
Temporal Logic Control for Stochastic Linear Systems using
Abstraction Refinement of Probabilistic Games∗

Mária Svoreňová
Faculty of Informatics
Masaryk University

Brno, Czech republic
svorenova@mail.muni.cz

Jan Křetínský
IST Austria

Klosterneuburg, Austria
jan.kretinsky@ist.ac.at

Martin Chmelík
IST Austria

Klosterneuburg, Austria
martin.chmelik@ist.ac.at

Krishnendu Chatterjee
IST Austria

Klosterneuburg, Austria
kchatterjee@ist.ac.at

Ivana Černá
Faculty of Informatics
Masaryk University

Brno, Czech republic
cerna@muni.cz

Calin Belta
Dep. of Mechanical Eng.

Boston University
Boston, MA, USA
cbelta@bu.edu

ABSTRACT
We consider the problem of computing the set of initial states
of a dynamical system such that there exists a control strat-
egy to ensure that the trajectories satisfy a temporal logic
specification with probability 1 (almost-surely). We focus
on discrete-time, stochastic linear dynamics and specifications
given as formulas of the Generalized Reactivity(1) fragment
of Linear Temporal Logic over linear predicates in the states
of the system. We propose a solution based on iterative
abstraction-refinement, and turn-based 2-player probabilistic
games. While the theoretical guarantee of our algorithm after
any finite number of iterations is only a partial solution, we
show that if our algorithm terminates, then the result is the
set of satisfying initial states. Moreover, for any (partial) so-
lution our algorithm synthesizes witness control strategies to
ensure almost-sure satisfaction of the temporal logic specifi-
cation. We demonstrate our approach on an illustrative case
study.

1. INTRODUCTION
The formal verification problem, in which the goal is to

check whether behaviors of a finite model satisfy a correct-
ness specification, received a lot of attention during the past
thirty years [10, 2]. In contrast, in the synthesis problem the
goal is to synthesize or control a finite system from a tempo-
ral logic specification. While the synthesis problem also has a
long tradition [9, 3, 22], it has gained significant attention in
formal methods more recently. For example, these techniques
are being deployed in control and path planning in particular:
model checking techniques can be adapted to synthesize (opti-
mal) controllers for deterministic finite systems [24, 14], Büchi
and Rabin games can be reformulated as control strategies for
nondeterministic systems [28, 26], and probabilistic games can
be used to compute controller for finite probabilistic systems
such as Markov decision processes [23, 18].

With the widespread integration of physical and digital

∗
This work was partially supported by Czech Science Foundation grant

15-17564S, People Programme (Marie Curie Actions) of the European

Union’s Seventh Framework Programme (FP7/2007-2013) under REA

grant agreement 291734, ERC grant 267989 (QUAREM) and Start

grant (279307: Graph Games), Austrian Science Fund (FWF) grants

S11402-N23 (RiSE), P23499-N23 and S11407-N23 (RiSE), Czech Min-

istry of Education Youth and Sports grant LH11065, and NSF grants

CMMI-1400167 and CNS-1035588.

components in cyber physical systems, and the safety and se-
curity requirements in such systems, there is an increased need
for the development of formal methods techniques for systems
with infinite state spaces, normally modeled as difference or
differential equations. Most of the works in the area use par-
titions and simulation / bisimulation relations to construct
a finite abstraction of the system, followed by verification or
control of the abstraction. Existing results showed that such
approaches are feasible for discrete and continuous time lin-
ear systems [25, 12]. With some added conservatism, more
complicated dynamics and stochastic dynamics can also be
handled [11, 17].

In this work, we focus on the problem of finding the set of
initial states of a dynamic system from which a given con-
straint can be satisfied, and synthesizing the corresponding
witness control strategies. In particular, we consider discrete-
time continuous-domain linear stochastic dynamics with the
constraints given as formulas of the Generalized Reactivity(1)
(GR(1)) [21] fragment of Linear Temporal Logic (LTL) over
linear predicates in the states of the system. The GR(1)
fragment offers polynomial computational complexity as com-
pared to the doubly exponential one of general LTL, while
being expressive enough to describe most of the usually con-
sidered temporal properties [21]. We require the formula to be
satisfied almost-surely, i.e., with probability 1. The almost-
sure satisfaction is the strongest probability guarantee one can
achieve while accounting for the stochasticity of the dynamics.

In our proposed approach, we iteratively construct and re-
fine a discrete abstraction of the system and solve the syn-
thesis problem for the abstract model. The discrete model
considered in this work is a turn-based 2-player probabilis-
tic game, also called 21/2-player game [7]. Every iteration of
our algorithm produces a partial solution given as a partition
of the state space into three categories. The first is a set of
satisfying initial states together with corresponding witness
strategies. The second is a set of non-satisfying initial states,
i.e., those from which the system cannot be controlled to sat-
isfy the specification with probability 1. Finally, some parts
of the state space may remain undecided due to coarse ab-
straction. As the abstraction gets more precise, more states
are being decided with every iteration of the algorithm. The
designed solution is partially correct. That means, we guar-
antee soundness, i.e., almost sure satisfaction of the formula
by all controlled trajectories starting in the satisfying initial
set and non-existence of a satisfying control strategy for non-

ar
X

iv
:1

41
0.

53
87

v3
 [

cs
.S

Y
]

 2
3

Fe
b

20
15

satisfying initial states. On the other hand, completeness is
only ensured if the algorithm terminates. If a weaker abstrac-
tion model, such as 2 player games, was used, there would be
no soundness guarantee on the non-satisfying initial states and
no completeness guarantees.We provide a practical implemen-
tation of the algorithm that ends after a predefined number
of iterations.

The main novelty of our work is the abstraction-refinement
of a dynamic system using a 21/2-player game. While
abstraction-refinement exists for discrete systems such as non-
deterministic and probabilistic systems [16, 5, 18, 8], and some
classes of hybrid systems [15, 20], to the best of our knowl-
edge, the approach that we present in this paper is the first
attempt to construct abstraction-refinement of stochastic sys-
tems with continuous state and control spaces in the form of
21/2-player games. The game theoretic solutions are necessary
to determine what needs to be refined, and the dynamics of
the linear-stochastic systems determine the refinement steps.
Thus both game theoretic aspects and the dynamics of the
system play a crucial role in the refinement step, see Rem. 1.

This paper is closely related to [28, 13, 19, 1, 27]. Our
computation of the abstraction is inspired from [28], which,
however, does not consider stochastic dynamics and does not
perform refinement. The latter issue is addressed in [13] for
non-stochastic dynamics and specifications with finite-time se-
mantics in the form of syntactically co-safe LTL formulas. The
exact problem that we formulate in this paper was also con-
sidered in [19], but for finite-time specifications in the form of
probabilistic Computation Tree Logic (PCTL) formulas and
for the particular case when the control space is finite. Also, in
[19], the abstraction is constructed in the form of an interval-
valued MDP, which is less expressive than the game consid-
ered here. An uncontrolled version of the abstraction prob-
lem for a stochastic system was considered in [1], where the
finite system was in form of a Markov set chain. In [27], the
authors consider the problem of controlling uncertain MDPs
from LTL specification. When restricted to almost sure sat-
isfaction, uncertain MDPs have the same expressivity as the
games considered here. To obtain a control strategy, the au-
thors of [27] use dynamic programming (value iteration), as
opposed to games.

The rest of the paper is organized as follows. We give some
preliminaries in Sec. 2 before we formulate the problem and
outline the approach in Sec. 3. The abstraction, game, and
refinement algorithms are presented in Sec. 4. A case study
is included in Sec. 5. We conclude with final remarks and
directions for future work in Sec. 6.

2. NOTATION AND PRELIMINARIES
For a non-empty set S, let Sω, S∗ and S+ denote the set of

all infinite, finite and non-empty finite sequences of elements
of S, respectively. For σ ∈ S+ and ρ ∈ Sω, we use |σ| to
denote the length of σ, and σ(n) and ρ(n) to denote the n-th
element, for 1 ≤ n ≤ |σ| and n ≥ 1, respectively. For two sets
S1 ⊆ S∗, S2 ⊆ S∗ ∪Sω, we use S1 ·S2 = {s1 · s2 | s1 ∈ S1, s2 ∈
S2} to denote their concatenation. Finally, for a finite set S,
|S| is the cardinality of S, D(S) is the set of all probability
distributions over S and {s ∈ S | d(s) > 0} is the support set
of d ∈ D(S).

2.1 Polytopes
A (convex) polytope P ⊂ RN is defined as the convex hull

of a finite set X = {xi}i∈I ⊂ RN , i.e.,

P = hull(X) = {
∑
i∈I

λixi | ∀i : λi ∈ [0, 1],
∑
i∈I

λi = 1}. (1)

We use V (P) to denote the vertices of P that is the minimum
set of vectors in RN for which P = hull(V (P)). Alternatively,
a polytope can be defined as an intersection of a finite number
of half-spaces in RN , i.e.,

P = {x ∈ RN | HPx ≤ KP}, (2)

where HP ,KP are matrices of appropriate sizes. Forms in
Eq. (1) and (2) are referred to as the V-representation and
H-representation of polytope P, respectively. A polytope
P ⊂ RN is called full-dimensional if it has at least N + 1
vertices. In this work, we consider all polytopes to be full-
dimensional, i.e., if a polytope is not full-dimensional, we con-
sider it empty.

