Evaluation of Source Code with Item Response Theory

Marc Berges
TUM School of Education
Technische Universitat Minchen
Arcisstr. 21, 80333 Miinchen, Germany

berges@tum.de

ABSTRACT

The analysis of source code produced by novice program-
mers could provide interesting insights into their learning
progress, particularly in introductory programming courses.
Yet, as the programming ability of a person is assumed to
be quite complex, it is not likely that it would be observable
directly in its total. Instead, we regard those abilities as la-
tent psychometric constructs and apply the methodology of
item response theory (IRT) to assess their manifestations.
In preparatory work, we had identified a list of items that
represent the central concepts of object-oriented program-
ming. In this paper we propose a methodology that allows
the evaluation of coding abilities by analyzing the applica-
tion of those concepts. We demonstrate this methodology by
exemplarily analyzing source code that was produced dur-
ing programming projects. The results provide interesting
information about the difficulty of the concepts’ application
and the distribution of the respective coding abilities among
the students.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]:
Computer science education

Keywords

programming novices; code analysis; item-response theory

1. INTRODUCTION

A few years ago, we have introduced a preliminary pro-
gramming course for the freshmen of computer science at
our university [9]. These courses offered a broad research
field for the investigation of source code that was written by
students with well-known levels of programming experience
in a closely controlled setting.

Although the direct evaluation of source code is difficult,
several methodologies for assessing programming abilities
from code have been presented, e.g. qualitative analysis

@ACM, 2015. This is the author’s version of the work. Itis posted here by permission
of ACM for your personal use. Not for redistribution. The definitive version was
published in Proceedings of the 2015 ACM Conference on Innovation and Technology
in Computer Science Education

http://dx.doi.org/10.1145/2729094.2742619

Peter Hubwieser
TUM School of Education
Technische Universitat Miinchen
Arcisstr. 21, 80333 Miinchen, Germany

peter.hubwieser@tum.de

of students’ solutions [13|, measures of code quality [8] or
investigations about misconceptions [16].

Yet, due to its complexity, we do not assume that any pro-
gramming ability could be measured in a direct way. Nev-
ertheless, we could regard certain attributes of the source
code as manifestations of latent psychometric constructs ac-
cording to the principles of item response theory. More de-
tailed, we could treat the application of certain structural
elements like loops, conditional statements or inheritance
operators as positive responses on certain items (e.g. “ex-
istence of loops”). In consequence, the probability of such
positive responses in dependence on the item difficulty and
the estimated person abilities could be described by certain
psychometric models, e.g. the Rasch Model.

In the research project of this paper, we have applied the
item response theory to evaluate coding abilities of freshmen
on the basis of items gathered from their source code.

2. RELATED WORK

The analyzing and scoring of object-oriented code is a cen-
tral topic in educational research ever since object-oriented
programming has been taught in introductory courses in
computer science.

For example, Borstler et al. proposed in [5] three cat-
egories for the evaluation of object-oriented example pro-
grams according to certain criteria like content, style or mod-
eling. Sanders and Thomas introduced in [16] a check-list for
scoring object-oriented programs by investigating concepts
and misconceptions in object-oriented programming. In con-
trast, an automatic approach is conducted in [17], based on
a framework for static code analysis of students’ programs.
For this, Truong et al. summarized common poor program-
ming practices and common logical errors from literature.
Additionally, they conducted a survey among teaching staff
and students. The framework is working on a XML basis
and enables the students to get feedback on their programs
and rate them automatically.

