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ABSTRACT
Recent clinical studies suggest that the efficacy of hormone
therapy for prostate cancer depends on the characteristics
of individual patients. In this paper, we develop a compu-
tational framework for identifying patient-specific androgen
ablation therapy schedules for postponing the potential can-
cer relapse. We model the population dynamics of heteroge-
neous prostate cancer cells in response to androgen suppres-
sion as a nonlinear hybrid automaton. We estimate person-
alized kinetic parameters to characterize patients and em-
ploy δ-reachability analysis to predict patient-specific ther-
apeutic strategies. The results show that our methods are
promising and may lead to a prognostic tool for prostate
cancer therapy.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Model checking ; J.3 [Life and Medical Sciences]:
Biology and genetics

General Terms
Theory, Verification

Keywords
hybrid systems, delta-reachability, systems biology, prostate
cancer, personalized therapy

1. INTRODUCTION
Prostate cancer is the second leading cause of cancer-

related deaths among men in United States. Hormone ther-
apy in the form of androgen deprivation has been a corner-
stone of the management of advanced prostate cancer for

.

several decades. However, controversy remains regarding
its optimal application [6]. Continuous androgen suppres-
sion (CAS) therapy has many side effects including anemia,
osteoporosis, impotence, etc. Further, most patients expe-
rience a relapse after a median duration of 18-24 months of
CAS treatment, due to the proliferation of castration resis-
tant cancer cells (CRCs).

In order to reduce side effects of CAS and to delay the
time to relapse, intermittent androgen suppression (IAS)
was proposed to limit the duration of androgen-poor con-
ditions and avoid emergence of CRCs [3]. In particular, IAS
therapy switches between on-treatment and off-treatment
modes by monitoring the serum level of a tumor marker
called prostate-specific antigen (PSA):

– When the PSA level decreases and reaches a lower thresh-
old value r0, androgen suppression is suspended.

– When the PSA level increases and reaches a upper thresh-
old value r1, androgen suppression is resumed by the admin-
istration of medical agents.

Recent clinical phase II and III trials confirmed that IAS
has significant advantages in terms of quality of life and cost
[4, 5]. However, with respect to time to relapse and cancer-
specific survival, the clinical trials suggested that to what
extent IAS is superior to CAS depends on the individual
patient and the on- and off-treatment scheme [4, 5]. Thus,
a crucial unsolved problem is how to design a personalized
treatment scheme for each individual to achieve maximum
therapeutic efficacy.

To answer this question, mathematical models have been
developed to study the dynamics of prostate cancer under
androgen suppression [22, 21, 20, 18, 23, 32]. Recently,
attempts have been made to computationally classify pa-
tients and obtain the optimal treatment scheme [19, 33].
However, these results relied on simplifying nonlinear hy-
brid dynamical systems to more manageable versions such
as piecewise linear models [19] and piecewise affine systems
[33], which compromises the validity of the models. In this
paper, we construct a nonlinear hybrid model to describe
the prostate cancer progression dynamics under IAS there-
apy. Our model extends the models previously proposed in
[22, 21, 20]. We use δ-reachability analysis to obtain the
following results:

– First, we show that our model is in good agreement
with the published clinical data in literature [4, 5]. It can
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depict the dynamical changes of proliferation rates induced
by perturbing androgen levels that are difficult for previous
models (e.g. [20]) to capture. It also addresses the variabil-
ity in individual patients and is able to accurately reproduce
the datasets of different patients.

– Second, we obtain interesting insights on CRC prolifera-
tion dynamics through analysis of the nonlinear model. Our
results support the hypothesis that the physiological level of
androgen reduce CRCs [20], while rule out other hypotheses,
for instance, CRCs proliferate at a constant rate [32].

– Third, we propose a computational framework for iden-
tifying patient-specific IAS schedules for postponing the po-
tential cancer relapse. Specifically, we obtain personalized
model parameters by fitting to the clinical data in order
to characterize individual patients. We then use δ-decision
produces and bounded model checking to predict therapeu-
tic strategies.

Through this case study, we aim to highlight the oppor-
tunity for solving realistic biomedical problems using formal
methods. In particular, methods based on δ-reachability
analysis suggest a very promising direction to proceed.

