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Abstract

Data mining is the discovery of previously un-

known, potentially useful and hidden knowledge in

databases. In this paper, we concentrate on the dis-

covery of association rules. Many algorithms have

been proposed to �nd association rules in databases

with binary attributes. We introduce the fuzzy as-

sociation rules of the form, 'If X is A then Y is B',

to deal with quantitative attributes. X, Y are set of

attributes and A, B are fuzzy sets which describe X

and Y respectively. Using the fuzzy set concept, the

discovered rules are more understandable to human.

Moreover, fuzzy sets handle numerical values better

than existing methods because fuzzy sets soften the

e�ect of sharp boundaries.

1 Introduction

During the past years, boolean association rule min-

ing has received considerable attention. Boolean as-

sociation rule mining tries to �nd consumer behav-

ior in retail data. The discovered rule can tell, for

example, people buy butter and milk will also buy

bread. Such rules can be used in customizing mar-

keting program, advertisement and sales promotion.

However, binary association rule mining restricts the

application area to binary one.

Recently, people are interested in quantitative at-

tributes. In [12], mining quantitative association

rules has been proposed. The algorithm �nds the as-

sociation rules by partitioning the attribute domain

and combining adjacent partitions, then transforms

the problem into binary one. Although this method

can solve problems introduced by in�nite domain, it

causes the sharp boundary problem. We either ig-

nore or overemphasize the elements near the bound-

aries in the mining process.

In this paper, we propose an algorithm for mining

fuzzy association rule of the form, If X is A then

Y is B. X, Y are attributes and A, B are fuzzy

sets which characterize X and Y respectively. The

Fuzzy set concept is better than the partition method

because fuzzy sets provide a smooth transition be-

tween member and non-member of a set. Because of

the smooth transition, there are fewer boundary ele-

ments being excluded. Moreover, the fuzzy associa-

tion rule is more understandable because of linguistic

terms associated with fuzzy sets.

This paper is organized as follows. In the follow-

ing section, we will describe di�erent ways to han-

dle quantitative attributes. We will give de�nition

of fuzzy association rules and interest measures of

itemsets and rules in section 3. In section 4, the ex-

perimental results will be given. We will give a brief

conclusion in section 5.

2 Quantitative Attributes

In [1, 2, 10, 5, 11], algorithms to �nd binary asso-

ciation rules in large databases have been proposed.

However, a database may also contain quantitative

attributes, e.g. integer, categorical, numerical at-

tributes. Since we cannot directly apply the binary

algorithms, we either have to transform the quanti-

tative problem into binary one or to �nd new algo-

rithms.

In �gure 1, the discrete interval method [12] di-

vides the attribute domain into discrete intervals.

Each element will contribute weight to its own in-

terval. We can use the weights to estimate the im-

portance of an interval. However, we may miss some

interesting intervals because of excluding some po-

tential elements near the sharp boundaries.

The e�ect of sharp boundary is shown in �gure 1.

The �rst graph is the data distribution of age. The

attribute domain has been partitioned into 5 inter-

vals. Suppose the intervals, 10 to 20, 20 to 30 and

30 to 40, only have 20% support and the minimum

support is 25%. In this case, all these intervals will

not have enough support. However, the interval, 20
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Figure 1: Discrete Intervals.

to 30, should be interesting if we consider the values

near both sides.

Another attribute partitioning method [12] is to

divide attribute domain into overlapped regions and

is shown in �gure 2. In the second graph, we can see

that the boundaries of intervals are overlapped with

each other. As a result, the elements located near

the boundary will contribute to more than one inter-

val such that some intervals may become interesting

in this case. It is, however, not reasonable for an

element near the boundaries to contribute the same

as those located within an interval. This will surely

overemphasize the importance of an interval.
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Figure 2: Overlapped Intervals.

The above attribute partitioning methods are sub-

ject to the e�ect of sharp boundaries because of the

classical set theory. In the fuzzy set theory, however,

an element can belong to a set with set membership

value in [0,1]. This value is assigned by the mem-

bership function associated with each fuzzy set. For

attribute x and its domain Dx, the mapping of the

membership function is mfx
(x) : Dx ! [0; 1].

Fuzzy set provides a smooth change between the

boundary and the e�ect is shown in �gure 3. The sec-

ond graph shows the curve of a traditional fuzzy set.

