1004.3630v5 [cs.GT] 15 Nov 2015

arxXiv

Truthful Mechanisms with Implicit Payment Computation

MOSHE BABAIOFF, Microsoft Research, Herzeliya, Israel.
ROBERT D. KLEINBERG, Computer Science Department, Cornell University, Ithaca, NY, USA.
ALEKSANDRS SLIVKINS, Microsoft Research, New York, NY, USA.

First version: April 2010
This version: November 2015

It is widely believed that computing payments needed to induce truthful bidding is somehow harder than
simply computing the allocation. We show that the opposite is true: creating a randomized truthful mecha-
nism is essentially as easy as a single call to a monotone allocation rule. Our main result is a general pro-
cedure to take a monotone allocation rule for a single-parameter domain and transform it (via a black-box
reduction) into a randomized mechanism that is truthful in expectation and individually rational for every
realization. The mechanism implements the same outcome as the original allocation rule with probability
arbitrarily close to 1, and requires evaluating that allocation rule only once. We also provide an extension of
this result to multi-parameter domains and cycle-monotone allocation rules, under mild star-convexity and
non-negativity hypotheses on the type space and allocation rule, respectively.

Because our reduction is simple, versatile, and general, it has many applications to mechanism design
problems in which re-evaluating the allocation rule is either burdensome or informationally impossible. Ap-
plying our result to the multi-armed bandit problem, we obtain truthful randomized mechanisms whose
regret matches the information-theoretic lower bound up to logarithmic factors, even though prior work
showed this is impossible for truthful deterministic mechanisms. We also present applications to offline
mechanism design, showing that randomization can circumvent a communication complexity lower bound
for deterministic payments computation, and that it can also be used to create truthful shortest path auc-
tions that approximate the welfare of the VCG allocation arbitrarily well, while having the same running
time complexity as Dijkstra’s algorithm.

Categories and Subject Descriptors: J.4 [Social and Behavioral Sciences]: Economics; K.4.4 [Compu-
ters and Society]: Electronic Commerce; F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems

General Terms: theory, algorithms, economics

Additional Key Words and Phrases: algorithmic mechanism design, single-parameter mechanisms, multi-
armed bandits, regret, multi-parameter mechanisms

This is a merged and revised version of the conference papers [Babaioff et all2010,2013] that have appeared
in the ACM Conf. on Electronic Commerce (ACM EC) in 2010 and 2013, respectively. This paper contains all
results from [Babaioff et all[2010] and the main result from [Babaioff et all[2013] (in Section[8). This version
is updated to reflect the current status of the follow-up work and open questions.

Parts of this research have been done while R. Kleinberg was a Consulting Researcher at Microsoft Research
Silicon Valley. He was also supported by NSF Awards CCF-0643934 and AF-0910940, an Alfred P. Sloan
Foundation Fellowship, and a Microsoft Research New Faculty Fellowship.



http://arxiv.org/abs/1004.3630v5

0:2 M. Babaioff et al.

1. INTRODUCTION

Algorithmic Mechanism Design studies the problem of implementing the designer’s
goal under computational constraints. Multiple hurdles stand in the way for such im-
plementation. Computing the desired outcome might be hard (as in the case of com-
binatorial auctions) or truthful payments implementing the goal might not exist (as
when exactly minimizing the make-span in machine scheduling [Archer and Tardos
12001]). Even when payments that will generate the right incentives do exist, find-
ing such payments might be computationally costly or impossible due to online con-
straints.

It is widely believed that computing payments needed to induce truthful bidding is
somehow harder than simply computing the allocation. For example, the formula for
payments in a VCG mechanism involves recomputing the allocation with one agent
removed in order to determine that agent’s payment; this seemingly increases the re-
quired amount of computation by a factor of n + 1, where n is the number of agents.
Likewise, for truthful single-parameter mechanisms the formula for payments of a
given agent includes integrating the allocation rule over this agent’s bid
[1981; |Archer and Tardos 12001]. In some contexts with incomplete observable infor-
mation, such as online pay-per-click auctions, computing these “counterfactual alloca-
tions” may actually be information-theoretically impossible. This calls into question
the mechanism designer’s ability to compute payments that make an allocation rule
truthful, even when such payment functions are known to exist. Rigorous lower bounds
based on these observations have been established for the communication complex-
ity [Babaioff et al![2013] and regret [Babaioff et al![2014; Devanur and Kakade 2009]
of truthful deterministic mechanisms.

In contrast to these negative results, we show that the opposite is true for random-
ized single-parameter mechanisms that are truthful-in-expectation: computing the al-
location and payments is essentially as easy as a single call to the allocation rule. This
allows for positive results that circumvent the lower bounds for deterministic mecha-
nisms cited earlier.

1.1. Single-parameter mechanisms

We consider an arbitrary single-parameter domain. The paradigmatic example is an
auction that allocates items between agents whose utility is linear in the number of
items they receive. The private information of each agent is expressed by a single pa-
rameter: her value per item[] Each agent submits a bid, then the mechanism performs
the allocation and charges payments. A mechanism is called “truthful” if each agent
maximizes her utility by submitting her true value per item. The allocation rule in
a truthful mechanism is called “truthfully implementable”. It is known that an allo-
cation rule is truthfully implementable if and only if it is “monotone”: increasing one
agent’s bid while keeping all other bids the same does not decrease this agent’s alloca-
tion [Myersonl[1981;/Archer and Tardos|2001]. A similar property holds for randomized

mechanisms and truthfulness-in-expectation.

Our contributions. Our main result is a general procedure to take any monotone-in-
expectation allocation rule A and transform it into a randomized mechanism that is
truthful-in-expectation, implements the same outcome as A with probability arbitrar-
ily close to 1, and requires evaluating that allocation rule only once. (We refer to this

'In a general single-parameter domain, the allocation rule selects an outcome from some arbitrary collection
of feasible outcomes. Each agent has her own type of “good”, and for each agent there is an arbitrary, publicly
known mapping from feasible outcomes to a real-valued amount of the corresponding good. The agent’s
utility is linear in this amount; the value per unit amount of good is her private information.
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procedure as the generic transformation.) The allocation rule A is accessed only as a
function call, so our result applies even if A is an online algorithm. Moreover, for each
realization of randomness an agent never loses by participating in the mechanism and
bidding truthfully; thus the agents are protected from undesirable random deviations.

We make a distinction between randomness in the mechanism and randomness in
“nature”: the environment that the mechanism interacts with. Randomness in nature
is subject to modeling assumptions and hence is less “reliable”; moreover, agents’ be-
liefs about nature may be different from the mechanism’s. On the other hand, random-
ness in the mechanism is fully controlled by the mechanism. Therefore it is desirable to
design mechanisms that are truthful in a stronger sense: in expectation over the mech-
anism’s random seed, for every realization of randomness in nature we will call such
mechanisms ex-post truthful. It is easy to see from [Myerson (1981
12001] that in any ex-post truthful mechanism the allocation rule must satisfy ex-post
monotonicity (which is defined similarly to ex-post truthfulness). In the generic trans-
formation described above, if the original allocation rule A is ex-post monotone then
the resulting randomized mechanism is ex-post truthful.

Similarly, our result extends to Bayesian incentive-compatibility: if 4 is monotone
in expectation with respect to a Bayesian prior over other agents’ bids, then the mech-
anism is truthful in expectation over this prior.

Our generic transformation is particularly useful for mechanism design problems
in which re-evaluating the allocation rule is either burdensome or information-
theoretically impossible.

1.2. Bandit mechanisms

A leading problem for which only a single call to the allocation rule can be evaluated
is the multi-armed bandit (MAB) mechanism design problem [Babaioff et al|[2014;
Devanur and Kakade 2009]. In this problem information about the state of the world
is dynamically revealed during the allocation; the particular information that is re-
vealed depends on the prior choices of the allocation, and in turn may impact the fu-
ture choices. Simulating the allocation rule on different inputs may therefore require
information that was not observed on the actual run. This “informational obstacle” (in-
sufficient observable information) is a crucial obstacle for deterministic ex-post truth-
ful MAB mechanisms; it is used in [Babaioff et alll2014] to derive that the appropriate
payments cannot be computed unless the allocation rule is very “naive” (and therefore
suboptimal).

To put more context, MAB mechanisms are motivated by online pay-per-click ad
auctions, and were suggested in [Babaioff et al|[2014; Devanur and Kakade2009] as a
simple model which combines strategic bidding by agents and online learning by the
mechanism. Each agent has a single ad that she wants to display to users, and derives
utility only if her ad is clicked. The value per click is her private information. The
allocation rule proceeds in rounds: in each round the mechanism allocates one ad to be
shown to a user and observes whether this ad was clicked. The click probabilities (also
known as “click-through rates”, or CTRs) are unknown to the mechanism, and need to
be estimated during the run of the allocation rule. All bids are submitted before the
allocation starts, and all payments are assigned after it ends.

MAB mechanisms are related to MAB algorithms: the allocation rule is essentially
an MAB algorithm whose “rewards” are clicks weighted by the corresponding bids.
Moreover, welfare of an MAB mechanism is precisely the same as the total reward of
its allocation ruled Therefore one could directly compare the performance of truthful

2This is because payments cancel out: the total amount paid by the agents is equal to the total amount
received by the mechanism.
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MAB mechanisms with that of MAB algorithms; both can be quantified using regret:
the loss in welfare compared to the benchmark which always picks the best ad.

Following [Babaioff et alli2014; Devanur and Kakade 20091, we focus on the stochas-
tic version of the problem, i.e. we assume that the CTRs do not change over time. Then
the “randomness in nature” corresponds to the random clicks, and ex-post truthful-
ness means truthfulness for every realization of the clicks (but in expectation over the
randomness in the mechanism). Note that ex-post truthfulness is a very strong prop-
erty which holds even if the clicks are chosen by an oblivious adversary As discussed
in [Babaioff et alll2014; Devanur and Kakade 2009], this property is highly desirable,
compared to the weaker notion of “truthfulness in expectation over clicks”, even if the
corresponding mechanism has regret guarantees that only apply to the stochastic set-
ting.

Our contributions. Applying our generic transformation to the MAB problem we
derive that the problem of designing truthful MAB mechanisms reduces to the problem
of designing monotone MAB allocation rules. Such a problem has not been previously
studied in the rich literature on MAB.

Our main result in this direction is a randomized MAB mechanism that is ex-post
truthful and has regret O(T'/?) for the stochastic version. This upper bound on re-
gret matches the information-theoretic lower bound for algorithms in the same setting
(i.e., the lower bound holds even in the absence of incentive constraints). This stands
in contrast to the lower bound of [Babaioff et all[2014], where it was shown that deter-
ministic ex-post truthful MAB mechanisms must suffer a larger regret of Q(72/3).

On a technical level, we design a new MAB allocation rule that is ex-post mono-
tone and has regret O(7'/?) for the stochastic setting. (We use it to obtain a random-
ized ex-post truthful MAB mechanism with the same regret.) Moreover, we show that
UCB1 [Auer et al![2002a] (and a number of similar MAB algorithms) give rise to MAB
allocations that are monotone in expectation over clicks, and therefore can be trans-
formed to randomized MAB mechanisms that are truthful in the same sense and have
optimal regret.

The new ex-post monotone MAB allocation rule is deterministic, which rigorously
confirms the intuition from [Babaioff et al. 2014 IDelaxmLand_Kakadd [2009] that the
impossibility results for deterministic MAB mechanisms are caused by the “informa-
tional obstacle” (insufficient observable information about clicks) rather than ex-post
monotonicity.

1.3. Other contributions

Power of randomization. As a by-product of our analysis of MAB mechanisms,
we obtain an unconditional separation between the power of randomized vs. deter-
ministic ex-post truthful mechanisms for welfare maximization, in the online set-
ting. (The separation result is unconditional in the sense that it considers exactly
the same setting for both classes of mechanisms.) This complements the result of
[2009]1, which gives a separation between these two classes of
mechanisms in the offline setting, under a polynom1al communication complexity con-
straint. It is worth noting that the separation in Ill)_bzmskl_and_]lughmj [2009] applies
to a rather unnatural problem (two-player multi-unit auctions in which if at least one
item is allocated, then all items are allocated and each player receives at least one
item) whereas our separation result is for a natural problem: online pay-per-click ad
auctions for a single slot, with unknown click-through rates.
For the objective of revenue maximization, separations between randomized and
deterministic mechanisms have been known for much longer [Thanassoulid 2004;

Manelli and Vincent 12006; [Dobzinski et all [2012; Briest et al! 2014] and are in some
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sense less surprising. Randomization allows the mechanism to access a larger set of
possible allocations, i.e. the set of all probability distributions over pure allocations,
and in some cases this leads to greater revenue, for example by permitting more fine-
grained price discrimination between agent types. This is not the case for the objective
of maximizing welfare (because VCG mechanisms are deterministic and they maxi-
mize welfare pointwise while obeying incentive constraints). For welfare maximiza-
tion, randomized mechanisms are sometimes more powerful than deterministic ones
due to other reasons, such as computational power or informational limitations (as in
the problem we study).

