

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s):

Title:

Year:

Version:

Please cite the original version:

All material supplied via JYX is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that
material may be duplicated by you for your research use or educational purposes in electronic or
print form. You must obtain permission for any other use. Electronic or print copies may not be
offered, whether for sale or otherwise to anyone who is not an authorised user.

Twister Tries: Approximate Hierarchical Agglomerative Clustering for Average
Distance in Linear Time

Cochez, Michael; Mou, Hao

Cochez, M., & Mou, H. (2015). Twister Tries: Approximate Hierarchical Agglomerative
Clustering for Average Distance in Linear Time. In T. Sellis, S. B. Davidson, & Z. Ives
(Eds.), SIGMOD '15 : Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data (pp. 505-517). Association for Computing Machinery.
https://doi.org/10.1145/2723372.2751521

2015

Twister Tries: Approximate Hierarchical Agglomerative
Clustering for Average Distance in Linear Time

Michael Cochez
∗

University of Jyvaskyla, Department of
Mathematical Information Technology

P.O. Box 35, FI-40014 University of Jyvaskyla,
Finland

michael.cochez@jyu.fi

Hao Mou
†

University of Jyvaskyla, Department of
Mathematical Information Technology

P.O. Box 35, FI-40014 University of Jyvaskyla,
Finland

muhaocd@gmail.com

ABSTRACT
Many commonly used data-mining techniques utilized across
research fields perform poorly when used for large data sets.
Sequential agglomerative hierarchical non-overlapping clus-
tering is one technique for which the algorithms’ scaling
properties prohibit clustering of a large amount of items.
Besides the unfavorable time complexity of O(n2), these
algorithms have a space complexity of O(n2), which can
be reduced to O(n) if the time complexity is allowed to
rise to O(n2 log2 n). In this paper, we propose the use of
locality-sensitive hashing combined with a novel data struc-
ture called twister tries to provide an approximate clustering
for average linkage. Our approach requires only linear space.
Furthermore, its time complexity is linear in the number of
items to be clustered, making it feasible to apply it on a
larger scale. We evaluate the approach both analytically
and by applying it to several data sets.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; H.3.3 [
Information Search and Retrieval]: Clustering

Keywords
Hierarchical Clustering; Locality-Sensitive Hashing; Aver-
age Linkage; Linear Complexity

1. INTRODUCTION
Hierarchical clustering is used in many domains to analyze

data and has a relatively long history. There are several
benefits of hierarchical clustering over normal partitioning.
The first one is that the hierarchy can be cut at any level

∗Member of the Industrial Ontologies Group (IOG)
†Student of the Web Intelligence and Service Engineering
(WISE) master program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2751521 .

to create a different partitioning of the collection. Further,
the hierarchy can be used to navigate the data or displayed
in a hierarchical form by using dendrograms.

One possible approach for hierarchical clustering is bottom-
up. Initially, each item is put into its own cluster, and on
each iteration two clusters are selected and merged into a
larger one. This approach is often called agglomerative, but
the algorithm is known by many names, such as Globally
Closest Pair (GCP) clustering [9], Sequential Agglomerative
Hierarchical Non-overlapping (SAHN) clustering [12, 16] or
Agglomerative Hierarchical Clustering (AHC) [13, 8].

The application domains in which the algorithms are used
today deal with ever-larger datasets, and hence the scalabil-
ity of algorithms has become more important. However, the
traditional algorithms for AHC do not scale well for large
data sizes.

In this article, we introduce twister tries, which perform
an approximation of the agglomerative hierarchical cluster-
ing. Both the time and space complexity of the algorithm
are dependent on the desired precision (i.e. the probability
that the algorithm chooses the correct clusters to be merged
during one step of clustering). Once these parameters are
fixed, the time and space complexity of the algorithm are
linear with respect to the number of items clustered.

The main contributions of this article are the twister tries
data structure and algorithm. Their most profound benefits
are:

• The production of clusterings that are comparable to
standard AHC algorithms (see section 7 and in partic-
ular figs. 6 and 7).

• Both linear time and space complexity. Therefore, the
algorithm can scale to over a million data points (see
section 5 and figs. 9 and 11).

As a minor contribution, we also introduce a locality-sensitive
family of functions for the average Jaccard, cosine, and Ham-
ming distance between sets of points (see section 4.1). This
function can be used in any place were a locality-sensitive
hashing is used (for instance, in a k-nearest neighbor search).

2. AGGLOMERATIVE HIERARCHICAL
CLUSTERING

When creating a hierarchical clustering, two major strate-
gies are commonly used, namely agglomerative and divisive.
Agglomerative hierarchical clustering (AHC) is a “bottom-
up” approach, which means that each node starts out as

a single cluster. Then pairs of clusters are combined into
larger ones as the process continues, until only one cluster is
left. The divisive strategy, on the other hand, initially treats
all of the items as part of one large cluster. At each itera-
tion, one cluster is split in two sub-clusters until each item
belongs to its own cluster. In this section, we will briefly
discuss the primitive AHC algorithm and some possible op-
timizations in the next one.

Algorithm 1 is the pseudocode for a primitive AHC algo-
rithm. The algorithm takes the node labels and a distance
matrix as input. The label of a node is a unique identifier
and the distance matrix contains the pairwise distances be-
tween the nodes, with respect to a predetermined distance
metric. As shown in the algorithm, the procedure merges
two clusters I and J into a new cluster L and updates the
distance between L and every other cluster by using an up-
dating formula.

Algorithm 1 Primitive AHC algorithm (adapted from [15])

1: procedure primitive AHC(s,d)
2: Sorigin ← S
3: n← |S|
4: den← []
5: size[x]← 1, for all x ∈ S
6: for i← 0, . . . , n− 2 do
7: (I, J) = argmin(SxS)\∆d
8: append (I,J) to den
9: S ← S \ {I, J}

10: Create a new label L, L /∈ S ∪ Sorigin
11: Update the matrix containing the distances

d[L, x] = d[x, L] = FORMULA(d[I, x], d[b, J],
d[I, J], size[I], size[J]), for all x ∈ S

12: size[L]← size[I] + size[J]
13: S ← S ∪ {L}
14: end for
15: return den
16: end procedure

The FORMULA is the updating formula used for
the chosen linkage, while d is the distance metric. Note
that our notation somewhat freely uses I and J to mean
either the label of the cluster or the cluster itself.

The distance-updating formula depends on the chosen link-
age strategy or, in other words, the way in which the distance
between two clusters of items is defined. Commonly found in
the literature are single, complete, average, weighted, Ward,
centroid and median linkage (see also [15]). In this article,
we use the average distance between all pairs of elements as
the measurement for cluster similarity. More formally:

Definition 1 (Average distance). Given a distance mea-
sure d, the average distance, dA, between two clusters I and
J is defined as

dA (I, J) =

|I|∑
i=1

|J|∑
j=1

d (Ii, Jj)

|I| ∗ |J |

For this linkage strategy, the updating formula is as fol-
lows:

Definition 2 (Average Updating Formula). Given the fact
that the algorithm joins clusters I and J together, the dis-
tance between any other cluster K and the newly formed

Figure 1: An example of a dendrogram.

cluster is the weighted average distance of I,K and J,K
with size nI,K and nJ,k

Average Updating Formula =
nI,Kd (I,K) + nJ,Kd (J,K)

nI,K + nJ,K

The result of executing the AHC algorithm is called a
dendrogram. Formally, one could define a dendrogram as

Definition 3 (Dendrogram). Given a finite set S0 of size
n, a stepwise dendrogram is a list of n− 1 pairs (Ii, Ji)(i =
0, ..., n − 2) such that Ii, Ji ∈ Si, where Si+1 is recursively
defined as (Si\{Ii, Ji})∪Li and Li is a label for a new node.