Currently, there are several tools for educational purposes
that assess code in an automatic way. Many work online like
the one introduced in [18|. In [10] the scoring of the Inter-
national Olympiad in Informatics is investigated. Kemkes
et al. score the code with 1 if it runs successfully on a given
set of input data. Otherwise it is scored with 0. In addition,
they compared this methodology to other scoring schemes
with the help of item response theory. Finally, they state
that the simple scoring is the most applicable if an auto-
matic scoring is needed.


http://dx.doi.org/10.1145/2729094.2742619

One solution for the problem of a simple assessment sys-
tem could be to investigate the syntax elements of a pro-
gramming task with an open solution. A recent example
is the research presented in [12|. The authors investigated
differences in the correct solutions of students. For this pur-
pose, they define a taxonomy that distinguishes the code
according to structure, syntax and presentation. Structure
means different control flow in the code, syntax means dif-
ferences in the code with the same control flow structure.
Finally, presentation means variation in the identifier names
or number of white-spaces for example.

Some additional tools and algorithms for student assess-
ment in computer science courses are presented in |19]. Win-
ters and Payne conducted an item-response analysis on stu-
dents’ score data that was gathered during the semester.
Additionally, existing tools were evaluated and the advan-
tages of such a methodology for the process of identifying
suitable items were pointed out.

3. BACKGROUND

In classical test theory (CTT), the construct of interest
(e.g. student abilities) is considered to be measured di-
rectly by item scores, yet this might be error-prone. This
straight-forward approach is not suitable for measuring such
complex constructs as programming abilities. In contrast,
the item response theory (IRT) regards the constructs of
interest as latent psychometric constructs that cannot be
measured directly. Nevertheless, the probability of correct
answers depends from those constructs in a certain way:
P(X,r = 1|6;, Bx) = f(0s, Br), where 0; is the parameter of
person i, representing the manifestation of the psychomet-
ric construct, Br the parameter of item k, representing its
difficulty, and f(6;, B%) a function that is determined by the
psychometric model (e.g. the Rasch Model (RM), see below)

The latent construct might be uni- or multi-dimensional.
Depending on the theoretically based assumptions of the
structure of the psychometric construct, different mathemat-
ical models can be applied according to IRT.

A logistic model with one parameter (1pl) was introduced
by Rasch [15]. The basic idea of the Rasch model is that
the probability of solving an item is determined by the dif-
ference of a person’s ability in the latent dimension 6 and
the difficulty of the item itself (5).

There are three model restrictions related to the Rasch
model: the items have to be locally stochastically indepen-
dent, fulfill specific objectivity, and measure one latent con-
struct |1} pp. 20].

Basically, there are two approaches in the item analysis.
First, a set of homogeneous items has to be found that is
conducted to one latent psychometric construct. Second,
the itemset has to be fit to a proper item response test or
model, respectively. For these purposes, there are several
tests.

The nonparametric tests for the Rasch model that are
based on a Markov Chain Monte-Carlo algorithm are a suit-
able test framework for small sample sizes. Basically, the
lack of data is reduced by simulating data matrices that
have equal row and column sums than the estimated dataset.
For that purpose two columns of the original matrix are ran-
domly chosen. Afterwards, the rows with different values are
randomly changed. This procedure leads to a new matrix
with equal margins. As the algorithm needs the matrices
to be independent of the initial matrix and to occur with

the same probability, not all simulated matrices can be used
for the calculation [11, pp. 4]. For the nonparametric tests
a valid Rasch model is assumed. in a valid Rasch model
the row and column sums are a sufficient statistic and be-
cause of that matrices with different values but equal row
and column sums can be compared.

The general idea behind the nonparametric tests is the
comparison of all item pairs [14]. A violation in homogene-
ity can be assumed if there are more unequal item pairs in
the observed matrix than in the simulated ones. So, the
test compares the observed test statistic with simulated test
statistics |[11]. For the characterization of a latent construct,
a set of homogeneous items is necessary.

The local stochastic independence has to be proven for
validating the Rasch model. On the one hand, the items are
not allowed to be too similar. With regard to two items, this
can be expressed by the number of equal response patterns.
In contrast to the assumption of homogeneity, violation of
the local stochastic independence is expressed by too many
equal response patterns.