Offline mechanisms. Our main result also has implications for offline mechanism de-
sign. Nisan and Ronen, in their seminal paper [Nisan and Ronen [2001] which started
the field of algorithmic mechanism design, cite the apparent n-fold computational
overhead of computing VCG payments and pose the open question of whether pay-
ments can be computed faster than solving n versions of the original problem, e.g. for
VCG path auctions. Our result shows that the answer is affirmative, if one adopts
the truthful-in-expectation solution concept and tolerates a mechanism that outputs
an outcome whose welfare is a (1 + ¢)-approximation to that of the VCG allocation,
for arbitrarily small ¢ > 0. Babaioff et al/ [2013] present a social choice function f in
an n-player single-parameter domain such that the deterministic communication com-
plexity required for truthfully implementing f exceeds that required for evaluating f
by a factor of n. Our result shows that no such lower bound holds when one considers
randomized mechanisms, again allowing for a small amount of random error in the
allocation.

Extension to multi-parameter mechanisms. We extend our generic transforma-
tion from single-parameter to multi-parameter mechanisms. It is known that a multi-
parameter allocation rule is truthfully implementable if and only if it satisfies a prop-
erty called “cycle-monotonicity”. (This is a rather strong property which specializes to
monotonicity in the single-parameter case.) Similar to the single-parameter case, we
present a general procedure to take any cycle-monotone allocation rule A and trans-
form it into a randomized mechanism that is truthful-in-expectation, implements the
same outcome as A with probability arbitrarily close to 1, and requires evaluating that
allocation rule only once. The technical contribution here is that we find a reduction
from the multi-parameter setting to the single-parameter case.

While much more general that our single-parameter transformation, this result may
be more difficult to apply. This is because cycle-monotonicity is known to be a very
restrictive property. However, the follow-up work already provides two applications,
see Section [2.1] for details.

1.4. Map of the paper

This paper makes four high-level contributions: the generic transformation for single-
parameter mechanisms (Sections [ and [B), the two applications to off-line mechanism
design (Section [6), the results on MAB mechanisms (Section [7), and an extension to
multi-parameter mechanisms (Section [B). Presenting these results requires a signifi-
cant amount of preliminaries on mechanisms design (Section [B), multi-armed bandits
(Section [Z.1), and multi-parameter mechanism (Section [8.I). We conclude with open
questions (Section [9).

A considerable amount of work followed up on the initial conference publication

[Babaioff et al|2010] of this paper. This work is discussed in Section 211
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2. RELATED WORK AND FOLLOW-UP WORK
The characterization of truthful mechanisms for single-parameter domains, given by

Myerson [[1981] for single-item auctions and by [Archer and Tardos [2001] for a more
general class of single- -parameter problems, states that a mechanism is truthful if and
only if its allocation rule is monotone and its payment rule charges each agent its
value for the realized outcome, minus a correction term expressed as an integral over
all types lower than the agent’s declared t, Exact computation of this correction
term may be intractable, but |Archer et al. ﬂh] developed a clever workaround: one
can use random sampling to compute an unbiased estimator of the correction term, at
the cost of evaluating the allocation rule once more. Thus, for n agents, the allocation
rule must be evaluated n + 1 times: once to determine the actual allocation, and once
more per agent to determine that agent’s payment. Our generic transformation relies
on a generalization of this random sampling technique, but we show how to avoid
recomputing the allocation rule when determining each agent’s payment, by coupling
payment generation with the allocation itself.

The question of whether computing payments is computatlonally harder than com-
puting the allocation was raised by INisan and Ronenl [2001] in the context of VCG
path auctions. The most significant progress to date was the communication complex-
ity lower bound of Babaioff et all [2013] mentioned above.

Payment computation in online mechanism design is a central issue in the anal-
y51s of truthful MAB mechanisms in Babaioff et al! [2014] and Devanur and Kakade
[2009]. The main result of [Babaioff et al! [2014] is a characterization of determinis-
t1c ex-post truthful mechanisms. It is more restrictive than the Myerson and Archer-
Tardos characterization. The reason is that computing an agent’s payment requires
knowing how many clicks she would have received if she had submitted a lower bid
value, which may require the mechanism to hypothetically go back into the past and
allocate impressions to a different agent for the purpose of seeing whether a user would
have clicked on that agent’s advertisement. Such counterfactual information is typi-
cally impossible to obtain in an online setting.

Babaioff et all [2014] focus on welfare maximization. Using the above characteri-
zation, they prove that any deterministic ex-post truthful MAB mechanism must in-
cur regret Q(7?/3), whereas MAB algorithms for the same setting can achieve regret

O(T'/?). Devanur and Kakadd [2009] consider revenue maximization, and derive a

similar (7'?/3) lower bound on loss of revenue compared to the VCG paymentsH
Dynamic auctions [Athey and Segal [2013; ;
Bergemann and Said [2011] constitute another settmg in which information 1s
revealed “dynamically” (over time). However, while in MAB auctions all information
from the agents (the bids) is submitted only once and then information is revealed
to the mechanism by the environment over time, in dynamic auctions the agents
continuously observe private “signals” from the environment and submit “actions”
to the mechanism. Accordingly, providing the right incentives becomes much more
challenging. On the other hand, existing work has focused on a fully Bayesian setting
with known priors on the signals, whereas all of our results do not rely on priors.
Finally, several recent papers have explored the theme of reductions in algorith-
mic mechanism design. Unlike our work which requires mechanisms to be truthful
for every realization of the agents’ types, these papers focus on Bayesian settings and
adopt Bayesian incentive-compatibility as their solution concept. A reduction convert-
ing any allocation rule into a Bayesian incentive-compatible mechanism with approx-

3For revenue-maximizing MAB mechanisms, there is no clear comparison with the performance of MAB
algorithms.
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imately the same expected social welfare was developed in [Hartline and Luciexr 2010;
Bei and Huang 12011; [Hartline et all|2011]. |IChawla et al! [2012] considered black-box
reductions of mechanism design problems to algorithmic problems with the same ob-
jective, and demonstrated significant limitations of this approach. The breakthrough
results of Cai et al. [2012;12013a;/2013b] and Daskalakis and Weinberg [2014] circum-
vented these limitations by instead reducing to algorithmic problems with a modified
objective In particular, reductions from revenue-maximizing mechanisms to welfare-
maximizing algorithms are presented in [Cai et all 2012, [2013a], whereas
[2013b] and Daskalakis and Weinberg [2014] present reductions for non- linear obJec-

tive functions, such as makespan in schedulingf]

2.1. Follow-up work (subsequent to [Babaioff et al. 20110])

Our generic transformation exhibits high variability in payments, and includes an
explicit tradeoff between the variability in payments and the loss in performance.
Formally, variability can be expressed as variance, maximal absolute value, or (for
positive types) maximal rebate. Performance can be expressed as welfare or revenue.
Wilkens and Sivan [2012] have proved this tradeoff to be optimal in a certain worst-
case sense: our transformation achieves the optimal worst-case variance in payments
for any given worst-case loss in performance, where the worst case is over all monotone
allocation rules. Their result applies to any single-parameter domain and any of the
above notions of variability and performance.

Our generic transformation is likely to be very useful in single-parameter settings
which exhibit the “informational obstacle” (insufficient observable information) such
as the one found for deterministic MAB mechanisms. The follow-up work describes
three additional settings. First, [Wilkens and Sivan [2012] observe that the same ob-
stacle arises in offline pay-per-click ad auctions with multiple ad slots, where the
CTRs have slot-specific multipliers. In conjunction with our generic transformation,
an obvious welfare-maximizing allocation rule for that setting results in a truthful-
in-expectation mechanism. Second, [Shnayder et al| [2012] describe a packet schedul-
ing problem in a network router, where the “informational obstacle” arises due to the
potentially missing information about packet arrival times. (As they observe, this in-
formation may be missing not only because it is not observed by the router but also
because the router simply does not have space to store it.) They design a monotone
allocation rule for their setting, and use our generic transformation to convert it to a
truthful-in-expectation mechanism. Third, |Gatti et al! [2012] consider an extension of
MAB mechanisms to multiple ad slots. While they provide truthful mechanisms based
on the simple MAB mechanism from [Babaioff et all2014; Devanur and Kakade 2009],
our generic transformation could give rise to more efficient truthful mechanisms.

[Wilkens and Sivan [2012] obtain a similar “single-call reduction” (i.e., a reduc-
tion from allocation rules to truthful-in-expectation mechanisms which calls the al-
location rule only once) for multi-parameter allocation rules that are maximal-in-
distributional-range (MIDR). MIDR allocation rules [Dobzinski and Dughmi [2009]
pick a welfare-maximizing distribution over outcomes from some fixed collection of
distributions; they are precisely the allocation rules for which VCG payments produce
a truthful mechanism. This result is an independent work with respect to, and a spe-
cial case of, the multi-parameter reduction in Section[8

The multi-parameter generic transformation in Section [8] has been used in two re-
cent papers. First, Jain et all [2011] used it to speed up the payment computation for
a mechanism that allocates batch jobs in a cloud system. Second, [Huang and Kannan

4All papers discussed in this paragraph, except [Hartline and Lucied 20101, have appeared after the confer-
ence publication of this paper [Babaioff et all[2010].
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[2012] used it to compute payments for their privacy-preserving procurement auction
for spanning trees, which is based on the well-known “exponential privacy mechanism”
from prior work [McSherry and Talwar2007].

Simplified payment computation. Our generic transformation is most useful if
the allocation rule cannot be invoked more than once, as in “bandit mechanisms” or
other examples provided in follow-up work. [Segal [2010] has observed that any truth-
ful single-parameter mechanism can be implemented in a much simpler way, as long
as two calls to the allocation rule are allowed: one computes the allocation, and the
other one generates random payments with the correct expectation. In the first call one
uses the original bids. For the second call, one selects an agent uniformly at random,
and uses the random sampling trick from|Archer and Tardos [2001] described above to
compute the payment for this agent, and then scales the payment appropriatelyfl

Also, a simpler generic transformation is possible if one settles for a weaker notion
of Bayesian incentive-compatibility [Hartline 2012].

3. PRELIMINARIES

Single-parameter domains. We present the single parameter model for which we
apply our procedure. The model is very similar to the model of Archer and Tar-
dos [Archer and Tardos 12001]], yet it is slightly more general. We state the model is
terms of values and not costs and allow the values to be both positive and negative. We
also allow randomization by nature. All these changes are minor and do not change
the fundamental characterization, yet are helpful to later derive our results.

Let n be the number of agents and let N = [n] be the set of agents. Each agent
i € N has some private type consisting of a single parameter z; € 7; that describes the
agent, and is known only to ¢, everything else is public knowledge. We assume that the
domain 7; is an open subset of R which is an interval with positive length (possibly
starting from —oo or going up to o0). Let 7 = 71 x T3 X ... x T,, denote the domain of
types and let ¢t € 7 denote the vector of true types.

There is some set of outcomes O. For single-parameter domains, agents evaluate
outcomes in a particular way that we describe next. For each agent i € N there is a
function a; : O — R, specifying the allocation to agent i. The value of an outcome o € O
for an agent i € N with type z; is z; - a;(0). The utility that agent i € N derives from
outcome o € O when he is charged p; is quasi-linear: u; = z; - a;(0) — p;.

For instance, consider the allocation of k identical units of good to agents with ad-
ditive valuations: agent 7 has a value of x; per unit. An outcome o specifies how many
items each agent receives: a;(0) is the number of items i receives. His valuation for
that outcome is his value per-unit times the number of units he receives.

A (direct revelation) deterministic mechanism M consists of the pair (A, P), where
A : T — O is the allocation rule and P : T — R" is the payment rule, i.e. the vector
of payment functions P; : 7 — R for each agent i. Each agent is required to report a
type b; € T; to the mechanism, and b; is called the bid of agent i. We denote the vector
of bids by b € 7. The mechanism picks an outcome .A(b) and charges agent i payment
of P;(b). The allocation for agent ¢ when the bids are b is A;(b) = a;(A(b)) and he is
charged P;(b). Agent ¢’s utility when the agents bid b € 7 and his type is x; € 7; is

5However, more work is needed for domains with negative agents’ types, such as VCG shortest path auctions
(see Section [6] for more details). In particular, one needs to carefully define the random sampling of the bid
for payment computation, using a version of the argument in Section [5.2]to bound the loss in welfare.



Truthful Mechanisms with Implicit Payment Computation 0:9

We also consider randomized mechanisms, which are distributions over determin-
istic mechanisms. For a randomized allocation rule A;(b) and P;(b) will denote the
expected allocation and payment charged from agent i, when the bids are b. The expec-
tation is taken over the randomness of the mechanism. Sometimes it will be helpful
to explicitly consider the deterministic allocation and payment that is generated for
specific random seed. in this case we use w to denote the random seed and use A; (b; w)
and P;(b; w) to denote allocation and payment when the seed is w.

There may be some outside randomization that influences the outcome and is not
controlled by the mechanism, e.g. randomness in the realization of clicks in sponsored
search auction. We call this randomization by nature. With such randomization A;(b)
and P;(b) also encapsulate expectations over nature’s randomization. Finally, we use
the notation A;(b;w,r) and P;(b;w,r) to denote the allocation and payment charged
from agent ¢, when the bids are b, the mechanism random seed is w and nature’s ran-
dom seed is 7.

Allocation and Mechanism Properties. Let b_; denote the vector of bids of all
agents but agent i. We can now write the vector of bids as b = (b_;, ;). Similar no-
tation will be used for other vectors.

We next list two central properties, truthfulness and individual rationality.

