
Extending an lterator Model for Binary Trees to Backtracking
Problems

Uta Ziegler
Department of Computer Science , x

Western Kentucky University
Bowling Green, KY 42101

ziegler@pulsar.cs.wku.edu

Abstract

Rasala [11’ developed a design for an object-oriented
tree-iterator. This paper extends that design to provide an
iterator for backtracking problems. The developed iterator
explicitly uses a stack to store partial solutions which must be
evaluated and/or extended.

The discussed design can be used as a teaching tool
for recursion. Students often struggle with this paradigm [2]
since - for their taste - too much is happening behind the
scenes. Students can explore the exIjlicit ,&ck of the
backtraclcmg iterator after each recursion step: ”

The design can be reused for different domains,
since it separates domain-specific code from general iterator
code. Solutions to the set and the maze problems are shown.

Introduction

The paper by Rasala [l] provides an elegant and
sophisticated objectloriented approach for an iterator class for
binary search trees. The iterator class keeps track of the
current state by building a linked list of the parent nodes
(each with its progress indicators). Each element in the list is
a tree node which must be revisited. Elements can only be
added/ modified/inspected and deleted at the beginning of the
list, meaning the list is used as a stack. In effect, the iterator
class is (nearly) an iterative implementation (using a stack
explicitly) of the recursive tree-traversal algorithm (using the
system call stack as an implicit stack). Indeed, the given code
would only need small changes to work entirely without
recursion.

Students often struggle with recursion [2] since they
would like to “see” what’s happening. Using an explicit stack
(which can be examined after each iteration, for example)
provides a “view” into how recursion works. This paper
extends the basic design from Rasala [l] to implement an
“iterator” for most recursive problems which are solved by,
backtracking or a depth-first approach. The subset problem
and the maze problem are used as examples.
Permission to make digital/hard copies of all or part of this material fqr
personal or classroom use is granted with&t fee provided that the copies
are not made or distributed for profit oi commercial advantaie, the copy-
right notice, thetitle ofthe publication and its date appear, and notice is ,’
given that copyright is by permission of the ACM, Inc. To copy other+?,
to republish, to post on servers or to rcdiibute to lists, requires specific
permission andlor fee.
SIGSCE 98 AtlantaGA USA
Copyn’ght 1998 0-8979L994-7/98/2..%5.00

185

Ror the subset problem, a set of numbers S is given
and a value V. The task is to find (if possible) a subset M of
S, such that the sum of the elements in M is equal to V. For
the maze problem, a 2-dimensional maze is given (with a
treasure) and a starting point. The task is to fmd (if possible)
a path from the starting point to the treasure.

After a short overview of the classes involved, a
recursive solution to the subset problem is given. Then the
design of the classes is discussed, with emphasis on showing
the reader how all the parts of the recursive solution are
translated into parts of the interator ‘for backtracking
problems. The paper concludes with a short overview of how
the maze problem can be solved using the discussed design.

A Class Overview

It is assumed that each problem domain has its own
class (e.g. maze class, set class) which allows a programmer
to create/destroy and otherwise manipulate a given object.

Two more classes are defined:
. A problemtype class which defmes the data that

must be stored on the stack for each recursive step
as’well as the data and variables needed to specifjr
and solve the problem.

. An itenitbr class which contains the stack and
which’performslthe iterations.

The stack involves another class, but any well-designed
stack class which provides the operations is empty, push,
pop, and topptr can be used. (For example, this project uses
the one designed in [3]; only the topptr member function was
added.)

The following exRlains some of the relationships
betweenthe classes in the current implementation. It does not
make sense to pose a problem (e.g. find the treasure in the
maze starting at . ..) if the object itself (e.g. the maze) has not
been declared. Thus, the constructor of the problemtype class
expects a’$nter to the object. Similarly, one cannot iterate
through the solution process without a problem. Thus, the
constructor of the iterator class expects a pointer to the
problem to be solved.

The problemtype class and in many cases the domain object
class (sets, maze,...) must define the iterator class as a friend
class.