Related Work. We perform parameter synthesis, which re-
quires the computation of concrete trajectories and param-
eter values. This can not be done by simply computing
an over-approximation of the forward reachable set. Con-
sequently, reachable set computation tools such as SpaceEx
[11] and Flow* [7] can not be directly used. There exists vari-
ous approaches for performing parameter synthesis through
extra refinement on the reachable sets [10, 2, 12], but are
restricted to dynamics that are much simpler than the mod-
els we encounter here. On the other hand, other SMT-based
methods for hybrid systems [8, 9], which can perform param-
eter synthesis in a similar manner, mostly focus on efficient
handling of complex discrete transitions but are restricted
to models with simpler continuous dynamics.

The rest of the paper is organized as follows. We de-
scribe our model in Section 2 and present preliminaries on
δ-reachability analysis in Section 3. In Section 4, we present
the biological insights we gained through this case study, as
well as the model-predicted treatment schemes for individ-
ual patients. In the final section, we summarize the paper
and discuss future work.

2. A HYBRID MODEL OF PROSTATE CAN-
CER PROGRESSION

In this section, we propose a hybrid automata based model
in order to reproduce the clinical observations [4, 5] of prostate
cancer cell dynamics in response to the IAS therapy. It is
known that the proliferation and survival of prostate cancer
cells depend on the levels of androgens, specifically testos-
terone and 5α-dihydrotestosterone (DHT). Here we consider
two distinct subpopulations of prostate cancer cells: hor-
mone sensitive cells (HSCs) and castration resistant cells
(CRCs). Androgen deprivation can lead to remarkable de-
creases of the proliferation and survival rates of HSCs, but
also up-regulates the conversion from HSCs to CRCs, which
will keep proliferating under low androgen level. The corre-
sponding hybrid automata model is shown in Figure 1.

Our model is based on previous models developed by [22,
21, 20]. It takes into account the population of HSCs, the
population of CRCs, as well as the serum androgen concen-
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Figure 1: A hybrid automaton model for prostate
cancer hormone therapy. Symbol “||” denotes the
parallel composition of the two automata.

tration, represented as x(t), y(t), and z(t), respectively. In
addition, it also includes the serum prostate-specific antigen
(PSA) level v(t), which is a commonly used biomarker for
assessing the total population of prostate cancer cells. The
model has two modes: on-treatment mode and off-treatment
mode (note that the auxiliary Mode 3 will only be used
in Section 4.2). Following [20], in the off-treatment mode
(Mode 2), the androgen concentration is maintained at the
normal level z0 by homeostasis. In the on-treatment (Mode
1), the androgen is cleared at a rate 1

τ
. Further, we also

introduce a basal androgen production rate µz, in order to
reproduce the measured basal testosterone levels in response
to androgen suppression [4, 5].

The net growth rate of x(t) equals to (prolifx − apopx −
convx)·x(t), where prolifx, apopx and convx denote the pro-
liferation, apoptosis and conversion rates, respectively. In
previous studies such as [22, 21, 20], the prolifx and apopx
were modeled using Michaelis-Menten-like (MML) functions,

in the form of Vmax + (1− Vmax) z(t)
z(t)+Km

, where Vmax and

Km are kinetic parameters. This approach will result in an-
drogen response curves as shown in Figure 2(a). In particu-
lar, when one decreases the androgen level starting from the
normal level, prolifx (or apopx) begins to decrease (or in-
crease) first slowly and then fast until a sufficiently low level
of androgen is reached. However, this is inconsistent with
the clinical observations presented in [4, 5]. The data show
that for most of the patients, androgen suppression around
normal level will induce an immediate decrease of the PSA
level, which implies an fast decrease (or increase) of prolifx
(or apopx). Therefore, instead of the MML functions, we
adopt sigmoid functions, in the form of 1

1+exp(−(z(t)−k1)·k2)
,

to model prolifx and apopx. The corresponding androgen
response curves are shown in Figure 2(b). Following [20],
we model the conversion rate, proliferation rate and the

apoptosis rate of y(t) as m1(1 − z(t)
z0

), αy(1 − d z(t)
z0

) and

βy, respectively. The PSA level v (ng ml−1) is defined as
v(t) = c1 · x(t) + c2 · y(t).

The transitions between two modes depends on the val-
ues of v, dv/dt and an auxiliary variable w, which measures
the time taken in a mode. Specifically, for each patient we
starts with mode 1 to apply the treatment. When the PSA
level drops to certain threshold r0 or w hits time out thresh-
old tmax, the treatment will be suspended. When the PSA
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Figure 2: Androgen response curves of (a) Ideta’s
model and (b) our model.

level is back to threshold r1, the treatment will be resumed.
Note that w is associated with a dummy differential equa-
tion dw

dt
= 1 (not shown in Figure 1). Its value will be reset

to 0 when the jump takes place.
We obtained the parameter values by fitting to patient

PSA data reported in [4, 5]. Note that the patient-to-patient
variability in terms of parameter values is significant. For
example, Figure 3 shows that the proliferation rate of Pa-
tient#22 is much lower than the Patient#1. The descrip-
tions and a set of typical values (i.e. estimated from Pa-
tient#1 data) of model parameters are listed in Table 1.
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Figure 3: The clinical data for PSA time serials.

