
Software Change Contracts

Dawei Qi, Jooyong Yi, Abhik Roychoudhury
School of Computing, National University of Singapore

{dawei,jooyong,abhik}@comp.nus.edu.sg

ABSTRACT
Incorrect program changes including regression bugs, incorrect bug-
fixes, incorrect feature updates are pervasive in software. These
incorrect program changes affect software quality and are difficult
to detect/correct. In this paper, we propose the notion of “change
contracts” to avoid incorrect program changes. Change contracts
formally specify the intended effect of program changes. Incorrect
program changes are detected when they are checked with respect
to the change contracts. We design a change contract language for
Java programs and a dynamic checking system for our change con-
tract language. We conduct a preliminary user study to check the
expressiveness of our change contract language and find that the
language is expressive enough to capture a wide variety of real-life
changes in three large software projects (i.e., Ant, JMeter, log4j).
Finally, our contract checking system detects several real-life incor-
rect changes in these three software projects via runtime checking
of the change contracts.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications—Lan-
guages; D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Programming by contract

Keywords
Software Evolution, Regression Testing, Change Contract, JML

1. INTRODUCTION
“There is nothing permanent except change” - this well-known

adage is true for software too. Programmers make changes to in-
troduce new features as required by the evolving software require-
ments. Programmers also make changes to fix bugs. However, the
changes to programs are usually imperfect. The new features might
not be completely realized by the changes. At the same time, exist-
ing features might get broken by careless changes, which are com-
monly known as “software regressions”. In fact, a recent study [14]
shows that 14.8%~24.4% of bug fixes in operating systems code are
incorrect.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$10.00.

Regression errors constitute an important class of incorrect pro-
gram changes. Regression bugs are generated when programmers
accidentally break existing program functionality (say in trying to
introduce new functionality). Past research has mainly focused on
regression testing [3, 4, 13] and regression debugging [11, 15] to
eliminate regression errors. Although the goal of regression test-
ing is to detect regression errors, it can hardly distinguish a normal
feature update from regression bugs without a proper oracle. Go-
ing through the reported “errors” one by one and differentiating
unintended differences in program behavior (across versions) from
intended program changes is annoying.

The pointed difficulty in regression testing ultimately stems from
the fact that programmer’s intention behind code changes is seldom
expressed. Although intention of changes is sometimes described
usually in a form of a change log or a comment, such an infor-
mal style of description does not help much in resolving the issue;
manual checking is still required. The problem can be resolved if
programmers can specify the intended change via a formal specifi-
cation; formally described intended changes can be checked auto-
matically if they are met by actual program changes.

New idea. We propose in this paper our new idea of “change con-
tracts”, a formal specification designed to express intended changes.
Change contracts specify the intended semantic changes correspond-
ing to changes in program code. When the actual program changes
break what is documented in the change contract, an inconsistency
between intended and actual changes can be detected. If the change
contract is properly written, such an inconsistency points out incor-
rect program changes. Therefore, with the help of change contracts,
an incorrect program change can be detected and corrected - prior
to checking in such incorrect changes into the code repository.

The concept of change contract is inspired by Design by Contract
programming (DBC) [7]. In DBC, programs are checked against
contracts to enable early error detection. Contracts typically ap-
pear in the form of pre- and post-condition of methods, as well as
invariant properties whose correctness is preserved by method ex-
ecution. However, this early error detection comes at the cost of
manually written contracts. This is probably the main reason for
the lack of adoption of “design by contract” : programmers are
reluctant to write non-trivial specifications.

Compared to program contracts which are recommended in de-
sign by contract programming, our change contracts are easier to
write. In fact, to detect regression errors, no change contract is re-
quired at all; we can simply have a default contract which says that
the program output after the change should be the same as the out-
put before the change. 1 Checking such default change contracts,

1Our change contract language also allows to specify in what sense
two outputs are the same if the exact identity of them is not in-
tended.