2.2 Automata and Specifications

Definition 1 (ω-automata). A deterministic ω-auto-
maton with Büchi implication (aka one-pair Streett) accep-
tance condition is a tuple A = (Q,Σ, δ, q0, (E,F)), where Q
is a non-empty finite set of states, Σ is a finite alphabet,
δ : Q × Σ → Q is a deterministic transition function, q0 ∈ Q
is an initial state, and (E,F) ⊆ Q×Q defines an acceptance
condition.

Given an automaton, every word w ∈ Σω over the alpha-
bet Σ induces a run which is an infinite sequence of states
q0q1 . . . ∈ Qω, such that qi+1 = δ(qi, w(i)) for all i ≥ 0. Given
a run r, let Inf(r) denote the set of states that appear in-
finitely often in r. Given a Büchi implication acceptance con-
dition (E,F), a run r is accepting, if Inf(r) ∩ E 6= ∅ implies
Inf(r)∩F 6= ∅, i.e., if the set E is visited infinitely often, then
the set F is visited infinitely often. The Büchi acceptance
condition is a special case of Büchi implication acceptance
condition where E = Q, i.e., we require F to be visited in-
finitely often. The language of an automaton is the set of
words that induce an accepting run.

Definition 2 (GR(1) formulae). A GR(1) formula ϕ
is a particular type of an LTL formula over alphabet Σ of the
form

ϕ =
(m∧
i=1

ϕi

)
=⇒

(n∧
j=1

ϕj

)
, (3)

where each ϕi, ϕj is an LTL formula that can be represented by
a deterministic ω-automaton with Büchi acceptance condition.

The above definition of GR(1) is the extended version of the
standard General Reactivity(1) fragment introduced in [21].
The advantage of using GR(1) instead of full LTL as specifi-
cation language is that realizability for LTL is 2EXPTIME-
complete [22], whereas for GR(1) it is only cubic in the size
of the formula [21]. Given a finite number of deterministic ω-
automata with Büchi acceptance conditions, we can construct
a deterministic ω-automaton with Büchi acceptance condition
that accepts the intersection of the languages of the given au-
tomata [2]. Thus a GR(1) formula can be converted to a de-
terministic ω-automaton with a Büchi implication acceptance
condition.

2.3 Games
In this work, we consider the following probabilistic games

that generalize Markov decision processes (MDPs).

Definition 3 (21/2-player games). A two-player turn-
based probabilistic game, or 21/2-player game, is a tuple G =
(S1, S2, Act, δ), where S1 and S2 are disjoint finite sets of

states for Player 1 and Player 2, respectively, Act is a finite set
of actions for the players, and δ : (S1∪S2)×Act→ D(S1∪S2),
is a probabilistic transition function.

Let S = S1 ∪ S2. A play of a 21/2-player game G is a
sequence g ∈ Sω such that for all n ≥ 1 there exists a ∈ Act
such that δ(g(n), a)(g(n + 1)) > 0. A finite play is a finite
prefix of a play of G. A Player 1 strategy for G is a function
C1
G : S∗ · S1 → Act that determines the Player 1 action to be

applied after any finite prefix of a play ending in a Player 1
state, and strategies for Player 2 are defined analogously. If
there exists an implementation of a strategy that uses finite
memory, e.g., a finite-state transducer, the strategy is called
finite-memory. If there exists an implementation that uses
only one memory element, it is called memoryless. Given a
Player 1 and Player 2 strategy, and a starting state, there
exists a unique probability measure over sets of plays.

Given a game G, an acceptance condition defines the set
of accepting plays. We consider GR(1) formulae and Büchi
implication over S as accepting conditions for G. The almost-
sure winning set, denoted as AlmostG(ϕ) for a GR(1) formula
and AlmostG((E,F)) for a Büchi implication condition, is the
set of states such that Player 1 has a strategy to ensure the
objective with probability 1 irrespective of the strategy of
Player 2. Formally, AlmostG(ϕ) = {s ∈ S | ∃C1

G ∀C2
G the

probability to satisfy ϕ using the two strategies and starting
from state s is 1 }, and AlmostG((E,F)) is defined similarly.
The almost-sure winning set AlmostG((E,F)) for Büchi impli-
cation acceptance condition can be solved in quadratic time [4,
7]. In this work, we use more intuitive, cubic time algorithm
described in detail in App. A. Moreover, in the states of the set
AlmostG((E,F)), there always exist witness strategies, called
almost-sure winning strategies, that are memoryless and in-
deed pure, i.e., not randomized, as defined above. This follows
from the fact that the Büchi implication condition can be seen
as a special case of a more general parity acceptance condi-
tion [7]. In Sec. 4, we show how to compute the almost-sure
winning set AlmostG(ϕ) for a GR(1) formula ϕ.

In this work, we also consider the following cooperative in-
terpretation of 21/2-player games which is an MDP or so called
11/2-player game.

Definition 4 (11/2-player games). An MDP or 11/2-
player game, is a tuple G = (S,Act, δ), where S,Act are non-
empty finite sets of states and actions, and δ : S×Act→ D(S)
is a probabilistic transition function.

Given a 21/2-player game G, the 11/2-player interpretation,
where the players cooperate, is called Gcoop with S = S1 ∪ S2.
The almost-sure winning set in Gcoop for a GR(1) formula ϕ

is then defined as AlmostG
coop

(ϕ) = {s ∈ S | ∃C1
G ∃C2

G such
that the probability to satisfy ϕ using the two strategies and
starting from state s is 1 }, analogously for a Büchi implication
acceptance condition.

3. PROBLEM FORMULATION
In this work, we assume we are given a linear stochastic

system T defined as

T : xt+1 = Axt +But + wt, (4)

where xt ∈ X ⊂ RN , ut ∈ U ⊂ RM , X ,U are polytopes in
the corresponding Euclidean spaces called the state space and
control space, respectively, wt ∈ W ⊂ RN is the value at time
t of a random vector with values in polytope W. The random
vector has positive density on all values in W. Finally, A and
B are matrices of appropriate sizes.

game analysis

game

formula

part of Xinit

and of X\Xinit

winning and losing states

partition of X

refinement

abstraction

system predicates

linear

Figure 1: Graphical representation of the proposed
solution to Problem 1.

The system T evolves in traces. A trace of a linear stochas-
tic system T is an infinite sequence ρ ∈ Xω such that for
every n ≥ 1, we have ρ(n + 1) = Aρ(n) + Bu + w for some
u ∈ U , w ∈ W. A finite trace σ ∈ X+ of T is then a finite pre-
fix of a trace. A linear stochastic system T can be controlled
using control strategies, where a control strategy is a function
CT : X+ → U .

To formulate specifications over the linear stochastic system
T , we assume we are given a set Π of linear predicates over
the state space X of T :

Π = {πk | πk : cTk x ≤ dk, ck ∈ RN , dk ∈ R, k ∈ K}, (5)

where K is a finite index set. Every trace of the system gener-
ates a word over 2Π, and every GR(1) specification formulated
over the alphabet Π can be interpreted over these words.

Problem 1. Given a linear stochastic system T (Eq. (4)),
a finite set of linear predicates Π (Eq. (5)) and a GR(1) for-
mula ϕ over alphabet Π, find the set Xinit of states x ∈ X for
which there exists a control strategy CT such that the proba-
bility that a trace starting in state x using CT satisfies ϕ is 1,
and find the corresponding strategies for x ∈ Xinit.

Approach overview. The solution we propose for Problem 1
can be summarized as follows. First, we abstract the linear
stochastic system T using a 21/2-player game based on the
partition of the state space X given by linear predicates Π.
The game is built only using polytopic operations on the state
space and control space. We analyze the game and identify
those partition elements of the state space X that provably
belong to the solution set Xinit, as well as those that do not
contain any state from Xinit. The remaining parts of the state
space still have the potential to contribute to the set Xinit but
are not decided yet due to coarse abstraction. In the next step,
the partition of state space X is refined using deep analysis
of the constructed game. Given the new partition, we build
a new game and repeat the analysis. The approach can be
graphically represented as shown in Fig. 1.

We prove that the result of every iteration is a partial solu-
tion to Problem 1. In other words, the computed set of sat-
isfying initial states as well as the set of non-satisfying initial
states are correct. Moreover, they are improved or maintained
with every iteration as the abstraction gets more precise. This
allows us to efficiently use the proposed algorithm for a fixed
number of iterations. Finally, we prove that if the algorithm
terminates then the result is indeed the solution to Problem 1.

Table 1: Definitions of polytopic operators Post (posterior), Pre (predecessor), PreR (robust predecessor), PreP
(precise predecessor), Attr (attractor) and AttrR (robust attractor), where X ′ ⊆ X ,U ′ ⊆ U are polytopes, and
{Xj}j∈J is a set of polytopes in X . The algorithms to compute all the operators are listed in App. B.