In the third graph, we can see that the values located

outside the interval have been considered. Therefore,

the sharp boundary problem has been tackled. More-

over, the contribution of a value has been restricted

by the membership function as illustrated in �gure 3.
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Figure 3: Fuzzy Set.

3 Problem De�nition

Mining fuzzy association rule is the discovery of as-

sociation rules using fuzzy set concepts such that the

quantitative attributes can be handled. In this sec-

tion, we will give the de�nition of fuzzy association

rule �rst. Then we will discuss the interest measures

of itemsets and the rules.

3.1 Fuzzy association rule

Let T = ft1, t2, ..., tng be the database and ti rep-

resents the ith tuple in T . Moreover, we use I = fi1,

i2, ..., img to represent all attributes appeared in T

and ij represents the j
th attribute. Since I contains

set of items, we call I an itemset which appeared in

existing papers. Table 1 is a sample database with

quantitative attributes.

Retired Children Salary

Yes 2 0
No 3 15000
No 0 10000
No 1 20000

Yes 2 0

Table 1: A Sample Database.

We have T = ft1, t2, t3, t4, t5g and I = fRetired,

Children, Salaryg. We can retrieve the value of at-

tribute ik in the jth record simply by tj[ik]. For

example, if we want to know the value of Salary of

the forth record, we can use t4[Salary] and get the

value 20000.

Besides, each attribute ik will associate with sev-

eral fuzzy sets. We use Fik = ff1
ik
, f2

ik
, ..., f l

ik
g

to represent set of fuzzy sets associated with ik and



f
j

ik
represents the jth fuzzy set in Fik. For ex-

ample, if the attribute Salary has three fuzzy sets:

high, medium and low, we will have FSalary = fhigh,

medium, lowg. The fuzzy sets and the correspond-

ing membership functions are provided by domain

experts.

Given a database T with attributes I and those

fuzzy sets associated with attributes in I, we want to

�nd out some interesting, potentially useful regulari-

ties in a guided way. Our proposed fuzzy association

rule is in the following form:

If X is A then Y is B:

In the above rule, X = fx1, x2, ..., xpg and Y = fy1,

y2, ..., yqg are itemsets. X and Y are subsets of I

and they are disjoint which means that they share no

common attributes. A = ffx1 , fx2 , ..., fxpg and B =

ffy1 , fy2 , ..., fyqg contain the fuzzy sets associated

with the corresponding attributes in X and Y . For

example, an attribute xk in X will have a fuzzy set

fxk in A such that fxk 2 Fxk is satis�ed.

The �rst part of the rule 'X is A' is called the

antecedent and 'Y is B' is called the consequent of

the rule. The semantics of the rule is when 'X is A' is

satis�ed, we can imply that 'Y is B' is also satis�ed.

Here, satis�ed means there are su�cient amount of

records which contribute their votes to the attribute-

fuzzy set pairs and the sum of these votes is greater

than a user speci�ed threshold.

If a rule is interesting, it should have enough sig-

ni�cance and a high certainty factor. We use signif-

icance and a certainty factor to determine the satis-

�ability of itemsets and rules.

3.2 Signi�cance factor

To generate fuzzy association rule, we have �rst to

�nd out all large k-itemsets which are itemsets with

signi�cance higher than a user speci�ed threshold.

The signi�cance factor is calculated by �rst summing

all votes of each record with respect to the speci-

�ed itemset, then dividing it by the total number of

records. Each record contributes a vote which falls

in [0,1]. Therefore, a signi�cance factor re
ects not

only number of records supporting the itemset, but

also their degree of support. We use the following

formula to calculate the signi�cance factor of hX;Ai,

i.e. ShX;Ai .

Significance =
Sum of votes satisfying hX;Ai

Number of records in T

ShX;Ai =

P
ti2T

Q
xj2X

f�aj (ti[xj])g

total(T )

where

�aj (ti[xj]) =

�
maj2A(ti[xj]) if maj � !;

0 otherwise.

In the above equation, hX;Ai represents the

itemset-fuzzy set pair, where X is set of attributes xj
and A is the set of fuzzy sets aj. A record satis�es

hX;Ai means that the vote of the record is greater

than zero. The vote of a record is calculated by the

membership grade of each xj in that record. The

membership grade should not be less than the user

speci�ed threshold ! such that low membership val-

ues will not be considered. We use ti[xj] to obtain

the value of xj in the ith records, then transform

the value into membership grade by maj2A(ti[xj])

which is the membership function of xj. After ob-

taining all membership grades of each xj in a record,

we use
Q

xj2X
fmaj2A(ti[xj])g to calculate the vote

of ti. After summing up the votes of all records, we

divide the value by the total number of records.