On the other hand, violation of the local stochastic in-
dependence can be a result of a learning effect within the
items; participants answer on one item is dependent of the
solution of another one. For this reason, only those pat-
terns that are both answered correctly are summed. The
local stochastic independence is important to find items for
a proper test framework. For the definition of the latent
dimension, dependent items can be useful as well.

If the ratio of the items’ number and the number of partici-
pants is suitable, parametric tests can be applied. Generally,
all these tests are based on the assumption that the model
is valid in every sub population that is grouped by chance.
So, if there is no significant difference in the parameters if
the investigated population is separated into two groups the
model is assumed to be valid. Especially, if there are other
measures like previous knowledge or gender aspects, these
criteria should be used for finding different groups [1}, p. 63].

The first test is the Likelihood Ratio Test (LRT). For the
test, the likelihood is calculated for the estimated parame-
ters of each group and for the complete population as well.
Afterwards, the likelihoods are compared. If the estimated
parameters fit the model in the subgroups as well as in the
complete population, the model is assumed to be valid. Oth-
erwise it would be better to estimate the parameters for each
single group and calculate separate models |7, pp. 86].

Another test for the model fitting that is based on the idea
of separating the population into two groups is the Wald-
test. In contrast to the LRT, the standard Wald-test is
comparing the items directly. So, the standard Wald-test
can identify items that violate the model assumptions |7}
pp. 89].

4. COURSE DESIGN

In autumn 2008 we developed a course at our university
for the freshmen studying Computer Science (CS) [9]. It
takes place just before the first semester. All the students
starting their studies are invited during their enrollment pro-
cess. The participation is voluntarily. The necessity of the
course results from the German lecture system at universi-
ties. During the semester there are mainly lectures with only
very little time for practical experiences. Nevertheless, it is
officially communicated that it would be possible to study
CS without any prior programming knowledge, which im-



plies that students without such prior knowledge should be
accommodated somehow, too. Therefore we have developed
and installed specific programming courses for this purpose
that take place before the first semester.

All students were asked at the registration to self-assess
their prior programming experience in one of three levels:
(1) “I have no experience at all”, (2) “I have already writ-
ten programs”, (3) “I have already written object-oriented
programs”.

Based on this information we tried to compose the groups
— 6 to 15 participants each — as homogeneously as possible.
The demands of the programs the students should realize
differed according to their respective level of programming
experience. The students of the first level were asked to
program a “Mastermind” game. The groups of level 2 should
realize a tool for managing results from a sports tournament
(e.g. a football league). The groups of the 3rd level should
program a version of the dice game “Yahzee”.

The course took two and a half days. All participants
worked on their own (instead of in teams), because we wanted
to investigate the individual learning outcome. However, the
students were actively encouraged to talk to each other. The
material was presented in the form of worksheets that con-
tained all the required information. Additionally, each group
was coached by an experienced student as a peer tutor. The
students were encouraged to approach the tasks in a self-
directed learning process. So, the tutors were responsible
for helping the students to understand the worksheets and
tools, but they were advised not to give any assistance (or
instruction) on programming itself. We suggested that the
students use BlueJ due to the reasons mentioned by Bergin
[4] for their first steps in programming. Towards the end of
the course, they had the choice to switch over to Eclipse.

5. DATA COLLECTION

Based on a concept extraction from the materials of the
underlying course, a list of 21 concepts was formed accord-
ing to the method described in [3]: access modifier (AM),
array (AR), assignment (AG), association (AC), attribute
(AT), class (CL), conditional statement (CS), constructor
(CO), data encapsulation (DE), datatype (DT), inheritance
(IN), initialization (1S), instance (IT), loop statement (LO),
method (ME), object (OB), object orientation (OO0), oper-
ator (OP), overloading (OV), parameter (PA), and state
(ST). For the final concept list, four of them are eliminated
because of different reasons. OO is eliminated because it is
provided by design of Java. CL and DT are excluded be-
cause it cannot be distinguished between “implementation
by the students” and “implementation forced by the IDE”.
Finally, IT is the same as OB and because of that only OB
is included into the list.