This definition was adapted from Müllner [15], who ex-
tended the pair used in our definition to a triple which also
contains the distance between the clusters. However, since
this distance is unambiguously defined by the sequence of
pairs, we left it out of this definition. The dendrogram can
be visualized for illustrating the structure of a dataset. Fig-
ure 1 shows one such visualization.

One of the problems for AHC is the time complexity. The
primitive algorithm, shown in algorithm 1, has a time com-
plexity of O(n3), and requires O(n2) memory. Several im-
provements for this bound have been found. Some of these
will be briefly discussed in the next section.

3. RELATED WORK
Hierarchical clustering has been used for decades, but

mainly for small datasets. For these datasets, the scalability
of the algorithm is not of major importance. Recently, how-
ever, more demanding applications have created demand for
more scalable approaches. In the literature, two approaches
to handle this scaling can be found. At first, research work
has focused on finding faster, exact algorithms for hierarchi-
cal clustering, meaning that the devised methods produce
exactly the same hierarchy as the original algorithm, but
with a lower theoretical, or practical, time or space complex-
ity. In later work, algorithms for approximate hierarchical
clustering can also be found. The target here is to find a
hierarchy which closely resembles the hierarchy of the exact
algorithms, but in a faster or more memory-efficient fashion.
Our research falls into this domain.

From the recent research about exact algorithms, we first
highlight the work by Eppstein [6], which has a slightly more
ambitious scope. The work introduces data structures that
can maintain the closest pair in the dataset. O(n log2 n)
time is needed for each insertion or deletion when limited to
O(n) space. This time bound is improved to O(n) when the

algorithm is allowed O(n2) space. Note that if one is able
to maintain a linear insertion and removal time, it is easy to
see that one can implement hierarchical clustering in O(n2)
time by removing the closest pair and adding their union
at each step. Subsequently, Gronau and Moran [9] provided
insight into optimal implementations of the Unweighted Pair
Grouping Method with Arithmetic-mean (UPGMA), which
is equivalent to exact hierarchical clustering with average
linkage. In a reaction to inferior algorithms used in practical
implementations of AHC, Müllner [16] provided an efficient
C++ implementation for exact hierarchical clustering. We
used the Python bindings of that work in our evaluation.
The SparceHC algorithm described in the work by Nguyen et
al. [17] is more focused on saving memory while performing
an online clustering. They achieve this by only partially
computing the distances. Their approach shows an empirical
linear memory complexity, but requires quadratic time.

For approximate approaches, the authors in [11] worked
on an idea similar to the one in this paper. However, their
focus was on AHC, using the single linkage method, whereas
we show results for average linkage in this work. Rasheed
et al. [21] also use locality-sensitive hashing for clustering,
but the clustering is non-hierarchical. Kull and Vilo [13]
proposed the HappieClust algorithm, which uses similarity
heuristics to perform the clustering, using either single, av-
erage or complete linking.

Patra et al. [18] have also proposed a method for AHC
of large datasets by using average linking. Their proposed
method, named leader Average-link l-AL, first derives a set
of leaders and subsequently applies the standard average link
method on those. The method works for any distance met-
ric and has the benefit that the whole dataset does not have
to be stored in memory, since only the leaders are retained.
The drawback, however, is that only those leaders get clus-
tered, meaning that an incomplete dendrogram gets created.
Furthermore, the method has two parameters, τ : the maxi-
mum distance between any point and its leader, and h : the
inter-cluster distance; if clusters are further than h apart,
they are not merged. In other words, the algorithm does not
continue the clustering until only one cluster is left. These
parameters will have to be adapted to the dataset and no
recommendation has been given on how to determine good
parameters. The work by Kriege et al. [12] also attempts
to find the hierarchical clustering of data faster than the
theoretical bound by providing a heuristic nearest-neighbor
search, which can be used for all metric spaces. The crux
of their algorithm is the use of pivot points, which lowers
the need for pairwise distance calculations. Their proposal
has a best-case running time of O(n ∗ logn), but rises up to
O(n2 logn) in the worst case. Their experimental evaluation
shows, however, that the running time is sub-quadratic in
practice.

An algorithm with a similar aim as ours can be found
from [8]. The authors proposed a linear time and space com-
plexity algorithm for hierarchical clustering, based on quan-
tization. The main difference with our work is that their
approach can handle single, complete, and average linkage
while our approach only supports average linkage. However,
because of this quantization, this algorithm also allows the
leaves of the dendrogram to contain multiple points and the
method can only work for the cosine distance between pos-
itive data points. Our work does not have these limitations
and, besides the more generalized cosine distance, it is also

possible to use it for Jaccard and Hamming distance or, as
we will show below, any similarity measure for which a pro-
portionally sensitive family of functions (see definition 5)
can be derived.

4. LOCALITY-SENSITIVE HASHING
Indyk and Motwani [10] presented the initial work about

Locality-sensitive hashing (LSH) as a method for finding ap-
proximate nearest neighbors. In order to find nearest neigh-
bors, one first needs a family of independent hash functions
which are likely to hash similar objects together and dis-
similar ones apart. Once all objects have been hashed us-
ing these functions, creating a database, it is possible to
query for nearest neighbors of a given query point. In order
to do this, one hashes the query point with the same hash
functions. The result returned is a subset of objects from
the database that were hashed into the same buckets as the
query point. [1]

Mathematically speaking, to apply LSH we construct a
family H of hash functions which map from a space D to a
finite universe U .

Definition 4 (Locality-sensitive family). (adapted from [1])
Let H be a family of hash functions mapping from a do-
main D to some universe U and d be a distance metric de-
fined on D. Then, given d1 < d2, H is called (d1, d2, p1, p2)-
sensitive if for every two p, q ∈ D and every h ∈ H

if d(p, q) ≤ d1 then Pr [h (p) = h (q)] ≥ p1

if d(p, q) ≥ d2 then Pr [h (p) = h (q)] ≤ p2

where p1 > p2

In words, this means that we are working in a certain
domain of interest D in which the distance between points is
given by a metric d. A suitable family of functions H has the
property that if we pick a function h uniformly at random,
then the result of applying the function on points which are
close to each other (d(p, q) ≤ d1) is likely to produce the
same results (Pr [h (p) = h (q)] ≥ p1). Moreover, applying
this function to points that are far away from each other is
unlikely to produce the same results.

Since the probabilities p1 and p2 might be close to each
other, using only one function from H to decide whether
points may be similar might not be sufficient. The solution
to this problem is the use of amplification, which is achieved
by creating b functions gj , each consisting of r hash func-
tions chosen uniformly at random from H. In other words,
the function gj is the concatenation of r independent hash
functions gj,k.

The terms b and r stand for bands and rows. If one col-
lects all outcomes of gj,k, 0 < j ≤ b and 0 < k ≤ r in a two-
dimensional table, it can be regarded as consisting of b bands
containing r rows each. A function gj maps points p and q
into the same bucket if all hash functions it is built from hash
the points into the same buckets. If for any j, the function
gj maps p and q into the same bucket, p and q are consid-
ered close. The amplification creates a new locality-sensitive

family which is
(
d1, d2, 1− (1− p1

r)b, 1− (1− p2
r)b
)

sensi-

tive.
A very accessible introduction to LSH can be found in the

textbook by Rajaraman and Ullman [19]. Some notations
used in this article are borrowed from that work.