Table 1: Prostate cancer model parameter values
Parameter Value Remark

αx 0.0204 d−1 HSC proliferation
αy 0.0242 d−1 CRC proliferation
βx 0.0201 d−1 HSC apoptosis
βy 0.0168 d−1 CRC apoptosis
k1 10.0 nM HSC proliferation
k2 1.0 HSC proliferation
k3 10.0 nM HSC apoptosis
k4 2 HSC apoptosis
m1 0.00005 d−1 HSC to CRC conversion
z0 12.0 nM normal androgen level
τ 12.5 d androgen degradation
λx 0.01 d−1 HSC basal degradation
µx 0.05 d−1 HSC basal production
µz 0.02 d−1 Androgen basal production

3. DELTA-REACHABILITY ANALYSIS
Hybrid automata are difficult to analyze. It has been

shown that even simple reachability questions for hybrid
systems with linear differential dynamics are undecidable
[17]. Therefore, in order to analyze our hybrid model of
prostate cancer progression, we employed a δ-reachability

based framework [28] which can sidesteps undecidability and
allows the parameter synthesis problem to be relaxed in a
sound manner and solved algorithmically.

3.1 Delta-Decisions
The framework of δ-complete decision procedures [13] aims

to solve first-order logic formula with arbitrary computable
real functions, such as elementary functions and solutions
of Lipschitz-continuous ODEs [14]. The answers returned
by such procedures are either unsat or δ-sat. Here, unsat
means the corresponding formula is verifiably false, while δ-
sat means a δ-weakening version of the formula is true. In
other words, δ-decision procedures overcome undecidability
issues by returning answers with one-sided δ-bounded er-
rors. Note that δ is an arbitrarily small positive rational
chosen by the user. The algorithms for solving δ-decision
problems were described in our previous work [14, 16] and
were implemented in the dReal toolset [15].

3.2 Parameter identification
Further, we have also proposed an encoding scheme which

aimed to answer bounded reachability problems of hybrid
automata with nontrivial invariants [28]. This encoding en-
abled us to tackle the parameter identification problem by
answering a k-step reachability question: “Is there a parame-
ter combination for which the model reaches the goal region
in k steps?” Essentially, we describe the set of states of
interest (goal region) as a first-order logic formula and per-
form bounded model checking [1] to determine reachability
of these states. We then adapt an interval constraint propa-
gation based algorithm to explore the parameter space and
identify the sets of resulting parameters. If none exist, then
the model is unfeasible. Otherwise, a witness (i.e., a value
for each parameter) is returned. We have developed the
dReach tool [24] (http://dreal.cs.cmu.edu/dreach.html)
that automatically builds reachability formulas from a hy-
brid model and a goal description. Such formulas are then
solved by the δ-complete solver dReal [15].

For the interested readers, we refer to [28] for more details
on δ-reachability analysis based parameter identification.

4. RESULTS
We have implemented our prostate cancer progression model

in the dReach’s modeling language. The model files are
available at http://www.cs.cmu.edu/~liubing/hscc15/. All
the experiments reported below were done using a machine
with two Intel Xeon E5-2650 2.00GHz processors and 32GB
RAM. The precision δ was set to 10−3.

4.1 CRC proliferation dynamics
Due to the lack of biomarkers distinguishing HSCs and

CRCs in vivo, the proliferation kinetics of CRCs in response
to androgen is far from known. Three hypotheses, denoted
asH1, H2 andH3 have been proposed to describe the androgen-
dependent CRC growth [20], which are discriminated by the
value of d in the model, i.e.:

• H1 : d = 0, the grow of CRCs is independent of z(t);

• H2 : d = 1− βy
αy

, CRCs cease growing when z(t) = z0;

• H3 : d = 1, CRCs decrease when z(t) = z0.

http://www.cs.cmu.edu/~liubing/hscc15/
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Figure 4: The simulated witness trajectories of the
H3 model.

