineering problems encountered in
fields such as intelligent software systems, aerospace, and robot system design.
Furthermore, there is demand for computing models and languages sharing a few basic
concepts. There are simple countenances for describing location of data and a small
number of features for coordinating the work of agents in a distributed/parallel setting.
Coordination languages are being called into being by the computing community as
language support for composing and controlling software architectures. The present
paper project since 1991 has defined design with software agents and intelligent objects
as a three-phased methodology. There is a knowledge acquisition phase, followed by a
specification phase, and concluded by a system implementation phase. The present
approach applies functional nondeterministic knowledge acquisition(FNKA), fault free
system specification, and multiagent abstract implementations.

It is design functional in the sense that it defines knowledge acquisition with objects and
functions defined on objects. It is nondeterministic in the sense that the formulation is
with multiple concurrent kernels that are implemented by agents. System
implementation is by independent concurrent computing agents. AI and software
systems are defined in the present paper by a pair of systems, corresponding to two
views of the functionality, each consisting of many computing agents. The two views are
mutually synchronized to enable fault and exception handling and recovery in an
automatic manner. The proposed methods have been presented in the context of
problems that concern human error and expert judgment in AI a brief by this author [1,3],
and for fault free AI system design in [3]. We are developing a basis for a sound
theoretical and practical methodology for designing dependable AI and software
systems. Some practical application areas in aerospace system design are presented in
[1,3] and forthcoming papers.We present new techniques and languages for object level
programming with intelligent trees implemented by agent functions.

2. Intelligent Objects and Multiagent OOP
The term "agent" has been recently applied to refer to AI constructs that enable
computation on behalf of an AI activity[1,2,3]. It also refers to computations that take
place in an autonomous and continuous fashion, while considered a high-level activity, in
the sense that its definition is software/hardware, thus implementation, independent [1].
The present project develops new techniques, and linguistics constructs for
programming with objects implemented by agents, based on a theory of computing with
trees on signatures carrying agent functions on trees [5]. The agents are designated
functions with specified functionality and message syntax. Thus context can be carried at
syntax. We present new techniques and languages for object level programming with
intelligent trees implemented by agent functions. We show in [6], and brief in the present
paper, how a two-level language paradigm and intelligent object level programming can
handle what otherwise is a complicated computing phenomena. There are objects as
situated automata, for which abstract syntax trees and a computing theory merging with
the current practice of programming theories is quite impossible. Objects are in the well-
known sense of the word in object programming, abbreviated by OOP, for example.
Objects consists of abstract data, perhaps encapsulation, and operations. Most recent
programming techniques apply OOP in some form. Software engineering techniques
with abstract data types have had OOP on their mind. IOOP [6] is a recent technique
developed by the author combining AI and software agents with OOP. The techniques
for software design and implementation we call Design by Software Agent Diffusion and
Intelligent Object Fusion are defined by our papers [3,6] and reviewed in brief here . The

3

IOOP project and Intelligent Software Agent and Intelligent Object Diffusion are what
had been on our papers form 1991 [3,6]. There is a term popularized by an HP UK group
called FUSION which might be relevant. The design techniques we had put forth with
specifications, abstract intelligent object models, and abstract implementations are what
fusion can be applied with. The specific areas are defined by our [3,6].

There has been the emergence of a class of languages and models named coordination
languages and software architecture description languages. The languages are intended
to provide a clean separation between individual software components and their
interaction in the overall software organization. The separation makes large applications
more tractable, global analysis feasible, and software reusable. Modular languages deal
with languages, techniques, and tools for the design and implementation of large-scale
software systems in a modular and extensible way. Since the Modula project many
languages and environments support the goal. Modula-3, Oberon, Eiffel, Java, and SAP
are a few new such languages. For our project the modular programming concepts are
combined with software agent computing, new IOOP constructs, object-cobject pairs and
kernels. Modules are aggregate objects with a specific functionality defined. Aggregate
objects and their specified functions are defined by <module-comodule> pairs called
kernels. A kernel consists of the minimal set of processes and objects that can be used
as a basis for defining a computing activity.

3. Software Agents, IOOP and Design
The techniques, concepts, and paradigms defined by the Project are as follows.
Intelligent Objects, MJOOP - The Multiagent Junction to OOP; Intelligent OOP
Languages; String and Splurge Functions; The Object Coobject Design Paradigm; The
Pullup Abstraction Function; and Multi Kernel AI Designs With Intelligent Objects. The
project fills the gap between object programming as languages, design with software
agents and artificial intelligence practice. Another interest for the above project is to
design knowledge based systems, abbreviated as KBS, from formal specifications. The
motivation for moldering KBS at the knowledge level in the above project is to obtain
formal designs and techniques that are implementation independent.