Post(X ′,U ′) = {x ∈ RN | ∃x′ ∈ X ′, ∃u ∈ U ′,∃w ∈ W : x = Ax′ +Bu+ w}
Pre(X ′,U ′, {Xj}j∈J) = {x ∈ X ′ | ∃u ∈ U ′ : Post(x, u) ∩

⋃
j∈J
Xj is non-empty}

PreR(X ′,U ′, {Xj}j∈J) = {x ∈ X ′ | ∃u ∈ U ′ : Post(x, u) ⊆
⋃
j∈J
Xj}

PreP(X ′,U ′, {Xj}j∈J) = {x ∈ X ′ | ∃u ∈ U ′ : Post(x, u) ⊆
⋃
j∈J
Xj and

∀j ∈ J : Post(x, u) ∩ Xj is non-empty}
Attr(X ′,U ′, {Xj}j∈J) = {x ∈ X ′ | ∀u ∈ U ′ : Post(x, u) ∩

⋃
j∈J
Xj is non-empty}

AttrR(X ′,U ′, {Xj}j∈J) = {x ∈ X ′ | ∀u ∈ U ′ : Post(x, u) ⊆
⋃
j∈J
Xj}

The main difficulty of the approach is the abstraction-
refinement of 21/2-player game. Abstraction-refinement has
been considered for discrete systems [18, 16, 5, 8], and also
for some classes of hybrid systems [15, 20]. However, in all of
these approaches, even if the original system is considered to
be probabilistic, the distributions are assumed to be discrete
and given, and are not abstracted away during the refinement.
The key challenge is the extension of abstraction-refinement
approach to continuous stochastic systems, where the transi-
tion probabilities in the abstract discrete model need to be
abstracted. We show that by exploiting the nature of the
considered dynamic systems we can develop an abstraction-
refinement approach for our problem, see Rem. 1.

4. SOLUTION
In this section, we describe the proposed solution in detail

and present necessary proofs. We start with the abstraction
procedure that consists of two steps. The linear stochastic
system T is first abstracted using a non-deterministic transi-
tion system which is then extended to a 21/2-player game. The
game analysis section then describes how to identify parts of
the solution to Problem 1. The procedure for refinement is
presented last. Finally, we prove all properties of the pro-
posed solution.

Let Xout be the set of all states outside of the state space X
that can be reached within one step in system T , i.e., Xout is
the set Post(X ,U)\X , where Post is the posterior operator de-
fined in Tab. 1. Note that Xout is generally not a polytope, but
it can be represented as a finite set of polytopes {Xiout}iout∈Iout ,
or {Xiout} for short. All polytopic operators that are used in
this section are formally defined in Tab. 1 and their computa-
tion is described in detail in App. B.

4.1 Abstraction
The abstraction consists of two steps. First, the linear

stochastic system is abstracted using a non-deterministic tran-
sition system which is then extended to a 21/2-player game.

Definition 5 (NTS). A non-deterministic transition
system (NTS) is a tuple N = (S,Act, δ), where S is a non-
empty finite set of states, Act is a non-empty finite set of ac-
tions, and δ : S × Act → 2S is a non-deterministic transition
function.

NTS construction. In order to build an NTS abstraction
for T , we assume we are given a partition {Xi}i∈I , or {Xi}

for short, of the state space X . Initially, the partition is given
by the set of linear predicates Π, i.e., it is the partition given
by the equivalence relation ∼Π defined as

x ∼Π x′ ⇐⇒ ∀k ∈ K :
(
cTk x ≤ dk ⇔ cTk x

′ ≤ dk
)
.

In the later iterations of the algorithm, the partition is given
by the refinement procedure. The construction below builds
on the approach from [28].

We use N{Xi} = (SN , ActN , δN) to denote the NTS corre-
sponding to partition {Xi} defined as follows. The states of
N{Xi} are given by the partition of the state space X and the
outer part Xout, i.e., SN = {Xi}∪{Xiout}. Let Xi ∈ {Xi} ⊂ SN
be a state of the NTS, a polytope in X . We use ∼i to denote
the equivalence relation on U such that u ∼i u

′ if for every
state Xj ∈ {Xi} ∪ {Xiout}, it holds that Post(Xi, u) ∩ Xj is
non-empty if and only if Post(Xi, u

′) ∩ Xj is non-empty. In-
tuitively, two control inputs are equivalent with respect to Xi,
if from Xi the system T can transit to the same set of parti-
tion elements of X and Xout. The partition U/ ∼i is then the
set of all actions of the NTS N{Xi} that are allowed in state

Xi. We use UJ
i to denote the union of those partition elements

from U/ ∼i that contain control inputs that lead the system
from Xi to polytopes Xj , j ∈ J ⊆ I ∪ Iout, i.e.,

UJ
i = {u ∈ U |∀j ∈ J : Post(Xi, u) ∩ Xj is non-empty and

∀j 6∈ J : Post(Xi, u) ∩ Xj is empty}. (6)

The set UJ
i can be computed using only polytopic computa-

tions as described in App. B.1. For a state Xi ∈ {Xi} ⊂ SN
and action UJ

i′ ∈ ActN , we let

δN (Xi,UJ
i′) =

{
{Xj | j ∈ J} if i = i′,

∅ otherwise.

For states Xiout ∈ {Xiout} ⊂ SN , no actions or transitions are
defined.

From NTS to game. Since the NTS does not capture the
probabilistic aspect of the linear stochastic system, we build
a 21/2-player game on top of the NTS. Let Xi be a polytope
within the state space X of T , a state of N{Xi}. When T is in

a particular state x ∈ Xi and a control input u ∈ UJ
i is to be

applied, we can compute the probability distribution over the
set {Xj}j∈J that determines the probability of the next state
of T being in Xj , j ∈ J , using the distribution of the random
vector for uncertainty. The evolution of the system can thus

be seen as a game, where Player 1 acts in states Xi ∈ SN of the
NTS and chooses actions from ActN , and Player 2 determines
the exact state within the polytope Xi and thus chooses the
probability distribution according to which a transition in T
is made. This intuitive game construction implies that Player
2 has a possibly infinite number of actions. On the other
hand, in Problem 1 we are interested in satisfying the GR(1)
specification with probability 1 and in the theory of finite dis-
crete probabilistic models, it is a well-studied phenomenon
that in almost-sure analysis, the exact probabilities in admis-
sible probability distributions of the model are not relevant.
It is only important to know supports of such distributions,
see e.g., [2]. That means that in our case we do not need
to consider all possible probability distributions as actions for
Player 2, but it is enough to consider that Player 2 chooses
support for the probability distribution that will be used to
make a transition. For a polytope Xi ∈ SN and UJ

i ∈ ActN ,
we use Supp(Xi,UJ

i) to denote the set of all subsets J ′ ⊆ J
for which there exist x ∈ Xi, u ∈ UJ

i such that the next state
x′ = Ax + Bu + w of T belongs to Xj , j ∈ J ′ with non-zero
probability and with zero probability to Xj , j 6∈ J ′, i.e.,

Supp(Xi,UJ
i) = {J ′ ⊆ J |PreP(Xi,UJ

i , {Xj}j∈J′)

is non-empty}, (7)

where PreP is the precise predecessor operator from Tab. 1.

Game construction. Given the NTS N{Xi}, the 21/2-player
game G{Xi} = (S1, S2, Act, δ) is defined as follows. Player
1 states S1 = {Xi} ∪ {Xiout} are the states SN of the NTS
and Player 1 actions are the actions ActN of N{Xi}. Player
2 states are given by the choice of an action in a Player 1
state, i.e., S2 = {Xi} × {UJ

i }. The Player 2 actions available
in a state (Xi,UJ

i) are the elements of the set Supp(Xi,UJ
i)

defined in Eq. (7). For Player 1, the transition probabil-
ity function δ defines non-zero probability transitions only
for triples of the form Xi,UJ

i , (Xi,UJ
i) and for such it holds

δ(Xi,UJ
i)((Xi,UJ

i)) = 1. For Player 2, the function δ defines
the following transitions:

δ2
(
(Xi,UJ

i), J ′
)(
Xj

)
=

1
|J′| if J ′ ∈ Supp(Xi,UJ

i)

and j ∈ J ′,
0 otherwise.

The definition reflects the fact that once Player 2 chooses the
support, the exact transition probabilities are irrelevant and
without loss of generality, we can consider them to be uniform.

Example 1. (Illustrative example, part I) Let T be
a linear stochastic system of the form given in Eq. (4), where

A =

(
1 0
0 1

)
, B =

(
1 0
0 1

)
,

the state space is X = {x ∈ R2 | 0 ≤ x(1) ≤ 4, 0 ≤ x(2) ≤ 2},
the control space is U = {u ∈ R2 | −1 ≤ u(1), u(2) ≤ 1},
and the random vector takes values in polytope W = {w ∈
R2 | −0.1 ≤ w(1), w(2) ≤ 0.1}. Let Π contain a single linear
predicate π1 : x(1) ≤ 2. In Fig. 2, polytopes X1 and X2 form
the partition of X given by Π, and polytopes X3,X4,X5,X6

form the rest of the one step reachable set of system T , i.e.,
Xout. The game G{Xi} given by this partition has 6 states
and 18 actions. In Fig. 3, we visualize part of the transition
function as follows. In Player 1 state X1, if Player 1 chooses,

e.g., action U{1,2,5}1 that leads from X1 to polytopes X1,X2,X5,

the game is in Player 2 state (X1,U{1,2,5}1) with probability 1.
Actions of Player 2 are the available supports of the action

Figure 2: Partition of state space X of system T
in Ex. 1 given by linear predicates Π. Polytopes
X3, . . . ,X6 form the set Xout.

Player 1

X1

X2X1 X5

...
...