For the calculation of a model in the item-response the-
ory, a set of items is needed. In (3] the concepts mentioned
above, were split up into observable items in the code. These
items cover all observable aspects that are related to a spe-
cific concept. The list below presents these items, formu-
lated as questions which can be 1-rated if the code answers
the item with “yes”, or O-rated otherwise. The abbrevia-
tions in front of each item points to the underlying con-
cept. The items included in the final model are underlined.
IN1 Is there inheritance from existing classes?

IN2 Is the code using a manually created inheritance hi-
erarchy?

ME1 Is there a method call in the code?

ME2 Is there a method declaration?

MES3 Is there a return value in a method?

AGT1 Is an assignment used in the code?

CO1 Is there a declaration of a new constructor?

CO2 Is there a call of a constructor?

ST1 Is it possible to save the state of an object?

ST2 Is it possible to change the state of an object?

ST3 Is it possible to use the state of an object?

AC1 Is there an association between classes in the code?

AC2 Is there any use of associations between classes?

DE1 Is the visibility of the attributes other than public or
default?

OP1 Is the assignment operator used?

OP2 Are there any logical operators used in the code?

OP3 Are there any other operators used, apart from the
assignment or logical operators?

ARI1 Are there arrays with pre-initialization declared in
the code?

AR2 Are there arrays without pre-initialization declared
in the code?

ARS3 Is there any access of the elements of an array in the
code?

ARA Is there an initialization with new?

AR5 Are methods of the class Arrays used in the code?

IS1 Is there an explicit initialization of the attributes?

PA1 Is there a method call with parameters in the code?

PA2 Are there any method declarations with parameters
used?

PA3 Are the parameters of a method declarations used in
the method body?

AT1 Are there attributes declared in the code?

AT2 Are attributes of other classes accessed?

AT3 Are attributes of class accessed within this class?

CS1 Is there an IF-statement without ELSE?

CS2 Is there an IF-statement with ELSE?

CS3 Is there a SWITCH-statement?

OB1 Is there a declaration of any object?

OB2 Is a declared object used in the code?

OBS3 Is there a reference to its own object using this?

OV1 Is there a declaration of an overloaded method?

OV2 Is there an overloaded method used in the code?

LO1 Is there a use of loops?

AM1 Are the access modifiers public, private or protected
used with attributes or methods?

During the investigation, the students were asked to im-
plement a small project on the basis of an assignment that
did not include explicit questions on programming. Nev-
ertheless, the resulting programming code contains the re-
sponses on these questions. This is why we can assume the
code-items to be assignments posed to the participants.

In total 321 datasets, gathered from 2008 to 2011, are
included in this research project. Each dataset consists of
the personal data and a vector with the responses on all code
items.

6. RESULTS

The main goal of this research project was to develop and
evaluate a methodology for assessing personal coding abil-
ities from source code. For this purpose, we had to find
a model that would describe the measured outcomes in a
suitable way. Additionally, we had to validate the model by
evaluating its outcomes.



6.1 Model Validation

The first step towards a valid item set for a Rasch model is
to identify items that violate the preconditions of the Rasch
model. First, all items that are related to the same struc-
tural element as others are eliminated. For example, both
items ST1 and AT1 need a variable declaration in the code to
be 1-rated. More precisely, this affects the items AG1, ST1,
ST2, ST3, and OB1.

As all the tests that rely on dividing the population or
item set into two parts need differing items in both parts
of the population, the trivial items are removed in advance.
An item is said to be trivial if it is either 1-rated for almost
all or almost none of the participants. For that reason a
limitation level of 0.01 is defined for this study. In particular,
this affects only the item 0OP1, which deals with the use of
an assignment operator.