4.1 A locality-sensitive hash function for aver-
age distance between clusters

In this section, we develop a family of hash functions that
is locality-sensitive with regards to the average distance be-
tween clusters. The average distance (see definition 1) is
defined in the function of the distances between all pairs of
points in the clusters. In general, any distance metric can be
used for calculating this average. The LSH family that we
develop here, however, places stricter requirements. Namely,
the distance metric must have a LSH family defined that is
proportionally sensitive.

Definition 5 (Proportionally sensitive family). Let H be a
family of hash functions mapping from D to some universe
U and d be a distance metric defined on D. Then, given
k > 0, H is called k-proportionally sensitive with respect to
the distance metric d if for every two p, q ∈ D and every
h ∈ H

Pr [h (p) = h (q)] = 1− kd(p, q)

Note that any k-proportionally sensitive family is also
(d1, d2, 1− kd1, 1− kd2)-sensitive.

A proportionally sensitive family can, for example, be
found for the Jaccard distance, which is defined as follows:

Definition 6 (Jaccard distance). The Jaccard distance be-

tween two (finite, non-empty) sets I and J is dJ = 1− |I|∩|J||I|∪|J|

The standard LSH family used for Jaccard distance is
Min-hash [4].

Definition 7 (Min-hash). Min-hash is a family of functions
hπ (K) = min {π (k) |k ∈ K}, where π is a random permu-
tation of the universe.

Now, it can be shown [19] that

Fact 1. For sets I and J ,

Pr [hπ (I) = hπ (J)] = 1− dJ (I, J)

and hence, min-hash is 1-proportionally sensitive.
Note that a similar condition can be found for Hamming

and cosine distance and their respective, traditionally used
locality-sensitive families. For the Hamming distance dH
(i.e. the number of dimensions in which two binary vectors
of length l differ), Indyk and Motwani [10] proposed a fam-
ily of functions H = {hi (p) = pi|i ∈ [1, l]}. This family is
(d1, d2, 1− d1l , 1−

d2
l

)-sensitive. But also, Pr [hi(x) = hi(y)] =

1− dH (x,y)
l

. Hence, this family is also 1
l
-proportionally sen-

sitive. Again, similarly, for the cosine distance one can find
a (d1, d2, 1− d1

180
, 1− d2

180
)-sensitive HA family, derived from

the random hyperplane hashing family [5]. This family is
1

180
-proportionally sensitive.

Now, given a k-proportionally sensitive family, we can de-
fine a new family of functions, which acts upon clusters and
is locality-sensitive with respect to the average distance as
follows:

Definition 8 (HA). Given the k-proportionally function
family H = {h1, . . . hn : S → U} for the distance d, define
a function family HA = {hA1 . . . hAn : 2S → U} such that
hAi (s) = hi (an element of s, selected uniformly at random).

Note that without loss of generality, hAi is not a function
in the strict mathematical sense since two invocations of hAi

with the same argument could result in a different result
(i.e. it is not necessarily true that hAi(s) = hAi(s)).

Theorem 1. The family of functions HA, constructed ac-
cording to definition 8, is a (d1, d2, 1−kd1, 1−kd2)-sensitive
family of functions for the average distance dA with respect
to d.

Proof. The theorem is true if for every two I, J ∈ 2S and
every hA ∈ HA

if dA(I, J) ≤ d1 then Pr [hA (I) = hA (J)] ≥ 1− kd1 (1)

if dA(I, J) ≥ d2 then Pr [hA (I) = hA (J)] ≤ 1− kd2 (2)

Now we will prove the stronger statement

Pr [hA (I) = hA (J)] = 1− kdA(I, J),

which implies (1) and (2).

Pr [hA (I) = hA (J)] =

|I|∑
i=1

|J|∑
j=1

Pr [h (Ii) = h (Jj)]

|I| ∗ |J |

=

|I|∑
i=1

|J|∑
j=1

(1− kd (Ii, Jj))

|I| ∗ |J |

= 1− k

|I|∑
i=1

|J|∑
j=1

d (Ii, Jj)

|I| ∗ |J |
= 1− kdA (I, J)

Hence, the family of functions created according to def-
inition 8 from a proportionally sensitive family is itself a
locality-sensitive, and even a k-proportionally sensitive, fam-
ily. Furthermore, we can create such a family of functions for
the Jaccard, Hamming, and cosine distance, among others.

4.2 LSH Forest
LSH Forest was introduced in [2] and solves particular

problems with the standard LSH algorithm. The first im-
provement over LSH is that in LSH Forest, the points do not
get a fixed-length band. Instead, the length of the band is
decided for each point individually. The length of the band
r of a specific point and hash function gj is such that there
is no other point which is hashed to the same bucket by all
gj,k with k < r. Put another way, in standard LSH the
function gj maps two points to same bucket if all functions
it is composed of do so as well. LSH Forest, on the other
hand, saves on the evaluation of hash functions and only
evaluates that much of gj as needed to distinguish between
the different data points.

The second improvement of LSH forest is that it saves
storage space. First and foremost, the use of dynamic labels
eliminates the need for the construction of multiple indexes.
Further, in the LSH Forest data structure, these labels are
placed in a prefix tree (also called a trie) where the label on
the edge is the value of the sub-hash function of gj . In this
way, duplicate prefixes only get stored once.

The height of the tries and multiple tries show similarity
with the rows and bands of the original LSH algorithm. The
height of the tries and also the number of rows ensure that
items without much similarity get separated from each other

while multiple tries and bands ensure that similar items do
not, by coincidence, get separated from each other.

One issue with both the conventional LSH and LSH Forest
is that when using hashing, it is not possible to distinguish
between arbitrary close points. Therefore, LSH assumes a
minimum distance between any two points and LSH Forest
defines a maximum label length. This maximum label length
is equal to the maximum height of the tree and is indicated
as km.

The LSH Forest is used to answer k-nearest neighbor queries.
In the next section, we will introduce twister tries, which can
perform a hierarchical clustering with linear time and space
complexity. A central part of the data structure are prefix
tries which are very similar to the ones used in the LSH
Forest. As shown below, the twister tries inherit issues with
arbitrarily close points in the dataset.

5. TWISTER TRIES
Using the locality-sensitive family proposed in definition 8

and the LSH forest described in the previous section, one can
easily devise a hierarchical clustering algorithm as follows.
First, create a cluster for each point and insert these in the
LSH Forest. Then, on each clustering step, get the nearest
neighbor for each cluster and retain only the pair with the
closest distance. Merge these clusters by removing both and
reinsert their union. The algorithm ends when only one
cluster is left.

This straightforward algorithm does have a time complex-
ity of O(n2), since it involves n − 1 clustering steps con-
sisting of O(n) operations. A more optimal approach was
already proposed in the article which introduced the notion
of locality-sensitive hashing [10], based on an earlier version
of the work by Eppstein [6]. The idea is to use the LSH
data structure to repeatedly find the closest pair, which can
be done, in sub-linear time, by checking whether buckets
contain two different points. This makes the final algorithm
sub-quadratic.

In this section, we improve upon this result by using a
more specialized data structure which we will call twister
tries. This data structure allows finding a likely closest pair,
removing it, and inserting it back in constant time. Being
able to do this results in a linear running time of the overall
clustering algorithm.