The Patient#1 data presented in Figure 4 shows that with
proper treatment schedules, it is possible to avoid his cancer
relapse in years. We now show that only H3 agrees with this
observation. As the PSA level v(t) reflects the total number
of cancer cells and CRCs are responsible for recurrent cancer,
we use two invariants: 0 ≤ v(t) ≤ 30 and 0 ≤ y(t) ≤ 1 to
specify the property of “no cancer relapse”. We then carried
out δ-reachability analysis to verify whether the invariants
hold for each of the model candidates within a bounded
time of 365 days. Here the treatment schedule threshold
parameters were provided as ranges: r0 ∈ [0, 7.99] (ng ml−1)
and r1 ∈ [8, 15] (ng ml−1).

The unsat answers were returned for H1 and H2 (Run#1
and Run#2, Table 2), indicating that they will always lead
to cancer relapse no matter which treatment schedule was
chosen. In contrast, δ-sat was returned for H3 (Run#3, Ta-
ble 2). Witness trajectories are shown in Figure 4), demon-
strating that the cancer relapse can be avoided in a bounded
time as observed experimentally [4, 5]. The rest of the re-
sults in this paper were generated using H3.

4.2 Androgen-dependent HSC dynamics
As mentioned in Section 2, previous studies [22, 21, 20]

modeled the androgen-dependent proliferation and apopto-
sis of HSCs using MML functions, while we use sigmoid
functions. Here we show that the MML based approach is
unable to reproduce an important dynamical property, but
our model could. The patients’ data in [4, 5] show that the
half-time t1/2 (i.e. the amount of time required for a quan-
tity to fall to one half of its initial value) of PSA level under
androgen suppression is often less than 60 days. To specify
this property, we introduced an auxiliary mode (Mode 3). If
v(t) = v(0)/2, the system will jump from Mode 1 to Mode 3.
Starting with Mode 1 and 20 ≤ x(0) ≤ 30, we checked the
reachability of a goal state with 0 ≤ w ≤ 60 for both Ideta’s
model [20] and our model. The results show that δ-sat was
returned for our model (Run#4, Table 2), while unsat was
returned for Ideta’s model (Run#5, Table 2), suggesting the
superiority of sigmoid functions over MML functions in cap-
turing HSC dynamics.

Run Model Initial State Result Time

1 H1 r0 ∈ [0.0, 7.99], r1 ∈ [8.0, 15.0] unsat 3.94
2 H2 r0 ∈ [0.0, 7.99], r1 ∈ [8.0, 15.0] unsat 5.26
3 H3 r0 ∈ [0.0, 7.99], r1 ∈ [8.0, 15.0] δ-sat 472
4 H3 x(0) ∈ [20.0, 30.0] δ-sat 10.1
5 Ideta x(0) ∈ [20.0, 30.0] unsat 0.5
6 H3 r0 ∈ [0.0, 7.99], r1 ∈ [8.0, 15.0] δ-sat 526
7 H3 r0 ∈ [0.0, 7.99], r1 ∈ [8.0, 15.0] unsat 0.3
8 H3 r0 ∈ [0.0, 7.99], r1 ∈ [8.0, 15.0] δ-sat 28
9 H3 r0 ∈ [0.0, 7.99], r1 ∈ [8.0, 15.0] δ-sat 203

Table 2: Experimental results. Result - bounded model

checking result, Time - CPU time (s), δ = 10−3, Model

parameters used in Run#1-5 are listed in Table 1, model

parameters used in Run#6-9 are listed in Table 3.

4.3 Personalized therapy design
We next apply δ-reachability analysis to design treatment

schemes for individual patients. The parameter values shown
in Table 1 were estimated by fitting the data of Patient#1.
Since the IAS response of Patient#1 is typical, we treated its
parameter values as the baseline values. As we demonstrated
in Figure 3, the values of some parameters vary among pa-
tients. Such variability may significantly affect the hormone
therapy responses. For example, Figure 5(a-c) illustrates
the PSA dynamics of 3 mock patients with different per-
sonalized parameters under the same IAS treatment scheme
(r0 = 4, r1 = 10). IAS prevents the relapse for Patient
A and delays the relapse for Patient B, but does not help
Patient C. Figure 5(d) shows that, by modifying the IAS
scheduling parameters r0 and r1, the relapse of Patient C
can be avoided or delayed.
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Figure 5: Simulated PSA profiles of three mock
patients with different parameters. (a) Patient A:
αy = 0.0242, βy = 0.0168, m1 = 0.00005, z(0) = 12,
r0 = 4, r1 = 10 (b) Patient B: αy = 0.0328, βy = 0.013,
z(0) = 13, m1 = 0.0001, r0 = 4, r1 = 10 (c) Patient C:
αy = 0.0426, βy = 0.189, m1 = 0.00005, z(0) = 15, r0 = 4,
r1 = 10 (d) Patient C with r0 = 4, r1 = 10.6.