1 void checkIncludePatterns(){
2 . . .
3 File f=findFile(b,c,false);
4 if(f!=null && f.exists()){
5 . . .
6 }

(a) Current version, the bug is fixed

←

void checkIncludePatterns(){
. . .
File f=findFile(b,c,false);
if(f.exists()){
. . .
}

(b) Buggy version

←

void checkIncludePatterns(){
. . .
File f=findFileCaseInsensitive(b,c);
if(f.exists()){
. . .

}

(c) Original version

Figure 1: Reverse chronological change history; the leftmost one is the latest one

which do not involve any (or little) effort from a programmer, can
help reveal many subtle program errors.

The fact that change contracts are easier to write than program
contracts comes from the intrinsic nature of change contracts. Pro-
gram contracts are often specified as pre- and post-conditions of
methods. Thus, they specify what a program method does, about
which the programmer may not always have deep understanding
(unfortunately!) in real-life. In contrast, a change contract specifies
how the functionality of a program method is changed with respect
to the old program. The common behavior between two programs,
which is usually dominant, does not need to be specified in the
change contract. Besides, we allow users to write change contracts
at multiple levels of precision. The more precise a change con-
tract is, the more checking is done by our system. The users can
choose the level of precision at will. Finally, we note that there
exists a large body of code today which completely lacks any for-
mal specification. The concept of change contracts also provides a
pragmatic way of adding specifications of intended behavior on top
of this huge code base lacking formal specifications.

To support our new idea of change contract, we designed a lan-
guage for change contract, and developed a contract checking tool.
Our change-contract language is an extension of JML (Java Mod-
eling Language) [2]; we extended and modified its syntax and se-
mantics to be able to capture program’s behavioral changes over
two consecutive versions. To check change contract, we built a
runtime-assertion checker on top of OpenJML [8].

In the next section, we explain our new idea of change contract
in more detail by an example. After that, in Section 3, we show
our early result on change contract from two perspectives. First,
we show our preliminary user-study result about usability of our
change contract language. We received positive feedback from
users that our change contract language is expressive enough to
describe changes of real-life software. Second, we share prelimi-
nary experience in using our tool for checking change contract. In
Section 4, we discuss related work.

2. OUR NEW APPROACH
In this section, we first show code changes made on real-life soft-

ware. Then, we explain how our change contract can help with the
development and maintenance of programs that change over time.
Our language for change contract and checking tool will also be
explained.

Figure 1 shows in reverse chronological order how a method
checkIncludePatterns in file DirectoryScanner.java of Apache
Ant [1] was changed over time.2 The program in Figure 1a is a bug-
fixed version of the middle program in Figure 1b. The cause of the
bug was that null could be unexpectedly assigned to variable f

at line 3. This could happen when method findFile failed to find

2In the figure, we use simplified variable names.

/*@ changed_behavior /** NPE fix request */
@ /** findFile can return null */
@ requires findFile(b,"f",false)==null;
@ when_signaled (NullPointerException)
@ findFile(b,"f",false)==null;
@ signals (NullPointerException) false;
@*/

void checkIncludePatterns();

Figure 2: A change contract for the latest change, i.e., the change
from (b) to (a) of Figure 1; in the above, b is a field of the enclosing
class

file name c in the base directory b in a case-insensitive way; the last
parameter of findFile is used to decide case-sensitivity. As a re-
sult, an NPE (i.e., NullPointerException) was raised at line 4 in the
buggy version. While the fix for NPE is usually as simple as adding
a conditional guard as is done for the current version, NPE is per-
vasive in most Java programs as one of the most common causes of
errors. Interestingly, this particular bug was reported by developer
Curt while the fix was made by another developer Stefan. Indeed,
it is common to see that problems missed by the original developer
or a maintainer are found by other developers or even end-users.

In fact, the above NPE is a regression error resulted from a pre-
vious change; the same problem did not occur until that previous
change was made by yet another developer Matthew. The right-
most version in Figure 1c shows what the same method looked like
before an NPE-causing change had been made. Notice that dif-
ferent method findFileCaseInsensitive was called then in-
stead of findFile. Originally, two different find-file methods
were used depending on the case sensitivities required at call sites.
A regression-error-causing change was made when these two meth-
ods were merged into a new method findFile in which its last
boolean parameter is used to choose a case-sensitivity mode.