5.1 Data structure
The twister tries data structure consists of a collection of

prefix trees, each with an accompanying splitmap (see fig. 2).
Furthermore, clusters are represented by what we will call
an element. Next, we will provide a description of each of
these constituents, together with their respective invariants
which are maintained between each insertion and removal
step.

• The prefix trees or tries are like the ones used in LSH
Forest. The outcome of the hash function evaluations
are the labels encountered on the arcs when following
the path from the root node to the leaf. In addition,
each node has a pointer to its parent. Furthermore,
each leaf of the trie maintains a list of pointers to the
elements (see below) that this leaf corresponds to.

Definition 9 (splitpoint). We will use the term split-
point to refer to a node in the trie which has more

Trie

Elements

Splitmap

Figure 2: Parts of the twister tries data structure

than one child or a leaf which refers to more than one
element.

Definition 10 (depth). The depth d̂ (n) of a node n
in the trie is the number of edges from the root node
to n.

Hence, the root node is at depth 0 and the leaves are
at depth km.

• For each trie, there is also a splitmap. This map is
essentially a list fixed to the maximum height of the
trie. Each item in the splitmap is itself a linked list of
pointers to all splitpoints of the trie at the same level.
The splitpoints also keep a pointer to the node in the
linked list which points back to them.

• Finally, the elements represent the clusters which are
currently in the system. Each element contains point-
ers to the leaf in each trie which represents this cluster
and to the node in the linked list of the leaf which
points back to the element.

For our further discussion, we need to introduce the notion
of a joinpoint.

Definition 11 (joinpoint). Given two subsets I and J , any
lowest splitpoint (in any of the tries) having the records rep-
resenting I and J connected to itself or its descending leaves
is called a joinpoint (jp) of I and J .

Note that this implies that a leaf is a joinpoint if both
records are connected to it.

5.2 Operations
The clustering algorithm works by first inserting all items,

represented by one-point clusters, into the tries. Then, at
each iteration a pair of clusters is chosen. This pair is re-
moved from the tries and merged into a new cluster. Finally,
this merged cluster is re-inserted into the tries. We some-
times refer to the repeated part as the twisting phase. The
detailed operations are as follows:

Insertion: Inserting or adding a cluster (containing one
item or more) happens in a similar way to how a point
is inserted in LSH Forest, with the addition that the
splitmaps and the elements must be maintained. For
each trie, the insertion is handled independently. At
each depth in each trie, the associated hash function
chosen from the k-proportional family is evaluated and
the edge corresponding to the outcome is followed. In
the event that the edge does not yet exist, it is cre-
ated. Furthermore, if the node already had exactly
one child before, the node is added as a splitpoint to
the splitmap. Note that this can happen once at the
most. When the leaf depth is reached, the element
representing the cluster is added to the list that the
leaf maintains and a pointer to the leaf is added to the
element.

Selection: The algorithm needs to select two clusters for
merging. First, the depth of the deepest entry in any
of the splitmaps (or, in other words, the depth of the
lowest splitpoint in any trie) is determined. Then, one
of the splitpoints at this height, which is also necessar-
ily a joinpoint, is considered. If this is a leaf node, the
selected clusters are the first two clusters connected
to this node. If this is an internal node, then the se-
lected clusters are the ones connected to the descen-
dant leaves of two of the children of this node selected
at random.

Removal: The removal of a cluster from the trie is only
possible if its corresponding element has already been
obtained (for instance, from the selection procedure).
Furthermore, it is basically the reverse operation of
an insert. The element contains pointers to one leaf
in each trie that represents the cluster. For each trie,
first the element is removed from the leaf and the leaf
from the element. Then unused arcs and nodes are
disposed of while traversing up through the trie. Dur-
ing the process, potentially one splitpoint may lose a
child. If that node had exactly two children, it is no
longer a splitpoint and it needs to be removed from
the splitmap.

Merge: After the removal of the clusters, they have to be
merged. This is done by taking the union of the clus-
ters. Then a new element representing this union is
again inserted into the tries, using the standard inser-
tion procedure.

5.3 Complexity
Twister tries perform the clustering in linear time and

have a linear space complexity with regard to the number
of items n. To see why this holds, we first have to note that
each of the operations defined in the previous section are
performed in constant time.

Insertion is a constant time operation since the size and
number of the tries is fixed and the evaluation of the hash
function is performed in constant time. Adding a node as a
splitpoint to a splitmap can only happen once and essentially
involves appending a pointer to a linked list. Adding the
element to the leaf is also done in O(1). Selection, removal,
and merging are done in constant time for largely the same
reasons.

With all these operations in constant time, it is easily seen
that the total time complexity becomes linear. There are n

insert operations, followed by n − 1 times a selection, two
removals, and a merge. Hence, the time complexity is O(n).

To show the linear space complexity, we have to show that
(1) the size of a trie is linear in function of the number of
items and (2) the size occupied by the splitmap is limited
by the number of items.

The first fact can be easily seen by observing the worst
case scenario. If all n elements have a different hash value
assigned during the first hashing upon insert, then there are
bkmn arcs and bkmn + 1 nodes. Furthermore, the element
lists at the leaves occupy space. However this is limited to
the number of elements.

The second fact is also easily shown. A leaf of the trie can
refer to multiple elements, and each element is only con-
nected with one leaf. Hence, there are no more leaves as el-
ements. By induction on the number of leaves, one observes
that their number is greater than the number of splitpoints
in the trie. So, in conclusion, there are always less split-
points than elements. And hence the size of the splitmap is
limited by the number of elements.

One final remark is related to the number of children per
node. In theory, one could define the hash functions such
that they have only two outcomes. However, in practice, a
hash function will produce a larger, but finite number of re-
sults. Hence, one might choose to let the number of children
for each node be equal to this amount. Since this amount
is fixed, it does not affect the theoretical time and space
complexity.

5.4 Correctness
When the twister tries algorithm is used for clustering,

it makes at each iteration a decision about which clusters
to join into a bigger cluster. This decision is based on an
approximation, and hence one could wonder how good this
approximation is. When selecting the next two clusters to
join from two pairs of clusters (I, J) and (K,L), the stan-
dard AHC algorithm will always choose the clusters with the
smallest distance between them according to the used link-
age (see section 2). The proposed algorithm will, however,
base its choice on the position of the lowest joinpoints of the
cluster pairs in any of the tries (see section 5.2).

In this section, we will develop an expression for the prob-
ability that the twister tries algorithm will decide to choose
a pair of clusters (I, J) instead of the pair (K,L), given their
distances.

For the definitions and theorems in this section, we assume
a twister trie consisting of b tries with height km and four
clusters I, J,K, and L, inserted using the k-proportionally
sensitive family HA = {hA1 . . . hAn}, created according to
definition 8 with respect to distance metric d.

First, we find an expression stating the probability that
the depth of a joinpoint in a single trie is x or smaller than x.

Given the clusters I and J , with p = Pr[hAi(I) = hAi(J)] =
1− kd(I, J), for x ∈ N≤km

Pr[d̂ (jp of (I, J)) = x] =

{
px(1− p) if x < km

px if x = km

Pr[d̂ (jp of (I, J)) < x] =

x−1∑
g=0

Pr[d̂ (jp of (I, J)) = g]

Now, we denote the lowest joinpoint of two clusters I and
J in any of the tries as m(I, J). The probability that m(I, J)

Figure 3: The probability that (I, J) is chosen over
(K,L) for twister tries with b = 25 and km = 25

is equal to d can be expressed as

Pr[m(I, J) = d] =
b∑
i=1

(
b

i

)
Pr
[
d̂ (jp of (I, J)) < d

]b−i
∗ Pr

[
d̂ (jp of (I, J)) = d

]i
and for inequality we find

Pr[m(I, J) < d] =

(
d−1∑
i=0

Pr
[
d̂ (jp of (I, J)) = i

])b
Using the above, we can now find an expression for the

probability that (I, J) is chosen. The pair (I, J) gets chosen
if it has a joinpoint deeper than (K,L) or in half of the cases
when their joinpoint is at the same hight (because of random
selection).

