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ABSTRACT
Query plans offer diverse tradeoffs between conflicting cost
metrics such as execution time, energy consumption, or ex-
ecution fees in a multi-objective scenario. It is convenient
for users to choose the desired cost tradeoff in an interactive
process, dynamically adding constraints and finally selecting
the best plan based on a continuously refined visualization
of optimal cost tradeoffs. Multi-objective query optimiza-
tion (MOQO) algorithms must possess specific properties
to support such an interactive process: First, they must be
anytime algorithms, generating multiple result plan sets of
increasing quality with low latency between consecutive re-
sults. Second, they must be incremental, meaning that they
avoid regenerating query plans when being invoked several
times for the same query but with slightly different user con-
straints. We present an incremental anytime algorithm for
MOQO, analyze its complexity and show that it offers an
attractive tradeoff between result update frequency, single
invocation time complexity, and amortized time over mul-
tiple invocations. Those properties make it suitable to be
used within an interactive query optimization process. We
evaluate the algorithm in comparison with prior work on
TPC-H queries; our implementation is based on the Post-
gres database management system.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems
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Query optimization; multi-objective; incremental; anytime

1. INTRODUCTION
Classical query optimization considers only one cost met-

ric for query plans and aims at finding a plan with minimal
cost [12]. This model is insufficient for scenarios where mul-
tiple cost metrics are of interest. Multi-Objective Query

∗This work was supported by ERC grant 279804.

Optimization (MOQO) judges query plans based on multi-
ple cost metrics such as monetary fees of execution (e.g., in
cloud computing) and energy consumption in addition to ex-
ecution time [11, 14, 15]. Plans are associated with cost vec-
tors instead of cost values and the goal is to find a plan with
an optimal tradeoff between conflicting cost metrics. The
optimal tradeoff is user-specific since different users might
have different priorities. Prior work in MOQO assumes that
users select the optimal cost tradeoff indirectly by specifying
weights and constraints prior to query optimization. User
studies have however shown that users have generally trou-
bles to accurately express their preferences indirectly in a
multi-objective scenario without having prior knowledge of
the available tradeoffs [17]. It is more natural for users to se-
lect the preferred tradeoff out of a set of alternatives and this
procedure tends to lead users to better choices. We apply
those results from general multi-objective optimization to
MOQO and postulate that MOQO should be an interactive
process (at least for queries with non-negligible execution
time) in which users select the query plan with optimal cost
tradeoff out of a set of alternatives. The following examples
illustrate two out of many possible application scenarios.

Example 1. In cloud computing, there is a tradeoff be-
tween execution time and fees as buying more resources can
speed up execution. Users performing SQL processing in the
cloud can benefit from a visualization of available cost trade-
offs before they select a query plan for execution.

Example 2. In approximate query processing, there is a
tradeoff between execution time and result precision since
sampling can be used to reduce execution time. Visualizing
available tradeoffs helps users to hand-tune the execution of
queries that process large data sets or are executed frequently.

It is not necessary to make users aware of all alternative
query plans for their query. It is sufficient if users have
an overview of the Pareto-Optimal plans; a plan is Pareto-
optimal if no alternative plan has better cost according to all
cost metrics at the same time (this definition is slightly sim-
plified). For two or three cost metrics, the Pareto-optimal
plan cost tradeoffs can be visualized as a curve or as a surface
in three-dimensional space. For higher number of cost met-
rics, users could successively visualize the Pareto surface for
different combinations of cost metrics or look at aggregates
(minima and maxima) for the different cost metrics. Having
an overview of the available cost tradeoffs, users can directly
select the query plan which fits best to their priorities.

An ideal interactive MOQO optimizer presents an overview
of all Pareto-optimal cost tradeoffs quickly after receiving
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Figure 1: Example interaction between user and in-
teractive anytime optimizer: the user selects a query
plan by finally clicking on the desired cost tradeoff.

the user query as input. The problem is that the number of
Pareto plans might be extremely large already for medium-
sized queries and prior work has shown that calculating all
Pareto-optimal plans is often not realistic within a reason-
able time frame [14]. This leads to approximation algorithms
for MOQO that quickly find a representative set of query
plans whose cost vectors approximate the Pareto-optimal
cost tradeoffs with a given target precision [11, 14]. There is
a tradeoff between optimization time and target precision;
choosing a finer target precision increases optimization time.
Approximate MOQO can take several tens of seconds for
TPC-H queries when choosing a rather fine-grained target
precision which is inconvenient for an interactive interface.
It is impossible to know which precision the user requires
to make his decision. It is also unclear how much time op-
timization will take for a given query and target precision
since this depends on the size of the result plan set which is
the output of optimization. The most natural approach is
therefore an interface that iteratively refines the approxima-
tion of the Pareto cost tradeoffs, while allowing continuous
user interaction; users may for instance interact with the
MOQO optimizer by selecting a query plan for execution
(thereby ending optimization) or by setting cost bounds for
different cost metrics (which can be exploited to speed up
optimization as bounds restrict the search space). Figure 1
illustrates the interaction between user and optimizer: query
plans are evaluated according to the two cost metrics (ex-
ecution) time and monetary fees in the example, and plan
costs are represented as points in a two-dimensional space.

Existing approximation algorithms for MOQO [14] are
however ill-suited to be used within such an interface for
several reasons. First, they require to specify a target pre-
cision in advance and return results only once a full result
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Figure 2: Incremental anytime algorithms

plan set is generated that is guaranteed to approximate the
Pareto plan set with the target precision. An interactive
scenario rather requires algorithms that return several result
plan sets of increasing approximation precision with high fre-
quency (low waiting time between consecutive result sets).
Algorithms that continuously improve result quality instead
of returning only one result at the end of execution are gen-
erally called anytime algorithms in contrast to one-shot al-
gorithms. Figure 2(a) illustrates the difference. A second
shortcoming of existing MOQO algorithms is that they are
non-incremental : they cannot systematically exploit results
of prior invocations to speed up optimization for very simi-
lar input problems. Users might for instance adapt the cost
bounds several times when optimizing a single query which
changes part of the input for the optimization algorithm (the
bounds change while the query remains the same). Start-
ing optimization from scratch every time that this happens
is inefficient since the same query plans might get regener-
ated several times. An interactive scenario rather requires
an incremental algorithm that maintains state across sev-
eral invocations for the same query to minimize redundant
computation. Figure 2(b) illustrates the difference between
incremental and memoryless algorithms.

The original scientific contribution of this paper is an in-
cremental anytime algorithm for MOQO. This algorithm has
the anytime property since it generates a rough approxima-
tion of the Pareto plan set quickly that is refined in multiple
steps, having low latency between consecutive refinements.
The algorithm is incremental since it maintains state across
consecutive invocations for the same query with different
cost bounds, thereby avoiding to regenerate the same plans.
Hence our algorithm is suitable for interactive MOQO.

We summarize the contributions of this paper:

1. We present an incremental anytime algorithm for in-
teractive MOQO; it continuously refines the approxi-
mation of the Pareto-optimal cost tradeoffs and avoids
regenerating plans over multiple invocations.

2. We analyze the space complexity of that algorithm,
the time complexity of a single invocation, and the
amortized complexity of several invocations.

3. We experimentally evaluate an implementation of that
algorithm within the Postgres database management
system comparing with non-incremental non-anytime
MOQO algorithms, using TPC-H queries as test cases.



The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 introduces the for-
mal model that is used throughout the remainder of the
paper. Section 4 discusses the incremental anytime algo-
rithm for interactive MOQO in detail. Section 5 proves cor-
rectness of the algorithm, analyzes its space complexity, the
time complexity of a single invocation, and the amortized
time of several invocations. Section 6 contains experimen-
tal results for TPC-H queries; the presented algorithm was
implemented on top of the Postgres optimizer.