Due to the large number of items in comparison to the
number of participants at the beginning, the calculation of
an exact test on local stochastic independence and homo-
geneity is not possible. Because of that, the non-parametric
tests are applied. First, the item set is reduced to those
items that are homogeneous.

Starting with the 33 items after the exclusion process,
all items that violate the homogeneity criterion are elim-
inated. In the first run the items DE1, 0P2, IS1, AR5,
CS2, CO1, AR4, CS3, 0Vi, AR1, PA2, PA3, ME2, and IN1
violate the homogeneity criterion. The selection criteria for
which items are eliminated is the frequency of the depen-
dent items. Thus, DE1 has the most dependencies, while IN1
has the least. In general, all pairs of dependent items are
listed and the items are removed from that list one by one
until the list is empty; then, no dependencies are left. After-
wards, a new set of simulated matrices is calculated based
on the new item set. The second run results in elimination
of AR3, AR2, LO1, 0B3, ME1l, AC2, AT1, AT3, ME3, PA1,
and AC1. Once again, the items are ordered by their number
of dependencies. After a third and fourth elimination run,
the items AM1 and CS1 are removed from the item set. In
the end the remaining items are homogeneous. Now, as the
item set has been reduced to six items, the exact tests can be
applied for justifying the nonparametric tests. The Martin-
Lof test is conducted on the resulting item set. Here, the
p-value is 0.66. Thus, the items are assumed to be homo-
geneous and locally stochastically independent. After that,
the two test statistics presented in [2] are calculated. For
the general goodness-of-fit test statistic G2, a value of 62.1
is the result. Additionally, the x? test statistic X? results
in a value of 139.4. Both are not significant for 13 degrees
of freedom to a level of 0.05 in the x>-distribution. Again,
the Ho-hypothesis is rejected and the items are assumed to
be homogeneous.

Following the test on homogeneity, the items that violate
local stochastic independence in the way of being too similar
in their results have to be found. Actually, only the item 0B2
is dependent on another item and is, therefore, eliminated
from the result set. Last, the learning aspect of the local
stochastic independence is tested. Here, no item violates
the presumption.

The resulting item set with the items IN2, C02, 0OP3,
AT2, and 0V2 is valid with regard to the presumption of the
Rasch model.

After validating the presumptions of the Rasch model, fit-
ting of the data and a valid model are calculated for the given

data. The likelihood-ratio test has a p-value of 0.5 for the
first pre-knowledge splitting criterion (pre-knowledge level 1
vs. pre-knowledge levels 2&3). The test is not significant
and, because of that, the model is assumed to be valid. A
look at the Wald test for the items also shows no significant
model violations (p<0.05). For both tests we have to as-
sume a vector that splits the population into two parts. For
this reason students’ self-assessments of the previous knowl-
edge (pk) concerning programming is chosen as a separator
and, additionally, gender is chosen to find differences. Con-
cerning the students’ previous knowledge, two levels are put
together and compared with a third level to get two groups.
No model violations can be found for all three combina-
tions. Gender as a separation criterion is not applicable as
only 19% of the participants were female. As mentioned in
|11} p. 99], the two groups should be almost of equal size.

Concerning the gender aspect, a closer look at the different
items with separated participant groups show the violations
in the model fit. For that reason, all items are split by
gender. Afterwards for each group the items are tested if
they are trivial. Due to the small group size of the female
participants, a ratio of 0.01 is too small as it is less than one
person. Because of that, the limit is set to 0.02, which means
that at least one person has to have a different answer than
the others. The problem occurs with the item 0P3, where
there is less than 0.02 different answers for the female group.
Additionally, the item IN2 has a value of only 0.03 for the
female participants. Nevertheless, this is not critical for the
test. All other items have a distribution between the answers
of 0.3 and 0.7 (€02 and 0V2) and 0.5 for both groups (AT2).