‘/

http://crossmark.crossref.org/dialog/?doi=10.1145%2F273133.273756&domain=pdf&date_stamp=1998-03-01

A Recursive Solution to the Subset Problem

Below is one of the many solutions to the subset
problem.

boo1 sset (int S[], boo1 M[], int match, int index)
1

if (match = 0) return true; /I success

if ((index >= MAX)
I] (match < 0)) return false; .’ // failure

I/ try using the current number

3’ M[index] = true;
if (!(sset (S, M, match-S[index], index+1))) / ,I
{

4 ’ !// do not use the current number after all
M[index] = false;
;etut-n sset(S, M, match, index+l);

.,.J “,
1 else return true;

1 ,I’,
In the provided code, M is an array of boolean

values, one for each element in S. A true value indicates that
the corresponding value of the set S is included in the subset.
MAX is the number of elements in the set S. Index is the
subscript of the element of S currently under investigation.
The recursive function performs several processing steps (in
this order): ,

‘ . ‘check for immediate success or failure;
. ‘/ add the current number to the subset and attempt a

solution;
.

1 remove the current number from the subset if the
’ attempt failed and

7, attempt a solution without the current number.
The same processing steps must be performed by the

iterator class. Note#th,at this is a very common pattern for
backtracking problems. <, ,I * ,;).’

The erobie&pe Class

The structure, ,pdtype below represents the data
stored on the stack for each recursrve step. Several processing
steps are performed on each stack.klement. Each processing
step is associated with one of the flags in the boolean array
don$ugs. ACTS,? ,fihe number of processing steps. If the
processing step! must still (or agam) ‘be performed, the
corresponding flag is set, to false; otherwrse to ,true:, . /,’ ~.

class problemtype { .
struct pdGe. {

8, .,

int index; /jnext wlue to txakine
int match; //the value to sum up to
boo1 * doneflags; I/ what’s done?

@type 0 // default constructor
{ index = 0;

match = 0;
doneflags = new (bool[ACTS]);
for (int i = 0; i<ACTS; i-H-)

doneflags[i] = false;

// constructor with problemtype
pdtype (problemtype * ptr)

t doneflags = new (hool[ACTS]);
*(this) = ptr->probdata;

1;

Statements printed in italics are specific for the
subset problem. The remaining statements are the same for
different backtracking problems.

Not shown here, but necessary for a correct working
of the pdtype structure are a copy constructor, an operator=
member function and a destructor.

The other data to be stored in the problemtype class
depend on the problem’ at, hand, as do the desirable
constructors (besides the default constructor).

public:
. sets * setptr; //a pointer to the set

boo1 ik$WIXJ l/ yember array for subset
pdtype probdata; I/ specify problem

/I constructor for problem type
pToblemtype(sets * s)
(setptr = S; i

fir (int i = 0; iGL!XC; i++)
A4[iJ = false;

tout -c< end1 CC “Enter match In”;
tin >> probdata.match;

1; ,

/I display the result *
void display 0
f for (int i = 0; i+WLY; i++)

f&%7..

;I;
cqut CC setptr->getelem(i) << endl;

friend class Iterator;
I; *

The member variables of the problemtype class
together represent the posed problem. In most cases, this
includes a pointer to the domain object (e.g. the set), the
particular goal of the problem in a pdtype structure (e.g.
which value to sum up to) and (if necessary) other variables
to hold the result (e.g. M). The problemtype constructor
provided creates a representation of the problem (assuming

186

_- .__. _. . ,_ ̂ .- l.. ,.... __ .,_. c_, _-.__ -

the set already exists).
In this particular example, no destructor is needed,

but a display function is provided to show the computed
solution of the problem.

The lterator Class

There are only three public member functions:
1) the constructor which sets up the problem solution (in

other words, it pushes a description of the problem
on,the stack);

2) the destructor empties the, stack if necessary (not shown
here);

3) the Iterate function which processes the top node on the
stack (or pops it if nothing else needs to be done).
This function is in effect the Iterate function from
[11, rewritten to be iterative .instead of recursive and
using a stack explicitly. +,

Note: The code for these three public functions is
independent of the particular problem domain.

class Iterator {
typedef problemtype::pdtype IteratorNode;
Stack<IteratorNode> S; .
boo1 success, stop;
int method;
problemtype * probptr;

public:
// constructor
Iterator (problemtype * problem, int Method)

{ probptr= problem;
// create the stacknode for the problem
IteratorNode first (problem);
II push the node on the stack
S.push(first);
// set other variables
method = Method, ,
success = false;
stop = false;

1; 0 . 1,

/I iterate action
boo1 Iterate (boo1 & empty)

{ stop = false;
while (!(empty = S.is-empty()) 11 !stop)

if (!Tryoptions())
S.popO;

return success; :
1;

The member variable success is not needed for such
things as the tree-traversal, since the three actions of a tree
traversal are always carried out. However, in many

backtracking problems, some actions are only necessary if
earlier actions failed to come up with a solution. The variable
success records whether earlier actions did or did not find a
solution to the problem. If the stack is empty and s~cce.s~ is
false, then no solution exists for the problem.