2. RELATED WORK
We discuss prior work solving similar problems as we do

(MOQO) and prior work using similar algorithmic tech-
niques as we do (work on anytime algorithms, incremental
algorithms, and approximation algorithms). Classical query
optimization [12] judges query plans based on only one cost
metric. Single-objective query optimization algorithms are
not applicable to MOQO in the general case; a detailed ex-
planation can be found in prior work [7, 14]. MOQO algo-
rithms were proposed in the context of the Mariposa sys-
tem [13] where query plans are evaluated based on the two
cost metrics execution time and execution fees: Papadim-
itriou and Yannakakis propose a fully polynomial-time ap-
proximation scheme for MOQO [11]. Their algorithm com-
bines polynomial run time with formal approximation guar-
antees but does not optimize join order (only the mapping
from query plan nodes to processing sites is optimized for
a fixed join order) and is therefore not applicable to the
query optimization problem addressed in this paper. It has
been shown that even single-objective query optimization
cannot be approximated in polynomial time if join order is
optimized [5]; those results apply to MOQO as well since
MOQO is a generalization of single-objective query opti-
mization. Ganguly et al. [7] described an algorithm for
MOQO based on dynamic programming; this algorithm pro-
duces the full set of Pareto-optimal cost tradeoffs but its
execution time can be excessive in practice [14]. In prior
work [14], we proposed several approximation schemes for
MOQO. We assumed that users specify a preference func-
tion in the form of weights and cost bounds prior to opti-
mization; the optimizer searches for a plan maximizing that
preference function. Specifying a preference function in ad-
vance is however often difficult for users [17]; this is why we
assume now that users select their preferred query plan in
an interactive process. Our prior algorithms are unsuitable
to be used within an interactive process since they are not
incremental, meaning that consecutive invocations for the
same query result in large amounts of redundant work, and
since they are not anytime algorithms, meaning that they
do not improve result precision in regular intervals. We dis-
cuss and justify the design constraints that an interactive
interface imposes on the optimization algorithm in more de-
tail in Section 4. During formal analysis (see Section 5) and
experimental evaluation (see Section 6), we use algorithms
as baseline that are very similar to the ones proposed in
our prior work. Other MOQO algorithms are tailored to-
wards specific combinations of cost metrics [18, 1]; while
such special-purpose algorithms achieve good performance,
they break when taking into account additional cost met-
rics [14]. The algorithm proposed in this paper is applicable
for a broad range of plan cost metrics such as execution
time, energy consumption, monetary fees, result precision

and others; we cover the same metrics as the generic ap-
proximation schemes that were discussed before [14].

Anytime algorithms are algorithms whose result quality
improves gradually as computation time progresses [19]; they
are often applied to computationally intensive problems in
situations where computation might be interrupted. MOQO
is computationally intensive and user input may interrupt
the current optimization at any time in our interactive sce-
nario. Anytime algorithms have been proposed for query
processing [16, 8] while we use them for query optimiza-
tion. Chaudhuri motivated the development of anytime al-
gorithms for classical query optimization [6]. We argue that
anytime algorithms are even more beneficial for MOQO due
to the higher computational cost and due to the additional
challenge of user interaction. Incremental algorithms avoid
redundant work when solving similar problem instances in
consecutive invocations (e.g., when calculating shortest paths
for several graphs with similar structure [2]). In our case we
solve many consecutive optimization problems for the same
query but with different bounds and different approximation
precision. Bizarro et al. proposed an incremental algorithm
for parametric query optimization [4]; plan cost depends
on unknown parameters in their scenario and the optimizer
might have to optimize the same query for many different
combinations of parameter values. Storing result plans to-
gether with the corresponding input parameters allows to
bypass future optimizer invocations for similar parameter
values. Parametric query optimization is related to MOQO
since both extend the problem model of classical query op-
timization; parametric query optimization associates plans
however with cost functions while MOQO associates plans
with cost vectors. MOQO algorithms are in general not ap-
plicable for parametric query optimization and vice versa, a
detailed discussion of the differences can be found in prior
work [15]. Existing algorithms for multi-objective paramet-
ric query optimization [15] are neither incremental nor any-
time algorithms. The algorithm presented in this paper is
an approximation scheme [9]: it differs from an exhaustive
algorithm since it does not guarantee to return the optimal
result. It offers however formal worst-case guarantees on
how far the quality of the produced result is from the opti-
mum; this distinguishes our algorithm from pure heuristics.
Approximation schemes for MOQO have been proposed be-
fore [14] but they are neither anytime algorithms nor incre-
mental. Our algorithm is iterative which connects it to other
iterative query optimization algorithms [10, 14]. The algo-
rithm proposed by Kossmann and Stocker [10] is however
only applicable to single-objective query optimization while
our prior iterative algorithm [14] is non-incremental, mean-
ing that results generated in prior iterations are not reused,
and the goal was to minimize total query optimization time
rather than the time between consecutive results.

3. MODEL
We model a Query as a set Q of tables that need to be

joined. We use this simple query model to describe our
algorithm in Section 4 but we outline in Section 4.3 how the
algorithm can be extended to support a richer query model.
A Query Plan either scans a single table or is composed out
of two Sub-Plans such that the result of those sub-plans is
finally joined. We denote by p = p1 1 p2 the plan p that
uses p1 and p2 as sub-plans and joins their results.



Query plans are associated with scalar cost values in clas-
sical query optimization [12]. As we consider multiple cost
metrics in MOQO, each plan is associated with a Cost Vec-
tor instead of a cost value. We denote by c(p) ∈ Rl+ the
cost vector associated with plan p. Each component of that
vector represents the cost value according to one of the l
metrics. Note that cost values are always non-negative. We
use boldface for vectors (e.g., c) to distinguish them from
scalar values. The algorithm presented in Section 4 sup-
ports the same class of cost metrics as prior generic approx-
imation schemes [14]; this set includes for instance execu-
tion time, monetary execution fees, result precision, energy
consumption, or various measures of resource consumption
concerning system resources such as buffer space, number of
cores, or IO bandwidth. The class of supported cost metrics
is characterized more thoroughly during formal analysis in
Section 5. The focus of this paper is on optimization and
not on costing; we do not provide our own cost formulas
but assume that cost models from prior work are used to
estimate the cost of query plans.

Considering one cost metric, a query plan p1 is at least
as good as another query plan p2 if the cost of p1 is lower
than or equivalent to the cost of p2. With multiple cost
metrics, a plan p1 is at least as good as p2 if its cost is lower
than or equivalent to the cost of p2 according to each cost
metric; if this is the case then we say that p1 Dominates
p2 and denote it by c(p1) � c(p2). If p1 dominates p2 and
p1 has lower cost than p2 according to at least one metric
then we say that p1 Strictly Dominates p2 and denote it by
c(p1) ≺ c(p2). Consider the set P of all possible plans for
a fixed query: we call each plan p∗ ∈ P Pareto-Optimal if
there is no alternative plan p ∈ P such that c(p) ≺ c(p∗).
We call the set P ∗ ⊆ P a Pareto Plan Set if for each possible
plan p ∈ P there is a plan p∗ ∈ P ∗ with c(p∗) � c(p). Note
that several subsets of P can be Pareto plan sets.

Full Pareto plan sets can be excessively large; this mo-
tivates to approximate the real Pareto set. Let α > 1 be
the Precision Factor. Then each subset P ∗

α of P is an α-
Approximate Pareto Plan Set if for each possible plan p ∈ P
there is a plan p∗ ∈ P ∗

α such that c(p∗) � αc(p). Each
Pareto plan set is an approximate Pareto plan set with fac-
tor α = 1. By multiplying the cost vector of plan p by a
factor greater than 1, we make its cost appear higher than
it actually is; this reduces the requirements compared to the
definition of the Pareto plan set. The higher α is chosen, the
lower the approximation precision and the smaller the cor-
responding approximate Pareto plan set can be. We derive
size bounds in Section 5.