As described above, the Rasch model is a one-parametric
test model where the items only differ in their level of dif-
ficulty. To show that another model with more estimated
parameters does not fit better, a two-parametric test model
is calculated and both models are compared. The compari-
son coefficients AIC and BIC [6] to get two groups have al-
most the same values. The two-parametric model provides
no advantage by introducing an additional parameter.

6.2 Model Interpretation

After fitting the dataset to a valid Rasch model, the next
paragraphs present the results of the model. In Figure
the item characteristic curves for all items that are included
in the model are shown. According to the definition of the
Rasch model, they only differ in their level of difficulty. This
is expressed in the figure by a shift on the x-axis, which
shows the latent parameter on a scale of -10 to 10. All
curves are parallel and only differ in the value of the latent
parameter at the probability of 50% for rating a code item
with “yes” (1). The probability that an individual with a
specific value of the latent parameter has solved a specific
item is drawn on the y-axis.

By definition, the item parameters sum up to 0. The
items OP3 and IN2 have values of -5.4 and 5.0, respectively.
The item that is closest to the average of 0 for the inves-
tigated population is AT2 (0.84). The use of attributes of
other classes, either direct or by using a method, indicate
participants with an average ability in coding, concerning
the investigated items. Interestingly, all items except AT2
and 0V2 have the same distance between each other. In gen-
eral, Figure [I| presents a ranking of the items. The simplest
item is OP3, which represents the use of arithmetic operators.
The underlying concept is simple to code and all projects



OP3
Co2
AT2

ov2
@ IN2

=}

0.6

Probability to Solve
0.4
I

0.2
|

0.0
|

Latent Dimension

Figure 1: Item characteristic curves (ICC) of all
items included in the Rasch model

need calculations. As a result, the position within the items
is not surprising. The next concept in the ranking is C02,
which indicates the use of a constructor or an initialization
of an object. Again, the underlying concept is easy, but
the basic object-oriented notions have to be implemented as
well. Next, the items AT2 and 0V2 indicate the use of in-
terrelations between classes. As mentioned above, the first
one represents the use of foreign methods and attributes.
The second one represents the use of overloaded methods.
Regarding the last item IN2 (use of an own class hierar-
chy), these two items represent more advanced concepts of
object orientation. Thus, the item set contains representa-
tives of simple coding concepts that can be related to the
procedural paradigm, as well as representatives of advanced
object-oriented notions.

In general, if the Rasch model is valid, the marginals of the
underlying dataset are a sufficient statistic. Because of that,
each possible person score is related to a person parameter.
For mathematical reasons the parameters for the margins 0
and 5 cannot be estimated, but have to be interpolated. The
mean value of the person parameters is 0.11; the median is
-0.92.

Actually, there is a medium correlation (0.42) between
the self-assessment of the students’ previous knowledge and
their person parameters (p-value < 0.01). Regarding gen-
der of the participants, females (-0.13) have a lower — but
not significant — average person parameter than male stu-
dents (0.26). On the other hand, the self-assessment has a
significant difference (p-value < 0.01) in the person param-
eters. The students with previous knowledge have a mean
value of 1.06, while those without any previous knowledge
have a mean value of -0.93.

In addition to students’ previous knowledge and their gen-
der, lines of code are another measurement that can be con-
ducted on the source code. In particular, the projects dif-
fered a lot in their complexity. There were projects with only
a few lines of code (min. 6 LOC) and some with more than
one thousand lines of code (max. 1330 LOC) containing a

GUI and other features . The mean value of project size re-
garding the lines of code is 212.7 LOC. For all participants,
the median is 129 LOC, while the first quartile is 73 LOC
and the third is 275 LOC. Furthermore, the projects devel-
oped by those with previous knowledge have significantly
(p-value < 0.01) more lines of code. The mean value for
those with pre-knowledge is 253.2 LOC versus 160.7 LOC
for those without pre-knowledge. Regarding the person pa-
rameters of the Rasch model, there is no correlation (0.07)
to the lines of code.