Given the parameter values of an particular patient, we
can design a treatment scheme, which might help him avoid
cancer relapse with bounded time by solving the follow-
ing parameter identification problem: (i) set the ranges of



Table 3: Estimated personalized parameters and suggested treatment schemes

Parameter Patient#1 Patient#11 Patient # 15 Patient#26

αx 0.0204 d−1 0.0204 d−1 0.0213 d−1 0.0197 d−1

αy 0.0242 d−1 0.0242 d−1 0.0242 d−1 0.0242 d−1

βx 0.0201 d−1 0.02 d−1 0.01 d−1 0.0175 d−1

βy 0.0168 d−1 0.0158 d−1 0.0168 d−1 0.0168 d−1

k1 10.0 nM 7.0 nM 7.0 nM 10.0 nM
k2 1.0 1.0 1.0 1.0
k3 10.0 nM 7.0 nM 7.4 nM 10.0 nM
k4 2 2 2 2
m1 0.00005 d−1 0.00005 d−1 0.00005 d−1 0.00005 d−1

z0 12.0 nM 9.0 nM 8.0 nM 12.0 nM
τ 12.5 d 12.5 d 12.5 d 12.5 d
λx 0.01 d−1 0.0121 d−1 0.01 d−1 0.01 d−1

µx 0.05 d−1 0.06 d−1 0.02 d−1 0.03 d−1

µz 0.02 d−1 0.02 d−1 0.02 d−1 0.02 d−1

Scheme r0 = 5.2, r1 = 10.8 N.A r0 = 1.9, r1 = 8.0 r0 = 4.6, r1 = 10.7

scheduling parameters as r0 ∈ [0, 7.99] (nM) and r1 ∈ [8, 15];
(ii) check if H3 can reach the goal state without violating
the “no cancer relapse” invariants within 1 year. If unsat was
returned, it means that androgen suppression therapy is not
suitable for the patient. The patient then has to resort to
other kinds of therapeutic interventions. Otherwise, when
the δ-sat answer is returned, a treatment scheme containing
feasible values of r0 and r1 will also be returned, which could
help in preventing or delaying the relapse within bounded
time. Note that if r0 = 0 is returned, it implies that the CAS
scheme, instead of IAS scheme, might be more suitable for
the patient.

The personalized parameters of individual patients can be
obtained by collectively fitting the available experimental
data. We tested our method on real patients data collected
by [5]1. The parameter values for each randomly selected
patient were estimated by fitting the model to the PSA time
serials data under the IAS therapy using an evolutionary
strategy search, which is capable of estimating parameters
from noisy biological data [30].

As an example, Figure 6 shows the comparison between
model predictions and the experimental data of PSA and an-
drogen levels for Patient#1, Patient#11, Patient#15, and
Patient#26. We then predicted the treatment schemes for
the future year using δ-reachability analysis (Run#6 for Pa-
tient#1, Run#7 for Patient#15, Run#8 for Patient#26 and
Run#9 for Patient#11, Table 2). The results are summa-
rized in Table 3. Note that for Patient#11, unsat was re-
turned, implying that no suitable treatment schemes were
identified. This might be due to the raised population size
of CRCs in the late phase of clinical trails.

5. CONCLUSION
We have proposed a hybrid model to study the prostate

cancer cell dynamics in response to hormone therapy. Us-
ing δ-reachability analysis, we obtained interesting biologi-
cal insights into the prostate cancer heterogeneity. We also
developed a δ-decisions based computational framework for
predicting patient-specific treatment schedules. We have
demonstrated the applicability of our method with the help
of real clinical datasets. Our study explored the possibil-
ities of using formal methods to tackle quantitative sys-
tems pharmacology problems. Our results also highlighted

1Data available at http://www.nicholasbruchovsky.com/
clinicalResearch.html.
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Figure 6: Model prediction vs. experimental data.

δ-reachability analysis as a potent technique in this line of
research.

Experimental validation of our method might require years
of clinical studies, which is beyond the scope of this case
study. It is worth noting that our therapy design framework
is generic and can be applied to other settings, for example,
predicting the radiation dosing schedules for brain cancer
[25]. Furthermore, another interesting direction is to ex-
tend our model and framework to capture cancer hallmarks
and/or to take into account the stochasticity of a cellular
environment. In this respect, the cancer hybrid automata
formalization [29] and the probabilistic/statistical analysis
techniques in [27, 31, 26] might offer helpful pointers.
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