Pr[(I, J) is chosen]

= Pr[m(I, J) > m(K,L)] +
1

2
Pr[m(I, J) = m(K,L)]

=

km∑
d=0

(Pr[m(I, J) = d > m(K,L)]

+
1

2
Pr[m(I, J) = d = m(K,L)])

=

km∑
d=0

(Pr[m(I, J) = d] Pr[m(K,L) < d]

+
1

2
Pr[m(I, J) = d] Pr[m(K,L) = d])

This formula is hard to comprehend, so we illustrated
its meaning by graphing the probability for km = 25 and
b = 25 (see fig. 3). What we can see from this formula
(and the graph) is that if 0 < d(I, J) < d(K,L), then
Pr[(I, J) is chosen] > Pr[(K,L) is chosen]. Furthermore, the
graph looks more or less like a 3-dimensional S-curve. From
the graph, one can also see that if d(I, J) and d(K,L) are
close to 0, then twister tries will be unable to distinguish
between them, which is observable by the small plateau in
the front of the figure. Graphs for other settings are similar,
but the slope is steeper and the plateau smaller when higher
tries are used. The plateau gets larger when the number of
tries is increased.

We also observe that independent of the choice of param-
eters,

lim
|d(I,J)−d(K,L)|→0

Pr[(I, J) is chosen] = 0.5

This means that no matter what setting is used, if the differ-
ence between the distances is arbitrarily small, the twister
tries will be unable to distinguish between them This phe-
nomenon is also observable in LSH in general and is caused
by the fact that it is impossible to tell very close points apart
by using hashing. However, we expect that the practical ef-
fect of this phenomenon will be small since a) in half of the
cases the algorithm will, by chance, still choose the right
option and b) if the wrong option is taken, it is still a pair
of nearly correct clusters that gets joined.

This phenomenon can also be observed in other approx-
imate methods for AHC. In the work by Gilpin et al. [8],
points that fall within the same cone after quantization can-
not be distinguished. Similarly, the work by Patra et al. [18]
altogether avoids clustering close points by putting them in
one cluster connected to a ’leader’.

5.5 Implementation considerations
The data structure and operations as detailed in the pre-

vious sections can be implemented as they are presented.
One can, however, also implement certain optimizations to
get a faster execution speed or save memory. We applied
some of these in the implementation used for the evalua-
tion, but left others out since they would be data-dependent
and hence distort the evaluation results. The first impor-
tant optimization that we applied is related to the merging
of two clusters and re-insertion. If we start from the sub-
sets I = (i1, . . . , i|I|) and J = (j1, . . . , j|J|) and merge them
together, we obtain the set I ∪ J = (i1, . . . , i|I|, j1, . . . , j|J|).
Now, according to the definition of hA, the values of hAn(I)
and hAn(J) are possible answers for hAn(I ∪ J). So we
could shortcut the computation of hAn(I ∪ J) by select-
ing either hAn(I) or hAn(J) as its outcome. To decide
which one to choose, we observe that given hAn(I ∪ J) =

hAn(I) or hAn(J), then Pr[hAn(I ∪ J) = hAn(I)] = |I|
|I∪J| .

Hence, we shortcut the evaluation of hAn(I∪J) by randomly

choosing between hAn(I) and hAn(J) with probability |I|
|I∪J|

and |J|
|I∪J| , respectively. What this means is that we do not

evaluate hAn(I ∪J) at all, but instead re-use one of the pre-
viously calculated hash values. This also means that there
is no need to keep the actual data in memory. The previous
observation also leads to the following. In each trie, above
the splitpoint of (I, J), hAn(I) and hAn(J) are evaluated to
the same value, and hence it is not necessary to choose be-
tween them. Therefore, instead of removing the two points
completely, they can be removed up to the splitpoint and
then re-inserted, starting from the splitpoint.

As suggested in section 5.3, a hash function can have
many results. A possible naive implementation would allo-
cate storage space for each of these in every node. Instead,
we used a dictionary that only stores the ones that are in
use.

Furthermore, it would be possible to save hash evaluations
by not evaluating if there is no need for it. In particular,
when a chain of nodes in the trie is only created for one
cluster, the results of its hash evaluations will not be used
and hence their calculation is not needed. However, when
this cluster gets merged with another cluster and re-inserted

into the trie, it may be necessary to evaluate them at that
point. We decided to not apply this optimization, since its
gain would be highly dependent on the characteristics of
the dataset, which would make our evaluation difficult to
comprehend. Furthermore, it would make it impossible to
separate the overhead caused by the different parts of the
algorithm, and it becomes difficult to guarantee the correct-
ness of the implementation.

A further related saving would be to use Patricia trees [14],
as was proposed for LSH Forest [2]. The idea is to com-
press chains of internal nodes with only one child, such that
they are represented by only one node. This was not imple-
mented, because it could skew the results of the evaluation.

5.5.1 Parallel and distributed algorithm
The algorithm spends the largest amount of its running

time on computing the hash functions for the clusters when
they are inserted into the trie. Hence, we can accelerate the
whole process by computing these hash functions in paral-
lel. As their evaluation completely independent, data par-
allelism can be exploited. We applied this technique since
it only leads to a linear acceleration and does not skew the
results.

Another way that parallelism or distribution can be ex-
ploited is as follows. Each peer or processor manages one trie
as well as a map from each elementID to the leaf nodes of the
trie (replacing the elements at the bottom). A peer with an
entry at the lowest location in the splitmap now becomes the
leader. The leader merges the corresponding clusters in the
trie and reports the change to the other peers, which modify
their tries accordingly. Then the process repeats until the
whole clustering is done. Note that the merge steps of the
algorithm have to be taken in sequential order. One could
implement some form of speculative execution where several
possible branches are followed and only the one taken is re-
tained. However, the performance of this approach would
be very dependent on the dataset.

6. DENDROGRAM COMPARISON
In the previous section, we described the twister tries al-

gorithm and some of its theoretical properties. The result of
the algorithm is a dendrogram (i.e. a tree representing the or-
der in which the items are clustered together (see also defini-
tion 3)). The aim of our algorithm is to approximate the out-
come of the standard AHC method (see section 2). Hence, in
order to evaluate its performance, we would need to compare
the dendrogram of the twister tries algorithm with the one
that the standard algorithm produces. It should be noted
that the aim of this work is not to evaluate the semantic
correctness af the dendrogram. In other words, we do not
evaluate whether the obtained dendrogram corresponds to
the logical structure which might exist in the dataset.

There are several ways to compare dendrograms with each
other. When comparing small dendrograms, we used the
joining distance ratio (section 6.1) by Kull and Vilo [13],
and the Bk metric (section 6.2) proposed by Fowlkes and
Mallows [7]. For large dendrograms, on the other hand, we
could not find any suitable metric in the literature. When
attempting to define a metric independent of an exact den-
drogram, we run into the issue that other proposed methods
for large-scale hierarchical clustering do not produce a com-
plete dendrogram, rendering comparison meaningless.