7. DISCUSSION

The resulting model contains only five items. Except 0P3
which deals with arithmetic operators, the items are related
to the object-oriented paradigm. As shown in Figure [T} the
most simple one is the use of operators (0P3) followed by
calling a constructor (C02) and accessing attributes of other
classes. The difficulty of this item is close to the use of over-
loaded methods (0V2). The most difficult item according to
the Rasch model is the use of manually created inheritance
hierarchies (IN2).

Generally, there are more homogeneous item sets than
the presented one. The order of removing dependent items
is important for the resulting item set. Here, the number
of dependencies built the criterion. This results in a broad
item set. In further research other criteria could be taken
into account.

Concerning the evaluation of programmers, the person pa-
rameters of the model are of interest. As mentioned above,
the participants had to assess their own previous knowledge.
This self-assessment correlates with the results of the model.
Furthermore, there is a significant difference in the use of
the items between those with previous knowledge to those
without any previous knowledge.

In addition to the code items we calculated the lines of
code (LOC). Again, there is a significant difference between
the previous knowledge levels. But, the person parameters
of the model have no correlation to the lines of code. Con-
cerning the lines of code, the projects produced by the par-
ticipants without any previous knowledge are more similar
than those produced by the other participants. Nevertheless,
even in the group without any previous knowledge, there are
projects with more than 500 LOC.

8. FUTURE WORK

Validating whether the items really measure the program-
ming ability as the latent dimension is difficult to proof. In
fact, the items only cover a part of programming ability as
some concepts that are not mentioned in the material for
the preprojects are missing. Additionally, the facet of prob-
lem solving that is a large part of the programming ability
cannot be assessed by a simple structural analysis.

Although the model is fitting the data, there still remain
some problems. Obviously, there are different kinds of diffi-
culty concerning the code items. On the one hand, there are
concepts that are difficult in a common understanding and
there are concepts that force the programmer to recognize
its use for a better programming code. So, this distinction
implies two different kind of programming abilities and be-
cause of that more than one dimension. The investigation
of the relationship of these dimensions is content of future
work.



Another problem we figured out, is the dependence of
some items on the programming assignments. Especially,
some force specific concepts like inheritance while others do
not. So, to create a generally valid model for programming
assessment the assignments have to be chosen in a proper
way so that no concept is privileged.

During the model fit tests we found several items that did
not fit the model and because of that were excluded from the
model. In a future research it would be important to find a
way either to include the concepts by identifying other code
items or by extending the investigated population.

9. CONCLUSION

We have shown in this paper that the investigation of
source code with the help of item response theory could
provide interesting outcomes. Yet, it seems difficult to find
appropriate assignments that show the persons’ program-
ming abilities. The most common way is to provide small
coding tasks that assess a specific part of that ability. Never-
theless, if the application and especially the combination of
different concepts should be assessed this methodology does
not work. Although, our method still has to be improved,
the a posteriori identification of programming concepts in
a bigger assignment might allow figuring out the complete
facets of programming. Additionally, small tasks can be as-
sessed as well at the time a general assessment tool based
on item-response theory is conducted.

10. REFERENCES

[1] R. J. d. Ayala. The theory and practice of item
response theory. Methodology in the social sciences.
Guilford Press, New York, 2009.

[2] D. J. Bartholomew. Analysis of multivariate social
science data. Chapman & Hall/CRC statistics in the
social and behavioral sciences series. CRC Press, Boca
Raton, 2nd edition, 2008.

[3] M. Berges, A. Miihling, and P. Hubwieser. The Gap
Between Knowledge and Ability. In Proceedings of the
12th Koli Calling International Conference on
Computing Education Research - Koli Calling 12,
pages 126-134, New York, 2012. ACM Press.

[4] J. Bergin, K. Bruce, and M. Kélling. Objects-early
tools: a demonstration. In Proceedings of the 36th
SIGCSE technical symposium on Computer science
education, pages 390-391, New York, 2005. ACM.