Now notice that the conditional guard at line 4 of the origi-
nal version shown in Figure 1c does not yet check whether f is
null. Nevertheless, an NPE did not occur in this original version.
The reason for this difference is that when there is no file name
c in base directory b, method findFileCaseInsensitive of
the original version creates a fresh dummy object of type File 3

whereas findFile used in Figure 1b returns null. Apparently,
it seems that the developer mistakenly assumed that the merged
method findFile, when its last boolean parameter is set false
to indicate case-insensitivity, always behaves in the same way as
findFileCaseInsensitive did in the previous version. It is,
however, difficult to put the entire blame on the developer because
without proper tool support most developers are likely to make sim-
ilar mistakes.

We now show how change contract can help deal with program

3It is created by new File(b,c).

changes described above in various ways. A change contract is
essentially a formal specification about intended program changes.
Like other formal specifications, change contracts can be used as
unambiguous documentation. In our example, Curt who found the
unexpected NPE could have written a change contract such as the
one in Figure 2, and have used it as a medium for a bug report.
Basically, such change contract describes when exactly an NPE bug
can be observed in the current problematic version, and that the
observed NPE bug should disappear in the fixed version.

Change contract language. Before explaining the above change
contract example in more detail, let us first give an overview of
our change contract language. When describing behavioral changes
of a method over two consecutive versions, users would typically
want to specify (i) under what common input condition of the two
versions, (ii) how different output conditions are observed from
those two versions. To handle the former, we use JML’s requires
clause. Unlike in JML, however, the given requires clause is im-
posed on two consecutive versions at the same time. Meanwhile, to
separately describe output conditions for two consecutive versions,
we add to JML two additional clauses; namely, when_ensured
and when_signaled. We use these two new clauses to describe
the output condition of the earlier version while using JML’s exist-
ing ensures and signals clauses to describe the later version’s
output condition. Following the convention of JML, we distinguish
normal and abnormal termination of a method. For the former,
when_ensured and ensures are used; for the latter, one can use
when_signaled and signals. Our change contract language can
also deal with method signature changes and field addition/dele-
tion. More detailed description of our change contract language and
its formal semantics are available through our technical report [12].

Then, the change contract of Figure 2 means the following. First,
the given requires clause sets the domain of interest; code change
should be considered when method findFile returns null given
the field b and file name “f”. When this input condition holds
true, two consecutive versions should behave differently. Let us call
those consecutive versions v1 and v2 in order of creation. The given
when_signaled clause describes that an NPE can be signaled in
version v1. This clause also describes the condition that is satisfied
when an NPE is signaled. Only when that given pair of requires
and when_signaled clauses is satisfied, version v2 is expected
to behave differently from version v1. Meanwhile, the signals

clause dictates that an NPE should not be signaled in version v2;
notice that false is given as an output condition. Given such a
change contract, Stefan, who is in charge of maintaining this part of
code, should be able to clearly understand when an NPE is observed
and that this problem should be fixed.

Change contract checker. Change contract is not only unam-
biguously understandable but also automatically checkable. Simi-
lar to DBC, various levels of change-contract checking is possible
from lightweight runtime assertion checking to human-guided full
static program verification and to extended static checking in the
middle. As a prototype, we built a runtime-assertion-checking tool,
and applied it to several sets of real-life software. Our preliminary
results will be shown in the next section.

When checking a change contract, it is not only the change that is
checked. It is also checked whether unintended changes are mistak-
enly made. Note that unintended changes cause regression errors.
For input that is not of interest of a given change contract, two con-
secutive versions of methods should lead to the same program state
after execution because we assume that the same input is passed to
those two versions.

3. PRELIMINARY RESULT
We have conducted two different experiments to evaluate our ap-

proach. First, we have conducted an initial user study to receive
feedback on the usability of our change contract language. Sec-
ond, we applied our tool to software changes to see if unintended
changes can actually be detected by our tool.

User study. A user study was carried out with two second-year
Master’s students majoring in computer science. Prior to the user
study, they both had no knowledge on program contract and JML.
We were mainly interested to see whether our change contract lan-
guage is expressive enough to describe changes occurring on real-
life software. Under the circumstances of limited resources, we
took a reverse-engineering approach. The users were first asked
to understand subject programs and their changes across different
versions. Afterwards, they were asked to write change contracts for
those changes.

