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Abstract 

Rasala [ 11’ developed a design for an object-oriented 
tree-iterator. This paper extends that design to provide an 
iterator for backtracking problems. The developed iterator 
explicitly uses a stack to store partial solutions which must be 
evaluated and/or extended. 

The discussed design can be used as a teaching tool 
for recursion. Students often struggle with this paradigm [2] 
since - for their taste - too much is happening behind the 
scenes. Students can explore the exIjlicit ,&ck of the 
backtraclcmg iterator after each recursion step: ” 

The design can be reused for different domains, 
since it separates domain-specific code from general iterator 
code. Solutions to the set and the maze problems are shown. 

Introduction 

The paper by Rasala [l] provides an elegant and 
sophisticated objectloriented approach for an iterator class for 
binary search trees. The iterator class keeps track of the 
current state by building a linked list of the parent nodes 
(each with its progress indicators). Each element in the list is 
a tree node which must be revisited. Elements can only be 
added/ modified/inspected and deleted at the beginning of the 
list, meaning the list is used as a stack. In effect, the iterator 
class is (nearly) an iterative implementation (using a stack 
explicitly) of the recursive tree-traversal algorithm (using the 
system call stack as an implicit stack). Indeed, the given code 
would only need small changes to work entirely without 
recursion. 

Students often struggle with recursion [2] since they 
would like to “see” what’s happening. Using an explicit stack 
(which can be examined after each iteration, for example) 
provides a “view” into how recursion works. This paper 
extends the basic design from Rasala [l] to implement an 
“iterator” for most recursive problems which are solved by, 
backtracking or a depth-first approach. The subset problem 
and the maze problem are used as examples. 
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Ror the subset problem, a set of numbers S is given 
and a value V. The task is to find (if possible) a subset M of 
S, such that the sum of the elements in M is equal to V. For 
the maze problem, a 2-dimensional maze is given (with a 
treasure) and a starting point. The task is to fmd (if possible) 
a path from the starting point to the treasure. 

After a short overview of the classes involved, a 
recursive solution to the subset problem is given. Then the 
design of the classes is discussed, with emphasis on showing 
the reader how all the parts of the recursive solution are 
translated into parts of the interator ‘for backtracking 
problems. The paper concludes with a short overview of how 
the maze problem can be solved using the discussed design. 

A Class Overview 

It is assumed that each problem domain has its own 
class (e.g. maze class, set class) which allows a programmer 
to create/destroy and otherwise manipulate a given object. 

Two more classes are defined: 
. A problemtype class which defmes the data that 

must be stored on the stack for each recursive step 
as’well as the data and variables needed to specifjr 
and solve the problem. 

. An itenitbr class which contains the stack and 
which’performslthe iterations. 

The stack involves another class, but any well-designed 
stack class which provides the operations is empty, push, 
pop, and topptr can be used. (For example, this project uses 
the one designed in [3]; only the topptr member function was 
added.) 

The following exRlains some of the relationships 
betweenthe classes in the current implementation. It does not 
make sense to pose a problem (e.g. find the treasure in the 
maze starting at . ..) if the object itself (e.g. the maze) has not 
been declared. Thus, the constructor of the problemtype class 
expects a’$nter to the object. Similarly, one cannot iterate 
through the solution process without a problem. Thus, the 
constructor of the iterator class expects a pointer to the 
problem to be solved. 

The problemtype class and in many cases the domain object 
class (sets, maze,...) must define the iterator class as a friend 
class. 

‘/ 
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A Recursive Solution to the Subset Problem 

Below is one of the many solutions to the subset 
problem. 

boo1 sset (int S[], boo1 M[], int match, int index) 
1 

if (match = 0) return true; /I success 

if ((index >= MAX) 
I] (match < 0)) return false; .’ // failure 

I/ try using the current number 

3’ M[index] = true; 
if (!(sset (S, M, match-S[index], index+1))) / ,I 
{ 

4 ’ !// do not use the current number after all 
M[index] = false; 
;etut-n sset(S, M, match, index+l); 

.,.J “, 
1 else return true; 

1 ,I’, 
In the provided code, M is an array of boolean 

values, one for each element in S. A true value indicates that 
the corresponding value of the set S is included in the subset. 
MAX is the number of elements in the set S. Index is the 
subscript of the element of S currently under investigation. 
The recursive function performs several processing steps (in 
this order): , 

‘ . ‘check for immediate success or failure; 
. ‘/ add the current number to the subset and attempt a 

solution; 
. 