— Mechanism M is truthful if for every agent ¢ truthful bidding is a dominant strategy:
for every agent ¢, bidding z; always maximizes her utility, regardless of what the
other agents bid. Formally,

xi - Ai(b—i, i) — Pi(b—i, i) > x5 - Ai(b) — Py(b) 2)

holds for every agent i € N, type z; € T;, bids of others b_; € 7_; and bid b; € 7; of
agent 1.

— Mechanism M is individually rational (IR) if an agent never receives negative utility
by participating in the mechanism and bidding truthfully. Formally,

xi - Ai(boi, i) — Pi(b_i, ;) > 0 3
holds for every agent i € N, type x; € 7; and bids of others b_; € 7_;.

It will be helpful to establish terminology for the case that the above hold not only
in expectation but also for specific realizations. For example, we will say that a mech-
anism is universally truthful if Equation (@) holds not only in expectation over the
mechanism’s randomness, but rather for every realization of that randomness. In gen-
eral, every property that we define is defined by some inequality, and if the inequality
holds for every realization of the mechanism randomness we say that it holds univer-
sally, and if it holds for every realization of nature randomness we say that it holds
ex-post. When we want to emphasize that the property holds only in expectation over
the nature’s randomness we say that it holds stochastically.

Note that in an individually rational mechanism an agent is ensured not to incur
any loss in expectation. That is rather unsatisfying as for some realizations the agent
might suffer a huge loss. It is more desirable to design mechanisms that are universally
ex-post individually rational, that is a truthful agent should incur no loss for every bids
of the others and every realization of the random events (not only in expectation).

If all types are positive, then in addition to individual rationality it is desirable
that all agents are charged a non-negative amount; this is known as the no-positive-
transfers property. Finally, the welfare of a truthful mechanism is defined to be the
total utility ), ; - Ai(t).

Characterization. The following characterization of truthful mechanisms, due to
Archer and Tardos [Archer and Tardos 2001]], is almost identical to the characteriza-
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tion presented by Myerson [Myerson[1981] for truthful mechanisms in the special case
of single item auctions. The crucial property of an allocation that yields truthfulness
is monotonicity, defined as follows:

Definition 3.1. Allocation rule A is monotone if for every agent i € N,bidsb_; € T_;
and two possible bids of 7, b; > b;, we have A;(b_;,b;) > A;(b_;,b; ).

Recall that monotonicity of an allocation rule is also defined universally and/or ex-post.
We next present the characterization of truthful mechanisms. In the theorem state-
ment, the expression A;(b_;, u) is interpreted to equal zero when v ¢ 7;.

THEOREM 3.2. [Myerson \1981; |Archer and Tardos 2001] Consider an arbitrary
single-parameter domain. An allocation rule A admits a payment rule P such that
the mechanism (A, P) is truthful if and only if A is monotone and moreover for each

agent i and bid vector b it holds that ff;o A;(b_;,u) du < oo. In this case the payment
Pi(b) for each agent i must satisfy

Pi(b) = P2(b—s) + by Ai(b—i, bi) — [* Ai(b_i,u) du, (4)

where PY(b_;) does not depend on b;.

A mechanism is called normalized if for each agent i and every bid vector b, zero
allocation implies a zero payment: A;(b) = 0 = P;(b) = 0.

COROLLARY 3.3. The truthful mechanism in Theorem is normalized if and
only if P?(b—;) = 0, in which case the mechanism is also individually rational and
for positive-only types (T C R'}) it moreover satisfies the no-positive-transfers property.

Both Theorem and Corollary B.3] hold in the “ex-post” sense (resp., “universal”
sense), if A;, P; and P?(b_;) are interpreted to mean their respective values for a spe-
cific random seed of nature (resp., mechanism). In Corollary [3.3] the mechanism is
normalized in the same sense as it is truthful.

4. THE GENERIC TRANSFORMATION FOR SINGLE-PARAMETER DOMAIN S

This section presents a generic procedure which takes any monotone allocation rule for
a single-parameter domain and creates a randomized truthful-in-expectation mecha-
nism which attains the same outcome as the original allocation rule with high proba-
bility. The resulting mechanism uses the allocation rule as a “black box,” calls it only
once, and allocates according to the this call. Henceforth, we will refer to this procedure
as the generic transformation.

Our main result — the existence of the generic transformation with the desired
properties — can be stated informally as follows.

THEOREM 4.1 (INFORMAL). Consider an arbitrary single-parameter domain with
n agents. Let A be a monotone allocation rule for this domain. Then for each u € [0,1]

there exists a truthful mechanism M = (VZ, ’ﬁ) with the following properties:

— M executes a single call to A(B) to compute the allocation, with a pre-processing step to

compute the modified bid vector b, and a post-processing step to compute the payments.
Both pre- and post-processing steps take O(n) time and do not depend on A.

— For any bid vector b and any fixed random seed of nature allocations A(b) and A(b)
are identical with probability at least 1 — np.

— M is universally ex-post individually rational. If all types are positive, then M is
ex-post no-positive-transfers, and never pays any agent i more than b; - A;(x) - (% —1).
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Presenting the formal version of this result (Theorem requires defining the
generic transformation. We begin with an informal description thereof. As evidenced
by Equation (), the payment for agent i is a difference of two terms: the agent’s re-
ported utility (i.e., the product of her bid and her allocation), minus the integral of the
allocation assigned to every smaller bid value. We charge the agent for her reported
utility, and we give her a random rebate whose expectation equals the required inte-
gral. When integrating a function over a finite interval, an unbiased estimator of the
integral can be obtained by sampling a uniformly random point of that interval and
evaluating the function at the sampled point. This idea was applied, in the context
of mechanism design, by |Archer et all [2004]. Below, we show how to generalize the
transformation to allow for integrals over unbounded intervals, as required by Equa-
tion (@). Using this transformation it is easy to transform any monotone allocation rule
into a randomized mechanism that is truthful in expectation and only evaluates the
allocation rule n + 1 times: once to determine the actual allocation, and once more per
agent to obtain an unbiased estimate of that agent’s payment.

Our main innovation is a transformation that uses the same random sampling trick,
but only needs to evaluate the allocation rule once during the entire mechanism. (In
other words, it does not require additional calls to the allocation rule to compute the
payments.) Assume that a parameter p € (0,1) is given. For every player, with prob-
ability 1 — pu, we leave their bid unchanged; with probability i, we sample a smaller
bid value. The allocation rule is invoked on these bids. An agent is always charged her
reported value of the outcome, but if her bid was replaced with a smaller bid value
then we refund her an amount equal to an unbiased estimator of the integral in Equa-
tion (4), scaled by 1/u to counterbalance the fact that the refund is only being applied
with probability p. A naive application of this plan suffers from the following defect:
the random resampling of bids modifies the expected allocation vector, so we need to
obtain an unbiased estimator of the integral of the modified allocation rule. However,
if we change our sampling procedure to obtain such an estimate, then this modifies
the allocation rule once again, so we will still be estimating the wrong integral! What
we need is a “fixed point” of this process of redefining the sampling procedure. Below,
we give a definition of self-resampling procedures that satisfy the requisite fixed point
property, and we give two simple constructions of self-resampling procedures.

A self-resampling procedure transforms the bid b; of a given agent i bid into two
correlated random values (x;,y;), where x; is the modified bid presented to the orig-
inal allocation rule, and y; is used (together with the allocation itself) in computing
the payment for this agent. More specifically, y; is needed to correctly normalize the
unbiased estimator of the integral in Equation (4) for the modified allocation rule,
according to Theorem below. For agents with positive types we define a simpler
self-resampling procedure for which the unbiased estimator does not depend on y;,
and therefore, strictly speaking, the procedure only needs to output z; (more details
can be found in Section [£.5). However, we explicitly return the y; even for the positive
types so as to be consistent with the general definitions and (perhaps more impor-
tantly) because we use it to define self-resampling procedures with general support
(see Section [4.4).

Thus, the formal description of our generic transformation consists of three parts:

(1) a method for estimating integrals by evaluating the integrand at a randomly sam-
pled point,

(2) the definition and construction of self-resampling procedures,

(3) the generic transformation that uses the previous two ingredients to convert any
monotone allocation rule into a truthful-in-expectation randomized mechanism.

We now specify the details of each of these three parts.
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4.1. Estimating integrals via random sampling

Let I be a nonempty open interval in R (possibly with infinite endpoints) and let ¢
be a function defined on I. Let us describe a procedure for estimating the integral
J; 9(2) dz by evaluating g at a single randomly sampled point of I. The procedure is
well known; we describe it here for the purpose of giving a self-contained exposition of
our algorithm.

THEOREM 4.2. Let F : I — |0, 1] be any strictly increasing function that is differen-
tiable and satisfies inf.c; F(z) = 0 and sup.c; F(z) = 1. If Y is a random variable with
cumulative distribution function F, then

/Ig(z)dz —E [zg/((YY)J .

PROOF. Since inf.c; F(z) = 0 and sup,; F(z) = 1, it follows that the random vari-
able Y is supported on the entire interval I. Our assumption that I is differentiable
implies that Y has a probability density function, namely F’(z). Thus, for any func-
tion &, the expectation of A (Y') is given by [, h(z)F'(z) dz. Applying this formula to the
function h(z) = ¢g(z)/F’'(z) one obtains the theorem. O

4.2. Self-resampling procedures

The basic ingredient of our generic transformation is a procedure for taking a bid b; and
a random seed w;, and producing two random numbers z;(b;; w;), y;(b;; w;). The mech-
anism will use {x;(b;; w;)}ien for determining the allocation and additionally y; (b;; w;)
for determining the payment it charges agent i. To prove that the mechanism is truth-
ful in expectation we will require the following propertiesl

Definition 4.3. Let I be a nonempty interval in R. A self-resampling procedure
with support I and resampling probability ;1 € (0,1) is a randomized algorithm with
input b; € I, random seed w;, and output z;(b;; w;), y;(b;;w;) € I, that satisfies the
following properties:

(1) For every fixed w;, x;(b;; w;) and y;(b;; w;) are non-decreasing functions of b;.
(2) With probability 1— My Ty (bl, wl) =Y; (bl, wl) = bl Otherwise ZT; (bi; wi) < yi(bi§ wi) <
b;.
(3) The conditional distribution of z;(b;; w;), given that y; (b;; w;) = b} < b;, is the same
as the unconditional distribution of x;(b; w;). In other words,
Pr[wi(bi;wi) < a; | yz(bl,wl) = b;] = Pr[w(b;;wi) < ai], Va; < b; < b;.
(4) Consider the two-variable function
F(a, b)) = Prly;(bi;w;) < a; | yi(bi; wi) < by,
which we will call the distribution function of the self-resampling procedure. For

each b;, the function F(-,b;) must be differentiable and strictly increasing on the
interval I N (—o0,b;).

As it happens, it is easier to construct self-resampling procedures with support R,
and one such construction that we call the canonical self-resampling procedure (Al-
gorithm [I) forms the basis for our general construction. We defer the discussion of
self-resampling procedures with general support until after we have described and
analyzed the generic transformation.

6To keep the notation consistent, we state Definition[4.3]for a given agent i. Strictly speaking, the subscript
1 is not necessary.
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Algorithm 1: The canonical self-resampling procedure.
1: Input: bid b; € [0, 00), parameter p € (0,1).
Output: (z;,y;) such that 0 < z; <vy; <b;.
. with probability 1 — u
T; < bi, Yi < bi.
else
Pick b; € [0, b;] uniformly at random.
x; < Recursive(b}), y; < b..

8: function Recursive(b;)
9: with probability 1 —

10: return b;.

11: else

12: Pick b} € [0, b;] uniformly at random.
13: return Recursive(b)).

PROPOSITION 4.4. Algorithm [1l is a self-resampling procedure with support R
and resampling probability u. The distribution function for this procedure is F(a;,b;) =
ai/bi.

PROOF. Properties[Iland[2in Definition are immediate from the description of
the algorithm. The random seed w; for the algorithm can be defined as a countably
infinite sequence of real numbers drawn independently and uniformly at random from
[0, 1] interval. Then in order pick a random number in some range [0, r|, the algorithm
takes the next number in this sequence and multiplies it by r.

Property [3] follows from the recursive nature of the sampling procedure: the event
yi(bi;w;) = b < b; implies that the algorithm has followed the “else” branch on Line 5,
and has chosen b, in Line 6. Finally, the distribution function is F(a;,b;) = a;/b; since
conditional on the event y;(b;; w;) < b;, the distribution of y;(b;; w;) is uniform in the
interval [0, b;]. Property [ follows trivially. O

4.3. The generic transformation

Suppose we are given a monotone allocation rule A and for each agent i € N a
self-resampling procedure that has resampling probability © € (0,1), support 7,
and output values f; = (z;,y;). Let F;(a;,b;) denote the distribution function of the
self-resampling procedure for agent i, and let F/(a;,b;) denote the partial derivative
%Zi’bi). Our generic transformation combines these ingredients into a randomized
mechanism M = AllocToMech(A, i, f) that works as follows:

If A itself is randomized or if there is randomness arising from nature, then we
allocate according to A(x;w,r) and we assume that the algorithm’s random seed w
and the nature’s random seed r are independent of the random seeds w; used in the
resampling step.

We are now ready to present our main result:

THEOREM 4.5. Consider an arbitrary single-parameter domain. Let A be a mono-
tone allocation rule. Suppose we are given an ensemble f of self-resampling procedures
fi = (wzi,yi) for each agent i, each with resampling probability u € (0,1). Then the
mechanism M = (A, P) = AllocToMech(A, u, f) has the following properties.