[5] J. Borstler, Henrik B. Christensen, Jens Bennedsen,
M. Nordstrém, Lena Kallin Westin, J. E. Mostrom,
and Michael E. Caspersen. Evaluating OO example
programs for CS1. In Proceedings of the 13th annual
conference on Innovation and technology in computer
science education, pages 47-52, New York, 2008. ACM
Press.

[6] K. P. Burnham and D. R. Anderson. Model selection
and multimodel inference: A practical
information-theoretic approach. Springer, New York,
2nd edition, 2002.

[7] G. H. Fischer and I. W. Molenaar. Rasch Models:
Foundations, recent developments, and applications.
Springer, New York, 1995.

[8] B. Hanks, C. McDowell, D. Draper, and M. Krnjajic.
Program quality with pair programming in CS1. In
Proceedings of the 9th annual SIGCSE conference on

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

Innovation and technology in computer science
education, volume 36, pages 176-180, New York, 2004.
ACM Press.

P. Hubwieser and M. Berges. Minimally invasive
programming courses: learning OOP with(out)
instruction. In Proceedings of the 42nd ACM technical
symposium on Computer science education, pages
87-92, New York, 2011. ACM Press.

G. Kemkes, T. Vasiga, and G. Cormack. Objective
Scoring for Computing Competition Tasks. In

R. Mittermeir, editor, Informatics Education — The
Bridge between Using and Understanding Computers,
volume 4226 of Lecture Notes in Computer Science,
pages 230241, Berlin, 2006. Springer.

I. Koller and R. Hatzinger. Nonparametric tests for
the Rasch model: explanation, development, and
application of quasi-exact tests for small samples.
InterStat, 11:1-16, 2013.

A. Luxton-Reilly, P. Denny, D. Kirk, E. Tempero, and
S.-Y. Yu. On the differences between correct student
solutions. In Proceedings of the 18th ACM conference
on Innovation and technology in computer science
education, pages 177-182, New York, USA, 2013.
ACM Press.

M. McCracken, V. Almstrum, D. Diaz, M. Guzdial,
D. Hagan, Y. B.-D. Kolikant, C. Laxer, L.. Thomas,

I. Utting, and T. Wilusz. A multi-national,
multi-institutional study of assessment of
programming skills of first-year CS students. In
Working group reports from ITiCSE on Innovation
and technology in computer science education,
Working Group Reports, pages 125-180, New York,
2001. ACM Press.

I. Ponocny. Nonparametric goodness-of-fit tests for the
rasch model. Psychometrika, 66(3):437-460, 2001.

G. Rasch. Probabilistic models for some intelligence
and attainment tests. University of Chicago Press,
Chicago, 1980.

K. Sanders and L. Thomas. Checklists for grading
object-oriented CS1 programs: concepts and
misconceptions. In Proceedings of the 12th annual
SIGCSE conference on Innovation and technology in
computer science education, pages 166—170, New York,
2007. ACM Press.

N. Truong, P. Roe, and P. Bancroft. Static analysis of
students’ Java programs. In Proceedings of the 6th
conference on Australasian computing education, pages
317-325, Darlinghurst, 2004. Australian Computer
Society, Inc.

A. Vihavainen, T. Vikberg, M. Luukkainen, and

M. Pértel. Scaffolding students’ learning using test my
code. In Proceedings of the 18th ACM conference on
Innovation and technology in computer science
education, pages 117-122, New York, USA, 2013.
ACM Press.

T. Winters and T. Payne. What Do Students Know?:
An Outcomes-based Assessment System. In
Proceedings of the first international workshop on
Computing education research, pages 165—172, New
York, 2005. ACM Press.



	Introduction
	Related Work
	Background
	Course Design
	Data Collection
	Results
	Model Validation
	Model Interpretation

	Discussion
	Future Work
	Conclusion
	References