(X1,U
{1,2,5}
1) (X1,U

{1,2,3,5}
1)

Player 1

Player 2

Figure 3: Part of the transition function of the game
G{Xi} constructed in Ex. 1.

over the set {X1,X2,X5}, which are in this case all non-empty
subsets. If Player 2 chooses, e.g., support {X1,X2}, the game
is in Player 1 state X1 or X2 with equal probability 0.5.

The following proposition proves that the game G{Xi} sim-
ulates the linear stochastic system T .

Proposition 1. Let ρ be a trace of the linear stochastic
system T . Then there exists a play g of the game G{Xi} such
that ρ(n) ∈ g(2n− 1) for every n ≥ 1.

Proof. The play g is defined as follows. The states g(2n−
1) = Xi such that ρ(n) ∈ Xi. The states g(2n) = (Xi,UJ

i)
such that there exist u ∈ UJ

i , w ∈ W for which ρ(n + 1) =
Aρ(n) +Bu+ w.

On the other hand, since G{Xi} is only an abstraction of the
system T , it may contain plays that do not correspond to any
trace of the system.

4.2 Game analysis
Let G{Xi} be the 21/2-player game constructed for the lin-

ear stochastic system T and partition {Xi} of its state space
using the procedure from Sec. 4.1. In this section, we identify
partition elements from {Xi} which are part of the solution
set of initial states Xinit as well as those that do not contain
any satisfying initial states from X .

Computing satisfying states. First, we compute the
almost-sure winning set Syes in game G{Xi} with respect to
the GR(1) formula ϕ from Problem 1, i.e.,

Syes = AlmostG{Xi}(ϕ). (8)

We proceed as follows. Let A = (Q, 2Π, δA, q0, (E,F)) be
a deterministic ω-automaton with Büchi implication accep-
tance condition for the GR(1) formula ϕ constructed as de-
scribed in Sec. 2.2. We consider the 21/2-player game P{Xi} =

(SP1 , S
P
2 , Act, δ

P) that is the synchronous product of G{Xi}

and A, i.e., SP1 = S1 × Q, SP2 = S2 × Q, and for every
(Xi, q) ∈ SP1 and UJ

i ∈ Act we have

δP
(
(Xi, q),UJ

i

)(
(Xi,UJ

i), q′)
)

=

δ
(
Xi,UJ

i

)(
(Xi,UJ

i)
)

if δA(q,Π(Xi)) = q′,

0

otherwise,

where Π(Xi) is the set of all linear predicates from Π that are
true on polytope Xi, and similarly, for all ((Xi,UJ

i), q) ∈ SP2
and J ′ ∈ Act we have

δP
(
((Xi,UJ

i), q), J ′
)(

(Xj , q
′)
)

=

δ
(
(Xi,UJ

i), J ′
)(
Xj

)
if q = q′,

0

otherwise.

When constructing the product game, we only consider those
states from S1 × Q and S2 × Q that are reachable from
some (Xi, q0), where q0 is the initial state of the automaton
A. Finally, we consider Büchi implication acceptance con-
dition (EP , FP), where EP = (SP1 ∪ SP2) × E and FP =
(SP1 ∪ SP2)× F .

Proposition 2. The set Syes defined in Eq. (8) consists of
all Xi ∈ S1 for which (Xi, q0) ∈ SPyes , where the set

SPyes = AlmostP{Xi}((EP , FP)) (9)

can be computed using algorithm in App. A.

Proof. Follows directly from the construction of the game
P{Xi} above and the results of [6].

The next proposition proves that the polytopes from Syes

are part of the solution to Problem 1.

Proposition 3. For every Xi ∈ Syes , there exists a finite-
memory strategy CT for T such that every trace of T under
strategy CT that starts in any x ∈ Xi satisfies ϕ with proba-
bility 1.

Proof. Let Xi ∈ Syes and let CG{Xi}
be a finite-memory

almost-sure winning strategy for Player 1 from state Xi in
game G{Xi}, see Sec. 2.3. Let CT be a strategy for T defined
as follows. For a finite trace σT , let CT (σT) = u, where u ∈
CG{Xi}

(σG{Xi}
), where σG{Xi}

is finite play such that σT (n) ∈
σG{Xi}

(2n) for every 1 ≤ n ≤ |σT |. Since CG{Xi}
for game

G{Xi} is almost-sure winning from state Xi with respect to ϕ,
i.e., every play that starts in Xi almost-surely satisfies ϕ, the
analogous property holds for CT and traces in T .

Computing non-satisfying states. Next, we consider the
set Sno of Player 1 states in game G{Xi} defined as follows:

Sno = S1 \ Almost
Gcoop{Xi}(ϕ). (10)

Intuitively, Sno is the set of states, where even if Player 2
cooperates with Player 1, ϕ can still not be satisfied with
probability 1.

Proposition 4. The set Sno defined in Eq. (10) consists
of all Xi ∈ S1 for which (Xi, q0) ∈ SPno , where

SPno = SP1 \ Almost
Pcoop

{Xi}((EP , FP)). (11)

Proof. Follows directly from the construction of the prod-
uct game P{Xi}.

Figure 4: Solution of the game in Ex. 2. The
polytopes, i.e., Player 1 states, that belong to sets
Syes, Sno, S? are shown in green, white and light blue,
respectively.

We prove that no state x ∈ Xi for Xi ∈ Sno is part of the
solution to Problem 1.

Proposition 5. For every Xi ∈ Sno and x ∈ Xi, there
does not exist a strategy CT for T such that every trace of T
under CT starting in x satisfies ϕ with probability 1.

Proof. Intuitively, from the construction of the game
G{Xi} in Sec. 4.1, Player 2 represents the unknown precise
state of the system T within in the abstraction, i.e., he makes
the choice of a state inside each polytope Xi at each step.
Therefore, if ϕ cannot be almost-surely satisfied from Xi in
the game even if the two players cooperate, in T it translates
to the fact that ϕ cannot be almost-surely satisfied from any
x ∈ Xi even if we consider strategies that can moreover change
inside each Xi arbitrarily at any moment.

Undecided states. Finally, consider the set

S? = S1\(Syes ∪ Sno). (12)

These are the polytopes within the state space of T that have
not been decided as satisfying or non-satisfying due to coarse
abstraction. Alternatively, from Prop. 2 and 4, and Eq. (12),
we can define the set S? as the set of all Xi ∈ S1, for which
(Xi, q0) ∈ SP? , where

SP? = SP1 \(SPyes ∪ SPno). (13)

Proposition 6. For every Xi ∈ S? it holds that the product
game P{Xi} can be won cooperatively starting from the Player

1 state (Xi, q0). Analogously, for every (Xi, q) ∈ SP? it holds
that the product game P{Xi} can be won cooperatively starting
from (Xi, q).

Proof. The proposition follows directly from Eq. (12) and
(13), and Prop. 2 and 4.

Example 2. (Illustrative example, part II) Recall the
linear stochastic system T from Ex. 1 and consider GR(1)
formula F¬π1 over the set Π that requires to eventually reach
a state x ∈ X such that x(1) ≥ 2. The deterministic ω-
automaton for the formula has only two states, q0 and q1.
The automaton remains in the initial state q0 until polytope
X2 is visited in T . Then it transits to state q1 and remains
there forever. The Büchi implication condition (E,F) is E =
{q0}, F = {q1}. The solution of the game G{Xi} constructed in
Ex. 1 with respect to the above formula is depicted in Fig. 4.

If the set Sno contains all Player 1 states of the game G{Xi},
the GR(1) formula ϕ cannot be satisfied in the system T and

our algorithm terminates. If set S? is empty, the algorithm
terminates and returns the union of all polytopes from Syes

as the solution to Problem 1. The corresponding satisfying
strategies are synthesized as described in the proof of Prop. 3.
Otherwise, we continue the algorithm by computing a refined
partition of the state space X as described in the next section.

4.3 Refinement
Refinement is a heuristic that constructs a new partition of
X , a subpartition of {Xi}, that is used in the next iteration of
the overall algorithm. We design two refinement procedures,
called positive and negative, that aim to enlarge the combined
volume of polytopes in the set Syes and Sno, respectively, or
equivalently, to reduce the combined volume of polytopes in
the set S?. Based on Prop. 2 and 4, both procedures are formu-
lated over the product game P{Xi} and reach their respective

goals through refining polytopes Xi for which (Xi, q) ∈ SP? for
some q ∈ Q.

In this section, we use Jq
yes to denote the set of all indices

i ∈ I for which (Xi, q) ∈ SPyes, and Jq
? , J

q
no are defined analo-

gously. In the two refinement procedures, every polytope Xi

can be partitioned into a set of polytopes in iterative manner,
as (Xi, q) ∈ SP? can hold for multiple q ∈ Q. Therefore, given
a partition of Xi, the refinement of Xi according to a polytope
B refers to the partition of Xi that contains all intersections
and differences of elements of the original partition of Xi and
polytope B.

Positive refinement. In the positive refinement, we explore
the following property of states in SP? . In Prop. 6, we proved
that the product game P{Xi} can be won cooperatively from

every (Xi, q) ∈ SP? . It follows that there exists a Player 1 ac-
tion UJ

i and Player 2 action J ′ such that after their application
in (Xi, q), the game is not in a losing state with probability 1.
We can graphically represent this property as follows:

(Xi, q)
UJ
i−−→ ((Xi,UJ

i), q′)
J′
−→

(Xj1 , q

′)
...