The variable stop controls when the iteration stops
(for example, to examine the stack). It can be set by one or
more of the processing steps. .

The iterate function always processes the current
node on top of the stack. Tryoptions applies the processing
steps to the node until one of them returns true. If none of the
processing steps returns true, then the node is popped off the
stack.

Hidden Member Functions

I
!

The hidden member functions of the iterator class
are set up following the general principle in the article from
Rasala[l]:
. The Tryoptions function executes a logical OR of

several test functions (stopping as soon as one
returns true). If there exists more than one method
(order) in which the test functions can be
executed, a switch statement will select the correct
one based on the method variable set in the iterator
constructor.

. I Each of the test functions first checks whether it still
needs to be performed. If so it changes the flag.
(Note: it will directly change the flag information of

/ the top element from the stack to avoid repeated
pop/push operations.)

l , // Each of the test functions to be performed returns
true or false, based on whether the function could
perform its designated processing step or not. (Do
not confuse this with success, which indicates
whetherma successful solution has been found.)

private:
boo1 Tryoptions()
{ switch (method){

case LeftFirst :
return (ChecMoneO 11 :

TmithNumberO 1 I ResultojX-yO I I
TlywoutNumberO);

case RightFirst :
return (Checkdone I I

TvoutNumberO I I Resultofl?O I I
TvithNumberO);

I
return false;

I; .

187

boo1 Checkdone It are we done now?
{ IteratorNode * pptr = S.topptr();

I // if already done return false
if (pptr->doneflags[O])

I return false;
1’ ’ pptr->doneflags[O] = true;

, , ,”
I/ successful end of current track?

I s if(pptr->match == 0)
/I { success = true;

s.popo;
,/, return true;)

/I unsuccessful end of current track?
if((pptr->match ~0) II _

y-Xndex >= IWLJJ)
success = false;

/ 1, ’ (, s.popo; -’ ,’
return true;)

’ It cu’rrent track needs to be pursued
return false;

}; ,(*I!. :tl’ .: I./
I,

Weare done (and have a solution) if the numbers of
the current subset M add up to the given number V. In that
case the number which must still be matched is 0. The
current track can also be’abandoned (unsuccessfully), if the
numbers of the current subset M add up to a value larger than
V (in this case the number which must still be matched is
negative), or if there are no more numbers in the set S to add
to the subset M. In other words, once it is clear that a
successful solution cannot be found along the track currently
under investigation, a “backtrack” step must be performed (=
pop the topmost state.off the stack).

Notice the similarities in the code with the recursive
function. Since the data is not available locally (as in the
recursive function), but on top of the stack, the access to the
data is more involved. However, the steps which are taken are
the same.

boo1 TrywithNumberO
{ check and set doneflags[l]*

// allow Resultoffry to ‘be executed
pptr->doneJags[2] = faIie;

.// get the value of the current set element
int k = pptr->indtx;
int number = probptr->setjtr->geteleino;

N add number to current solution
probptr->M[k] = true;
stop = true;

’ See code in Checkdone

N find the remainder of the solution
int nextmatch = pptr->match - number:
IteratorNode next(nextmatch, !+I);
S.push(next); , ’
return true;

1;

TrywithNumber adds the current number to the
subset and then pushes the description of the “left-over”
problem on the stack to be solved. (The “left-over” problem
is: use the remaining numbers in the set, try whether a subset
exists whose numbers add up’ to.the value minus the current
number.) Again, a comparison of the second processing step
in the recursive function reveals that TrywithNumber
performs the same task.

boo1 TrywoutNumberO I
{ check and set doneflags[3]’

’
1

IteratorNode next(pptr->match, pptr->index+l); I
S.push(next);
return true; * ’ ! ,

I;
i

boo1 ResultofIiy()
1 check and set doneflags[2]’ I

// if not successful, then return false
if (!success) !

i // don’t use current number t
probptr->M[pptr->index] = false; I
return false; i

1

N if successful, pop the node off the stack
s.popo; : 1

1;
return true;

TrywoutNumber and Resultoffry again follow the
steps of the recursive function pretty closely. The return from
the recursive function (in the case of a successful attempt) is
translated into popping the top node off the stack.