1 remove the current number from the subset if the 
’ attempt failed and 

7, attempt a solution without the current number. 
The same processing steps must be performed by the 

iterator class. Note#th,at this is a very common pattern for 
backtracking problems. <, ,I * ,; ).’ 

The erobie&pe Class 

The structure, ,pdtype below represents the data 
stored on the stack for each recursrve step. Several processing 
steps are performed on each stack.klement. Each processing 
step is associated with one of the flags in the boolean array 
don$ugs. ACTS,? ,fihe number of processing steps. If the 
processing step! must still (or agam) ‘be performed, the 
corresponding flag is set, to false; otherwrse to ,true:, . /,’ ~. 

class problemtype { . 
struct pdGe. { 

8, ., 

int index; /jnext wlue to txakine 
int match; //the value to sum up to 
boo1 * doneflags; I/ what’s done? 

@type 0 // default constructor 
{ index = 0; 

match = 0; 
doneflags = new (bool[ACTS]); 
for (int i = 0; i<ACTS; i-H-) 

doneflags[i] = false; 

// constructor with problemtype 
pdtype (problemtype * ptr) 

t doneflags = new (hool[ACTS]); 
*(this) = ptr->probdata; 

1; 

Statements printed in italics are specific for the 
subset problem. The remaining statements are the same for 
different backtracking problems. 

Not shown here, but necessary for a correct working 
of the pdtype structure are a copy constructor, an operator= 
member function and a destructor. 

The other data to be stored in the problemtype class 
depend on the problem’ at, hand, as do the desirable 
constructors (besides the default constructor). 

public: 
. sets * setptr; //a pointer to the set 

boo1 ik$WIXJ l/ yember array for subset 
pdtype probdata; I/ specify problem 

/I constructor for problem type 
pToblemtype(sets * s) 
( setptr = S; i 

fir (int i = 0; iGL!XC; i++) 
A4[iJ = false; 

tout -c< end1 CC “Enter match In”; 
tin >> probdata.match; 

1; , 

/I display the result * 
void display 0 
f for (int i = 0; i+WLY; i++) 

f&%7.. 

;I; 
cqut CC setptr->getelem(i) << endl; 

friend class Iterator; 
I; * 

The member variables of the problemtype class 
together represent the posed problem. In most cases, this 
includes a pointer to the domain object (e.g. the set), the 
particular goal of the problem in a pdtype structure (e.g. 
which value to sum up to) and (if necessary) other variables 
to hold the result (e.g. M). The problemtype constructor 
provided creates a representation of the problem (assuming 
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the set already exists). 
In this particular example, no destructor is needed, 

but a display function is provided to show the computed 
solution of the problem. 

The lterator Class 

There are only three public member functions: 
1) the constructor which sets up the problem solution (in 

other words, it pushes a description of the problem 
on,the stack); 

2) the destructor empties the, stack if necessary (not shown 
here); 

3) the Iterate function which processes the top node on the 
stack (or pops it if nothing else needs to be done). 
This function is in effect the Iterate function from 
[ 11, rewritten to be iterative .instead of recursive and 
using a stack explicitly. +, 

Note: The code for these three public functions is 
independent of the particular problem domain. 

class Iterator { 
typedef problemtype::pdtype IteratorNode; 
Stack<IteratorNode> S; . 
boo1 success, stop; 
int method; 
problemtype * probptr; 

public: 
// constructor 
Iterator (problemtype * problem, int Method) 

{ probptr= problem; 
// create the stacknode for the problem 
IteratorNode first (problem); 
II push the node on the stack 
S.push(first); 
// set other variables 
method = Method, , 
success = false; 
stop = false; 

1; 0 . 1, 

/I iterate action 
boo1 Iterate (boo1 & empty) 

{ stop = false; 
while (!(empty = S.is-empty()) 11 !stop) 

if (!Tryoptions()) 
S.popO; 

return success; : 
1; 

The member variable success is not needed for such 
things as the tree-traversal, since the three actions of a tree 
traversal are always carried out. However, in many 

backtracking problems, some actions are only necessary if 
earlier actions failed to come up with a solution. The variable 
success records whether earlier actions did or did not find a 
solution to the problem. If the stack is empty and s~cce.s~ is 
false, then no solution exists for the problem. 