6.1 Joining Distance Ratio
Considering standard AHC as an optimization problem,

the purpose of an algorithm is to minimize the distance of
the joining partitions for every step, meaning that for each
step, the algorithm selects the cluster pairs with the small-
est distance. To test the performance of the approximate
algorithm, a measurement of how it minimizes the joining
distance could be considered.

The joining distance ratio is defined as follows:

Definition 12 (Joining distance ratio (JDR)). The join-
ing distance ratio (JDR) is the proportion of the sum of the
joining distance of each step of the standard AHC dendro-
gram and the sum of joining distances of the approximate
algorithm.

JDR =

∑
I,J∈AHC dendrogram

dA(I, J)∑
I,J∈approximate dendrogram

dA(I, J)

Since the standard AHC algorithm is designed to choose
the pair with minimal distance at every iteration and the
approximate algorithm may select a non-minimal one, the
joining distance ratio is expected to be below 1.

Note, however, that there is a possibility for the stan-
dard AHC algorithm to result in different values for the
joining distance. This can happen when two or more pairs of
clusters are at exactly the same distance and the algorithm
chooses one of these at random. We ignore this possibility
since it won’t have a large effect in practice. Note that the
JDR is insensitive to insignificant re-orderings of the dendro-
gram, which is not true for many other metrics, including
the measurement by Fowlkes and Mallows introduced in the
next subsection.

6.2 Fowlkes and Mallows measurement
Fowlkes and Mallows devised the Bk measurement based

on the idea that similar dendrograms should contain similar
subtrees. Their measurement was not specifically introduced
for measuring the quality of approximate dendrograms, but
is still applicable. An essential part of the Bk measurement
is based on the proportion of each subtree from the standard
AHC dendrogram that is preserved by the approximate ver-
sion.

To compute Bk, suppose that there are two hierarchical
clustering trees, A1 and A2 both with the same n items,
and a cut k = 2, . . . , n − 1, which is the height at which
the dendrograms are cut. Cutting at height k produces k
subtrees, which can be seen as a partition of the items in
k subsets. Then, for each k ≤ n − 1, compute the match
matrix M = [mij](i = 1, ..., k; j = 1, ..., k), where mij is
the number of items that are common for the i-th partition
of A1 and j-th partition of A2. Then, for each k , Bk is
calculated as follows:

Definition 13 (Fowlkes and Mallows – Bk).

Bk = Tk/
√
PkQk, Tk =

k∑
i=1

k∑
j=1

m2
ij − n,

Pk =

k∑
i=1

(
k∑
j=1

mij

)2

− n, Qk =

k∑
j=1

(
k∑
j=i

mij

)2

− n.

Next, Bk is plotted in function of k. Then, we have 0 ≤
Bk ≤ 1 and only when all k clusters in each tree are exactly

the same, Bk = 1. Bk can be interpreted as “the sum of
all pairs of objects of those pairs that have matching cluster
assignments”[7].

When an algorithm produces random clusterings, the items
are randomly assigned to the clusters. The Bk value which is
obtained in this case is called the expected Bk, and denoted
E(Bk). Besides this mean value, one can also calculate the
variance of the random assignment var(Bk). The details
about their derivation can be found in the appendix of the
paper by Fowlkes and Mallows [7].

To interpret the value, one compares the obtained Bk
with E(Bk). If Bk is systematically not within E (Bk) ±
2
√
var (Bk), then the two trees are similar, and hence the

approximate algorithm showed a good performance.

6.3 Quality of large dendrograms
The dendrogram comparison methods described in the

above subsections can be used to assess the quality of a
dendrogram produced by an approximate method by com-
paring it with the outcome of the standard AHC algorithm.
However, for large datasets, we were not able to find a mean-
ingful way to compare our work with the closely related work
of Gilpin et al. [8] and Patra et al. [18]. There are multi-
ple issues when using the metrics proposed above and other
metrics found in the literature, for large datasets. The issues
include:

• An exact clustering must be available. The computation of
the dendrogram using an exact algorithm takes an unac-
ceptable amount of time for a large dataset. The problem
is that the computation of an exact dendrogram is inher-
ently serial since each clustering is dependent on the ones
that came before. Hence, the applicability of methods
that require an exact dendrogram is limited to relatively
small dendrograms. This issue affects both the JDR and
Bk measure described above. It is also a show-stopper for
many other related metrics found in the literature, such
as the relatively popular (but inferior, see [7]) Rand in-
dex, which measures “the number of similar assignments
of point-pairs normalized by the total number of point-
pairs” between two partitions [20].

Based on the JDR, one could devise a way to compare two
approximations with each other. For dendrograms A and
B, both approximate dendrograms, one could calculate
the joining distance. Because of the dependency of the
joining distances on the particular dataset, it would still
be difficult, if not impossible, to interpret these sums. Yet,
we can argue that the dendrogram with the lowest joining
distance has the highest quality.

• The computation of the metric is infeasible. Even if one
were able to compute the exact dendrogram, there is still
another problem for measurements based on sub-tree con-
servation, like the Bk measurement from the previous sec-
tion. These measurements have a cubic computational
complexity, rendering them infeasible to compute for large
datasets.

• Generation of incomplete dendrograms. The methods that
we seek to compare with do not produce complete dendro-
grams. In particular, Gilpin et al. [8] allow the leaves of
the dendrogram to contain multiple points. Additionally,
Patra et al. [18] do not continue the clustering until only
one cluster is left. In the worst case, both methods could
generate a single cluster containing all the points.

This immediately leads to the fact that metrics like the
JDR, the simplified method to compare dendrograms pre-
sented above, and Bk are no longer usable, since complete
dendrograms are assumed to use these methods. It might
seem a solution to cut the dendrograms at some height and
use measurements developed for partitions. For instance,
the Bk metric and the Rand index can be computed for a
single level of the dendrogram. However, this would not
give a complete view of the quality of the clustering. In
particular, the Bk should be observed at each level of the
hierarchy in order to interpret its quality, and the same
goes for the Rand index. [7] The general problem is that a
low-quality leaf cluster (e.g., one containing many points
that are not very close) may produce a good average dis-
tance at a higher level, leading to good results when eval-
uated. However, the incomplete clustering cannot be cut
at a lower level, and hence a comparison cannot be made.
In effect, the approaches become incomparable.

As mentioned above, the works that we seek to compare
with create large, incomplete clusterings. In order to evalu-
ate their results, the authors worked as follows: Gilpin et al.
cluster real-world datasets and measure the semantic qual-
ity of the clustering. This approach has a major drawback.
What is measured is whether the algorithm is suitable for
the clustering of the specific dataset for a given purpose, and
not whether it performs a clustering similar to the standard
AHC. This means that one cannot claim that the algorithm
works where AHC does. Or, as stated by the authors: “the
accuracy of our results is typically as good [as regular ag-
glomerative clustering] and can sometimes be substantially
better”. Patra et al. evaluate their work by comparing the
obtained dendrogram with the results of an earlier devel-
oped approximate method, using the Rand index at a given
height. This approach displays several of the issues illus-
trated above. Therefore, we do not approve of this way of
comparing the outcomes.

We do strongly agree that a comparison between our pro-
posed approach and other methods would be highly bene-
ficial. Because we could not determine a meaningful way
to perform them, however, we did not include such types of
comparisons.

7. EMPIRICAL EVALUATION
Using metrics for the dendrogram comparison from the

previous section, we now empirically evaluate how the algo-
rithm performs. These are the questions which we wish to
answer:

• How many tries does the algorithm need and how high
should these be in order to get a clustering comparable to
the traditional AHC algorithm, using a typical dataset?