Often, users care only about query plans whose cost is
upper-bounded for certain cost metrics. Users might for in-
stance have a deadline which implies an upper bound on ex-
ecution time, or a monetary budget limiting execution cost.
We model Cost Bounds by a cost vector b with the seman-
tics that users are only interested in plans p with c(p) � b.
If c(p) � b for some plan p then we also say that it Respects
the cost bounds while it otherwise Exceeds the bounds. If
a user specifies cost bounds b then he is interested in an
approximation of a subset of the Pareto plan set: an α-
Approximate b-Bounded Pareto Plan Set is a subset P ∗ of
the set P of possible plans such that for each plan p ∈ P with
αc(p) � b there is a plan p∗ ∈ P ∗ such that c(p∗) � αc(p).
The input to the Approximate Bounded MOQO Problem is
a query Q, an approximation factor α, and cost bounds b.

The result is a α-approximate b-bounded Pareto plan set
for query Q. During Interactive MOQO, many approximate
bounded MOQO problems may have to be solved, reflecting
gradually refined approximation precision and bounds that
may change due to user input.

We finally discuss the parameters used in our formal anal-
ysis: n is the number of query tables, m the cardinality of
the biggest table in the data base. Parameter l is the num-
ber of cost metrics. We treat n as variable while we treat
m and l as constants during complexity analysis. Those
assumptions are consistent with prior work on MOQO ap-
proximation algorithms [14].

4. DESCRIPTION OF ALGORITHM
We describe the Incremental Anytime MOQO Algorithm,

short IAMA, for interactive MOQO in this section. Existing
MOQO algorithms [14] assume that users specify a prefer-
ence function prior to optimization; the goal of optimiza-
tion is to find a plan that optimizes this preference function.
IAMA differs since users select the optimal query plan for
their query in an interactive process. IAMA consists of two
main parts: the main control loop and the incremental op-
timizer. The main control loop handles the interaction with
the user and decides which part of the plan search space to
explore next. It uses the incremental optimizer as a sub-
function to generate fresh query plans. The incremental
optimizer generates query plans for the given query; it al-
lows to focus plan generation by specifying an area of inter-
est within the plan cost space and to choose the resolution
with which Pareto-optimal cost tradeoffs are approximated.
Choosing a higher resolution yields more accurate results
while choosing a lower resolution reduces optimization time.
The main control loop uses the optimizer to increase approx-
imation precision step by step for a given area in the cost
space which leads to the anytime behavior of IAMA.

The incremental optimizer was designed with two perfor-
mance constraints in mind. First, it must be incremental,
meaning that it avoids regenerating the same query plans in
consecutive invocations; this is important as the optimizer
is invoked many times for a given query while only the res-
olution and the area of interest in the cost space change.
Second, the time of any single optimizer invocation must be
proportional to the resolution and to the size of the cho-
sen cost space area. Both optimizer properties are crucial to
enable an interactive process: If the optimizer was not incre-
mental then each invocation would start from scratch and
generating a fine-grained approximation could easily take
several tens of seconds. Receiving user input during such
a long time is likely which only leaves the choice between
blocking the interface until optimization is finished (leading
to poor user experience) or interrupting optimization with-
out being able to reuse any results (making it unlikely that
high resolutions are ever reached). If invocation time was
not guaranteed to be at most proportional to the input pa-
rameters then the interface might not be able to generate a
first approximation of optimal cost tradeoffs quickly.

The proposed optimizer algorithm satisfies both perfor-
mance constraints. It uses a variant of the classical dynamic
programming approach to query optimization [12] and gen-
erates optimal plans for joining table sets out of optimal
plans for joining subsets. A single-objective optimizer would



store one cost-optimal plan per table set1 while the IAMA
optimizer might have to store many alternative query plans
that all realize Pareto-optimal cost tradeoffs. The IAMA op-
timizer becomes incremental by maintaining two plan sets
across invocations: the result plan set and the candidate plan
set. Both sets may contain completed query plans, joining
all tables in the current query, as well as partial query plans,
joining only a subset of tables. Result plans have already
been verified to be crucial in order to approximate a spe-
cific cost space area with a specific resolution. Candidate
plans have only been determined to be potentially useful for
a given cost space area and resolution. A future optimizer
invocation will decide whether they are relevant indeed.

Both plan sets are indexed by plan cost and by resolution
level. Using a data structure supporting multi-dimensional
range queries allows to efficiently retrieve plans whose cost
is within a certain range and which are registered for a cer-
tain range of resolution levels. Indexing plans by their cost
vectors enables the optimizer to focus on certain cost space
areas. Indexing candidate plans by resolution allows to avoid
checking relevance of the same candidate for the same res-
olution twice. We will formally prove in Section 5 that the
proposed algorithm indeed verifies relevance only once per
resolution and candidate plan. Indexing result plans by res-
olution is required to guarantee that optimization time is al-
ways proportional to the chosen resolution. When inserting
new partial candidate plans during an optimizer invocation,
they should for instance only be combined with result plans
that are registered for the current resolution level or lower.
We illustrate how our algorithm works by means of a highly
simplified example before providing details.

Example 3. We consider the two cost metrics execution
time and monetary fees (e.g., in a cloud scenario) and opti-
mize the simple query R 1 S. The user selects very tight cost
bounds on execution fees. The initial goal of the optimizer
is to quickly produce a coarse-grained approximation of the
optimal cost tradeoffs for the query. Therefore, optimization
starts with the lowest possible resolution level 0.

The optimizer starts by considering alternatives scan plans
for the two single relations R and S. If the optimizer encoun-
ters a scan plan whose cost exceed the user bounds then this
plan is stored as candidate for later optimizer invocations
as it might become useful once the user changes the bounds.
If the optimizer encounters several plans for the same ta-
ble whose cost are roughly comparable then only one of them
is stored as result plan while the others are stored as can-
didates; the other plans might become useful once the reso-
lution is refined. In a second step, the optimizer combines
result scan plans to form join plans answering the entire
query. The optimizer separates result plans from candidate
plans in the same fashion as before and shows the cost of the
result plans to the user.

Without user intervention, the resolution is increased to
1. Now the optimizer reconsiders some of the scan plans for
R and S that were stored as candidates. The optimizer does
not reconsider candidate plans whose cost exceed the bounds
since the user did not change them. The optimizer reconsid-
ers candidate plans whose cost was roughly comparable to the

1Single-objective optimizers might still store several cost-
optimal plans for a table set if they produce different tuple
orderings that might speed up following operations; we ne-
glect tuple orderings here to simplify the explanations.

cost of a result plan. Two plans whose costs were considered
equivalent at resolution level 0 might not be equivalent any-
more at resolution level 1; such plans are inserted as result
plans. Then the optimizer uses the freshly inserted result
scan plans to combine fresh plans for the entire query.

Assume the user relaxes the tight bound on monetary fees.
Now the resolution is reset to 0 in order to quickly generate
a rough approximation of available cost tradeoffs for the new
bounds. The optimizer only reconsiders candidate scan plans
whose costs exceeded the previous bounds but no candidates
whose cost was considered equivalent to one of the result
plans at resolution 0 or 1. Freshly inserted result plans are
used to combine fresh plans for the entire query; the user
view is updated.

Section 4.1 describes the main control loop and Section 4.2
discusses the pseudo-code of the incremental optimizer. Sec-
tion 4.3 proposes finally several extensions.

4.1 Main Control Loop
Algorithm 1 is the main function of IAMA. Its input is a

query and its output is the query plan that the user selects
for execution in an interactive process. Algorithm 1 contains
the main control loop from lines 12 to 25; each iteration of
the main loop generates new query plans by invoking the
Optimize procedure (its implementation is discussed in the
next subsection), visualizes their cost using the Visualize
procedure (we do not provide pseudo-code for this proce-
dure), and selects the focus for the next optimizer invoca-
tion, taking into account user input, if any.