The hidden member functions differ from the ones
in the Rasala article in that the stack manipulations are
explicit. Where in Rasala’s code a state = new AeratorNode
&..J statement adds a new state to the linked list, the current
implementation constructs an IteratorNode and then pushes
it on the stack.

If desired, the switch statement in Tryoptions can be
eliminated by making Tryoptions a pure virtual member
function, thus changing the iterator class to an abstract class.
Several derived.classes can then be defined (one for each
method). This approach is common [1,4,5].

/)

188 I

.

Sketch of the Maze Solution

The treasure in the maze is indicated by the letter
‘T’, walls by ‘w’ and places already visited by ‘X’. When the
treasure is reached, it is changed to a ‘G’ (for goal).

The information to be stored in each stack element
is the current place (as row and column) in the maze.

struct probdatatype (
int crow, ccol; //current row and column
boo1 * doneflags; II what’s done?

1;
I/ constructors and such.....

The private member functions of the Iterator class
must check whether the treasure has been reached
(Checkdone) and each of the four directions~‘left, ,right; up
and down. Since the four member functions are very similar
the code for only one of them is provided (TryLeft). After
each direction attempt, the result must be checked (with
Resultoffry) to determine whether another direction should
be checked next or whether a path has been found. Therefore,
each test function sets the doneflag for Resultoffry before it
returns. (In the code provided, objectptr is equivalent to
problem->mazeptr.) , I .,

li
boo1 Checkdone J_
i

. . . check and set doneflags[O]’
//get row and co1 / 2

int crow ‘pptr->crow;
int cc01 =pptr->ccol;
//successful end of current track? ~
if(objectptr->getmaze(crow, ccol) == ‘Ty
i objectptr->setmaze(crow,’ ccol, j ‘G.3;

success = true;
s.popo; .’ .

return true;)
/I current track needs to be pursued further
return false;
I.
/Y

boo1 TryLeft
{ . ..check and set doneflags[11’.

//get row and co1
int crow =pptr->crow;
int cc01 =pptr->ccol;
char lejtsquar ~((ccol == O)?. ‘W’ : I

objectptr-->getmaze(crow, ccol-I));

if((cco1 == 0) I I // no place to go
(leftsquare == ‘Wl) I I //there’s a wall +
(leftsquare == ‘Xy) //I’ve been there before

return false; //cannot go leji

// mark current place
. objectptr->setmaze(crow, ccol, rxl);

stop = true;
l/find the remainder of the solution
IteratorNode next(crow, cc01 -I);
S.push(next);
// ResultojTry can be executed after this
pptr->doneJags[2] = false;

’ return true;
1

boo1 ResultofTry()
(. . . check and set doneflags[2]’

//get row and co1
int crow = pptr->crow;
int cc01 = pptr->ccol; ’
i/ $try not sucessfil, then return false
if (!success)
/ bbjectptr->setmaze(crow, ccol, ’ 3;

return false; 1

// tf try success@, nothing else needs to be done
s.popo;
return true;

>
The interested reader can appreciate the possibility

of changing the above approach to a heuristic search for the
treasure (assume the coordinates of the treasure are known).
This would entail rewriting TryOptions to select the best
direction which hasn’t been tried yet based on a given
heuristic.

Conclusions,
i

The notion of recursion is fundamental to computer
science. This paper discussed a reusable, object-oriented
iterator which can be used to provide students with the means
to explore what goes on “behind” the scene. In the beginning,
the students can learn from watching how the current state of
the solution changes. More experienced students can get a
deeper understanding of backtracking problems by
developing the necessary, hidden member functions of the
Iterator Class.

References
[l] Rasala, Richard, A Model C-H- Tree Iterator Class For
Binary Search Trees, Q The Proceedings of the 28th SIGCSE
Symposium.
[2] Roberts, Eric S, Thinking Recursively; John Wiley, 1986.
[3] Main, Michael and Savitch, Walter, Data Structures and
Other Objects Using C++; Addison Wesley, 1997.
[4] Odalline, Steve; Practical C++ Programming, O’Reilley
& Associates, 1995.
[5] Pohl, Ira, Object-Oriented Programming Using C++,
Benjamin Cummings, 1993. ,a

189