(Xjn , q
′)

(14)

where an arrow a
b−→ represents the uniform probability distri-

bution δP(a, b), and {j1, . . . , jn} = J ′ ⊆ Jq′
yes ∪ Jq′

? . Note that
from the construction of the product game P{Xi} in Sec. 2.3

it follows that q′ is given uniquely over all actions UJ
i . The

following design ensures that every polytope Xi is refined at
least once for every its appearance (Xi, q) ∈ SP? , q ∈ Q.

Let (Xi, q) ∈ SP? . The positive refinement first refines Xi

according to the robust predecessor

PreR(Xi,U , {Xj}
j∈Jq′

yes
). (15)

That means, we find all states x ∈ Xi for which there exists
any control input under which the system T evolves from x

to a state x′ ∈ Xj , j ∈ Jq′
yes.

Next, the positive refinement considers three cases. First,
assume that from (Xi, q), the two players can cooperatively
reach a winning state of the product game in two steps with
probability 1, and let UJ

i and J ′ be Player 1 and Player 2
actions, respectively, that accomplish that, i.e., in Eq. (14),

{j1, . . . , jn} = J ′ ⊆ Jq′
yes. For every such UJ

i , J
′, we find

an (arbitrary) partition {Uy}y∈Y of the polytope UJ
i and we

partition Xi according to the robust attractors

AttrR(Xi,Uy, {Xj}
j∈Jq′

yes
). (16)

Intuitively, the above set contains all x ∈ Xi such that under
every control input u ∈ Uy, T evolves from x to a state x′ ∈
Xj , j ∈ Jq′

yes. Note that the robust attractor sets partition
the robust predecessor set from Eq. (15), as every state x that
belongs to one of the robust attractor set must lie in the robust
predecessor set as well. In the next iteration of the overall
algorithm, the partition elements given by the robust attractor
sets will belong to the set SPyes. In the second case, assume
that the two players can reach a winning state of the product
game cooperatively in two steps, but only with probability
0 < p < 1, while the probability of reaching a losing state is
0. Let UJ

i , J
′ be Player 1 and Player 2 actions, respectively,

that maximize p, i.e., in Eq. (14), there exists m < n such

that {j1, . . . , jm} = J ′ ∩ Jq′
yes, {jm+1, . . . , jn} = J ′ ∩ Jq′

? and
p = m

n
is maximal. Similarly as in the first case, we refine

the polytope Xi according to the robust attractor sets as in
Eq. (16), but we compute the sets with respect to the set

of indices Jq′
yes ∪ {jm+1, . . . , jn}. Finally, assume that (Xi, q)

does not belong to any of the above two categories.As argued
at the beginning of this section, there still exist Player 1 and
Player 2 actions UJ

i and J ′, respectively, such that in Eq. (14),

{j1, . . . , jn} = J ′ ⊆ Jq′

? . Again, we refine the polytope Xi

according to the robust attractor sets as in Eq. (16), where

the sets are computed with respect to the set of indices Jq′

? .

Example 3. (Illustrative example, part III) We de-
monstrate a part of the the positive refinement for the game
in Ex. 2. Consider polytope X1 ∈ S?. It follows from the form
of the ω-automaton in Ex. 2 that X1 appears in SP? only in
pair with q0, i.e., (X1, q0) ∈ SP? . Note that for state (X1, q0),
every successor state is of the form ((X1,UJ

1), q0), i.e., q′ =
q0. First, polytope X1 is refined with respect to the robust
predecessor

PreR(X1,U , {X2}),

since Jq0
yes = {X2} because (X2, q0) ∈ SPyes is a winning state

of the product game. The robust predecessor set is depicted
in Fig. 5 in cyan. Next, we decide which of the three cases
described in the positive refinement procedure above applies to

state (X1, q0). Consider for example Player 1 action U{1,2,5}1

and Player 2 action {2}, as shown in Fig. 3. It holds that

(X1, q0)
U{1,2,5}
1−−−−−→ ((X1,U{1,2,5}1), q0)

{2}−−→ (X2, q0),

and (X2, q0) ∈ SPyes is a winning state of the product game.
Therefore, the state (X1, q0) is of the first type. To further
refine polytope X1, we first partition the polytope

U{1,2,5}1 = {u ∈ U | 0.1 ≤ u(1), u(2) ≤ 1},

e.g., into 4 parts as shown in Fig. 5 on the right. The robust
attractor

AttrR(X1,U3, {X2})

for one of the polytopes U3 is depicted in magenta in Fig. 5.
This polytope will be recognized as a satisfying initial polytope
in the next iteration, since starting in any x within the robust
predecessor, system T as defined in Ex. 1 evolves from x under
every control input from U3 to polytope X2.

Negative refinement. In the negative refinement, we con-
sider all Player 1 states (Xi, q) ∈ SP? such that if Player 2 does
not cooperate, but rather plays against Player 1, the game is
lost with non-zero probability. In other words, for every Player
1 UJ

i , there exists a Player 2 action J ′ such that in Eq. (14),

Figure 5: Part of the positive refinement for the sys-
tem in Ex. 3. Polytope X1 is first refined according
to the robust predecessor as in Eq. (15), the robust
predecessor is shown in cyan. Next, we consider the

polytope of control inputs U{1,2,5}1 and its partition as
depicted on the right. The robust predecessor of U3

is then shown in magenta.

there exists an index j ∈ J ′ such that (Xj , q
′) ∈ SPno. In this

case, we refine polytope Xi according to the attractor set

Attr(Xi,U , {Xj}
j∈Jq′

no
).

Intuitively, the attractor set contains all states x ∈ Xi such
that by applying any control input u ∈ U , system T evolves

from x to a state in Xj for some j ∈ Jq′
no with non-zero prob-

ability. In the next iteration of the algorithm, the partition
elements given by the attractor set will belong to the set SPno.

Remark 1. We remark that both game theoretic aspects as
well as the linear stochastic dynamics play an important role
in the refinement step. The game theoretic results compute the
undecided states, and thereby determine what parts of the state
space need to be refined and which actions need to be considered
in the refinement. The linear stochastic dynamics allow us to
perform the refinement itself using polytopic operators.

4.4 Correctness and complexity
We prove that the algorithm presented in this section pro-

vides a partially correct solution to Problem 1.
For n ∈ N, let Sn

yes , S
n
no be the sets from Eq. (8) and (10),

respectively, computed in the n-th iteration of the algorithm
presented above. We use Xn

yes ,Xn
no ⊆ X to denote the union

of polytopes from Sn
yes and Sn

no , respectively.

Theorem 1. (Progress) For every n ∈ N, it holds that
Xn

yes ⊆ Xn+1
yes and Xn

no ⊆ Xn+1
no .

Proof. Follows from Prop. 2 and 4, and the fact that the
partition of the state space X used in n + 1-th iteration is a
subpartition of the one used in n-th iteration.

Theorem 2. (Soundness) For every n ∈ N, it holds that
Xn

yes ⊆ Xinit and Xn
no ⊆ X\Xinit.

Proof. Follows directly from Prop. 3 and 5.

Theorem 3. (Partial Correctness) If the algorithm
from Sec. 4 terminates, after n-th iteration, then Xinit = Xn

yes

is the solution of Problem 1 and the corresponding winning
strategies for every x ∈ Xinit are given by the winning strate-
gies in the 21/2-player game from the last iteration.

Proof. Follows directly from the condition of the algo-
rithm termination and from Th. 1 and 2.

It is important to note that if instead of a 21/2-player game
a weaker abstraction model such as a 2 player game, i.e.,
the NTS from Sec. 4.1, was used, our approach would not
be sound. Namely, some states of X might be wrongfully
identified as non-satisfying initial states based on behavior
that has zero probability in the original stochastic system. In
such a case, even after termination, the resulting set would
only be a subset of Xinit. Therefore, the approach with 2-
player games is not complete. The 21/2-player game is needed
to account for both the non-determinism introduced by the
abstraction and for the stochasticity of the system to be able
to recognize (non-satisfying) behavior of zero probability.

Note that there exist linear stochastic systems for which our
algorithm does not terminate, i.e., there does not exist a finite
partition of the systems’ state space over which Problem 1 can
be solved for a given GR(1) formula.

Example 4. (Non-termination) Let T be a linear sto-
chastic system of the form given in Eq. (4), where

A =

(
1 0
0 1

)
, B =

(
1 0
0 1

)
,

state space X = {x ∈ R2 | 0 ≤ x(1), x(2) ≤ 3}, control
space U = {u ∈ R2 | −1.5 ≤ u(1), u(2) ≤ 1.5} and the ran-
dom vector takes values in polytope W = {w ∈ R2 | −0.5 ≤
w(1), w(2) ≤ 0.5}. Let Π contain four linear predicates that
partition the state space into a grid of three by three equally
sized square polytopes. Assume that the aim is to eventually
reach the polytope Xf , where 1 ≤ x(1), x(2) ≤ 2. In this case,
the maximal set Xinit of states from which Xf can be reached
with probability 1 is the whole state space X , as for any x ∈ X ,
there exists exactly one control input u = (1.5, 1.5) − x ∈ U
that leads the system T from x to a state in X5 with probability
1. Since the control input is different for every x ∈ X , there
does not exist any finite state space partition, which could be
used to solve Problem 1.