The optimization focus is described by the two local vari-
ables b and r. Variable b is a vector of upper cost bounds
restricting the area of interest in the cost space. Variable
b is used as parameter for the optimizer invocation and the
optimizer focuses on generating plans that respect the cost
bounds (i.e., plans whose cost vector is dominated by b).
The cost bounds are initialized to default values (this can
also be the value ∞, indicating that no bounds are set by
default) and can be adapted by the user in each iteration
of the main control loop. Adapting the bounds gives users
the opportunity to focus plan search on the relevant part of
the cost space, thereby speeding up optimization. Variable r
represents the resolution with which the Pareto-optimal cost
tradeoffs are approximated. At a low resolution, the op-
timizer does not distinguish query plans with similar cost
vectors and generates a relatively small set of representa-
tive query plans. At a high resolution, the optimizer gener-
ates more query plans and the approximation of the set of
Pareto-optimal cost tradeoffs is therefore more fine-grained.
Assuming a two-dimensional visualization of cost vectors, a
high resolution translates into pixels representing alterna-
tive cost tradeoffs being closer together while a low resolu-
tion means that those pixels are far apart from each other
(see Figure 1 from Section 1 for an example: the resolution
increases from Figure 1(a) to Figure 1(b)). This motivates
the use of the term resolution. We assume that a predeter-
mined number of resolution levels is used; the value domain
of variable r is the set of resolution levels {0, . . . , rM}. Vari-
able r is initialized with the lowest possible resolution and is
increased by one in each iteration of the main control loop
if no user input is received. If the user changes the cost
bounds then the resolution is set to zero again. Gradually
increasing resolution allows to keep each optimizer invoca-
tion short (note that this reasoning is only valid since the



1: // Generate Pareto plan set of increasing resolution
2: // for query Q until user selects query plan
3: function IncAnyMOQO(Q)
4: // Initialize bounds and resolution
5: b← default bounds
6: r ← 0
7: // Fill in scan plans for single tables
8: for q ∈ Q, p ∈ScanPlans(q) do
9: Prune(Resq, Candq,b, r, p)

10: end for
11: // Main control loop
12: repeat
13: // Generate more plans
14: Optimize(Q,Res, Cand,b, r)
15: // Visualize cost of known plans
16: Visualize(ResQ[0..b, 0..r])
17: // Update bounds or refine resolution
18: if User changed bounds then
19: b← user-specified bounds
20: r ← 0
21: else
22: // Refine resolution until rM is reached
23: r ← min(rM , r + 1)
24: end if
25: until User selects plan p
26: // Return result plan
27: return p
28: end function
Algorithm 1: Main function for interactive query optimiza-
tion: processes user input, visualizes plan cost, and invokes
incremental optimization procedure.

optimizer is incremental). Under the reasonable assumption
that the time for one iteration of the main loop is mainly de-
termined by optimization time, the short optimization times
lead to high iteration frequencies. This guarantees that the
plan cost visualization is updated frequently and that the
interface remains responsive. Resetting the resolution after
a bounds change makes sure that first results become visible
quickly after the user adapts the cost space area of interest.

Variable Res stores the set of result plans and variable
Cand the set of candidate plans. Both sets contain partial
plans that join subsets of Q in addition to completed plans
that join all tables in Q; we use the superscript notation to
refer to subsets of plans that join specific table sets (e.g.,
Resq for q ⊆ Q denotes the subset of result plans that join
table set q). Plans in both sets are also indexed by their
cost vectors and by the resolution at which they were in-
serted (result set) or at which they should be considered
for insertion (candidate set). We refer to subsets of plans
that are associated with a specific resolution range and cost
range using square brackets: Resq[0..b, 0..r] selects for in-
stance all result plans that join table set q, were inserted
at a resolution between 0 and r (both limits inclusive), and
whose cost is dominated by b. The analogous notation ap-
plies for candidate plans. Those plan selections correspond
to range queries in the space that is spanned by all of the
plan cost metrics and by the resolution level as additional
dimension. A classic survey on data structures supporting
range queries was compiled by Bentley and Friedman [3].
Different data structures offer different tradeoffs between
insertion and retrieval time. We will later prove and ex-

1: // Generate plans for query Q, insert them into result
2: // set Res if they are relevant for current resolution r
3: // and bounds b or insert them into candidate set Cand
4: // if they might become relevant later.
5: procedure Optimize(Q,Res, Cand,b, r)
6: // Check candidate plans
7: for q ⊆ Q do
8: for pC ∈ Candq[0..b, 0..r] do
9: Candq ← Candq \ {pC}

10: Prune(Resq, Candq,b, r, pC)
11: end for
12: end for
13: // Generate plans using fresh candidates
14: for k ← 2 to |Q| do
15: for q ⊆ Q : |q| = k do
16: for q1 ⊂ Q : q1 6= ∅; q2 ← Q \ q1 do
17: for pF ∈Fresh(Resq1 , Resq2 ,b, r) do
18: Prune(Resq, Candq,b, r, pF )
19: end for
20: end for
21: end for
22: end for
23: end procedure

Algorithm 2: Incremental optimization algorithm for multi-
objective query optimization.

ploit the fact that the number of plan insertions is bounded
for a fixed query while the number of retrieval operations
is not (see Section 5.4). Prioritizing fast retrieval over fast
insertion times and selecting a corresponding data structure
seems therefore advantageous.

Both sets, result plans and candidate plans, are initially
empty in each invocation of Algorithm 1. They are initial-
ized before the main control loop starts, by inserting plans
for scanning single query tables using procedure Prune.
The pruning procedure decides whether to insert plans into
the result or candidate set and its implementation will be
discussed in the next subsection. New plans can get gen-
erated and inserted into Res and Cand in each invocation
of the Optimize procedure. Note that we assume call-by-
reference parameter passing such that the optimizer sub-
function can alter the state of Res and Cand. Procedure
Visualize visualizes only cost tradeoffs of completed query
plans which respect the current cost bounds and are appro-
priate for the current resolution; the input set to procedure
Visualize is therefore the subset of completed query plans
described by ResQ[0..b, 0..r].

4.2 Incremental Optimizer
Algorithm 2 is the incremental optimizer procedure that

is invoked in each iteration of the main loop (lines 12 to 25
in Algorithm 1). It obtains as input the current query Q,
the set of result and candidate plans (which it may alter),
as well as cost bounds b and resolution r. After the opti-
mizer invocation, the result set is guaranteed to contain a
b-bounded approximation of the Pareto plan set for query Q
with resolution r. This may or may not require the optimizer
to insert new plans into the result set. As the optimizer is
incremental, it will only insert new plans in addition to the
ones already contained in Res if this is required to satisfy
the previously mentioned guarantee. The optimizer may
also insert plans into the candidate plan set Cand, discard



plans from the candidate set, or re-index candidate plans for
a different resolution. The purpose of the candidate set is to
avoid redundant work over different optimizer invocations: a
non-incremental MOQO algorithm [14] discards query plans
that are not useful for the current invocation. IAMA keeps
them as candidate plans instead and does not need to regen-
erate them in later invocations. Re-indexing and discarding
candidate plans also minimizes redundant work: if it has
been verified during the current optimizer invocation that
a certain candidate plan is irrelevant for a given resolution
then it is not necessary to recheck that candidate plan for
the same resolution again in future invocations. Re-indexing
that candidate plan for a higher resolution makes sure that
the knowledge gained in the current invocation (about the
irrelevance of that candidate) is not lost. If candidate plans
are irrelevant even for the highest resolution then they can
be safely discarded.