• The theoretical time and space complexity are linear. Does
this promise hold when using the algorithm in practice, or
will constant factors render the algorithm useless? And
how does the algorithm scale for a very large number of
items?

In order to answer these questions, we implemented the
twister tries algorithm as suggested in section 5.5. Then,
we selected two datasets. For these datasets we defined a
distance metric and a proportionally sensitive family of hash
functions. Then we ran the twister tries algorithm with
varying settings and portions of data.

The experiments were executed on a OpenJDK 8 64-bit
Server VM. The Java VM ran on hardware with two Intel
Xeon E5-2670 processors (totaling 16 multi-threaded cores)
and was limited to use a maximum of 120 GB RAM. When
interpreting running time and memory results, one should
keep in mind that we used the Java virtual machine, which
implements garbage collection and scheduling. Hence, de-
spite our attempts to minimize measurement error, small
variations are possible due to the runtime behavior.

7.1 Datasets and proportionally sensitive hash
functions

In order to evaluate our algorithm, we chose datasets with
different characteristics. The first dataset was the Thomson
Reuters Text Research Collection (TRC2).1 This corpus
contains roughly 1.8 million news stories and is about 2.7
GB large. We preprocessed the data such that each item in
our dataset was a set of words representing the article. Dur-
ing the preprocessing, we split the article text on whitespace.
Then, for each word we removed punctuation marks, con-
verted to lowercase, and applied Porter stemming.2 From
the resulting set, we removed stop words, single characters
and numbers. Articles that resulted in an empty set were
ignored, which finally resulted in 1.68 million sets, each rep-
resenting one article. As a metric for the distance between
two articles, we used the Jaccard distance between their
representing sets. The min-hash family was chosen for the
locality-sensitive hashing. The permutation step of the min-
hash was implemented using Rabin hashing [3].

Secondly, we chose the cifar-10 dataset3, comprising 60,000
small images. We made this choice because it contains a
reasonable amount of data and we could apply a different
distance metric. The images were 32x32 pixels large and en-
coded using the RGB color model. Hence, each image was
represented by a vector of 3,072 integers. Furthermore, the
images were categorized in terms of 10 classes: airplane, au-
tomobile, bird, cat, deer, dog, frog, horse, ship, and truck.
There were 6,000 images belonging to each of these classes in
the dataset. We measured the distance between two images
as the cosine distance (i.e. the normalized angle) between
their respective vectors. The locality-sensitive hashing was
implemented using random hyperplane hashing [5].

Figure 4: 20 sample images from the cifar-10
dataset.

7.2 Experiments and Results
Using the datasets described above, we devised several

experiments aimed at answering the questions at the begin-
ning of this section. There were more experiments using the
TRC2 dataset, because it contains more data points.

1http://trec.nist.gov/data/reuters/reuters.html
2http://tartarus.org/martin/PorterStemmer/
3http://www.cs.toronto.edu/~kriz/cifar.html

Figure 5: Fowlkes and Mallows – Bk measurement
for 1000 news stories of the TRC2 dataset inserted
into twister tries with b = 1 and km = 1.

Figure 6: Fowlkes and Mallows – Bk measurement
for 1000 news stories of the TRC2 dataset inserted
into twister tries with b = 120 and km = 120.

7.2.1 Determining b and km

We started with four experiments to determine what the
settings for the parameters b and km should be in order to
obtain a reasonable clustering. For these experiments, we
took a set of 1000 items and inserted them into twister tries
with between 5 and 125 tries with a height between 5 and
125. For each of these settings, we obtained an approximate
dendrogram. Next, the 1000 items were clustered using an
exact algorithm (the fastcluster algorithm mentioned in sec-
tion 3).

For the first two experiments, we applied the Fowlkes and
Mallows Bk measurement and used the TRC2 dataset. We
selected two settings (b = 1, km = 1 and b = 120, km =
120) and plotted the results (See figs. 5 and 6). The plots
also contain the expected Bk, and the region surrounding it
indicates two standard deviations. For the third and fourth
experiments, we calculated the JDR in function of the height
and number of tries for both datasets (see figs. 7 and 8).

The first observation seen from all of these figures is that
an increase in the number of tries or their height led to
a higher quality of the dendrogram. However, the relative

gain in quality became smaller the more tries there were and
the larger they were. In particular, from the Bk diagrams
it is clearly apparent that the quality increased when more
and higher tries were used. The plot in fig. 5 shows that
the Bk value remained close to E(Bk), meaning that the
clustering was not much better than random. In the other
Bk figure (fig. 6), we see that the Bk only stayed close to
the expected value when very few clusters were made. The
chart is in accordance with the observations of Fowlkes and
Mallows [7] regarding very similar dendrograms.

Secondly, from the JDR plots we notice that we obtained a
better quality for the Reuters than for the cifar-10 dataset,
which means that the characteristics of the data and the
hash function used influenced the shape of the JDR diagram.
Finally, we note that the increase in quality, in terms of JDR,
became relatively small when crossing a certain threshold.
For the TRC2 dataset, this happened as soon as the height
and number of trees became higher than 20, while for the
cifar-10 dataset this point was around (20, 60). From these
observations, we won’t make any general recommendations.
However, we will use the aforementioned sizes and heights to
evaluate the runtime and memory use when clustering more
items.

7.2.2 Time and Space Complexity
To answer the second question, we set up experiments in

which we fixed the parameters of the twister tries and clus-
tered larger and larger portions of data. For the cifar-10
dataset, we inserted up to 60,000 images into the data struc-
ture with 20 tries of height 60. We stopped at 60,000 because
there are no more items in the dataset. For the TRC2 data,
we inserted multiples of 50,000 news stories into the twister
tries until the whole dataset was fed into the data struc-
ture. For these experiments we measured the time needed
to complete the insertion of data (the time needed to com-
pute all the hashes and add it into the prefix trees) and
the twisting phase (iteratively selecting, removing, merg-
ing, and re-inserting clusters). The amount of memory used
was measured at the point when all data had been inserted
into the tries. To minimize measurement error, these ex-
periments were executed on the server while there were no
other significant processes going on. Further minimization
of measuring error was achieved by executing the running
time and memory usage measurements separately to mini-
mize measurement error due to the measuring instruments.
We noticed that there was not much variation in the mea-
surements and hence did not attempt to measure deviations;
the reported figures are averages of three runs.

The outcome of the timing experiments can be found in
figs. 9 and 10 for the TRC2 and cifar-10 dataset, respec-
tively. For the cifar-10 dataset, we note that the plot indi-
cates a linear relation between the number of images clus-
tered and the time needed. Furthermore, we note that the
time needed for clustering the whole dataset was about 160
seconds. Lastly, it can be seen that most of the time was
spent on inserting the data into the tries. Also, the TRC2
plot is more or less linear. We note that the measurements
between 20,000 and 50,000 points are clustered a bit faster
compared to the other measurements. We could not find
a clear explanation for this and it was also observed after
repeated measurements. Most likely, there is a optimization
that the JVM does not start using with the smaller amount
of data. The fact that the measurements for larger datasets

do not reflect this is likely caused by the amount of mem-
ory used. We observe that the algorithm was slightly slower
when more than 16 GB of memory was used, which coincides
with the size of a DIMM module on the server. From the
plot, it can also be seen that for the TRC2 dataset, relatively
more time was spent in the twisting phase when compared
to the results for the cifar-10 dataset.