Complexity analysis. Finally, let us analyze the computa-
tional complexity of the designed algorithm. In the abstrac-
tion part, the 21/2-player game G{Xi} requires to first compute

the set of actions for every state Xi, i ∈ I, in time in O(2|I|)
using algorithm in App. B.1. For every action UJ

i , the set
of valid supports J ′ ⊆ J is then computed in time in O(2J),

see App. B. Overall, the abstraction runs in time in O(22·|I|).
The game is then analyzed using the algorithm described in
App. A in time in O(|I|3). Finally, the refinement proce-
dure iteratively refines every polytope Xi at most |Q|×|{UJ

i }|
times, where {UJ

i } denotes the set of all actions of Xi. For
every q ∈ Q such that (Xi, q) ∈ SP? , Xi is first refined using

the robust predecessor operator in time exponential in |Jq′
yes|.

Then Xi is refined |Y | times using the robust attractor op-
erator in polynomial time. Negative refinement is performed
again for every q ∈ Q such that (Xi, q) ∈ SP? , using the at-
tractor operator in polynomial time. Overall, the refinement
runs in time in O(|Q| · 2|I|).

As the game construction is the most expensive part of the
overall algorithm, the refinement procedure is designed in a
way that extends both sets Syes, Sno as much as possible and
thus speed up convergence and minimize the number of iter-
ations of the overall algorithm.

5. CASE STUDY
We demonstrate the designed framework on a discrete-time

double integrator dynamics with uncertainties. Let T be a

Algorithm 1 Computing the set Xinit ⊆ X of states from
which a set of polytopes {Xj}j∈J in X can be reached with
probability 1.

Input: linear stochastic system T , polytopes {Xj}j∈J
X>0 ← {Xj}j∈J ;
while X>0 is not a fixed point do
X>0 ← Pre(X ,U ,X>0);

end while
X=0,attr ← Xout ∪ X\X>0;
while X=0,attr is not a fixed point do
X=0,attr ← Attr(X ,U ,X=0,attr);

end while
X=1 ← X\X=0,attr;
return: X=1

linear stochastic system of the form given in Eq. (4), where

A =

(
1 1
0 1

)
, B =

(
0.5
1

)
. (17)

The state space is X = {x ∈ R2 | −5 ≤ x(1) ≤ 5,−3 ≤ x(2) ≤
3} and the control space is U = {u ∈ R | −1 ≤ u ≤ 1}. The
random vector, or uncertainty, takes values within polytope
W = {w ∈ R2 | −0.1 ≤ w(1), w(2) ≤ 0.1}. The set Π consists
of 4 linear predicates π1 : x(1) ≤ −1, π2 : x(1) ≤ 1, π3 :
x(2) ≤ −1, π4 : x(2) ≤ 1. We consider GR(1) formula

F(¬π1 ∧ π2 ∧ ¬π3 ∧ π4)

that requires the system to eventually reach a state, where
both variables of the system have values in interval (−1, 1).

As we consider a reachability property, we can compare our
approach to the algorithm shown in Alg. 1 that is an extension
of the reachability algorithm for Markov decision processes [2]
to linear stochastic systems. Intuitively, the algorithm finds
the set Xinit using two fixed-point computations. The first
one computes the set of all states that can reach the given
target polytopes with non-zero probability. As a result, the
remaining states of the state space X have zero probability of
reaching the target polytopes. The second fixed-point compu-
tation finds the attractor of this set, i.e., all states that have
non-zero probability, under each control input from U , of ever
transiting to a state from which the target polytopes cannot
be reached. Finally, the complement of the attractor is the
desired set Xinit.

Note that Alg. 1 operates directly on the linear stochas-
tic system. It performs polytopic operations only, and it
involves neither refinement nor building a product with an
automaton. Therefore, it performs considerably faster than
the abstraction-refinement algorithm from Sec. 4, as shown in
Tab. 2. However, it has two serious drawbacks.

Firstly, Alg. 1 computes the set of satisfying initial states of
the system, but no satisfying strategy. In extreme cases, every
state may use a different control input in order to reach poly-
topes computed during the fixed-point computations, as in
Ex. 4. In order to extract a finite satisfying strategy (if there
is one), these polytopes have to be partitioned to smaller poly-
topes so that a fixed input can be used in all states of the new
polytope. This partitioning is exactly the refinement proce-
dure that our method performs when applied to reachability.
Note that simpler refinement methods such as constructing
only the NTS N{Xi}, which is the first step of the abstraction
in Sec. 4.1, are not sufficient, see App. C. The whole 21/2-
player game abstraction presented in Sec. 4.1 is necessary for
ensuring the correctness of the strategy.

Secondly, Alg. 1 cannot be used for more complex proper-

Table 2: Statistical comparison of the specialized al-
gorithm for reachability and our approach.

Algorithm 1

1st fixed point: in 7 iterations, in <1 sec.

2nd fixed point: in 1 iteration, in <1 sec.

Abstraction-refinement from Sec. 4

Initial partition: in 3 sec.

game: 13 states, 27 actions

1st iteration: in 7 min.

game: 85 states, 712 actions

2nd iteration: in 19 min.

game: 131 states, 1262 actions

3rd iteration: in 56 min.

game: 250 states, 2724 actions

ties than reachability. For more complex formulas, the prod-
uct of the game with the automaton for the formula needs
to be considered, since a winning strategy may require mem-
ory and pure polytopic methods can only provide memoryless
strategies. In contrast, our abstraction-refinement approach
designed in Sec. 4 works for general GR(1) properties. More-
over, it could easily be extended to the whole LTL at the cost
of a higher complexity.

We implemented both algorithms in Matlab, on a dual-
core Intel i7 processor with 8 GB of RAM. The results are
summarized in Fig. 6 and Tab. 2. For Alg. 1, the set Xinit

was computed fast but it is a single polytope that does not
provide any information about the satisfying strategies. For
the abstraction-refinement algorithm, we computed the initial
game and the following three iterations. Unlike for Alg. 1, in
every iteration, a satisfying strategy for a state x in the partial
solution is constructed as described in the proof of Prop. 3.

6. CONCLUSION AND FUTURE WORK
In this work, we considered the problem of computing the

set of initial states of a linear stochastic system such that
there exists a control strategy to ensure a GR(1) specification
over states of the system. The solution is based on iterative
abstraction-refinement using a 21/2-player game. Every itera-
tion of the algorithm provides a partial solution given as a set
of satisfying initial states with the satisfying strategies, and a
set of non-satisfying initial states.

While the algorithm guarantees progress and soundness in
every iteration, it’s complexity calls for more efficient imple-
mentation. The analyzed case study with a reachability prop-
erty indicates that the current design would be too complex to
deal with more complex properties such as persistent surveil-
lance. In our future work, we aim to design efficient heuristic
refinements that minimize the overall computation time for
both reachability and general GR(1).
Acknowledgement We thank Ebru Aydin Gol for useful dis-
cussions on the abstraction and polytopic computations.

7. REFERENCES
[1] A. Abate, A. D’Innocenzo, and M.D. Di Benedetto.

Approximate Abstractions of Stochastic Hybrid
Systems. IEEE TAC, 56(11):2688–2694, 2011.

Algorithm 1

Initial partition First fixed-point alg. Second fixed-point alg. Final result

Abstraction-refinement from Sec. 4

Initial partition First iteration Second iteration Third iteration

Figure 6: Simulation of Alg. 1 and the abstraction-refinement algorithm. For Alg. 1, we first depict the initial
partition of X according to Π, with the polytope we aim to reach in green. The following columns show the two
fixed point sets, in blue and red, respectively. The last column shows the resulting set Xinit. For the abstraction-
refinement from Sec. 4, we depict the results of for the initial partition and the next three iterations, where
polytopes from sets Syes, S?, Sno are shown in green, light blue and white, respectively.

[2] C. Baier and J.P. Katoen. Principles of model checking.
The MIT Press, 2008.

[3] J. R. Büchi and L. H. Landweber. Solving sequential
conditions by finite-state strategies. Trans. Amer. Math.
Soc., 138:367–378, 1969.

[4] K. Chatterjee. Stochastic ω-Regular Games. PhD thesis,
UC Berkeley, 2007.

[5] K. Chatterjee, M. Chmelik, and P. Daca. CEGAR for
qualitative analysis of probabilistic systems. In CAV,
pages 473–490, 2014.

[6] K. Chatterjee, L. de Alfaro, and T. A. Henzinger.
Qualitative concurrent parity games. ACM TOCL,
12(4), 2011.

[7] K. Chatterjee and T. A. Henzinger. A survey of
stochastic ω-regular games. JCSS, 78(2):394–413, 2012.

[8] K. Chatterjee, T. A. Henzinger, R. Jhala, and
R. Majumdar. Counterexample-guided planning. In
UAI, 2005.

[9] A. Church. Applications of recursive arithmetic to the
problem of circuit synthesis. Summaries of the Summer
Institute of Symbolic Logic, Cornell Univ., I:3–50, 1957.

[10] E. M. M. Clarke, D. Peled, and O. Grumberg. Model
checking. MIT Press, 1999.

[11] A. Girard. Synthesis using approximately bisimilar
abstractions: state-feedback controllers for safety
specifications. In Proc. of HSCC, pages 111–120, 2010.