Algorithm 2 consists of two phases. In the first phase
(lines 6 to 12), the optimizer reconsiders candidate plans
that were generated in previous invocations. It iterates over
all table subsets of Q in arbitrary order and retrieves for each
set all candidate plans that are indexed for the current res-
olution and the current cost bounds. All considered plans
are deleted from the candidate set and pruned; the prun-
ing procedure might insert them again as candidates but
for a higher resolution than the current one. The pruning
procedure (whose pseudo-code is discussed later) might also
insert them into the result plan set. The second phase of Al-
gorithm 2 (lines 13 to 22) generates new plans by combining
plans in the result sets. During that phase, the optimizer it-
erates over table sets of increasing cardinality; for each table
set, it considers all possible splits into two non-empty sub-
sets. For each split of a set q into two subsets q1 and q2, the
optimizer considers combining a plan joining the tables in
q1 with one joining the tables in q2 to obtain a plan joining
all tables in q. In contrast to classical query optimization
algorithms [12], the incremental optimizer does not com-
bine all plans in the result plan sets but only considers fresh
combinations of sub-plans that were not generated in prior
optimizer invocations. Function Fresh (whose pseudo-code
is discussed next) returns only such plans.

Algorithm 3 shows pseudo-code for the pruning procedure
Prune and for function Fresh generating fresh query plans.
Procedure Prune inserts a new query plan into the result set
if its cost vector cannot be approximated by any alternative
result plan at the current resolution. We use the expression
Insert(S, p) for some set S and a plan p as shortcut for
S ← S ∪ {p}. Resolution levels r translate into an approxi-
mation factor αr by which the cost vector of the new plan is
multiplied before it is compared with the cost vectors of the
alternative plans (line 7). The approximation factors αr are
chosen such that αr > 1 and αr > αr+1 for all resolution
levels r; we demonstrate the effects of different choices for
the number of resolution levels and approximation factors in
Section 6. Scaling the cost vector of the new plan by a factor
greater than one makes it more likely that the scaled vector
is dominated by the cost vector of one of the alternative re-
sult plans, meaning that the new plan is not inserted into
the result set; the new plan can only be inserted if its cost is
for each cost metric lower than the cost of any other result
plan by factor αr at least. The higher the factor αr, the less
likely it is that the new plan is inserted. This means that
the result plan set tends to grow with shrinking approxima-

1: // Insert plan p for query q into result set Res if p is
2: // relevant for current resolution r and bounds b.
3: // Insert p into candidate set Cand if p could
4: // become relevant later.
5: procedure Prune(Resq, Candq,b, r, p)
6: // Compare p with alternative plans and bounds
7: if ∃pA ∈ Resq[0..b, 0..r] : c(pA) � αr · c(p) then
8: // pA approximates p for resolution r
9: // → keep p as candidate for higher resolutions

10: if r < rM then
11: Insert(Candq[c(p), r + 1], p)
12: end if
13: else if c(p) � b then
14: // Cost of p exceeds the bounds
15: // → keep p as candidate for different bounds
16: Insert(Candq[c(p), r], p)
17: else
18: // p is immediately relevant
19: // → add p to result plan set
20: Insert(Resq[c(p), r], p)
21: end if
22: end procedure

23: // Given two sets of sub-plans Resq1 and Resq2 , filter
24: // to relevant plans for resolution r and bounds b and
25: // generate all fresh combinations of sub-plans.
26: function Fresh(Resq1 , Resq2 ,b, r)
27: // Filter to relevant sub-plans
28: P1 ← Resq1 [0..b, 0..r]
29: P2 ← Resq2 [0..b, 0..r]
30: // Generate relevant sub-plan pairs
31: pairs← ∆P1 × (P2 \∆P2)
32: pairs← pairs ∪ ((P1 \∆P1)×∆P2)
33: pairs← pairs ∪ (∆P1 ×∆P2)
34: // Generate fresh plans
35: fresh← ∅
36: for 〈p1, p2〉 ∈ pairs :IsFresh(p1, p2) do
37: fresh← fresh ∪ {p1 1 p2}
38: end for
39: return fresh
40: end function
Algorithm 3: Sub-functions of the optimization procedure.

tion factor and growing resolution; as the time complexity
grows in the size of the result set, the complexity grows with
increasing resolution as well. We calculate precise bounds
in Section 5. We also show in Section 5 that an invocation
of the optimizer function with resolution r yields an αnr -
approximate Pareto plan set, where n = |Q| designates the
number of tables in the query. The underlying reason is in-
tuitively that each pruning operation may in the worst case
introduce an approximation error that accumulates over dif-
ferent pruning operations; the number of pruning operations
for a single query plan is proportional to n. Knowing the
relationship between αr and the result precision allows to
choose the factors αr such that a desired target precision
is still reached for the maximal expected number of tables;
alternatively, the choice of αr can be adapted to the current
query. If the scaled cost vector of the new plan is domi-
nated at the current resolution, it is inserted as candidate
plan for higher resolutions or discarded if the maximal res-
olution has been reached. If the cost vector of the new plan
exceeds the current bounds, it may become useful again once



the bounds change; in that case the new plan is therefore
inserted as candidate for the current resolution again.

As discussed before, our goal is to make the time complex-
ity of one optimizer invocation proportional to the current
resolution and cost bounds, independently from how many
candidate and result plans have accumulated from prior in-
vocations. This goal leads to two subtle design decisions
concerning the pruning function that are nevertheless cru-
cial in order to obtain the complexity properties we were
aiming for: First, the new plan is only compared to alterna-
tive plans that have been inserted at the current resolution
level or at a lower one. The disadvantage is that we might
insert the new plan even if plans that are preferable over
the new plan were already inserted at a higher resolution;
the advantage is however that the number of plan compar-
isons is proportional to the size of the result plan set at the
current resolution. The second decision is that we do not
discard result plans that are dominated by the new plan in
case that the new plan is inserted into the result set. This
differs from prior MOQO approximation schemes which al-
ways keep the result plan sets as small as possible [14]. The
reason that we do not discard result plans is that they might
have been used already as sub-plans to combine other query
plans in prior invocations of the optimizer; this might have
happened at the current resolution or at a higher one. Dis-
carding a result plan would require to discard at the same
time all plans that use it as sub-plan to keep the result plan
sets for different table sets consistent (we also assume that
plans are represented by pointers to their sub-plans as dis-
cussed in Section 5.2); the number of plans to discard is
not necessarily proportional to the size of the result plan
set at the current resolution. We renounce discarding result
plans to keep the time complexity of the current optimizer
invocation proportional to the current resolution.

Function Fresh uses result plans for two table subsets q1
and q2 to combine new plans that are fresh, i.e., they have
not been generated in prior optimizer invocations. The ex-
pression ∆S designates for some plan set S a subset of plans
that potentially were not yet combined with all other plans
indexed for the current resolution and cost range. During
invocation series in which the bounds are tightened while
resolution is refined, we can include all plans that were in-
serted in the current invocation in ∆S (in such cases we are
sure that all previously inserted plans respecting the cur-
rent bounds were already combined with each other) and
set ∆S = S otherwise. We can use auxiliary data structures
that index plans based on the invocation at which they were
inserted in combination with the index on cost and resolu-
tion; this allows to evaluate the expressions ∆S and (S\∆S)
efficiently. For each cross product between plan sets, we
check first if one of the two operand sets is empty before
evaluating the entire expression. Predicate IsFresh evalu-
ates to true for plans that were not yet combined in prior
invocations; we can use a hash table to perform this check
efficiently. Fresh plans are returned and will be pruned.