(a) M is truthful, universally ex-post individually rational,
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Mechanism 2: Generic transformation M = AllocToMech(A, u, f)

1: Solicit bid vector b € T.
2: Execute each agent’s self-resampling procedure using an independent random
seed w;, to obtain two vectors of modified bids

x=(x1(br;w1), ... ,n(bp;wy)),
y=(i(brswi), ..., yYn(bn;wn)).

3: Allocate according to A(x).
4: Each agent i is charged the amount b, - A;(z) — R;, where R; is the rebate

1. _Ai(z) e )
RZ:{S Rty iU <bi (5)

otherwise.

(b) For n agents and any bid vector b (and any fixed random seed of nature) allocations
A(b) and A(D) are identical with probability at least 1 — nju.

() If T = R (all types are positive), and each f; is the canonical self-resampling proce-
dure, then mechanism M is ex-post no-positive-transfers, and never pays any agent i
more than b; - A;(z) - (; — 1).

Several remarks are in order.

— The mechanism never explicitly computes the payment for each agent i (Equa-
tion (@) but rather implicitly creates the correct expected payments through its
randomization of the bids.

— The mechanism only invokes the original allocation rule A once. This property is
very useful when it is impossible to invoke the allocation rule more than once, e.g.
for multi-armed bandit allocations.

— The mechanism M is randomized even if A is deterministic. It is truthful in expec-
tation over the randomness used by the self-resampling procedures.

—If A is ex-post monotone, then M will be ex-post truthful. To see this, fix nature’s
random seed r and apply Theorem [£.5]to the allocation rule A, induced by this r.
— If agents’ types are positive then by part (b), the welfare of M is at least 1 —nu times

that of A. Further results on bounding the welfare loss are presented in Section bl

— By definition of the payment rule, the mechanism is universally ex-post normalized.
We will not explicitly mention this property in the subsequent applications.

Parameter p controls the trade-off between the loss in welfare and the variance in
payments, as quantified by the rebate size R;. If 1 is very small and the mechanism
issues rebate(s), then its revenue may be very low and possibly negative. However, this
risk may be mitigated if the auction maker runs many independent auctions, as may

be the case in practice. Further, the follow-up paper I]]Mﬂkens_a.mi&lanllZQlZ] proves
that our welfare vs. variance trade-off is optimal.

PROOF OF THEOREM .5l We start with some notation. A;(b_;, b;; ¢) denotes the al-
location for agent i given the bid vector b = (b_;,b;) and the combined random seed

q = (wi,...,w,,w,r). When we write A;(b_;, u) without indicating the dependence on
the ¢, we are referring to the unconditional expectation of A;(b_;, u; ¢) over q.
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To prove that M is truthful, we need to prove two things: that the randomized allo-
cation rule A is monotone, and that the expected payment rule P satisfies

Pi(b) = biAi(b—i,b;) — [* Ai(b—i,u) du. (6)

The monotonicity of randomized allocation rule A follows from the monotonicity of
A and the monotonicity property[Ilin the definition of a self-resampling procedure. To
prove that P; satisfies Equation (6), we begin by recalling that the payment charged to
player i is b;A;(z) — R;, where the rebate R; is defined by Equation (5). The expectation

of b;A;(z) is simply biji(b,i, bi), so to conclude the proof of truthfulness we must show
that

B[R] = ["_ Ai(b—,u) du. @)

Our proof of Equation (@) begins by observing that the conditional distribution of z;,
given that y;, = u < b;, is the same as the unconditional distribution of x;(u;w;), by
Property 3 of a self-resampling procedure. Combining this with the fact that the ran-
dom seed w; is independent of {w; : j # i}, we find that the conditional distribution of
the tuple © = (z_;, x;), given that y; = u, is the same as the unconditional distribution
of the vector 7 of modified bids that M would input into the allocation rule A if the
bid vector were (b_;, u) instead of (b_;, b;). Taking expectations, this implies that for all

u < b;, we have E[A;(x) | yi = u] = E[Ai(£)] = A(b_i, ).

Now apply Theorem [4.2] with the function g(u) = A;(b_;, u). Recalling that F;(-,b;) is
the cumulative distribution function of y; given that y; < b;, we apply the theorem to

obtain
b, =
L. Ai(b=i, ys) [ Ai(z) ‘ }
Ai(b_iuydu =B | 2202080 o | | 2,
/—oo ( ) F(yi,b:) Y ] F(yi,bs) Y
= p-E[R; |y <bil, (8

where the second equation follows from the equation derived at the end of the pre-
ceding paragraph, averaging over all © < b;. Observing that R; = 0 unless y; < b;,
an event that has probability u, we see that E[R;] = u - E[R;|y; < b;]. Combined with
Equation (8), this establishes Equation (7) and completes the proof that M is truthful.

Mechanism M is universally ex-post individually rational because agent i is never
charged an amount greater than b;4;(b; q). Part (b) follows from the union bound:
the probability that xz; = b; for all i is at least 1 — nu. For part (c), note that by
Proposition [4.4] the canonical self-resampling procedure has distribution function
F(a;,b;)) = a;/b;, hence F/(y;,b;) = 1/b;, for all i,y;,b;. The rebate R; is equal either
to 0 or to %L . % = b; - Ai(x) - ;17 We also charge b; - A;(x) to agent i. The claimed
upper bound on the amount paid to agent i follows by combining these two terms. O

4.4. Self-resampling procedures with general support

To construct a self-resampling procedure with support in an arbitrary interval I, we
can use the following technique. Suppose % : (0,1] x I — I is a two-variable function
such that the partial derivatives 0h(z;,b;)/0z; and Oh(z;,b;)/0b; are well-defined and
strictly positive at every point (z;, ;) € (0, 1] x I. Suppose furthermore that h(1,b;) = b;
and inf, co,11{h(2i,0;)} = inf(I) for all b; € I. Then we define the h-canonical self-

resampling procedure (!, y!*) with support I, by specifying that

{ .”L'?(bz, wi) = h(:vi(l;wi), bl) (9)
y?{L(b“ ’U}i) = h(y1(17 wi)7 bi)a
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where (z;,y;) is the canonical self-resampling procedure as defined in Algorithm[il

PROPOSITION 4.6. (z!,y") as defined in Equation (@ is a self-resampling proce-
dure with support I and resampling probability . The distribution function for (z? yk)
is the unique two-variable function F(a;,b;) such that

h(F(aZ,bl),bl) = a; for all ai,bi el,a < b;. (10)

PROOF. Property [1] in Definition [4.3] holds because of the monotonicity of h, Prop-
erty 2l holds because h(1,b;) = b; for all b;, and Property[8lholds because the function h
is deterministic and monotone.

Let Fp(a;,b;) and Fy(a;,b;) be the distribution functions for the h-canonical and
canonical self-resampling procedures, respectively. Recall that Fy(a;,b;) = a;/b; by
Proposition[4.4l Note that F(a;, b;) in Equation is unique (and hence well-defined)
by the strict monotonicity of /.

The claim that F},(a;, b;) = F(a;,b;) easily follows from in Equation (@). By definition
of h we have

h(yi(l,wi), bl) <b, — yi(l,wi) < 1.
Therefore, letting y; = y;(1, w;) we have
Fh(ai, bl) £ Pr[h(yi, bl) < a; | h(yz, bl) < bl]
Prly; < F(ai,b;) |y < 1]
= FO(F(ai,bi) s 1)
= F(ai, bz)

Our assumption that h is differentiable and strictly increasing in its first argument
now implies that the same property holds for F, which verifies Propertyld O

4.5. A simplified generic transformation for positive types

We focus on the important special case of positive types, and present Mechanism [3] a
simplified version of the generic transformation (Mechanism [2)), for this case.

Mechanism 3: A simplified generic transformation for positive types.

1: Parameter: resampling probability x € (0,1).

2: Collect bid vector b € (0, 00)".

3: Independently for each agent i € [n]:

4: Sample: 7; uniformly at random from [0, 1]

5 Set x; = 1 with probability 1 — » and otherwise y; = 7, /A=),

6: Construct the vector of modified bids = = (z1,...,x,), where z; = x; b;.
7: Allocate according to A(x).

1 if Xi = 1,

1—% iin<1.

@

. For each agent i, assign payment b; - A;(z) - {

We prove that Mechanism [3] is equivalent to the generic transformation (Mecha-
nism [2) with a canonical self-resampling procedure (Algorithm [I).

PROPOSITION 4.7. The allocation and payments in Mechanism 3| coincide with
those in Mechanism Blwith a canonical self-resampling procedure.
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To prove Proposition [£.7] we provide a non-recursive version of the canonical self-
resampling procedure (Algorithm [I), which we call ONESHOT. We argue that the out-
put of Mechanism [3]is identical to the output of the mechanism obtained by plugging
ONESHOT into Mechanism 2] ONESHOT is also essential for the analysis in Section[5l

Algorithm 4: ONESHOT: a non-recursive version of Algorithm [I1

1: Input: bid b; € [0, ), parameter u € (0,1).

2: Output: (z;,y;) such that 0 < z; <vy; <b;.

3: with probability 1 —

4: x; + by, Y; b;.

5: else

6:  Pick 71,72 € [0, 1] indep., uniformly at random.
7: xi<—bi-711/(17“), yi<—bi-max{711/(17“),721/“}.

PROPOSITION 4.8. Algorithm[lland ONESHOT generate the same output distribu-
tion: for any bid b; € [0, 0), the joint distribution of the pair

(i, 9:) = (2i(biswi), yi(biswy))
is the same for both procedures. (Here w; denotes the random seed for each agent i.)
The proof of Proposition [4.8 can be found in the Appendix.

PROOF OF PROPOSITION [4.7] By Proposition it suffices to compare Mecha-
nism [3] to Mechanism [2] with self-resampling procedure ONESHOT. To show that the
two mechanisms are equivalent, we must show that they yield the same distribution
over allocations and the same payments. First we argue about the allocations. In both
mechanisms, each bidder’s bid b; is independently transformed into a random z;, and
then the allocation rule A is applied to the vector 2 = (z1,...,z,). Furthermore, the
conditional distribution of x; given b; is the same in both cases: x; = b; with probability
1 — u, and otherwise z; = b; - v*/(1=#) where v is uniformly distributed in [0, 1]. Hence,
the two mechanisms yield the same distribution over allocations.

To see that the payment rules are the same, consider the distribution function of
ONESHOT, as defined in Definition [£.3t

By Proposition[4.8] F;(a;, b;) is also the distribution function for Algorithm [l By Propo-
sition 4.4l we have F(a;,b;) = a;/b;, and consequently

OF;(a;,b;) 1
Fl(a; by) & 28000 2
K3 (CL ) ) aai bq/
In particular, neither allocation nor payments in this mechanism depend on the y;’s.
Suppressing the y;’s from mechanism M and plugging in F/(y;,b;) = we obtain
Mechanism[3] This completes the proof of Proposition[4.7l O

1
b;?

"This observation is due to [Shnayder et all2012].
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5. IMPROVED BOUNDS ON WELFARE

We present improved bounds on the welfare obtained by our generic transformation.
We consider two interesting special cases when the agents’ private types are, respec-
tively, always positive and always negative. In the second case, agents are contractors
who incur costs and get paid by the mechanism; one such example is a shortest paths
mechanism considered in Section

We consider the approximation that is achieved by the mechanism as a function of
the approximation of the original allocation rule. Recall that our generic transforma-
tion creates a mechanism with an allocation that is identical to the original allocation
with probability at least 1 —nu. For positive types this immediately implies a bound on
the approximation which degrades with n, the number of agents. (For negative types
such bound does not immediately follow since the cost in the low probability event
might be prohibitively high.) For both settings, we present a similar bound that does
not degrade with n.

5.1. Positive private types

Assume that the agents’ types are always positive, more specifically that the type
space is 7 = (0,00)". Recall that for agents’ types ¢ € 7T the social welfare of
an outcome o is defined to SW(o,z) = » . ytiai(o). The optimal social welfare is
OPT(t) = max,eco SW(o,t), where O is the set of all feasible outcomes. (A mechanism
with) an allocation rule A is a-approximate if it holds that

a - E[SW(A(t),t)] > OPT(t) for every t. (11)

THEOREM 5.1. Consider the setting in TheoremH.3\¢c), so that T = (0,00)" and each
fiis the canonical self-resampling procedure. If allocation rule Ais a-approximate, then
mechanism AllocToMech(A, u,f) is o/ (1 — 3t )-approximate.

PRrROOF. Fix a bid vector b, and let o* be the corresponding optimal allocation. Recall
that our mechanism outputs allocation A(x), where z is the vector of randomly modi-
fied bids. As the original allocation rule A is a-approximate, by Equation (I1) it holds
that o - SW(A(z),z) > OPT(z). We will show that

Elz;] = (1 - 25#) b; for each agent i. (12)

Thus when we evaluate o* with respect to bids = we get:
a - SW(A(x),x) > OPT(z) > SW(o™,z) = ZieN x; a;(0*)
a-E[SW(A(z),z)] =E [ZieN T ai(o*)]
= <1 - ﬁ) b; a;(0") = <1 - ﬁ) OPT(b).
iEN
It remains to prove Equation (I2). Let us use ONESHOT to describe the canonical

self-resampling procedure. Recall that ONESHOT generates x; = x;(b;; w;) by setting
x; = b; with probability 1 — i, and otherwise sampling +; uniformly at random in [0, 1]

and outputting z; = b; - v, /=) Hence

1 1/(1—p
Elai |2 < i) = [y b /"7 dy = by - 1+1%H :bi'(l_ﬁ)

E[Ii]:(l_ﬂ)'bi+M'E[$i|$i<bz‘]:bi'(1— = )

2—p
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For arbitrary self-resampling procedures f; with support R, Equation can be

replaced by E[z;] > (1 — u)b;, which gives a slightly weaker result, namely an =-
approximation to the social welfare.