[12] E. A. Gol, X. Ding, M. Lazar, and C. Belta. Finite
Bisimulations for Switched Linear Systems. In Proc. of
IEEE CDC, pages 7632–7637, 2012.

[13] E. A. Gol, M. Lazar, and C. Belta. Language-guided
controller synthesis for discrete-time linear systems. In
Proc. of HSCC, pages 95–104, 2012.

[14] M. Guo, K. H. Johansson, and D. V. Dimarogonas.
Revising motion planning under Linear Temporal Logic

specifications in partially known workspaces. In Proc. of
IEEE ICRA, pages 5025–5032, 2013.

[15] E. M. Hahn, G. Norman, D. Parker, B. Wachter, and
L. Zhang. Game-based Abstraction and Controller
Synthesis for Probabilistic Hybrid Systems. In Proc. of
QEST, pages 69–78, 2011.

[16] T. A. Henzinger, R. Jhala, and R. Majumdar.
Counterexample-guided control. In ICALP, 2003.

[17] A. A. Julius, A. Girard, and G. J. Pappas. Approximate
bisimulation for a class of stochastic hybrid systems. In
Proc. of IEEE ACC, pages 4724–4729, 2006.

[18] M. Kattenbelt, M. Kwiatkowska, G. Norman, and
D. Parker. A game-based abstraction-refinement
framework for Markov decision processes. Formal
Methods in System Design, 36(3):246–280, 2010.

[19] M. Lahijanian, S. B. Andersson, and C. Belta.
Approximate Markovian abstractions for linear
stochastic systems. In Proc. of IEE CDC, pages
5966–5971, 2012.

[20] P. Nilsson and N. Ozay. Incremental synthesis of
switching protocols via abstraction refinement. In Proc.
of IEEE CDC, pages 6246–6253, 2014.

[21] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of
Reactive(1) Designs. In Proc. of VMCAI, volume 3855
of LNCS, pages 364–380. 2006.

[22] A. Pnueli and R. Rosner. On the Synthesis of a Reactive
Module. In Proc. of POPL, pages 179–190, 1989.

[23] M. Svorenova, I. Cerna, and C. Belta. Optimal Control
of MDPs with Temporal Logic Constraints. In Proc. of
IEEE CDC, pages 3938–3943, 2013.

[24] M. Svorenova, I. Cerna, and C. Belta. Optimal Receding
Horizon Control for Finite Deterministic Systems with
Temporal Logic Constraints. In Proc. of IEEE ACC,
pages 4399–4404, 2013.

[25] P. Tabuada and G. Pappas. Model checking LTL over
controllable linear systems is decidable. In Proc. of
HSCC, volume 2623 of LNCS, pages 498–513. 2003.

[26] U. Topcu, N. Ozay, J. Liu, and R. M. Murray.
Synthesizing Robust Discrete Controllers Under
Modeling Uncertainty. In Proc. of ACM HSCC, pages
85–94, 2012.

[27] E. M. Wolff, U. Topcu, and R. M. Murray. Robust
control of uncertain markov decision processes with
temporal logic specifications. In Proc. of IEEE CDC,
pages 3372–3379, 2012.

[28] B. Yordanov, J. Tumova, I. Cerna, J. Barnat, and
C. Belta. Temporal Logic Control of Discrete-Time
Piecewise Affine Systems. IEEE TAC, 57:1491–1504,
2012.

APPENDIX
A. SOLVING A 21/2-PLAYER GAME

Here we present an algorithm to solve the almost-sure win-
ning problem for a 21/2-player game G = (S1, S2, Act, δ) with
a Büchi implication condition (E,F), where E,F ⊆ S. The
optimal solution is a rather involved, quadratic time algorithm
that can be found in [4]. In this work, we use a more intuitive,
cubic time algorithm presented in Alg. 2, whose correctness
follows from [6]. The algorithm is a simple iterative fixed-point
algorithm that uses three types of local predecessor operator
over the set of states of the game.

Consider sets X,Y, Z such that Y ⊆ Z ⊆ X ⊆ S. Given a
state s ∈ S and an action a ∈ Act, we denote by Succ(s, a) =
Supp(δ(s, a)) the set of possible successors of the state and the
action. We define conditions on state action pairs as follows:

C1(X) = {(s, a) |Succ(s, a) ⊆ X},
C2(X,Y) = {(s, a) |Succ(s, a) ⊆ X and

Succ(s, a) ∩ Y 6= ∅},
C3(Z,X, Y) = {(s, a) |(Succ(s, a) ⊆ Z) or

(Succ(s, a) ⊆ X and

Succ(s, a) ∩ Y 6= ∅)}.

The first condition ensures that given the state and action the
next state is in U with probability 1, the second condition
ensures that the next state is in X with probability 1 and in
Y with positive probability. The third condition is the dis-
junction of the first two. The three predecessor operators are
defined as the set of Player 1, or Player 2 states, where there
exists, or for all, respectively, actions, the condition for the
predecessor operator is satisfied. The three respective prede-
cessor operators, namely, Pre1,Pre2, and Pre3 are defined as
follows:

Pre1(X) ={s ∈ S1 | ∃a ∈ Act. (s, a) ∈ C1(X)} ∪
{s ∈ S2 | ∀a ∈ Act. (s, a) ∈ C1(X)},

Pre2(X,Y) ={s ∈ S1 | ∃a ∈ Act. (s, a) ∈ C2(X,Y)} ∪
{s ∈ S2 | ∀a ∈ Act. (s, a) ∈ C2(X,Y)},

Pre3(Z,X, Y) ={s ∈ S1 | ∃a ∈ Act. (s, a) ∈ C3(Z,X, Y)} ∪
{s ∈ S2 | ∀a ∈ Act. (s, a) ∈ C3(Z,X, Y)}.

B. POLYTOPIC OPERATORS
In this section, we describe in detail the computation of

all polytopic operators introduced in Sec. 4 and used in our
solution to Problem 1.

Algorithm 2 Algorithm for AlmostG(ϕ)

Input: game G, acc. condition (E,F), D = S \ (E ∪ F);

Set: X,Y, Z,X, Y , Z;
X ← S; Z ← S; Y ← ∅; . Initialization
do

X ← X
do

Y ← Y ;
do

Z ← Z;
Z ← (F ∩ Pre1(X)) ∪ (E ∩ Pre2(X,Y))∪

(D ∩ Pre3(Z,X, Y);

while Z 6= Z
Y ← Z;
Z ← S;

while Y 6= Y
X ← Y
Y ← ∅;

while X 6= X
return: X

B.1 Action polytopes
First, we describe how to compute the action polytopes UJ

i

for every polytope Xi ∈ {Xi}i∈I , formally defined in Eq. (6).

For a polytope X ′ ⊂ RN , we use UXi→X ′
to denote the

set of all control inputs from U under which the system T
can evolve from a state in Xi to a state in X ′ with non-zero
probability, i.e.,

UXi→X ′
= {u ∈ U |Post(Xi, u) ∩ X ′ is non-empty}. (18)

The following proposition states that UXi→X ′
can be com-

puted from the V-representations of Xi,X ′ and W.

Proposition 7. Let H,K be the matrices from the H-
representation of the following polytope:

{y ∈ RN | ∃x ∈ Xi, ∃w ∈ W : Ax+ y + w ∈ X ′}, (19)

which can be computed as the convex hull

hull({vX ′ − (AvXi + vW) | vX ′ ∈ V (X ′),
vXi ∈ V (Xi), vW ∈ V (W)}). (20)

Then the set UXi→X ′
defined in Eq. (18) is the polytope with

the following H-representation:

UXi→X ′
= {u ∈ U | HBu ≤ K}. (21)

Proof. To fact that the set in Eq. (19) is a polytope with
the V-representation given in Eq. (20) can be easily shown as
follows. Let y ∈ RN be such that there exist x ∈ Xi, w ∈
W, x′ ∈ X ′ for which Ax+y+w = x′, i.e., y = x′− (Ax+w).
By representing x′, x and w as an affine combination of the
respective vertices in V (X ′), V (Xi) and V (W), we obtain the
V-representation in Eq. (20). Next, let H,K be the matrices
from the H-representation of the set in Eq. (19). Then the

definition of set UXi→X ′
in Eq. (18) can be written as

UXi→X ′
= {u ∈ U |∃x ∈ Xi,∃w ∈ W :

Ax+Bu+ w ∈ X ′},

that leads to H-representation in Eq. (21).

Corollary 1. Let J ⊆ I ∪ Iout. The set UJ
i from Eq. (6)

can be computed as follows:

UJ
i =

⋂
j∈J

UXi→Xj\
⋃
j′ 6∈J

UXi→Xj′ . (22)

Proof. Follows directly from Eq. (6) and (18).

Note that UJ
i is generally not a polytope but can be repre-

sented as a finite union of polytopes.

B.2 Posterior
The posterior operator Post(X ′,U ′), formally defined in

Tab. 1, can be easily computed using Minkowski sum as

Post(X ′U ′) = AX ′ +BU ′ +W
= hull({AvX ′ +BvU′ + vW | vX ′ ∈ V (X ′),

vU′ ∈ V (U ′), vW ∈ V (W)}).

B.3 Predecessor
The predecessor operator Pre(X ′,U ′, {Xj}j∈J), formally de-

fined in Tab. 1, can be computed as follows. First, note that

Pre(X ′,U ′, {Xj}j∈J) =
⋃
j∈J

Pre(X ′,U ′,Xj).