We have defined intelligent syntax and put forth the basis for automatic tree implementation
techniques for object level programming. We define OOPI, OOP Intelligent, functions and Pull-
up Abstractions in brief from our [5,6] as a structural analogy to operation overloading. New
linguistics constructs are defined for object level programming treating objects as abstract data
types. The OOP defined by the present programming techniques have tree rewrite automatic
implementations. This project is towards programming techniques that could provide a
foundation for the method of computing that is inevitable with the current and forthcoming AI
programming techniques, supported by our theoretical development in [5,6]. There is a gap
between the OOP object programming trends and objects as applied to AI programming
[13,14,16]. We had started on a project to bridge the abstract data type AI KR in our 1985 paper
[15]. For OOP the AI application areas are outlined in [10,11,13]. The present paper offers a
syntactic OOP techniques applicable to AI and ordinary OOP. An important technical point is
that the agents are represented by function names that appear on the free syntax trees of
implementing trees. The trees defined by the present approach have function names
corresponding to computing agents. The computing agent functions have a specified module
defining their functionality.

3.1 Intelligent Syntax Agents
By an intelligent language we intend a language with syntactic constructs that allow
function symbols and corresponding objects, such that the function symbols are
implemented by computing agents in the sense defined by this author in [5,6] and by
[4,17]. A set of function symbols in the language, referred to by Agent Function Set, are
function symbols that are modeled in the computing world by AI and software agents.
The objects, message passing actions, and implementing agents are defined by

4

syntactic constructs. Agents appear as functions, expressed by an abstract language that
is capable of specifying modules, agents, and their communications. We have put this
together with syntactic constructs that could run on the tree computing theories that are
presented in [7].
Definition 3.1 We say that a syntax is intelligent iff it has intelligent function symbols. []

Definition 3.2 A language L is said to be an intelligent language iff L is defined from
an intelligent syntax. []
The most recent language support for AI programming, languages are pursued where
objects are at play without much handle on the syntax trees. Objects appear on various
semantic networks and are a sort of situated automata, that implement a computation by
asynchronous methods. Our goal in the present project is to have language constructs
that allow us to handle objects on abstract syntax trees and implement the mystical
behavior of situated automata by agents.

4. String and Splurge Functions
Formal techniques with intelligent syntax, String and Splurge
programming linguistics allow us to treat visibility in a precise way and to get
theoretical results [5,6,7] for MJOOP and OOP. These
techniques and our formalization for AI computations [9] lead to an exciting new programming
theory and practice for MJOOP. The new programming technique present the basis for
programming with nondeterministic syntax[11].

Definition 4.3 We say that a function f is a string function iff there is no message passing or
information exchange except onto the object that is at the range set for f, reading parameters
visible at each object. Otherwise, f is said to be a splurge function. We refer to them by string
and splurge functions when there is no ambiguity. Remark: Nullary functions are string functions.
Amongst the functions in AFS only some interact by message passing. By defining String and
Splurge functions we can have a formal treatment for programming with objects to handle object
visibility and other related OOP computation problems.
5. The Pull-up Abstraction Function
5.1 The Two Level Language Paradigm
The abstract syntax put forth for to be implemented are expected at two levels. Level 1 is a
language that only expresses the functionality of modules by names of objects and their
message passing Actions, and abstract data types , for example by SLPX[8]. Level 2 defines the
functions themselves. The implementing agents, their corresponding objects and their message
passing actions can also be presented by the two-level abstract syntax. From the practical stand
point, the models as individual programs can be specified with well known specifications
languages.

5.2 The Abstraction Function
To handle the compatibility problem, arising often in OOP, we have defined the Pull-up
abstraction function in [7]. The idea is when defining operations across two incompatible
objects, in the sense of types and the set of operations defined for each, we pull-up
either or both objects to abstract objects for which we could define compatible operations
across the resulting abstract objects. The analogy to Pull-up at the operation level is
overloading, except Pull-up is a structural paradigm. A trivial example might be the
objects defining a Chair with the operations of sitting on or getting up defined, and the
object Table with operations having to do with putting things on, or taking things off the
Table. We might Pull-up the objects Chair and Table to the object Dinning_Table.

6. The Object Coobject Design Paradigm

5

Mi's are objects, ai's agents, TLU and TLD specfic agent modules.