We selected changes from the Bugzilla database of three open
source Java projects, i.e., Ant, JMeter and log4j. All of these are
widely used large-scale Java programs; Ant and JMeter have more
than 100,000 lines of code each, and log4j has around 13,000 lines
of code. Ant is the de facto standard Java build automation tool that
helps manage the build process. JMeter is used to test the behavior
and performance of various servers such as HTTP and POP3. Log4j
is a Java library that eases the logging process in Java. Despite
its name, Bugzilla contains not only bug fixes but also numerous
changes for new features. To help users understand the programs,
we picked only the entries of Bugzilla that provide patch files and
discussion of changes.

The user study results are summarized in Table 1. Overall, 52
change contracts were written out of 73 non-refactoring changes.
For refactoring, there was no need to write change contracts; a
change contract describes behavioral changes, not syntactic changes.
Among 52 change contracts, 24 of them listed under “Behavior
diff” column describe purely behavioral differences while 28 of
them listed under “Add/Delete” column also describe changes that
involve adding or deleting fields, methods or parameters.

The users failed to write change contract for some cases. The
“Not understood” column of the table accounts for 5 changes that
were failed to be understood by the users, for example, due to the
lack of source code of third-party libraries. The “Not concerned”
column amounts to 7 changes that are not concerned by our change
contract at this point, such as changes in synchronization in multi-
threaded programs. Lastly, the “Non-code” column accounts for 9
non-Java-source changes such as system environment changes.

Overall, we received positive feedback on the usability of our
change contract language. Out of total 80 changes, (24 + 28 +
5) = 57 changes were applicable for writing change contracts -
the other 22 changes being due to refactoring, multi-threading or
environment changes. Out of these 57 changes, the two users could
write change contracts for 52 of them using our language.

Tool experience. We built a prototype tool supporting runtime
assertion checking of change contract. We were interested to see
the capability of the tool in detecting unintended changes, i.e., the
changes that do not match a given change contract.

We again took a reverse-engineering approach to retrieve correct
change contracts and buggy program changes. We exploited bug-
fixes found in the code repository for the same three open-source
projects as we used for the user study. Let v3 be a bug-fix ver-
sion found in one of those repositories. We searched backward in
that repository for a previous version v2 where the bug of inter-
est was introduced. It is obvious that the change made to v2 from
its very previous version v1 was incorrect and caused the bug. In

Subject prog. Refactoring Applicable changes Not applicable changes Total
changes Behavior diff Add/Delete Not understood Not concerned Non-code changes

Ant 4 13 15 3 3 5 43
JMeter 1 5 6 1 4 0 17
log4j 2 6 7 1 0 4 20

TOTAL 7 24 28 5 7 9 80

Table 1: User study results on the usability (expressiveness) of our change contract language

other words, the changes from v1 to v2 are buggy. Meanwhile, a
change contract could hypothetically have been written when v1
was changed, and a correct one should amount to the changes be-
tween v1 and v3 while skipping v2.

We applied our tool to buggy changes for validating the use of
change contracts in bug detection. We tested 10 buggy changes
over the three subject programs (Ant, Jmeter and log4j), and our
tool could report change-contract violation for every case. Admit-
tedly, the efficacy of our runtime-assertion-based contract checker
depend on the test input used. To make our checker more efficient,
it would be desirable to be able to generate a test suite that is po-
tentially likely to violate a given change contract. We plan to work
towards that direction in the future exploiting our previous work on
test generation to expose changes in evolving programs [10].

4. RELATED WORK
We earlier mentioned that our work was inspired by DBC. A

large body of studies has been conducted around DBC and its en-
closing motif, program specification and verification, over many
years. What is new in change contracts as compared to those stud-
ies is that with change contracts we focus on changes between two
programs unlike in traditional methodologies where the main focus
is given to a single program.