5.2. Negative private types

Now assume that the agents’ types are always negative, more specifically that 7 =
(—00,0)™. For negative types approximation is defined with respect to the social cost,
which is the negation of the social welfare. An algorithm is a-approximate if for every
input it outputs an outcome with cost at most o times the optimal cost. We present
an approximation bound for an h-canonical self-resampling procedure, for a suitably
chosen h.

THEOREM 5.2. Consider the setting in Theorem Assume that T = (—o0,0)"
and that each f; is the h-canonical self-resampling procedure, where h(z;,b;) =
bi/\/Zi. Suppose 1 € (0, %). If allocation rule A is a-approximate, then mechanism
AllocToMech(A, u,f) is « (1 + %%)-approximate.

The proof of this theorem is almost identical to that of Theorem[5.1] and thus is omit-
ted. The main modification is that Equation is replaced by the following lemma:

LEMMA 5.3. In the setting of Theorem[5.2] letting x"* be the vector of modified types,
it holds that

Elef] = b (1+ ;) forall i

PROOF. Recall that 2" is defined by Equation [@). As in the proof of Equation (I2),
we will use ONESHOT to describe the canonical self-resampling procedure. It follows
that

o 1
E[x? |I’L < bz] — f()l b‘il dryl — f()l b’L . ’Yl 2(1=m) d’yl = b’L . 1;1 = bZ . (1 + ﬁ) 5

= T 2(I-p)
'Yl(l w)

Blo?) = (1= ) - bi+ - Elaf [af <b] =bi- (14 7).

O
6. APPLICATIONS TO OFFLINE MECHANISM DESIGN

The VCG mechanism for shortest paths. The seminal paper Nisan and Ronen
[2001] has presented the following question: is there a computational overhead in com-
puting payments that will induce agents to be truthful, compared to the computation
burden of computing the allocation. One of their examples is the VCG mechanism for
the shortest path mechanism design problem, where a naive computation of VCG pay-
ments requires additional computation of n shortest path instances. Yet, an explicit
payment computation is not the real goal, it is just a means to an end. The real goal
is inducing the right incentives. Our procedure shows that without any overhead in
computation, if we move to a randomized allocation rule and settle for truthfulness in
expectation (and a small loss in performance) one can induce the right incentives.
The shortest path mechanism design problem is the following. We are given a graph
G = (V,E) and a pair of source-target nodes (vs,v¢). Each agent e controls an edge
e € E and has a cost ¢, > 0 if picked (thus v. = —c¢. < 0 and 7. = (—0,0) for every
e). That cost is private information, known only to agent e. The mechanism designer’s
goal is to pick a path P from node v, to node v; in the graph with minimal total cost,
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thatis ), c. is minimal. Assume that there is no edge that forms a cut between v,
and Vt.

The VCG mechanism is an cost-optimal and truthful mechanism for this problem. It
computes a shortest path P with respect to the reported costs and pays to an agent e
the difference between the cost of the shortest path that does not contains ¢ and the
total cost shortest path excluding the cost of e. A naive implementation of the VCG
mechanism requires computing | P| + 1 shortest path instances (where |P| denotes the
number of edges in path P). VCG is deterministic, truthful and cost-optimal.

Let EFF an the cost-optimal allocation rule for the shortest path problem. We can
use our general procedure to derive the following result (its proof follows directly from
Theorem [4.5] and Theorem [5.2).

THEOREM 6.1. Fix any pu € (0,3). For each agent i, let f; be the h-canonical self-
resampling procedure, where h(zi,bf> = b;//Zi. Let M = AllocToMech(EFF, i, {f;}) be
the mechanism created by applying AllocToMech() to EFF. Then M has the following
properties:

e It is truthful and universally individually rational.

e It only computes one shortest paths instance.

e It outputs a path with expected length at most (1 + 5 #) times the length of the

shortest path.

Recall that parameter i controls the trade-off between approximation ratio and the
rebate size R;, which for a given random seed is proportional to %

Communication overhead of payment computation. Babaioff et all [2013] show
that there exists a monotone deterministic allocation rule for which the communica-
tion required for computing the allocation is factor Q(n) less than the communication
required to computing prices. This implies that inducing the correct incentives deter-
ministically has a large overhead in communication. Assume that instead of requiring
explicit computation of payments we are satisfied with inducing the correct incentives
using a randomized mechanism. In such case our reduction shows that the determin-
istic lower bound cannot be extended to randomized mechanisms, if we allow a small
error in the allocation.

More concretely, consider a single parameter domain with types that are positive,
T; = (0,00) (as in [Babaioff et all2013]). For all i, use the canonical self-resampling
procedure. Consider any monotone allocation rule A. We can apply Theorem to
obtain a randomized mechanism that is truthful and only executes that allocation
rule A once (thus has no communication overhead at all) and has exactly the same
allocation with probability at least (1 — i)™. For any ¢ > 0 we can find > 0 such that
the error probability is less than e.

7. MULTI-ARMED BANDIT MECHANISMS

In this section we apply the main result to multi-armed bandit (MAB) mechanisms:
single-parameter mechanisms in which the allocation rule is (essentially) an MAB al-
gorithm parameterized by the bids. As in any single-parameter mechanism, agents
submit their bids, then the allocation rule is run, and then the payments are assigned.
This application showcases the full power of the main result, since in the MAB set-
ting the allocation rule is only run once, and (in general) cannot be simulated as a
computational routine without actually implementing the allocation.

Focusing on the stochastic setting, we design truthful MAB mechanisms with the
same regret guarantees as the best MAB algorithms such as UCB1 [Auer et all|2002al.
First, we prove that allocation rules derived from UCB1 and similar MAB algorithms
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are in fact monotone, and hence give rise to truthful MAB mechanisms. Second, we
provide a new allocation rule with the same regret guarantees that is ex-post mono-
tone, and hence gives rise to an ex-post truthful MAB mechanism. Third, we use this
new allocation rule to obtain an unconditional separation between the power of ran-
domized and deterministic ex-post truthful MAB mechanisms.

7.1. Preliminaries: MAB mechanisms

An MAB mechanism [Babaioff et alll2014; Devanur and Kakade [2009] operates as fol-
lows. There are n agents. Each agent i has a private value v; and submits a bid b;. We
assume that b;,v; € [0, bmax], Where byax is known a priori. The allocation consists of
T rounds, where T is the time horizon. In each round ¢ the allocation rule chooses one
of the agents, call it i = i(t), and observes a click reward =(t) € [0, 1] for this choice;
the chosen agent i receives v; 7(t) units of utility. Payments are assigned after the last
round of the allocation. Note that the social welfare of the mechanism is equal to the
total value-adjusted click reward: Zil Vi) T(t).

The special case of 0-1 click rewards corresponds to the scenario in which agents are
advertisers in a pay-per-click auction, and choosing agent i in a given round ¢ means
showing this agent’s ad. Then the click reward 7 (¢) is the click bit: 1 if the ad has been
clicked, and 0 otherwise. Following the web advertising terminology, we will say that
in each round, an impression is allocated to one of the agents.

Formally, an MAB allocation rule A is an online algorithm parameterized by
n,T,bmax and the bids b. In each round it allocates the impression and observes the
click reward. Absent truthfulness constraints, the objective is to maximize the reported
welfare: ZL biry 7(t). This formulation generalizes MAB algorithms: the latter are
precisely MAB allocation rules with all bids set to 1.

Given an MAB algorithm A, there is a natural way to transform it into an MAB
allocation rule A. Namely, A runs algorithm A with modified click rewards: if agent
i is chosen in round ¢ then the click reward reported to A is #(t) = (b;/bmax) 7(t). We
will say that algorithm A induces allocation rule A. From now on we will identify an
MAB algorithm with the induced allocation rule, e.g. allocation rule UCB1 is induced by
algorithm UCB1 [Auer et all[2002a].

We will focus on the stochastic MAB setting: in all rounds ¢ in which an agent i is
chosen, the click reward 7 (¢) is an independent random sample from some fixed distri-
bution on [0, 1] with expectation ;; 8 Following the web advertisement terminology, we
will call u; the click-through rate (CTR) of agent i. The CTRs are fixed, but no further
information about them (such as priors) is revealed to the mechanism.

Regret. The performance of an MAB allocation rule is quantified in terms of regret:

R(T;b; ) 2 Tmax[bi s | — B[S0 bico) fio) ]

the difference in expected click rewards between the algorithm and the benchmark: the
best agent in hindsight, knowing the y;’s. We focus on R(T') £ max R(T'; b; 1), where the
mﬁximum is taken over all CTR vectors i and all bid vectors b such that b; < 1 for all
2.

Regret guarantees from the vast literature on MAB algorithms easily trans-
late to MAB allocation rules. In particular, allocation rule UCB1 has regret
R(T) = O(v/nTlogT) [Auer et al!|2002a], which is nearly matching the information-

8The exact shape of this distribution is not essential. E.g. in the advertising example 7 (t) € {0, 1}.
9We define R(T) with bmax = 1 merely to simplify the notation. All regret bounds (scaled up by a factor of
bmax) hold for an arbitrary bmax.
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theoretically optimal regret bound ©(v/nT) [Auer et al! [2002b; [Audibert and Bubeck
[2010]. The stochastic MAB setting tends to be easier if the best agent is much better
than the second-best one. Let us sort the agents so that by pu; > bopus > ... > by, .
The gap § of the problem instance is defined as (b1 1 — b2 p2)/bmax. The d-gap re-
gret Rs(T) is defined as the worst-case regret over all problem instances with gap
6. Allocation rule UCB1 achieves R;(T) = O(% logT) [Auer et all [20024]; there is a

lower bound Rs(T) = Q(min(% logT, v'nT)) [Lai and Robbins [1985; |Auer et al!l2002b;
Kleinberg et al![2008al.

Click realizations. A click realization is a n x T table p in which the (i, ) entry p;(t)
is the click reward (e.g., the click bit) that agent i receives if it is played in round ¢.
Note that in order to fully define the behavior of any algorithm on all bid vectors one
may need to specify all entries in the table, whereas only a subset thereof is revealed
in any given run. We view p as a realization of nature’s random seed. Thus, we can now
define ex-post truthfulness and other ex-post properties: informally, ex-post property
is a property that holds for every given click realization.

For each agent i, round ¢, bid vector b and click realization p, let A!(b; p) denote the
probability that MAB allocation rule A allocates the impression at round ¢ to agent i.
(If A is deterministic, the probability .A!(p) is trivial: either 0 or 1.)

For MAB algorithm A, define A’ (p) similarly.

7.2. Truthfulness and monotonicity

Theorem [4.5]c) reduces the problem of designing truthful MAB mechanisms to that of
designing monotone MAB allocations. Let us state this reduction explicitly:

THEOREM 7.1. Consider the stochastic MAB mechanism design problem. Let A be
a stochastically monotone (resp., ex-post monotone) MAB allocation rule. Applying the
transformation in Theorem 5 ckM to A with parameter ., we obtain a mechanism M
such that:

(a) M is stochastically truthful (resp., ex-post truthful), ex-post no-positive-
transfers, and universally ex-post individually rational.

(b) for each click realization, the difference in expected welfare between A and M is at
most punT bygy.

Note that the theorem provides two distinct types of guarantees: game-theoretic
guarantees in part (a), and performance guarantees in part (b).

We show that a very general class of deterministic MAB algorithms induces mono-
tone MAB allocation rules (to which Theorem[7.1lcan be applied).

Definition 7.2. In a given run of an MAB algorithm, the round-t statistics is a pair
of vectors (m,v), where the i-th component of = (resp., v) is equal to the total payoff
(resp., the number of impressions) of agent ¢ in rounds 1 to ¢t — 1, for each agent i.
Vectors m and v are called p-stats vector and i-stats vector, respectively.

Definition 7.3. A deterministic MAB algorithm A is called well-formed if for each
round ¢ and agent ¢, letting (m,v) be the round-t statistics, the following properties
hold:

—[A(p) is determined by ()] there is a function ;(r;v) that depends only on the

round-t statistics such that A!(p) = x;(7; v) for any click realization p and all ¢.
— [x-monotonicity] x;(m;v) is non-decreasing in 7; for any fixed (7_;,v).

10Theorem 4.5l c) is stated for the type space T' = (0, 00)™, but it trivially extends to the case 7' = (0, bmax)™.
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—[x-IIA] for each round ¢, any three distinct agents {i, j,!} and any fixed (7_;,v_;),
changing (7;, v;) cannot transfer an impression from j to [.