The memory consumption was plotted in figs. 11 and 12.
What we observe from the figures is that the twister tries
scaled well for large datasets. Moreover, both time and space
complexity rose in a linear fashion with respect to the input
size.

8. CONCLUSIONS
Our experiments showed that the twister tries algorithm

is able to create clusterings of a reasonable quality. Further-
more, we showed both analytically and by using practical
experiments that time and space complexity scale linearly
in relation to the number of items clustered. The largest
dataset that we clustered consisted of about 1.7 million news
articles. Using the Jaccard dissimilarity of representing sets
as a distance metric, the time needed for clustering this
amount of data was about 14 minutes.

There are still several open questions to be researched.
For one, it would be interesting to see whether it is possi-
ble to develop a scalable metric for dendrogram compar-
ison. It would also be interesting to determine whether
k-proportionality is a necessary condition for using twister
tries; we only showed that it is a sufficient one. If this con-
dition could be relaxed, it could be researched whether it is
possible to broaden the applicability to other metrics and
LSH functions. Further research could also investigate how
this algorithm could be parallelized and distributed, while
still maintaining reasonable performance, to further increase
the size of the datasets that can be clustered. Another im-
portant open question is to find a good measurement that
can determine the quality of a large, perhaps incomplete
dendrogram within a reasonable time.

Acknowledgments
The authors would like to thank the Department of Mathe-
matical Information Technology and the Industrial Ontolo-
gies Group of the University of Jyväskylä for making this
research possible. This research was also financed in part
by the TEKES N4S SHOK in collaboration with Steeri Oy.
We would also like to thank the reviewers and copy editor
for their thorough comments and suggestions, which helped
us to improve the paper.

Furthermore, it has to be mentioned that the implemen-
tation of the software was greatly simplified by Google’s
Guava library, the Apache Commons MathTM library, and
the Rabin hash library by Bill Dwyer and Ian Brandt. In
the evaluation code we used the fastcluster, NumPy, SciPy,
and Matplotlib libraries. For the experiments, we used the
”Thomson Reuters Text Research Collection (TRC2)”.

The contributions to the article are as follows: Michael
Cochez is the main author of the paper. He invented and im-
plemented the twister tries data structure and algorithm. In
addition, he worked on the optimizations, theoretical anal-
ysis and experimental evaluation. Mou Hao contributed the
correctness analysis and did the majority of the work for the
dendrogram comparisons.

Figure 7: Influence of the number of tries and their
height on the Joint Distance Measure of the dendro-
gram for 1000 news stories of the TRC2 dataset.

Figure 8: Influence of the number of tries and their
height on the Joint Distance Measure of the dendro-
gram for 1000 images of the cifar-10 dataset.

Figure 9: Runtime for adding and twisting TRC2
stories using twister tries with b = 20 and km = 20

Figure 10: Runtime for adding and twisting cifar-10
images using twister tries with b = 20 and km = 60

Figure 11: Memory usage for adding TRC2 stories
using twister tries with b = 20 and km = 20

Figure 12: Memory usage for adding cifar-10 images
using twister tries with b = 20 and km = 60

9. REFERENCES
[1] A. Andoni and P. Indyk. Near-optimal hashing

algorithms for approximate nearest neighbor in high
dimensions. Commun. ACM, 51(1):117–122, Jan. 2008.

[2] M. Bawa, T. Condie, and P. Ganesan. LSH forest:
self-tuning indexes for similarity search. In Proceedings
of the 14th international conference on World Wide
Web, pages 651–660. ACM, 2005.

[3] A. Broder. Some applications of rabin’s fingerprinting
method. In R. Capocelli, A. Santis, and U. Vaccaro,
editors, Sequences II, pages 143–152. Springer New
York, 1993.

[4] A. Z. Broder. On the resemblance and containment of
documents. In Compression and Complexity of
Sequences 1997. Proceedings, pages 21–29. IEEE, 1997.

[5] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In Proceedings of the
Thiry-fourth Annual ACM Symposium on Theory of
Computing, STOC ’02, pages 380–388, New York, NY,
USA, 2002. ACM.

[6] D. Eppstein. Fast hierarchical clustering and other
applications of dynamic closest pairs. J. Exp.
Algorithmics, 5, Dec. 2000.

[7] E. B. Fowlkes and C. L. Mallows. A method for
comparing two hierarchical clusterings. Journal of the
American Statistical Association, 78(383):553–569,
1983.

[8] S. Gilpin, B. Qian, and I. Davidson. Efficient
hierarchical clustering of large high dimensional
datasets. In Proceedings of the 22nd ACM
international conference on Conference on
information & knowledge management, CIKM ’13,
pages 1371–1380, New York, NY, USA, 2013. ACM.

[9] I. Gronau and S. Moran. Optimal implementations of
UPGMA and other common clustering algorithms.
Information Processing Letters, 104(6):205–210, 2007.

[10] P. Indyk and R. Motwani. Approximate nearest
neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pages
604–613. ACM, 1998.

[11] H. Koga, T. Ishibashi, and T. Watanabe. Fast
hierarchical clustering algorithm using
locality-sensitive hashing. In E. Suzuki and
S. Arikawa, editors, Discovery Science, volume 3245 of
Lecture Notes in Computer Science, pages 114–128.
Springer Berlin Heidelberg, 2004.

[12] N. Kriege, P. Mutzel, and T. Schäfer. SAHN
clustering in arbitrary metric spaces using heuristic
nearest neighbor search. In S. Pal and K. Sadakane,
editors, Algorithms and Computation, volume 8344 of
Lecture Notes in Computer Science, pages 90–101.
Springer International Publishing, 2014.

[13] M. Kull and J. Vilo. Fast approximate hierarchical
clustering using similarity heuristics. BioData mining,
1(1):9, 2008.

[14] D. R. Morrison. Patricia – practical algorithm to
retrieve information coded in alphanumeric. J. ACM,
15(4):514–534, Oct. 1968.

[15] D. Müllner. Modern hierarchical, agglomerative
clustering algorithms. arXiv preprint arXiv:1109.2378,
2011.

[16] D. Müllner. fastcluster: Fast hierarchical,
agglomerative clustering routines for R and Python.
Journal of Statistical Software, 53(9):1–18, 5 2013.

[17] T.-D. Nguyen, B. Schmidt, and C.-K. Kwoh.
SparseHC: A memory-efficient online hierarchical
clustering algorithm. Procedia Computer Science,
29(0):8 – 19, 2014. 2014 International Conference on
Computational Science.

[18] B. Patra, N. Hubballi, S. Biswas, and S. Nandi.
Distance based fast hierarchical clustering method for
large datasets. In M. Szczuka, M. Kryszkiewicz,
S. Ramanna, R. Jensen, and Q. Hu, editors, Rough
Sets and Current Trends in Computing, volume 6086
of Lecture Notes in Computer Science, pages 50–59.
Springer Berlin Heidelberg, 2010.

[19] A. Rajaraman and J. D. Ullman. Mining of massive
datasets, chapter 3. Finding Similar Items, pages
71–128. Cambridge University Press, 2012.

[20] W. M. Rand. Objective criteria for the evaluation of
clustering methods. Journal of the American
Statistical association, 66(336):846–850, 1971.

[21] Z. Rasheed, H. Rangwala, and D. Barbará. Efficient
clustering of metagenomic sequences using locality
sensitive hashing. In Proceedings of the 2012 SIAM
International Conference on Data Mining, SDM ’12,
pages 1023–1034, Philadelphia, PA, USA, 2012. SIAM.