It would be nice to view the problem form the stand point of an example. The example of
intelligent languages we could present have <O,A,R> triples as control structures, where
O's are objects, A's the activities and operations, and R the defining relations. The A's
have operations that also consist of agent message passing. The functions in AFS are
the agent functions capable of message passing. The O refers to the set of objects and
R the relations defining the effect of A's on objects. <O,A,R> is made up from many
<o,a,r>'s running in parallel.

Object:= IOOP_BREW
OPS:= Serve_Coffee (Type,Table_no) |
Serve_Coffee (Spectacular_Brew,n) => Signal an available robot to fetch and serve
(Spectacular_Brew,table n)
Exp:= Serve_Coffee (Spectacular_Brew,Table_no) |...
Serve_coffee(Spectacular_Brew,Table_no) => if out_of_it notify Table_no;
 offer today's-brew <and make use of
 intelligent decision procedures to
 offer alternatives>

In the above example OPS denotes operations, EXP denotes exceptions, and the last
equation defines the exception action. In this example there is a process(action) that is
always checking the supply of a specific coffee implementing the exception function. As
another example, while planning for space exploration, an agent might be assigned by
the onboard computer system to compute the next docking time and location, with a
known orbiting space craft. The objects and message passing by agents are
programmed on SLPX [8] and the actual module definitions, for example the Coffee-
Shop is defined by the parameterized algebraic specification language Compose. The
object-coobject paradigm has been applied by this author to define new computing
paradigms for artificial intelligence with multiagents, called Double Vision
Computing[10].

7. CONCLUDING COMMENTS

6

Many envisions software agents to be important area. Intelligent syntax and computing
with intelligent objects are promising techniques for design and computing software
agents and in some sense inevitable programming paradigms over the next decade.
Thus the MJOOP paradigm is a new practical trend as well as a theoretical development
for OOP.The techniques are applicable to distributed OOP,e.g. [12]. New programming
techniques are put forth for object level programming with abstract data types.

REFERENCES
[1] Nourani, C F."Abstract Implementations By Computing Agents:A Conceptual
Overview," March 3, 1993 , Proc. SERF-93, Orlanda, FL, November 1993.
[2] Genesereth, M.R and N.J. Nilsson, Logical Foundations of Artificial Intelligence,
Morgan-Kaufmann, 1987.
[3] Nourani, C.F.,"A Multi_Agent Approach To Fault-Free and Fault Tolerant AI," Proc.
FLAIRS,93, Sixth Florida AI Research Symposium, April 1993.
[4] Genesereth, M. R. An Agent-Based Approach to Software
Interoperability, In Proceedings of the DARPA Software Technology Conference, 1992.
[5Nourani,C.F.," Abstract Intelligent Tree Computing And A Tree Rewrite Theory For
OOP”, January 19, 1995, Abstract Data Types 95, Holmenkollen, Norway.
[6] ___________,"The IOOP Project, 1994, SIGPLAN Notices 30:2, 56-54, February 1995.
[7] ___________,"Slalom Trees Computing," April 1993, AI Communications, December
1996, IOS Press.
[8] ___________"Parallel Module Specification on SLPX," November 1990,SIGPLAN,
January 1992.
[9] ___________,"Planning and Plausible Reasoning in AI,"Proc. Scandinavian AI
Conference , May 1991, Denmark, 150-157, IOS Press.
[10] Nourani, C.F., "Double Vision Computing," December 1993, IAS-4,Karlsruhe,
Germany.
[11] Wiederhold, G. The Architecture of Future Information Systems, Stanford
University Computer Science Department, 1989.
[12] Liskov ,B, et.al., The Language-Independent Interface of the Thor Persistent Object System,
MIT Programming Methodology Group Memo 80, March 1994.
[13] R. Fikes and T. Kehler, ‘The Role of frame-based representation in reasoning,” CACM 28,
No.9, pages 904-920, 1985.
[14] R.J.Brachman, R.E.Fikes, and H.J.Levesque, KRYPTON: A Functional Approach to
Knowledge Representation,” in Readings in Knowledge Representation, Brachman and
Levesque editors,Morgan-Kaufmann.
[15]Nourani, C.F. and K.J. Lieberherr, "Data Types, Direct Implementations, and Knowledge
Representation," Proc. 19th HICSS, Honolulu, Hawaii, January 1986, Vol II, pp. 233-243.
[16] Nourani,C.F.,"AII and Heterogenous Design," 1995, MAAMAW, April 1997. Ronneby,
Sweden.
[17] Genesereth, M.R. and S. P. Ketchpel, Software Agents, Computer Science Department
Stanford University, 1995.

7