The x-IIA property above is reminiscent of Independence of Irrelevant Alternatives
(ITA) property in the Social Choice literature (hence the name). A similar but tech-
nically different property is essential in the analysis of deterministic MAB allocation
rules in i

Remark 7.4. For a concrete example of a well-formed MAB algorithm, consider (a
version of) UCB1[M] The algorithm is very simple: in each round ¢, it chooses agent

min (arg max (m(t)/ui (t) + 810g(T)/1/i(t))) .

LEMMA 7.5. In the stochastic MAB mechanism design problem, let A be a MAB al-
location rule induced by a well-formed MAB algorithm. Then A is stochastically mono-
tone.

PrOOF. We will use an alternative way to define a realization of random click re-
wards: a stack-realization is a n x T table in which the (4, ¢) entry is the click bit that
agent i receives the ¢-th time she is played. Clearly a stack-realization and a bid vector
uniquely determine the behavior of A. We will show that:

A is monotone for each stack-realization. (13)

Then A is monotone in expectation over any distribution over stack-realizations, and
in particular it is monotone in expectation over the random clicks in the stochastic
MAB setting, so the Lemma follows.

Let us prove Claim (I3). Throughout the proof, fix stack-realization o, agent i, and
bid vector b_;. Consider two bids b; < b;“. The claim asserts that agent i receives at
least as many clicks with bid b, than with bid b;.

Let us introduce some notation (letting b; be the bid of agent 7). Let A(b;,¢) be the
agent selected by the allocation rule in round ¢. For each agent j, let v;(b;,t) and 7;(b;, t)
be, respectively, the total number of impressions and the total click reward of agent j in
the first ¢ rounds. Let 7;(b;,t) = (b;/bmax) 7;j(b;,t) be the corresponding total modified
click reward. Let v(b;,t) (resp., w(b;,t) and 7(b;,t)) be the n-dimensional vector whose
j-th component is v;(b;,t) (resp., 7;(b;,t) and 7;(b;, t)) for each agent j.

Note that (7(b;,t),v(b;,t)) is the round-t statistics for the MAB algorithm that A is
induced by. For each agent j, v;(b;, t) uniquely determines 7;(b;, ¢):

T (bz, t) = Z:J:l O'(j, S) Where vy =Vj (bl, t) (14)

Let us overview the forthcoming technical argument. We will show by induction on
t that v;(b;,t) < v;(b,t) for all ¢. For the induction step we only need to worry about
the case when the claim holds for a given ¢ with equality. In this case we show that
v_i(bi,t) = v_;(b;,t). This is trivial for n = 2 agents; the general case requires a rather
delicate argument that uses the y-IIA property in Definition [7.313

Now let us carry out the proofs in detail. First, denote v, (b;,t) £ t — v;(b;,t), and let
us show that for any two rounds ¢, s it holds that

vi(bit) = v (b, 8) = voi(bi,t) = v_i(b],s). (15)

11To ensure the x-IIA property, we use a slightly modified version of UCB1: log T is used instead of log ¢, and
min is used to break ties (instead of an arbitrary rule). This change does not affect regret guarantees. We
will denote this version as UCB1 without further notice.

12 Also, we will use the fact that the probabilities x; (#, v') in Definition[Z.3]do not depend on the round (given
j and (7, v)). This is the only place in any of the proofs where we invoke this fact.
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Let us use induction on v, (b;,t). For v, (b;,t) = 0 the statement is trivial. For the in-
duction step, suppose Equation holds whenever v, (b;,t) = v., and let us sup-
pose v, (b;,t) = v.(bj,s) = v. + 1. Let ¢’ and s’ be the latest rounds such that
vi(bi,t') = vu(bf,s’) = v.. By the induction hypothesis, v_;(b;,t') = v_;(b], s'). It re-
mains to prove that A(b;, ¢’ + 1) = A(b), s’ + 1), i.e. that the allocation rule’s selections
in round ¢ + 1 given bids (b_;,b;), and in round s’ + 1 given bids (b_;,b;"), are the
same[™ By Definition [7.3] these selections are uniquely determined (given the stack-
realization) by the bids and the impression counts v. By the choice of ¢’ and s’, neither
of the two selections is i, so by the y-IIA condition in Definition [7.3] the selections
are uniquely determined by b_; and v_;, and hence are the same. This proves Equa-
tion (I5).
Now, to prove Claim (I3) it suffices to show that for all ¢

Vi(bi, t) < Vi(b?—, t). (16)

Let us use induction on ¢. The claim is trivial for ¢ = 1, since the impression of agent
i in round 1 does not depend on (b; o). For the induction step, assume that the asser-
tion Equation holds for some ¢, and let us prove it for ¢ + 1. Note that (using the
notation from Definition [7.3)

Now, v;(bi,t) < v;(b},t) by induction hypothesis. If the inequality is strict then Equa-
tion trivially holds for ¢+ 1. Now suppose v;(b;, t) = v;(b;, ). Then by Equation
we have v(b;,t) = v(b;,t). Moreover, by Equation (I4) we have «(b;,t) = 7 (b ,t) and
therefore #_;(b;,t) = #_;(b/,t) and #;(b;,t) < #;(b;,t). Thus, by the y-monotonicity
property in Definition[7.3] we have

Xi (7 (bis t); v(bi 1)) < xa(7 (b, 1); v(b,1)).
This concludes the proof of Equation (16), and that Claim (I3). O

7.3. Truthfulness and regret

In this subsection we focus on the stochastic MAB setting, and consider the trade-off
between regret and various notions of truthfulness. Ideally, one would like an MAB
mechanism to be truthful in the strongest possible sense (universally ex-post), and
have the same regret bounds as optimal MAB algorithms.

Let us start with some background. In Babaioff, Sharma and Slivkins [Babaioff et al!
12014] it was proved that any deterministic mechanism that is ex-post truthful and
ex-post normalized (under very mild restrictions), and any distribution over such
deterministic mechanisms, incurs much higher regret than an optimal MAB algo-
rithm such as UCB1. Namely, the lower bound in [Babaioff et al. 2014] states that
R(T) = Q(n'/3T?/3), whereas UCB1 has regret R(T) = O(v/nTlogT).[™ For é-gap in-
stances the difference is even more pronounced: the analysis in i 12014]
provides a polynomial lower bound of R;(T) = Q(67*) for some A > 0, whereas UCB1
achieves logarithmic regret Rs(T) = O(% logT).

Our first result is that we can use the machinery from Section[7.2lto match the regret
of UCB1 for truthful mechanisms. We apply Theorem [Z1] (with y = 1) and Lemma [Z.5]
to UCB1 to obtain the following corollary:

BThen v_;(b;, t) = u,z-(b;r, s) because in all rounds from ¢’ + 2 to ¢ (resp., from s’ + 2 to s) agent : is played.
14Following the literature on regret minimization, we are mainly interested in the asymptotic behavior of
R(T) as a function of 7" when n is fixed.
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COROLLARY 7.6. In the stochastic MAB mechanism design problem, there exists a
mechanism M such that

(a) M is stochastically truthful, ex-post no-positive-transfers, universally ex-post in-
dividually rational.
(b) M has regret R(T') = O(v/nTlogT) and 6-gap regret Rs(T) = O(% logT').

Remark 7.7. The regret and J-gap regret in the above theorem are within small
factors (resp., O(v/logT) and O(1)) of the best possible for any MAB allocation rule.

Remark 7.8. [Babaioff et alll2014] provides a weaker result which transforms any
monotone MAB algorithm such as UCB1 into a truthful and normalized MAB mecha-
nism with matching regret bounds. The guarantees in [Babaioff et al!|2014] are weaker
for the following reasons. First, it only applies to 0-1 click rewards, whereas our setting
allows for arbitrary click rewards in [0, 1]. Second, the individual rationality guaran-
tee in [Babaioff et all[2014] is much weaker: an agent may be charged more than her
bid (which never happens in our mechanism), and the charge may be huge, as high
as b; x (4n)T; thus, a risk-averse agent may be reluctant to participate. Third, the no-
positive-transfers guarantee is weaker: for some realizations of the click rewards the
expected payment may be negative. Finally, the payment rule in [Babaioff et al!|2014]]
requires (as stated) a prohibitively expensive computation.

The truthfulness in Corollary is only in expectation over the random click re-
wards. Thus, after seeing a specific realization of the rewards an agent might regret
having been truthful. Accordingly, we would like a stronger property: ex-post truthful-
ness, i.e. truthfulness for every given realization of the rewards.

The main result of this section is an ex-post truthful MAB mechanism with optimal
regret bounds. Unlike Corollary[7.6] this result requires designing a new MAB alloca-
tion rule[™ This allocation rule and its analysis are the main technical contributions.

THEOREM 7.9. In the stochastic MAB mechanism design problem, there is a mech-
anism M such that

(a) M is ex-post truthful, ex-post no-positive-transfers, and universally ex-post indi-
vidually rational.
(b) M has regret R(T') = O(v/nTlogT) and 6-gap regret Rs(T) = O(% logT').

The theorem follows from Theorem[7.1l(with ;1 = %) if there exists an MAB allocation
rule that is ex-post monotone and has the claimed regret bounds. Below we provide
such allocation rule, called NewCB.

LEMMA 7.10. NewCB is ex-post monotone and satisfies the regret bounds in Theo-

rem [Z.9(b).

Remark 7.11. NewCB is deterministic. While not essential for Theorem[7.9] this fact
confirms the intuition from [Babaioff et al![2014] that the main obstacle for determinis-
tic ex-post truthful MAB mechanisms is insufficient observable information to compute
payments rather than ex-post monotonicity of an allocation rule.

NewCB maintains a set of active agents; initially all agents are active. For each round
t, there is a designated agent i = 1 + (¢t mod n). If this agent is active, then it is allo-

15In particular, the allocation rule induced by UCB1 is not ex-post monotone and thus cannot be used to
achieve ex-post truthfulness using the results of Section[7.2] To see that, consider a simple setting with two
agents and two rounds, and a click realization in which both agents are not clicked at the first round, but
are clicked at the second. With this click realization, an agent might be better off decreasing his bid in order
to lose (i.e., not be selected in) the first round, and then win (i.e., be selected in) the second round.
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cated. Else, an active agent is chosen (according to some fixed ordering on the agents)
and allocated. For each agent i, lower and upper confidence bounds (L;, U;) on the prod-
uct b; u; are maintained (recall that u; is the CTR of agent ). After each round, each
agent is de-activated if its upper confidence bound is smaller than someone else’s lower
confidence bound. The pseudocode is in Algorithm [5]

Algorithm 5: NewCB: ex-post monotone MAB allocation rule.

1: Given: n = #agents, T" = #rounds, upper bound by ax.
2: Solicit a bid vector b from the agents; b + b/bmax.

3: Initialize: set of active agents S... = {all agents}.

4: for all agent : do

5. ¢ + 0;n,; < 0 {total click reward and #impressions}
6: {the totals are only over “designated” rounds}
7
8

. U; + b;; L; + 0 {Upper and Lower Confidence Bounds}
: {Main Loop}

9: for roundst=1,2, ..., T do

10: i< 1+ (t mod n). {The “designated” agent}

11: ifi € S, then

12: Allocate agent i.

18: n; < n; + 1; ¢; + ¢; + reward. {Update statistics.}
14: {Update confidence bounds.}

15: if L, < U; then

16: (L%, Ul « b; (¢i/ni F +/8log(T)/n;)).
17: if max(L;, L}) < min(U;, U}) then

18: (Ll, Uz) — (maX(Li, L;), min(Ui, UZI))
19: else

20: (Ll, Uz) — (%, %)

21: else

22: Allocate agent i = min S,¢.

23: for all agent i € S,.; do

24: ifU; < max;es,.. Lj then

25: Remove i from S,.¢.

Fix realization p and bid vector b. Let S.c.(t,b) be the set of active agents in the
beginning of round ¢. For each agent i, let L;(¢,b) and U;(t, b) be the values of L; and U;
in the end of round ¢.

The goal of the specific update rules for the confidence bounds (lines 15-20) and the
statistics (lines 13) is to guarantee the following two properties:

— the statistics are kept only for rounds when a designated agent is played. Moreover,
for each agent i and round ¢, and any two bid vectors b and ¥’ we have

Li(t,b)/b; = Ly(t,b) /¥

if i € Sact(t,b) N Sace (,1) then {Ui(t,b)/bi NG

17

—for any fixed realization p and bid vector b, and each agent i: L; < U;, and from
round to round L; is non-decreasing and U; is non-increasing. In other words, for
each round ¢ it holds that

Li(t —1,b) < Li(t,b) < Ui(t,b) < Us(t — 1,b). (18)
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The ex-post monotonicity follows from these two properties and the de-activation rule
(lines 24-25).
Ex-post monotonicity. Let L*(¢,b) £ max;es,., () Li(t,b). Fix agent i and b > b,
and let b+ = (b_;, b;") be the “alternative” bid vector. Let A = b; /b

CLAIM 7.12. We establish the following sequence of claims:

(C1) L*(t,b) is non-decreasing in t, for any fixed b.

(C2) For each round t, L*(t,b) < X L*(¢,b™).

(C3) For each round t, Sact(t,b7) \ {i} C Sace(t,0) \ {7}

(C4) In each round t:if i € Sact(t,b) then i € Saet(t,bT).

PROOF. Let us prove the parts (C1-C4) one by one.

(C1). We use property and the de-activation rule. Throughout the proof, we omit
the bid vector b from the notation. Fix round ¢ > 2. Let i € Sact(t — 1) be an agent such
that L*(t — 1) = L;(t — 1). If i € S,+(¢) then

L*(t—1)=L;(t — 1) < L;(¢t) < L*(t)
Else i is de-activated in round ¢, so
L*(t—1)=L;(t — 1) < L;(t) < U (t) < L*(1).