4.3 Extensions
The algorithm presented in the last subsections is simpli-

fied and does not possess several features that are standard
in query optimization. The code can easily be extended to
incorporate the features discussed next and the implemen-
tation used for our experiments in Section 6 supports them
as well. First, the presented code only optimizes join order

but not the choice of join operators. Supporting different
join operators just requires to add an inner loop iterating
over all applicable join operators and creating correspond-
ing plans in function Fresh (see Algorithm 3). Second,
alternative operators might produce the same set of result
tuples while some of them generate them in an order that
can be exploited by future operations. This is why dynamic-
programming based query optimizers distinguish plans gen-
erating different interesting tuple orders [12] during pruning;
the cost-based plan comparison is restricted to plans gener-
ating similar tuple orders and it is straight-forward to gen-
eralize this principle to the multi-objective case. Third, the
presented code is based on a simple query model, represent-
ing queries as sets of tables that need to be joined. Predi-
cates and projections can be handled by applying them as
early as possible in the join tree and the required code exten-
sions are standard [12]. The seminal paper by Selinger [12]
describes how complex SQL statements containing nested
queries can be decomposed into simple select-project-join
query blocks that can be optimized by our algorithm.

5. FORMAL ANALYSIS
We analyze the algorithm presented in Section 4: More

precisely, we analyze the optimizer sub-function that is rep-
resented in Algorithm 2. Section 5.1 proves formal worst-
case guarantees on how closely the result plan sets, produced
by the optimizer, approximate the real Pareto plan set. Sec-
tion 5.2 analyzes space complexity and Section 5.3 analyzes
the time complexity of a single optimizer invocation. In Sec-
tion 5.4, we analyze the amortized time complexity of several
consecutive optimizer invocations for the same query.

5.1 Result Precision
The following analysis is based on the Principle of Near-

Optimality [14] (PONO) for MOQO which states that re-
placing optimal sub-plans within a complete query plan by
near-optimal sub-plans still yields a near-optimal complete
plan for a broad class of cost metrics. The class of cost
metrics to which the PONO applies is characterized by the
Aggregation Function, i.e. by the recursive function that cal-
culates the cost of a plan according to that metric out of
the cost of the two sub-plans: the PONO applies to all cost
metrics whose aggregation function can be represented using
a combination of the operators sum, maximum, minimum,
and multiplication by a constant. This applies for instance
to metrics such as energy consumption or execution time2.
The PONO has also been shown to apply for several other
metrics whose aggregation formulas do not fit into the lat-
ter scheme, such as failure resilience or result precision. A
formal definition of the PONO follows.

Definition 1 (PONO). Let p be a query plan with sub-
plans p1 and p2 and pick an arbitrary α ≥ 1. Derive p∗ from
p by replacing p1 by p∗1 and p2 by p∗2. Then c(p∗1) � αc(p1)
and c(p∗2) � αc(p2) together imply c(p∗) � αc(p).

The following theorems are based on the PONO. We also
assume Monotone Cost Aggregation, meaning that the cost
of a plan must be higher or equal to the cost of its sub-plans
according to each cost metric.
2The energy consumption of a plan is the sum of the energy
consumption of the sub-plans. The plan execution time is
the maximum of the execution times of the sub-plans for
parallel execution, and the sum for sequential execution.



Theorem 1. After invoking Optimize with bounds b and
resolution r for query Q, Resq[0..b, 0..r] contains an αr-
approximate b-bounded Pareto plan set for each table q ∈ Q.

Proof. For each table q, all applicable scan plans are
generated and pruned before the main loop starts. Let p be
an arbitrary scan plan for an arbitrary table q. Once proce-
dure Optimize is invoked later for resolution r and bounds
b, there are two possibilities for p: either p was inserted
into the result plan set in prior invocations or it is not in
the result plan set at the start of the current invocation. If
p was not inserted before then we must make sure that it is
either inserted in the current invocation or not required to
form an αr-approximate b-bounded Pareto plan set.

If p was not inserted before then it must be included in
Candq[0..b, 0..r] unless it exceeds the bounds b or can be
approximated by an alternative plan. In both cases, p is
not required for an αr-approximate b-bounded Pareto plan
set. If p is however in Candq[0..b, 0..r] at the start of the
current invocation then procedure Optimize will retrieve
and prune p; plan p will be inserted if it is required for an
αr-approximate b-bounded Pareto plan set.

Theorem 2. After invoking Optimize with bounds b and
resolution r for query Q, Resq[0..b, 0..r] contains an αkr -
approximate b-bounded Pareto plan set for each table subset
q ⊆ Q with cardinality k = |q|.

Proof. The proof is an induction over the number of ta-
bles k. Theorem 1 proves the induction start for k = 1.
Assume that the inductional assumption has been proven
for all k < K. Let q ⊆ Q be a set of K tables and p
an arbitrary plan that joins those tables with αKr c(p) � b.
Plan p must have two sub-plans p1 and p2 that each join
at most K − 1 tables. Let q1 and q2 be the set of tables
joined by p1 and p2 respectively. We assume monotone cost
aggregation which implies αKr c(p1) � b and αKr c(p2) �
b. The inductional assumption applies to p1 and p2 such
that Resq1 [0..b, 0..r] will contain a plan p∗1 with c(p∗1) �
αK−1
r c(p1) and Resq2 [0..b, 0..r] will contain a plan p∗2 with

c(p∗2) � αK−1
r c(p2) after the optimizer invocation. Plans p∗1

and p∗2 can be combined into a plan p∗ that joins the same
tables as p and has similar cost according to the PONO:
c(p∗) � αK−1

r c(p). Plan p∗ is generated either in the cur-
rent optimizer invocation with resolution r and bounds b or
in one of the prior invocations. If p∗ is generated in the cur-
rent invocation then it is inserted unless an alternative plan
p∗∗ with c(p∗∗) � αrc(p∗) � αKr c(p) is already in the result
set. In that case the theorem holds. If p∗ was generated in
prior invocations then it was either inserted into the result
set, or it was already pruned at resolution r and its cost too
similar to one of the result plans, or it will be pruned in the
current iteration. In all cases the theorem holds.

Knowing the relationship between the precision factors
αr and the approximation quality of the result plan sets
allows to choose the factor αrM for the maximal resolution
in function of the desired target precision.

5.2 Space Consumption
The optimizer (meaning procedure Optimize, see Algo-

rithm 2) is called once per iteration of the main loop. We
analyze the accumulated space consumption of several opti-
mizer invocations for the same query. We denote the reso-
lution used in the i-th invocation by ri and the cost bounds

used in the i-th invocation by bi. Resolution r = mini ri des-
ignates the minimal resolution used over all invocations and
vector b dominates all used cost bounds: ∀i : bi � b. Re-
sult and candidate plan sets are the variables with dominant
space consumption in IAMA. We upper-bound the number
of plans stored in those sets after all optimizer invocations
to obtain the accumulated space complexity.

Lemma 1. Let q be a set containing k tables. Then Resq

contains O(kl loglαr
(m)) result plans.

Proof. The cost of a query plan joining k tables is asymp-
totically bounded by O(m2k) for a broad range of cost met-
rics [14]. Given an approximation factor αr > 1, the number
of cost values in the interval [1,m2k] such that there are no
two cost values c1 and c2 with c1 ≤ αrc2 and c2 ≤ αrc1 is
bounded by O(k logαr

(m)). Generalizing to l dimensions,

the number of cost vectors taken from [1,m2k]l such that
there are no two vectors c1 and c2 with c1 � αrc2 and
c2 � αrc1 is bounded by O(kl loglαr

(m)). The pruning func-
tion of IAMA only inserts query plans into the result set if
their cost vectors cannot be approximated by any other plan
in the result set, using approximation factor αr for the com-
parison. Therefore, the result set for q can never contain
two plans whose cost vectors can mutually approximate each
other. So the bound on the number of cost vectors translates
into a bound on the number of plans.