Controlling program changes has been an interesting topic in
software engineering community during recent years. One pop-
ular method to control program changes is to report differences
at various levels between versions of a program. Such difference
reports are generated by various means such as symbolic execu-
tion [9], rule learning [6], and test case generation [5] to name
but a few. To the best of our knowledge, all of those methods are
performed on a post-mortem basis; given program changes, differ-
ences are inferred and processed. At the end, a user should review
generated difference reports to see if those changes are actually in-
tended. With change contract, we take an opposite approach; a
user first describes intended program differences before making a
change to a program. Then, it is automatically checked if given
program changes meet their change contracts.

5. CONCLUSION AND DISCUSSION
In this paper, we have proposed the notion of “change contracts”

as the specification of intended program changes. Incorrect changes
can be easily detected when checked with respect to their change
contracts. Since change contracts only focus on behavioral differ-
ences across consecutive program versions, they can be easier to
write than program contracts. We have presented an overview of
our change contract based on our formal language and tool that
support change contracts. Our early results from change contracts
are promising. Our contract language (based on JML) seems to be

expressive enough to describe changes of real-life software accord-
ing to our user study.

There still remains an important question, however. How can we
evaluate more thoroughly the usability of our change contract? Will
change contract provide more benefits than its cost of writing? Al-
though our small user study served its purpose with positive feed-
back, we need to extend the user study via collaboration with more
users. On one hand, we seek for collaboration opportunities at the
conference. On the other hand, we also hope to receive informative
feedback on our change contract language.

ACKNOWLEDGEMENTS
We thank Tushar Mehta and Tao Sun for participating in the user
study. This work was partially supported by a Ministry of Educa-
tion research grant MOE2010-T2-2-073 (R-252-000-456-112 and
R-252-100-456-112) from Singapore.

REFERENCES
[1] Apache Ant. http://ant.apache.org/.
[2] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.

Leavens, K. R. M. Leino, and E. Poll. An overview of JML tools and
applications. STTT, 7(3):212–232, 2005.

[3] Y. Chen, D. Rosenblum, and K. Vo. Testtube: A system for selective
regression testing. In ICSE, pages 211–220, 1994.

[4] R. Gupta, M. Harrold, and M. Soffa. An approach to regression
testing using slicing. In ICSM, pages 299–308, 1992.

[5] W. Jin, A. Orso, and T. Xie. Automated behavioral regression testing.
In ICST, pages 137–146, 2010.

[6] M. Kim and D. Notkin. Discovering and representing systematic
code changes. In ICSE, pages 309–319, 2009.

[7] B. Meyer. Eiffel: The language and environment. Prentice hall press,
300, 1991.

[8] OpenJML. http://sourceforge.net/apps/trac/
jmlspecs/wiki/OpenJml.

[9] S. Person, M. Dwyer, S. Elbaum, and C. Pasareanu. Differential
symbolic execution. In FSE, pages 226–237, 2008.

[10] D. Qi, A. Roychoudhury, and Z. Liang. Test generation to expose
changes in evolving programs. In ASE, pages 397–406, 2010.

[11] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani. DARWIN:an
approach for debugging evolving programs. In FSE, pages 33–42,
2009.

[12] D. Qi, J. Yi, and A. Roychoudhury. Software change contracts.
Technical Report TRE3/12, National University of Singapore, 2012.
Available at https://dl.comp.nus.edu.sg/dspace/
handle/1900.100/3588.

[13] G. Rothermel, R. Untch, C. Chu, and M. Harrold. Prioritizing test
cases for regression testing. TSE, 27(10):929–948, 2001.

[14] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. N. Bairavasundaram.
How do fixes become bugs? In FSE, pages 26–36, 2011.

[15] A. Zeller. Yesterday, my program worked. Today, it does not. Why?
In FSE, pages 253–267, 1999.

http://ant.apache.org/
http://sourceforge.net/apps/trac/jmlspecs/wiki/OpenJml
http://sourceforge.net/apps/trac/jmlspecs/wiki/OpenJml
https://dl.comp.nus.edu.sg/dspace/handle/1900.100/3588
https://dl.comp.nus.edu.sg/dspace/handle/1900.100/3588

	Introduction
	Our new approach
	Preliminary Result
	Related Work
	Conclusion and Discussion