The variable stop controls when the iteration stops 
(for example, to examine the stack). It can be set by one or 
more of the processing steps. . 

The iterate function always processes the current 
node on top of the stack. Tryoptions applies the processing 
steps to the node until one of them returns true. If none of the 
processing steps returns true, then the node is popped off the 
stack. 

Hidden Member Functions 

I 
! 

The hidden member functions of the iterator class 
are set up following the general principle in the article from 
Rasala[l]: 
. The Tryoptions function executes a logical OR of 

several test functions (stopping as soon as one 
returns true). If there exists more than one method 
(order) in which the test functions can be 
executed, a switch statement will select the correct 
one based on the method variable set in the iterator 
constructor. 

. I Each of the test functions first checks whether it still 
needs to be performed. If so it changes the flag. 
(Note: it will directly change the flag information of 

/ the top element from the stack to avoid repeated 
pop/push operations.) 

l , // Each of the test functions to be performed returns 
true or false, based on whether the function could 
perform its designated processing step or not. (Do 
not confuse this with success, which indicates 
whetherma successful solution has been found.) 

private: 
boo1 Tryoptions() 
{ switch (method){ 

case LeftFirst : 
return (ChecMoneO 11 : 

TmithNumberO 1 I ResultojX-yO I I 
TlywoutNumberO); 

case RightFirst : 
return (Checkdone I I 

TvoutNumberO I I Resultofl?O I I 
TvithNumberO); 

I 
return false; 

I; . 
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boo1 Checkdone It are we done now? 
{ IteratorNode * pptr = S.topptr(); 

I // if already done return false 
if (pptr->doneflags[O]) 

I return false; 
1’ ’ pptr->doneflags[O] = true; 

, , ,” 
I/ successful end of current track? 

I s if(pptr->match == 0) 
/I { success = true; 

s.popo; 
,/, return true; ) 

/I unsuccessful end of current track? 
if((pptr->match ~0) II _ 

y-Xndex >= IWLJJ) 
success = false; 

/ 1, ’ (, s.popo; -’ ,’ 
return true;) 

’ It cu’rrent track needs to be pursued 
return false; 

}; ,( *I!. :tl’ .: I./ 
I, 

Weare done (and have a solution) if the numbers of 
the current subset M add up to the given number V. In that 
case the number which must still be matched is 0. The 
current track can also be’abandoned (unsuccessfully), if the 
numbers of the current subset M add up to a value larger than 
V (in this case the number which must still be matched is 
negative), or if there are no more numbers in the set S to add 
to the subset M. In other words, once it is clear that a 
successful solution cannot be found along the track currently 
under investigation, a “backtrack” step must be performed (= 
pop the topmost state.off the stack). 

Notice the similarities in the code with the recursive 
function. Since the data is not available locally (as in the 
recursive function), but on top of the stack, the access to the 
data is more involved. However, the steps which are taken are 
the same. 

boo1 TrywithNumberO 
{ . . . . . . check and set doneflags[l]* 

// allow Resultoffry to ‘be executed 
pptr->doneJags[2] = faIie; 

.// get the value of the current set element 
int k = pptr->indtx; 
int number = probptr->setjtr->geteleino; 

N add number to current solution 
probptr->M[k] = true; 
stop = true; 

’ See code in Checkdone 

N find the remainder of the solution 
int nextmatch = pptr->match - number: 
IteratorNode next(nextmatch, !+I); 
S.push(next); , ’ 
return true; 

1; 

TrywithNumber adds the current number to the 
subset and then pushes the description of the “left-over” 
problem on the stack to be solved. (The “left-over” problem 
is: use the remaining numbers in the set, try whether a subset 
exists whose numbers add up’ to.the value minus the current 
number.) Again, a comparison of the second processing step 
in the recursive function reveals that TrywithNumber 
performs the same task. 

boo1 TrywoutNumberO I 
{ . . . . . . check and set doneflags[3]’ 

’ 
1 

IteratorNode next(pptr->match, pptr->index+l); I 
S.push(next); 
return true; * ’ ! , 

I; 
i 

boo1 ResultofIiy() 
1 . . . . . . check and set doneflags[2]’ I 

// if not successful, then return false 
if (!success) ! 

i // don’t use current number t 
probptr->M[pptr->index] = false; I 
return false; i 

1 

N if successful, pop the node off the stack 
s.popo; : 1 

1; 
return true; 

TrywoutNumber and Resultoffry again follow the 
steps of the recursive function pretty closely. The return from 
the recursive function (in the case of a successful attempt) is 
translated into popping the top node off the stack. 