The preceding lemma exploits an upper bound on the plan
cost derived from the number of joined tables. The cost
bounds additionally restrict the maximal number of result
plans since plans are only inserted into the result set if they
respect the current bounds. We denote by rpt(k,b, r) the
asymptotic upper bound on the number of result plans join-
ing a set of k tables when using bounds b and resolution r.
The next lemma derives a bound on the number of candidate
plans from the bound on the number of result plans.

Lemma 2. Candq contains O(2krpt2(k,b, r)) candidate
plans for a table set q with k tables.

Proof. Each candidate plan for q is constructed by com-
bining two result plans that join subsets of q. There are
O(2k) possibilities of splitting a set with k tables into two
subsets. Assume that q is split into two subsets q1 and q2.
The cardinalities of Resq1 and Resq2 are both bounded by
rpt(k,b, r) since rpt grows monotonically in k and |q1|, |q2| <
k. The number of possible splits times the number of sub-
plan combinations bounds the number of candidates.

We refer to the asymptotic upper bound on the number of
candidate plans per table set by cpt(k,b, r) in the following.
The total space complexity of IAMA is obtained by summing
the number of result and candidate plans over all table sets.

Theorem 3. The accumulated space consumption of sev-
eral optimizer invocations for an n-table query is in
O(3nrpt2(n,b, r)).

Proof. Each plan can be represented in O(1) space: scan
plans are represented by the ID of the table being scanned;
other plans can be represented by the IDs of the two sub-
plans generating the operands for the final join. Plan cost
vectors have constant space consumption since l is treated as
a constant (see Section 3). We assume O(l) = O(1) indexing



space overhead per plan which is true for many data struc-
tures supporting range queries, including the cell data struc-
ture [3]. The number of candidate plans dominates the num-
ber of result plans. Summing over all table sets we obtain
a space complexity of O(

∑n
k=1

(
n
k

)
cpt(k,b, r)). Using the

definition of cpt, considering that cpt(k,b, r) ≤ cpt(n,b, r)
for k ≤ n, and exploiting

∑n
k=0

(
n
k

)
2k = 3n yields the final

complexity.

5.3 Time of Single Optimizer Invocation
We analyze the time complexity of a single optimizer in-

vocation for a query with n tables, for bounds b, and for
resolution r. The following analysis is valid independently
from which invocations of Optimize precede the analyzed
invocation. We simplify and assume that retrieving F plans
by a range query takes O(F ) time. We can for instance use
a data structure similar to the cell data structure, described
by Bentley and Friedmann [3]: we partition the resolution
and plan cost space into cells3, associate a list of plans with
every cell, and make those lists accessible via direct lookup.
Assuming suitable cell sizes and plan cost distributions such
that the number of empty cells as well as the number of
plans in partially included cells is negligible for most range
queries, retrieval is in O(F ) time and single plan insertion
in O(1).

Lemma 3. Invoking Prune for a plan joining k tables is
in O(rpt(k,b, r)) time.

Proof. The pruning procedure retrieves all result plans
joining the same tables as the new plan if they respect the
bounds b and are indexed for resolution r or smaller. The
number of plans is in O(rpt(k,b, r)) and so is the retrieval
time. The cost vector of the new plan is compared against
the cost vectors of all retrieved plans. One comparison re-
quires to compare l cost values but l is a constant (see Sec-
tion 3). Adding the new plan takes constant time.

Lemma 4. Invoking Fresh for two table sets with maxi-
mally k tables is in O(rpt2(k,b, r)) time.

Proof. Function Fresh iterates over pairs of result plans.
The plans from those sets are combined pair-wise forming
O(rpt2(k,b, r)) pairs. Constructing a new plan and calcu-
lating its cost from the cached cost of the sub-plans using
recursive cost formulas is in O(1).

We use the previous results to calculate the time complex-
ity of the Optimize procedure.

Theorem 4. Invoking Optimize for a query with n ta-
bles is in O(3nrpt3(n,b, r)) time.

Proof. The first part of the Optimize procedure checks
which candidate plans have become relevant. For one ta-
ble set with k tables, this requires to retrieve and prune all
candidate plans that respect bounds b and are marked as
potentially relevant for resolution r or smaller which takes
O(cpt(k,b, r)rpt(k,b, r)) = O(2krpt3(k,b, r)) time. The
second part of the Optimize procedure generates fresh plans

3We can use logarithmic partitioning for the cost space
which should lead to a more uniform distribution of plans
over cells since the area in the cost space that a result plan
approximately dominates is defined by multiplying its cost
vector by a constant factor.

using the newly inserted result plans and prunes the gener-
ated new plans. For one table set with k tables, this requires
again O(2krpt3(k,b, r)) time, using the complexity results
for pruning and plan generation. Summing over all table
sets yields a time complexity of O(

∑n
k=1

(
n
k

)
2krpt3(k,b, r))

which is in O(3nrpt3(n,b, r)).

The time complexity of one optimizer invocation only de-
pends on the parameters (resolution and cost bounds) of the
current invocation but not on parameters used for previous
invocations. This means that plans stored from previous
iterations do not cause any time overhead.

5.4 Amortized Optimization Time
over Several Optimizer Invocations

We analyzed the time complexity of a single optimizer
invocation in the preceding subsection. Now we analyze the
amortized time complexity of a large series of invocations
for the same query. After each invocation, the optimizer
keeps plans that could be relevant for future invocations,
thereby avoiding redundant computation. The amortized
time complexity of a series of invocation is therefore lower
than the time complexity of a single invocation. Resolution
r and bounds b vary between invocations while query Q is
fixed. We assume an invocation series where the ∆ operator
in function Fresh filters plans to the ones that were inserted
in the current invocation (e.g., if the user keeps tightening
the bounds and the resolution is refined). The next lemmata
bound the amount of redundant computation.

Lemma 5. Each possible plan is generated at most once.

Proof. Scan plans are only generated before the main
loop of Algorithm 1 is entered; this code is executed only
once per query. Other plans are only generated in function
Fresh and we explicitly make sure to generate plans only for
fresh sub-plan combinations using predicate IsFresh.

Lemma 6. Each sub-plan pair is generated at most once.

Proof. Each possible plan is inserted at most once into
the result plan set since it is generated at most once (accord-
ing to the previous lemma) and since each plan is removed
from the candidate set once it is inserted into the result
set. Assume that optimizer invocations are numbered and
denote for two arbitrary plans p1 and p2 by i1 and i2 the
invocations at which they become result plans. Then the
corresponding plan pair can only be considered at invoca-
tion max(i1, i2): it cannot be considered before since at least
one of the plans is not in the result set at this point and it
cannot be considered afterwards since none of the two plans
was freshly inserted at that time.

Candidate plans are considered for insertion (into the re-
sult set) in the first phase of the Optimize procedure. Each
possible plan is only considered a limited number of times
according to the following lemma.

Lemma 7. Each generated plan is retrieved at most rM+1
times from the candidate plan set.

Proof. Each retrieved candidate plan is deleted from the
candidates and pruned. During pruning, the plan can be
inserted as candidate again (and considered in future invo-
cations). All considered plans respect the current bounds.



Therefore, no plan can be re-inserted as candidate because it
exceeds the bounds. It can only be re-inserted as candidate
if it is approximately dominated by another plan. But then
the plan becomes candidate only for a higher resolution than
the current one. As there are only rM + 1 resolution levels,
the plan can be re-considered only so many times.

The preceding two lemmata bound the total amount of
work that is necessary per query plan over several optimizer
invocations. The following theorem analyzes amortized com-
plexity of a large series of optimizer invocations.

Theorem 5. Procedure Optimize has amortized time com-
plexity O(3n) for a large number of invocations.

Proof. We split time T iopt for the i-th optimizer invoca-

tion into a time component T idep that depends on the number
of retrieved and generated plans and another time compo-
nent T iidp which does not, such that T iopt = T idep + T iidp.