(C2). Suppose, for the sake of contradiction, that L*(¢,b) > A L*(¢,b"). Let j € Sact(t,b)
be an agent such that L;(¢,b) = L*(¢,b). If j € Sact(t,b") then by property (I7) we have
L*(t,b) = L;j(t,b) = NL;(t,b*) < ANL*(t,b"),
contradiction. We conclude that j ¢ S,..(t,b). Thus with bid vector b agent j gets

disqualified during some round s < ¢. Thus,
Uj(s,b") < L*(s,b7) < L*(t,b+), (19)

where the second inequality is by Part (C1). Now using property and property (17D
(for the right-most inequality), we get that

L*(t,b) = L;(t,b) < U;(t,b) < Uj(s,b) = AU,(s,b").
Thus, L*(t,b) < X L*(t,b") by Equation (19), the desired contradiction.
(C3). Use induction on t. The claim trivially holds for ¢ = 1. Assuming the claim holds
for some ¢ we prove it holds for ¢ + 1. Fix agent j € S, (t+1,b%)\ {i}. We need to prove

that j € Sace(t + 1,b).
Note that j € S, (t,07), and 80 j € Sact(t, ) by the induction hypothesis. Therefore

L(t,b) < AL*(1,b) (by Part (C2))
< AU;(t,b) (by the de-activation rule)
= U,(t,b) (by property (7))

So agent j is not deactivated in round ¢ under bid vector b, i.e. j € S,ct(¢t + 1,b), com-
pleting the proof.

(C4). Use induction on ¢. The base case t = 0 holds because initially all agents are
active. For the induction step, assume that the statement holds for some round ¢ > 0.
Suppose i € Sact(t + 1,b). We need to prove that i € Sact(t +1,0T).

Note that i € Sact(t,0), and s0 i € Sact(t,b") by the induction hypothesis. Therefore

L*(t,b) < U;(t,b) (by the de-activation rule)
=\U;(t,b") (by property (I7).
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If L*(t,0) = NL*(t,bT), then L*(¢,b) = L*(¢,b)/X < U;(t,b"), and we are done.
From here on, assume L*(t,b) # A L*(t,b™). Then L*(¢,b) < A L*(¢,b") by Part (C2).
Pick agent j which maximizes L;(¢,b"). If j # i then j € Sac:(¢,b) by Part (C3), so
L* (tv b) > Lj (ta b)
=\L;(t,b") by property (7))
= AL*(t,b") (by the choice of j),

contradicting our assumption. Then j =i, and so L*(t,b%) = L;(t,b%) < U;(t,b™). O
Ex-post monotonicity follows easily from (C3-C4).

CLAIM 7.13. Consider a fixed round t. Suppose agent i is allocated with bid vector
b. Then it is also allocated with bid vector b™.

PROOF. Since i € S,c+(t,b), by (C4) we have i € Sact(t,07).

If agent 7 is the designated agent in round ¢, then as such it is allocated under both
bid vectors. If agent i is not the designated agent in round ¢, then ¢ = min Sac¢ (¢, ). By
(C3) it holds that S.ct(t,b") C Sact(t,b), which implies that i = min S, (¢,b"). So i is
allocated under bid vector b™, too. O

Regret analysis. The regret analysis is relatively standard, following the ideas
in [Auer et al![20024]. For simplicity assume that bpa = 1. Fix a bid vector b.

For each agent i, let ¢;(t) and n,(t) be, respectively, the number of clicks and im-
pressions in all rounds s < ¢ when it is allocated as the designated agent. Let

ri(t) = 1/8log(T)/n;(t). Then the event

|i — ci(t)/ni(t)| < r;(t) for all rounds ¢ (20)

holds with probability at least 1 —72.[[ In what follows, let us assume that this event
holds for all agents i. (The regret accumulated if this event fails is negligible.)
Then it easily follows from the specs of NewCB that for each agent 4,

{ Ul(t,b) — Li(t,b) S 2T‘i(t)

Let i* € argmax; b;iu; be a best agent. Note that U;«(¢,b) > b« > biu; > L;i(b,t) for
all agents i and rounds ¢. It follows that i* is never de-activated by the algorithm.

Consider some agent i with A; £ b;« ju;~ —b; i; > 0. Then r;(t) < A; after O(Ai_2 logT)
rounds in which this agent is allocated as the designated agent. After such round ¢,

Ui(b,t) < bipyi +1i(t) < bips + A = b= i < Ly (b, 1),

and therefore agent i is deactivated. It follows that agent i is allocated as the des-
ignated agent at most O(A; ?log T') times. Therefore it is de-activated after at most

O(kA; 2log T') rounds. This, in turn, implies the claimed regret bound.

16This follows from Azuma-Hoeffding inequality via a standard argument, one version of which we provide
below. Fix agent i. For each s € N, let X, be the click bit for the s-th time this agent is allocated as the
designated agent, if s < n;(7T"), and otherwise define X, to be an independent 0-1 random variable with
expectation p;. Then the random variables Y = Xs — ps, s € N form a martingale. Applying Azuma-
Hoeffding inequality to Y1, ... ,Yn, for any given N, we obtain that the event | 25:1 Ys| < /8N log(T)
holds with probability at least 1 — 7—3. Taking the Union Bounds over all N < T, and noting that c;(t) =

Z;L;(f ) X, it follows that the event holds with probability at least 1 — 72,
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7.4. The power of randomization

A by-product of Theorem is a separation between the power of deterministic and
randomized mechanisms, in terms of regret for MAB mechanisms that are ex-post
truthful and ex-post normalized. The lower bound for deterministic mechanisms is
from [Babaioff et all|2014].

One challenge here is to ensure that the upper and lower bounds talk about ex-
actly the same problem; as stated, Theorem and the main lower bound result
from [Babaioff et al. [2014] do not. To bypass this problem, we focus on the case of
two agents, and use a more general version of the lower bound: Theorem C.1 in the full
version of [Babaioff et al![2014]. Further, to match [Babaioff et al!|2014] we extend the
mechanism from Theorem [7.9]to a setting in which by is not known a priori.

We formulate the separation theorem as follows. Denote R(7, byax) = max R(T'; b; j1),
where the maximum is taken over all CTR vectors ;1 and all bid vectors b such that
b; < bmayx for all .

THEOREM 7.14. Consider the stochastic MAB mechanism design problem with
two agents. Assume by, 1S not known a priori to the mechanism. Suppose M is an
MAB mechanism that is (i) ex-post truthful and ex-post normalized, and (ii) has regret
R(T, bmax) = O(bmax T7) for some v and any bpgy. Then:

(a) [Babaioff et alll2014] If M is deterministic then v > 2.
(b) There exists such randomized M with v = 1.

PROOF OF PART (B). Let A’ be the ex-post monotone MAB allocation rule in Theo-
rem [7.9] for bpay = 1. Define an MAB allocation rule A as a rule that inputs the bid
vector b and passes the modified bid vector &’ = b/(max; b;) to A’. We claim that A is ex-
post monotone, too. Indeed, w.l.0.g. assume b, > b,. If by increases (to a value < b), then
b, increases while b/ stays the same. Thus, the total click reward of agent 2 increases.
If b, increases then bf, decreases while b] stays the same, so the total click reward of
agent 2 does not increase, which implies that the total click reward of agent 1 does not
decrease. Claim proved. Now part (b) follows from Theorem [7.1](with p = %). O

8. EXTENSION TO MULTI-PARAMETER DOMAINS

Our general transformation from Section[d can be extended to multi-parameter mech-
anisms.It is known that a multi-parameter allocation rule is truthfully implementable
if and only if it satisfies a property called “cycle-monotonicity”. Similar to the single-
parameter case, we present a general procedure to take any cycle-monotone allocation
rule A and transform it into a randomized mechanism that is truthful-in-expectation,
implements the same outcome as A with probability arbitrarily close to 1, and requires
evaluating that allocation rule only once. The technical contribution here is that we
find a reduction from the multi-parameter setting to the single-parameter case.

This section is self-contained. For more background on multi-parameter mecha-
nisms for a CS-oriented audience, please refer to [Archer and Kleinberg[2008a/b]. An

Economics-oriented background for this area can be found in [Ashlagi et alll2010].

8.1. Preliminaries: multi-parameter domains

Generalized types. In the full generality, multi-parameter mechanisms are defined
as follows. There are n agents and a set O of outcomes. Each agent i is characterized
by his type x;, : O — R, where x;(0) is interpreted as the agent’s valuation for the
outcome o € O. For each agent i there is a set of feasible types, denoted 7;. Denote
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T = T1 x ... x T, and call it the type space; call 7; the type space of agent i. The
mechanism knows (n, O, T), but not the actual types x;; each type x; is known only to
the corresponding agent i. Formally, a problem instance, also called a multi-parameter
domain, is a tuple (n, O, T).

Using this general notion of types, we define truthful mechanisms in essentially
the same way as in Section [3] with minimal syntactic changes. A (direct revelation)
mechanism M consists of the pair (A, P), where A : T — O is the allocation rule and
P : T — R" is the payment rule. Both A and P can be randomized. Each agent i reports
a type b; € 7; to the mechanism, which is called the bid of this agent. We denote the
vector of bids by b = (b1, ... ,b,) € T. The mechanism receives the bid vector b € T,
selects an outcome .4(b), and charges each agent i a payment of P;(b). The utilities are
quasi-linear and agents are risk-neutral: if agent i has type x; € 7; and the bid vector
is b € T, then this agent’s utility is

ui(xi; b) = E [XZ(A(b)) - 'Pz(b)] . (21)

For each type x; € 7; of agent i we use a standard notation (b_;, x;) to denote the bid
vector b such that b; = x; and b; = b; for every agent j # i.

Special case: dot-product valuations. For intuition, consider dot-product valua-
tions, an important special case where the type x € 7; of each agent i can be decom-
posed as a dot product x(0) = fx - a;(0), for each outcome o € O, where Sy, a;(0) € R?
are some finite-dimensional vectors. Here the term a;(0) is the same for all types x € 7;
(and known to the mechanism), whereas Sy is the same for all outcomes o € O and is
known only to agent i. The term a;(0) is usually called an “allocation” of agent i for
outcome o, and Sy is called the “private value”. The single-parameter domains defined
in Section [3] correspond to the case d = 1.

Note that the type x of each agent i is determined by the corresponding private value
Bx, and his type space 7; is determined by D; = {3, : x € T;} C R%. Because of this,
in the literature on dot-product valuations the term “type” often refers to 5x. To avoid
ambiguity, in this section we will refer to Sy as “private value” rather than “type”, and
call Dy x ... x D,, the private value space.

Game-theoretic properties. Truthfulness and individual rationality are defined ex-
actly as in Section [3]if expressed in terms of the agents’ utility:

— A mechanism is truthful if for every agent i truthful bidding is a dominant strategy:
ui(xi; (b_i,xi)) > ui(xi; b) Vx; €T, beT. (22)

An allocation rule is called truthfully implementable if it is the allocation rule in
some truthful mechanism.

— A mechanism is individually rational (IR) if each agent i never receives negative
utility by participating in the mechanism and bidding truthfully:

ui(xi;(b—i,%:)) >0 Vx; €T, bo; € T, (23)

The right-hand side in 23) represents the maximal guaranteed utility of an “outside
option” (i.e., from not participating in the mechanism). For example, our definition of
IR is meaningful whenever this utility is 0, which is a typical assumption for most
multi-parameter domains studied in the literature.

Our assumptions. We make two assumptions on the type space 7

—non-negative types: x;(0) > 0 for each agent i, each type x; € 7;, and each outcome
o€ 0.
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—rescalable types: A\x; € T; for each agent i, each type x; € 7;, and any parameter
A€ [0,1].

For dot-product valuations, types are rescalable if and only if it holds that 8, € D; =
ABx € D, for each X € [0, 1]. Thus, assuming rescalable types is equivalent to assuming
that the set D; is star-convex at 0. To ensure non-negative types, it suffices to assume
that D; C R{ for each agent i, and all allocations are non-negative: a;(0) € R% for all
o€ 0.

In particular, for each agent i there exists a zero type: a type x; € 7; such that
x;(-) = 0. Let us say that a mechanism is normalized if for each agent i, the expected
payment of this agent is 0 whenever she submits the zero type.

Truthfulness characterization. We will use the following characterization of truth-
ful mechanisms. A (randomized) allocation rule A is cycle-monotone if the following
property holds: for each bid vector b € T, each agent i, each k > 2, and each k-tuple
Xi0, Xi1, --- ,Xik € T; of this agent’s types, we have

k
Elj:t in7j (Oi,j) — X4, (j—1) mod k (Oi,j) > O, where 055 = A (b_i, Xi,j) € 0. (24)
j=0

THEOREM 8.1 (ROCHET [[1987]). Consider an arbitrary multi-parameter domain
(n,O0,T). A (randomized) allocation rule A is truthfully implementable if and only if it
is cycle-monotone. Assuming rescalable types, for any cycle-monotone allocation rule A,
a mechanism (A, P) is truthful and normalized if and only if

1
E[P;(b)] = E [bi(A(b)) - / bi(A(b_s, tby)) dt| . 25)
A A t=0

Note that this theorem generalizes Theorem [3.2] for single-parameter mechanisms,
as applied to single-parameter domains with private value space [0,1]". In particu-
lar, Equation generalizes the Myerson payment rule for single-parameter mecha-
nisms.