Proposition 8. Let H,K be the matrices from the H-
representation of the following polytope:

{y ∈ RN | ∃u ∈ U ′, ∃w ∈ W : y +Bu+ w ∈ Xj},

which can be computed as the convex hull

hull({vXj − (BvU′ + vW) | vXj ∈ V (Xj),

vU′ ∈ V (U ′), vW ∈ V (W)}).

Then the set Pre(X ′,U ′,Xj) is the polytope with the following
H-representation:

Pre(X ′,U ′,Xj) = {x ∈ X ′ | HAx ≤ K}.

Proof. The proof is analogous to the one of Prop. 7.

B.4 Robust and precise predecessor
From definitions of the robust and precise predecessor op-

erators in Tab. 1 it follows that

PreR(X ′,U ′, {Xj}j∈J) =⋃
J′⊆J,J′ 6=∅

PreP(X ′,U ′, {Xj}j∈J′).

Below we describe the computation of the precise predecessor
PreP(X ′,U ′, {Xj}j∈J′) for any J ′ ⊆ J .

Let Z denote the polytope, or finite union of polytopes,
Z = AX ′ +BU ′, where + denotes the Minkowski sum. For a
polytope P ⊂ RN , we define set

Z(P) = {z ∈ Z | (z +W) ∩ P is non-empty}. (23)

For a set of polytopes {P}, Z({P}) can be computed as the
union of all Z(P) for every polytope P in the set {P}.

Proposition 9. The set from Eq. (23) is the following
polytope, or finite union of polytopes:

Z(P) = hull({vP − vW |vP ∈ V (P),

vW ∈ V (W)}) ∩ Z. (24)

Proof. The proof is carried out in a similar way as the
first part of proof of Prop. 7.

Algorithm 3 Computing the set Xinit ⊆ X of states from
which a set of polytopes {Xj}j∈J in X can be reached with
probability 1, using abstraction to a NTS.

Input: linear stochastic system T , partition {Xi}i∈I of
state space X , subset J ⊆ I
X>0 ← ∅
X ′>0 ← {Xj}j∈J
while X>0 6= X ′>0 do
X>0 ← X ′>0;
construct NTS N{Xi} for current partition (Sec. 4.1)
for every state Xi 6⊆ X>0 do

refine Xi according to Pre(Xi,U ,X>0);
X ′>0 ← X ′>0 ∪ Pre(Xi,U ,X>0);

end for
end while
X=0,attr ← Xout ∪ X
X ′=0,attr ← Xout ∪ X\X>0

while X=0,attr 6= X ′=0,attr do
X=0,attr ← X ′=0,attr;
construct NTS N{Xi} for current partition (Sec. 4.1)
for every state Xi s.t. all actions lead to X=0,attr do

refine Xi according to Attr(Xi,U ,X=0,attr);
X ′=0,attr ← X ′=0,attr ∪Attr(Xi,U ,X=0,attr);

end for
end while
X=1 ← X\X=0,attr;
return: X=1

For J ′ ⊆ J , we use Z(J ′) to denote the set

Z(J ′) =
⋂
j∈J′

Z(Xj)\
(⋃
j∈J\J′

Z(Xj) ∪ Z(X¬J)
)
, (25)

where Z(X¬J) = Z((X ∪ Xout)\
⋃
j∈J
Xj).

Proposition 10. Let U ′ = {Ul1}l1∈L1 , J ⊆ J ′ and let
Z(J ′) = {Zl2}l2∈L2 . Then the precise predecessor can be writ-
ten as

PreP(X ′,U ′, {Xj}j∈J′) =
⋃

l1∈L1

⋃
l2∈L2

{x ∈ X ′ |

∃u ∈ Ul1 : Ax+Bu ∈ Zl2}. (26)

Let l1 ∈ L1, l2 ∈ L2 and let H,K be the matrices from the
H-representation of the following polytope:

{y ∈ RN | ∃u ∈ Ul1 : y +Bu ∈ Zl2}, (27)

which can be computed as the convex hull

hull({vZl2
−BvUl1 | vZl2

∈ V (Zl2), vUl1 ∈ V (Ul1)}). (28)

Then the set on the right-hand site of Eq. (26), for l1, l2, is a
polytope with the following H-representation:

{x ∈ X ′ | HAx ≤ K}. (29)

Proof. From the definition of the set Z(J ′) in Eq. (25),
z ∈ Z(J ′) iff z +W intersects all Xj for j ∈ J ′ and z +W ⊆⋃
j∈J′
Xj . Moreover, every z ∈ Z can be written as z = Ax+Bu

and therefore z +W = Post(x, u). This proves Eq. (26). The
rest of the proof is carried out in a way similar to the proof of
Prop. 7.

Algorithm 3

Initial partition First fixed-point alg. Second fixed-point alg. Final result

Figure 7: Results obtained from simulation of Alg. 3 for the case study from Sec. 5. In the first column, we
depict the initial partition of X according to Π and polytopes from Xout, with the polytope we aim to reach in
green. The following columns show the fixed point sets, in blue and red, respectively, together with the obtained
partition. The last column shows the resulting set Xinit.

B.5 Attractor
The attractor operator Attr(X ′,U ′, {Xj}j∈J) from Tab. 1

can be computed using the robust predecessor operator, since
it holds that

Attr(X ′,U ′, {Xj}j∈J) =

= {x ∈ X ′ | ∀u ∈ U ′ : Post(x, u) ∩
⋃
j∈J

Xj is non-empty}

= X ′\{x ∈ X ′ | ∃u ∈ U ′ : Post(x, u) ⊆ (X ∪ Xout)\
⋃
j∈J

Xj}

= X ′\PreR(X ′,U ′, (X ∪ Xout)\
⋃
j∈J

Xj).

B.6 Robust attractor
The robust attractor operator AttrR(X ′,U ′, {Xj}j∈J) from

Tab. 1 can be computed using the predecessor operator, since
it holds that

AttrR(X ′,U ′, {Xj}j∈J) =

= {x ∈ X ′ | ∀u ∈ U ′ : Post(x, u) ⊆
⋃
j∈J

Xj}

= X ′\{x ∈ X ′ | ∃u ∈ U ′ : Post(x, u) ∩ (X ∪ Xout)\
⋃
j∈J

Xj

is non-empty}

= X ′\Pre(X ′,U ′, (X ∪ Xout)\
⋃
j∈J

Xj).

C. APPROACH COMPARISON
Here, we can compare our abstraction-refinement approach

from Sec. 4 to the algorithm for reachability presented in
Alg. 3. Alg. 3 combines the simple approach from Alg. 1 that
uses only polytopic operations with the abstraction-refinement
method. In every iteration, we build the non-deterministic
transition system N{Xi}, which is the first step of the ab-
straction in Sec. 4.1. The partition {Xi}i∈I is then iteratively
refined using the two fixed-point algorithms as in Alg. 1.

Just like in Alg. 1, Alg. 3 operates directly on the linear
stochastic system. It uses polytopic operators only and does
not build a product with any automaton. Therefore, it per-
forms faster than our approach, as demonstrated below. It
however suffers from the same two serious drawbacks as the
polytopic method. Firstly, it finds the set of satisfying initial
states of the system, but no satisfying strategy. However, in
comparison with Alg. 1, it can provide at least a partial in-

Table 3: Statistics for the simulation of Alg. 3 for the
case study from Sec. 5.

Algorithm 3

1st fixed point: in 7 iterations, in 3 min.

1st NTS: 13 states, 27 actions

2nd NTS: 25 states 105 actions

3rd NTS: 45 states 289 actions

4th NTS: 63 states, 524 actions

5th NTS: 77 states, 745 actions

6th NTS: 88 states, 994 actions

7th NTS: 92 states, 1139 actions

2nd fixed point: in 1 iteration, in 2 sec.

formation on the properties of satisfying strategies. Namely,
it specifies for every polytope of the resulting partition {Xi}
of the state space X which control inputs cannot be used in
any satisfying strategy. As we are interested in reachability
property, these are the control inputs for which the corre-
sponding non-deterministic transition leads from Xi outside
of Xinit. Secondly, just like Alg. 1, Alg. 3 cannot be used for
more complex properties than reachability. As discussed in
Sec. 5, the product of the game with the automaton needs to
be considered for more complex properties.

The results from simulations of Alg. 3 are presented in Fig. 7
and Tab. 3. The algorithm found fixed point sets for both
fixed-point computation rather quickly, and in the same num-
ber of iterations as the polytopic algorithm in Alg. 1, see Fig. 6
and Tab. 2. While Alg. 3 performs faster than our algorithm
designed in Sec. 4, it provides only partial information on the
satisfying strategies, as discussed above.

	1 Introduction
	2 Notation and preliminaries
	2.1 Polytopes
	2.2 Automata and Specifications
	2.3 Games

	3 Problem Formulation
	4 Solution
	4.1 Abstraction
	4.2 Game analysis
	4.3 Refinement
	4.4 Correctness and complexity

	5 Case study
	6 Conclusion and future work
	7 References
	A Solving a 212-player game
	B Polytopic operators
	B.1 Action polytopes
	B.2 Posterior
	B.3 Predecessor
	B.4 Robust and precise predecessor
	B.5 Attractor
	B.6 Robust attractor

	C Approach comparison