We express T idep in the following. Newly generated or
retrieved plans must be pruned and we assume that prun-
ing time dominates plan generation, retrieval, and insertion
time. Let si be the number of plans and plan pairs that
were generated or retrieved as candidates in the i-th invoca-
tion. The pruning time for a query with n tables must be in
O(rpt(n,∞, rM )), using Lemma 3 and the fact that pruning
time becomes maximal for the highest resolution and with-
out bounds. Hence we obtain T idep ∈ O(si · rpt(n,∞, rM )).

Even if no plans are retrieved or generated, there is still
time overhead for verifying whether candidate plans have to
be pruned or fresh plans can be generated. This requires us
to iterate over all table sets (searching for candidates) and
to iterate over each split of each table set (searching for fresh
plans). Using a similar reasoning as in the previous proofs,
we obtain T iidp ∈ O(3n).

The time T =
∑x
i=1 T

i
opt denotes the time of x consecutive

optimizer invocations for the same query. We certainly have
T ∈ O((rpt(n,∞, rM )·

∑x
i=1 si)+x·3n). However, as the to-

tal number of generated plans for a fixed query is bounded
(see Section 5.2), as each plan and plan pair is generated
only once (Lemmata 5 and 6), and as each plan is retrieved
at most rM + 1 times (Lemma 7), we can bound

∑x
i=1 si in-

dependently from the number of invocations x. This means
that for a sufficiently large number of invocations, the time
component that is independent of the number of retrieved
and generated plans must become dominant.

As IAMA avoids redundant work, its averaged time com-
plexity over many iterations equals the time complexity of
single-objective query optimization with bushy plans.

6. EXPERIMENTAL EVALUATION
Section 6.1 describes and justifies the experimental setup

and Section 6.2 discusses the experimental results.

6.1 Experimental Setup
We evaluate an incremental anytime algorithm for MOQO,

its simplified pseudo-code was presented in Section 4, in
comparison with two baselines: the memoryless algorithm is
equivalent to the iterative MOQO algorithm proposed in a
prior publication [14] except that we use a different precision
refinement policy, the one-shot algorithm corresponds to the
non-iterative MOQO algorithm presented in the same pub-
lication [14]. The memoryless algorithm produces the same

sequence of result plan sets as the incremental anytime al-
gorithm; it is however non-incremental and produces each
plan set from scratch. The one-shot algorithm produces the
result plan set with highest resolution directly, avoiding any
intermediate steps; it therefore lacks the anytime property
and takes a long time to produce the first result. We com-
pare the algorithms according to average and maximal time
of a single optimizer invocation within a series of invoca-
tions for the same query. It is crucial to minimize the time
for single optimizer invocations in an interactive scenario:
if single optimizer invocations take too long then it is un-
likely that they won’t be interrupted by user interaction.
We do not evaluate space consumption: all three evaluated
algorithms finally produce a result plan set with the same
resolution so the total space consumption does not differ
significantly between them. We evaluate all algorithms in a
scenario without user interaction to make the comparison as
fair as possible; the cost bounds are initially fixed to ∞.

Our implementation is based on an extended version of the
Postgres 9.2 database system: this version features an opti-
mizer that considers multiple plan cost metrics and was al-
ready used in prior work to evaluate MOQO algorithms [14].
We reuse the cost models of the three plan cost metrics ex-
ecution time, consumed system resources (namely the num-
ber of reserved cores), and result precision. We chose a
scenario with three plan cost metrics on purpose since this
is the maximal number of metrics that allows to visualize
Pareto-optimal cost tradeoffs to the user (in the form of a
surface in 3D); it is of course still possible to provide users
with aggregate information about available cost tradeoffs for
higher numbers of metrics. Our implementation only covers
the parts of the optimization algorithms that are required
for this benchmark. We evaluate the algorithms on TPC-H
queries containing at least one join. The performance of the
algorithms is strongly correlated with the number of joined
tables. In the following figures, we report average numbers
over all queries with the same number of tables to make
those correlations visible. Also, the Postgres optimizer may
split up optimization of one TPC-H query into multiple op-
timizations of sub-queries with different numbers of tables.
In those cases, we measured optimization times for differ-
ent sub-queries separately. The relative performance of the
evaluated algorithms also depends on the number of reso-
lution levels. We experimented with different numbers of
resolution levels (i.e., we used different values for rM ) and
applied the formula αr = αT + αS(rM − r)/rM to calculate
the precision factors used during pruning; we use different
values for the target precision αT and for the precision step
αS . All experiments were executed on a MacBook air with
4 GB RAM and an Intel Core i5 processor with 1.4 GHz.

6.2 Experimental Results
Figure 3 shows average times per optimizer invocation

for a moderate target precision of αT = 1.01 and αS =
0.05. Choosing αT = 1.01 means that the final result plan
set is an 1.018 ≈ 1.08-approximate Pareto plan set, based
on the formal analysis from Section 5.1 and on the fact
that TPC-H queries have at most eight tables. Hence the
costs of the result query plans are formally guaranteed to
be not higher than optimal by more than about 8 percent.
These are rather weak guarantees and, correspondingly, op-
timization takes never more than ten seconds, even for the
two baselines. Such optimization times are not unusual for
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Figure 3: Average time per optimizer invocation for
TPC-H sub-queries and target precision αT = 1.01

MOQO [14]. The plan search space size increases in the
number of query tables and so do optimization times4. Note
that no TPC-H sub-query joins seven tables which is the rea-
son for the missing bar at that position. When considering
only one resolution level, the incremental anytime algorithm
(IAMA) cannot show its strengths and is slower than the two
baselines by at most 37%. This overhead is due to plan in-
dexing and the extended pruning function. The situation
changes once we increase the number of resolution levels:
already with five resolution levels, IAMA is up to four times
faster than the one-shot algorithm and up to three times
faster than the memoryless algorithm. With 20 resolution
levels, IAMA is up to one order of magnitude faster than
both baselines. Only IAMA is able to exploit different res-
olution levels by splitting up optimization into several in-
cremental optimization steps. The behavior of the one-shot
algorithm does not depend on the number of resolution lev-
els; the memoryless algorithm generates the same sequence
of result plan sets as IAMA but is not incremental and has
to start optimization from scratch in each invocation.

Figure 4 shows analogous results for target precision αT =
1.005 (and αS = 0.5); using that target precision during
pruning, all evaluated algorithms guarantee to generate 1.04-
approximate Pareto plan sets so the precision is higher than
before. This results in optimization times of between 41 and
53 seconds for all three algorithms with one resolution level.
This makes incremental computation even more necessary
than in the last example. IAMA is up to 14 times faster than
the memoryless algorithm and beats the one-shot algorithm

4There is a slight decrease from six to eight tables since the
only TPC-H query joining eight tables refers to many small
tables for which less sampling strategies are considered.
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Figure 4: Average time per optimizer invocation for
TPC-H sub-queries and target precision αT = 1.005
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Figure 5: Maximal time per optimizer invocation for
TPC-H sub-queries and target precision αT = 1.005

by up to factor 37. This means that the relative advantage
that IAMA gives over non-incremental algorithms increases,
the more difficult the optimization task is (e.g., higher target
precision or higher number of tables). Figure 5 finally shows
not the average but the maximal time for one optimizer invo-
cation: IAMA is up to eight times faster than both baselines
and we believe that this ratio could be extended by a more
optimized sequence of precision factors. The two baselines
are in practice equivalent when considering maximum time:
for the memoryless algorithm, the invocation with maximal
execution time is usually the last one in which it has to
accomplish the same work as the one-shot algorithm.

7. CONCLUSION
User preferences are difficult to formalize so MOQO should

be an interactive process. We presented an incremental any-
time algorithm that is well suited for interactive MOQO.
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