The hidden member functions differ from the ones 
in the Rasala article in that the stack manipulations are 
explicit. Where in Rasala’s code a state = new AeratorNode 
&..J statement adds a new state to the linked list, the current 
implementation constructs an IteratorNode and then pushes 
it on the stack. 

If desired, the switch statement in Tryoptions can be 
eliminated by making Tryoptions a pure virtual member 
function, thus changing the iterator class to an abstract class. 
Several derived.classes can then be defined (one for each 
method). This approach is common [ 1,4,5]. 

/) 
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Sketch of the Maze Solution 

The treasure in the maze is indicated by the letter 
‘T’, walls by ‘w’ and places already visited by ‘X’. When the 
treasure is reached, it is changed to a ‘G’ (for goal). 

The information to be stored in each stack element 
is the current place (as row and column) in the maze. 

struct probdatatype ( 
int crow, ccol; //current row and column 
boo1 * doneflags; II what’s done? 

1; 
I/ constructors and such..... 

The private member functions of the Iterator class 
must check whether the treasure has been reached 
(Checkdone) and each of the four directions~‘left, ,right; up 
and down. Since the four member functions are very similar 
the code for only one of them is provided (TryLeft). After 
each direction attempt, the result must be checked (with 
Resultoffry) to determine whether another direction should 
be checked next or whether a path has been found. Therefore, 
each test function sets the doneflag for Resultoffry before it 
returns. (In the code provided, objectptr is equivalent to 
problem->mazeptr.) , I ., 

li 
boo1 Checkdone J_ 
i 

. . . check and set doneflags[O]’ 
//get row and co1 / 2 

int crow ‘pptr->crow; 
int cc01 =pptr->ccol; 
//successful end of current track? ~ 
if(objectptr->getmaze(crow, ccol) == ‘Ty 
i objectptr->setmaze(crow,’ ccol, j ‘G.3; 

success = true; 
s.popo; .’ . 

return true; ) 
/I current track needs to be pursued further 
return false; 
I. 
/Y 

boo1 TryLeft 
{ . ..check and set doneflags[ 11’. 

//get row and co1 
int crow =pptr->crow; 
int cc01 =pptr->ccol; 
char lejtsquar ~((ccol == O)?. ‘W’ : I 

objectptr-->getmaze(crow, ccol-I)); 

if((cco1 == 0) I I // no place to go 
(leftsquare == ‘Wl) I I //there’s a wall + 
(leftsquare == ‘Xy) //I’ve been there before 

return false; //cannot go leji 

// mark current place 
. objectptr->setmaze(crow, ccol, rxl); 

stop = true; 
l/find the remainder of the solution 
IteratorNode next(crow, cc01 -I); 
S.push(next); 
// ResultojTry can be executed after this 
pptr->doneJags[2] = false; 

’ return true; 
1 

boo1 ResultofTry() 
( . . . check and set doneflags[2]’ 

//get row and co1 
int crow = pptr->crow; 
int cc01 = pptr->ccol; ’ 
i/ $try not sucessfil, then return false 
if (!success) 
/ bbjectptr->setmaze(crow, ccol, ’ 3; 

return false; 1 

// tf try success@, nothing else needs to be done 
s.popo; 
return true; 

> 
The interested reader can appreciate the possibility 

of changing the above approach to a heuristic search for the 
treasure (assume the coordinates of the treasure are known). 
This would entail rewriting TryOptions to select the best 
direction which hasn’t been tried yet based on a given 
heuristic. 

Conclusions, 
i 

The notion of recursion is fundamental to computer 
science. This paper discussed a reusable, object-oriented 
iterator which can be used to provide students with the means 
to explore what goes on “behind” the scene. In the beginning, 
the students can learn from watching how the current state of 
the solution changes. More experienced students can get a 
deeper understanding of backtracking problems by 
developing the necessary, hidden member functions of the 
Iterator Class. 
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