8.2. The multi-parameter transformation
Consider allocation rule A, bid vector b € T, and the rescaling vector A € [0, 1]”. Denote

A@b=(Aby, ..., Aub,) €T.

In other words, A\ ® b is the “rescaled” bid vector where the bid of each agent i is \;b;;
this bid vector is well-defined because we assumed the rescalable types property. Note
that for each b the subset

To={A®0b: A€ [0,1]"} C T

forms a single-parameter type space where each agent i has private value \; € [0, 1]
and allocation b;(0) for every outcome o. By abuse of notation, let us treat the allocation
/ payment rules for Ty, as functions from the private value space [0, 1] rather than the
type space Ty,.

Consider an allocation rule Ap(\) = A(A ® b) for the single-parameter type space
To. If the original allocation rule A is truthfully implementable for type space 7 using
payment rule P, then Ay, is truthfully implementable for type space 7y, using payment
rule P,(\) = P(A ® b), because restricting the allocation and payment rules to 7y, only
limits the set of possible misreports of an agent. Essentially, the idea will be to apply
our single-parameter transformation to Aj,.
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Let f, = (f1, ... , fn) be the n-tuple of canonical self-resampling procedures with
resampling probability p, for some fixed p € (0,1). (See Algorithm [1] on page [13]) For
each bid vector b € T, let

(.,Zb, 75b) = AllocToMech(Ap, i, f,,) (26)

be the single-parameter mechanism for type space 7, obtained by applying our single-
parameter transformation from Section [ to allocation A,
The transformed multi-parameter mechanism is defined as

(ﬂ(b), ’ﬁ(b)) = (ﬂb(f), ﬁb(f)) for every b € T. 27

This completes the description of our multi-parameter transformation. The useful
properties of this transformation are captured in the theorem below.

THEOREM 8.2. Consider an arbitrary multi-parameter domain (n,O,T) with
rescalable, non-negative types. Let A be a cycle-monotone allocation rule. Let M, =
(A, P) be the transformed mechanism defined by Equations@6l27), for some parameter

€ (0,1). Then M,, has the following properties:

(@) M, is truthful and normalized.

(b) M,, is universally ex-post individually rational and ex-post no-positive-transfers.
Moreover, given a bid vector b, it never pays any agent i more than bi(o)(ll—t - 1),
where o = A(b) € O.

(c) For any bid vector b € T (and any fixed random seed of nature) allocations /Nl(b) and
A(b) are identical with probability at least 1 — np.

(d)If Ais a-approximate (for social welfare) then A is o / (1 — ﬁ)-approximate.

PROOF. Parts (b) and (c) follow immediately from Theorem[4.5] and part (d) follows
immediately from Theorem[5.1l Thus, it remains to prove part (a).

Note that the single-parameter allocation rule A4} has the following property: for
each agent i the single-parameter bid ); is rescaled by the (randomly chosen) factor
Xi € [0,1] which does not depend on the bid, and then A}, is called. Therefore, letting
X=(x1, --- ,Xn), it holds that

Ap(A\) = A(x® (A®b)) forallbe T and A € [0,1]". (28)

We claim that A is cycle-monotone. Indeed, fix bid vector b € T, agent i, some k > 2,
and a k-tuple x; 0, X;1, ... ,X; € T; of this agent’s types. Let us consider a fixed real-
ization of the random vector x € [0, 1]”. For each type x; ;, note that (by Equations
and 27)) we have

Av(xi,j,b_i) = Av(xi’j_’bfi)( T) = .A(X (9 (b_i, Xi,j)) c O.

Denote this outcome by o; ;(x). Apply the cycle-monotonicity of A for bid vector x ®
(Xi,ja b_i)l

k
Elj:t in,j(oz’,j (X)) = Xi, (j—1) mod k(0i,5(x)) | = 0. (29)
=0

17Note that the transformed mechanism depends on p.. We do not make this dependence explicit, to simplify
the notation.
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Recalling that o; ;(x) = A(x;;,b_;), we observe that for this fixed realization of
X, Equation is exactly the inequality in the definition of cycle-monotonicity for
A. Therefore taking expectation over y, we obtain the desired inequality for A.
Claim proved

It remains to prove that in the transformed mechanism (A, P), the payment rule sat-
isfies Equation 25). Fix bid vector b and consider the transformed single-parameter
mechanism (Ap,Py) for the single-parameter type space T,. In the terminology of
single-parameter domains, each agent i receives an allocation Ay ;(A) = b;i(Ab(N))
whenever the bid vector is A € [0, 1]™. Since this is a truthful and normalized single-
parameter mechanism, it follows that

~ - Ai
E[Pb()\)] _E[AiAb,i(A)—/o Ab,i(xi,umu], YA € [0,1]".

Plugging in A = I and Equation (27), we obtain the desired Equation @5). O

9. OPEN QUESTIONS

This paper gives rise to a number of open questions. As discussed in Section 2.1
some of these questions have been partially addressed in the follow-up work. Here
we present the current status.

Variance vs. expectation tradeoff. Randomized mechanisms constructed via our
general transformation exhibit an explicit tradeoff between the variance in payments
and the loss in expected welfare compared to the optimal allocation rule. Since the
variance in payments can be very high, it is desirable to optimize this tradeoff (to
complement the expectation-only guarantees).

The worst-case optimality result in Wilkens and Sivan [2012], discussed in Sec-
tion [2.1] does not resolve this question, since it does not rule out a reduction which
achieves a better tradeoff for some (but not all) monotone allocation rules. Further, the
optimal tradeoff for a given domain could be achieved by a mechanism that cannot be
presented as a reduction from some welfare-optimal allocation rule.

Our informal conjecture is that the tradeoff in this paper is optimal for any given
single-parameter domain with “informational obstacle”, i.e. whenever payment compu-
tation for welfare-optimal allocation rule is impossible due to the insufficient observ-
able information.

A specific formal conjecture is that our tradeoff is optimal for MAB mechanisms.
To take an extreme version, what welfare loss can be achieved if no rebates (i.e., no
positive transfers) are allowed?

The power of randomization. We have a separation result for randomized vs. de-
terministic ex-post truthful MAB mechanisms. Can one obtain similar separation re-
sults for other single-parameter domains? The positive side for any such hypothetical
separation result is provided by our general reduction, so it remains to produce the
corresponding negative result for deterministic mechanisms. However, such negative
results are not likely to be easy, considering the difficulties faced by

[2014; Devanur and Kakade 12009] for MAB mechanisms. One specific target would be
the router scheduling problem proposed in [Shnayder et al!|2012].

18Note that the proof of cycle-monotonicity of A did not use any other property of the canonical self-
resampling procedures f,, other than Equation 28). The truthfulness properties of f,, are used in the forth-
coming argument about payments.
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MAB allocation rules. This paper opens up the problem of designing monotone
MAB allocation rules, which is a new angle in the rich literature on MAB (also
see [Slivkins 2011H]). While we have focused on stochastic MAB, many other MAB
settings have been studied in the literature, making various assumptions on payoff
evolution over time (e.g., [Auer et alll2002b; Slivkins and Upfal 2008; Hazan and Kale
12009]), dependencies between arms (e.g., [Flaxman et all 2005; Pandey et all 2007;
Kleinberg et alll2008b; [Srinivas et all[2010]), and side information available to the al-
gorithm (e.g., [Kleinberg et all[2008b; Langford and Zhang[2007;[Slivking[20114]). For
most such settings one could meaningfully define the corresponding mechanism design
problem; we have reduced this problem to that of designing monotone MAB allocation
rules. In particular, for any given MAB setting one could ask whether monotone MAB
allocation rules can achieve optimal regret.

One appealing target here is the adversarial MAB setting (with oblivious ad-
versary). The ex-post truthful mechanism in [Babaioff et al! 2014] achieves regret
O(k'/3 T?/3) for this setting, whereas the best known MAB algorithms achieve regret
O(VkT) [Auer et al!2002H;/Audibert and Bubeck 2010]; it is not clear what is the tight
regret bound.

More applications. In addition to the applications presented in this paper and
the follow-up work, what other domains can our general reduction (and the multi-
parameter extension thereof) be fruitfully applied to? In particular, one could consider
two generalizations of MAB mechanisms: to multiple ads per agent and to multiple ad
slots with slot-dependent values-per-click.

APPENDIX: ONESHOT is equivalent to Algorithm 1 (groof of Proposition 4.8) [_]

Let us compare the sampling procedures defined by Algorithm [ and ONESHOT. To
simplify the notation, we will omit the subscript : from the description of the proce-
dures. That is, a self-resampling procedure inputs a scalar bid b and a random seed w,
and outputs two numbers (z,y). To prove that ONESHOT is equivalent to Algorithm [T}
we analyze a family of sampling rules that uses bounded-depth recursion to “interpo-
late” between ONESHOT and Algorithm [Il Specifically, define BDR;, to be the following
family of sampling algorithms parameterized by k£ € NU{cc}, where k—1 is interpreted
as oo when k = cc.

Algorithm 6: The sampling algorithm BDR,: Bounded Depth Recursion.

1: Input: bid b € [0, oo, parameter u € (0, 1).
2: Output: (z,y) such that 0 <z <y <b.

3: with probability 1 —

4: x4+ byy<+0b.

5: else

6: ifk=0

7 Pick 71,72 € [0,1] indep., uniformly at random.
8: x(—b-vll/(lfﬂ), yeb-max{w%/(lfﬂ),vé/“}.

9: else [Jk>0

10: Pick &’ € [0, b] uniformly at random.

11: (2',y") = BDRy_1 (V/, ).

12: xa,y<«—b.
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The reader may easily verify that BDR;, is equal to ONESHOT when & = 0 and that
it is equal to Algorithm[Il when k = oo. Furthermore, for any k < k' (where k¥’ < o0)
there is an obvious coupling of BDR; with BDR;/ such that the two algorithms have
probability at most p**! of outputting different results: simply let the two executions
share the same randomness until the recursion depth equals k. Thus, as k& — oo, the
output distribution of BDR; converges, in total variation distance, to that of BDR..
We will prove that for every finite & the algorithms BDR; and BDR; have identical
output distributions, from which it follows that their output distribution is identical to
that of BDR( and, therefore, that BDR., also has the same output distribution as BDR,
confirming Proposition 4.8

Couple BDR, and BDR; so that they use shared randomness until the two algo-
rithms reach differing points in their control flow. This occurs when the first algorithm
is executing a call to BDRy and the second algorithm is executing a call to BDR; on
the same input (8, ). (We are denoting the input in this step of the recursive algo-
rithms by (3, i) rather than (b, ), to distinguish g from the value of b on which the
two algorithms BDRy, BDR,.; were originally called.) At this point, with probability
1 — p both algorithms output (z,y) = (8, 5). Conditional on this event not taking place,

BDRg outputs (7,y) = (711/pﬁ,max{711/p,721/q}6) where p = 1 — i1, ¢ = p1. Instead BDR;
computes 8’ = 36 where ;3 € [0, 1] is uniformly random, and it outputs (z,y) = (8, 5’)
with probability p and otherwise (x,) = (v1/”8,3'). Lemma [A1] tells us that these
two output distributions are the same.

LEMMA A.1. Let ~1,72,7v3 be mutually independent random variables, each uni-
formly distributed in [0,1]. Let p,q > 0 be numbers such that p + q = 1. Define random
variables x,y, z by:

1
:C:%/p

1 1
y = max{y"", 7/}

R N ifv2<p
_7 :
Py ifya>p

Then the pairs (xz,y) and (z,vs3) are identically distributed.

PROOF. We will show, equivalently, that the pairs (y,z/y) and (vs, z/73) are identi-
cally distributed. The distribution of (s, z/73) is completely characterized by the fol-
lowing facts which are immediate from the definition of z.

(1) v3 and z/~3 are independent;

(2) ~v3 is uniformly distributed in [0, 1];

(3) z/vs is equal to 1 with probability p, and conditional on z/v5 # 1, the distribution
of (z/~3)P is uniform on [0, 1).

To finish the proof of the lemma, we shall prove the corresponding facts about y and
x/y. Let I, I C [0, 1] be any pair of intervals (open, closed, or half-open). Let a, b be the
endpoints of I; and ¢, d the endpoints of I>. To compute Pr(y € I, x/y € I1) it suffices
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to make the following two observations:
Pr(y € I, x/y =1) :Pr(agvll/p <0, ngé/q §711/p)

:Pr(apgm <bP,0< ¥ gyf/p)

bP bP
:/ tq/Pdt:/ P dt = p(b— a)

P P

Pr(y € I, z/y € I\ {1}) = Pr(a < /" < b, eny/? < 7/? < dvy/%)
= Pr(a? <y, < b, PAET <y < APy

b b
= / (dP — cP)P/9 dt = (dP — cp)/ a7t dt = g(dP — ) (b — a).

q ad

Therefore,

q(dP —cP) if1¢1

Priye b, x/yem_(b_a)'{erq(dp_cp) iflel,

From this formula it follows that y and = /y are independent, y is uniformly distributed,
Pr(z/y = 1) = p, and the distribution of (z/y)? conditional on z/y # 1 is uniform on
0,1). O
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