In fact, we can use operators other than
Q

(mul),

e.g. min,max, butmul gives the simplest and reason-

able results. It takes the membership of all attributes

of an itemset into account. Table 2 illustrates why

we use mul.

Max Min Mul
0.9 0.2 0 0.9 0 0
0.9 0.9 0.2 0.9 0.2 0.162
0.3 0.3 0.2 0.3 0.2 0.018

Table 2: The E�ect Of Functions.

hSalary; highi hBalance; lowi
0.9 0.2
0.2 0.7
0.5 0.4
0.3 0.7
0.6 0.3

Table 3: Database Containing Membership.

We use an example to illustrate the computation

of the signi�cance factor. Let X = fSalary,Balanceg

and A = fhigh,lowg and a part of database shown in

table 3. The signi�cance of hX;Ai is as follows.

ShX;Ai = (0:18 + 0:14 + 0:2 + 0:21 + 0:18)=5

= 0:182



3.3 Certainty factor

We use the discovered large itemsets to generate all

possible rules. The criteria for a rule to be interesting

is called certainty factor. If the union of antecedent

and consequent has enough signi�cance and the rule

has su�cient certainty, this rule will be considered

as interesting. There are two ways to calculate the

certainty factor.

Using signi�cance

When we obtain a large itemset hZ;Ci, we want to

generate fuzzy association rules of the form, 'If X

is A then Y is B.', where X � Z, Y = Z � X,

A � C and B = C � A. Having the large itemset,

we know its signi�cance as well as the fact that all

of its subsets will be also large. We can calculate the

certainty factor as follows.

Certainty =
Signi�cance of hZ;Ci

Signi�cance of hX;Ai

ChhX;Ai;hY;Bii =

P
ti2T

Q
zk2Z

f�ck(ti[zk])gP
ti2T

Q
xj2X

f�aj (ti[xj])g

where

�ck(ti[zk]) =

�
mck2C(ti[zk]) if mck � !;

0 otherwise.

Z = X [ Y;C = A [B

Since the signi�cance factor of an itemset is the

measure of the degree of support given by records,

we use signi�cance to help us estimate the interest-

ingness of the generated fuzzy association rules. In

the above equation, we divide the significance of

hZ;Ci by significance of hX;Ai. The certainty re-


ects fraction of votes support hX;Ai will also sup-

port hZ;Ci. We will use the information in table 3 to

illustrate the calculation of certainty factor. Given

the rule, 'If Salary is high then Balance is low.', i.e.

X = fSalaryg, A = fhighg, Y = fBalanceg and B =

flowg, the certainty is as follows.

ChhX;Ai;hY;Bii =
0:18 + 0:14 + 0:2 + 0:21 + 0:18

0:9 + 0:2 + 0:5 + 0:3 + 0:6

= 0:364

Using correlation

Another way to calculate the certainty factor of a rule

is to compute the correlation of hX;Ai and hY;Bi.

In this paper, the correlation, which is di�erent from

statistics, is called XYCorrelation. The calculation

of expectation of the antecedent is similar to statis-

tics except that we have to take the user speci�ed

membership ! into account. The vote of record will

be zero if the membership grade of hX;Ai in that

record is less than !. However, the vote of conse-

quent will also be zero if the vote of the antecedent

is less than !. The following equation is used for

computing the certainty.

Certainty = XYCorrelation of hX;Ai and hY;Bi

ChhX;Ai;hY;Bii =
Cov(X; Y )p

V ar(X)� V ar(Y )

where

Cov(X; Y ) = E[hZ;Ci]� E[hX;Ai]� E0[hY;Bi]
Z = X [ Y; C = A [B

V ar(X) = E[hX;Ai2]� E[hX;Ai]2
V ar(Y ) = E0[hY;Bi2]� E0[hY;Bi]2

E[hX;Ai] =

P
ti2T

Q
xj2X

f�aj (ti[xj])g
total(T )

�aj (ti[xj]) =

n
maj2A(ti[xj]) if maj � !;

0 otherwise.

E0[hY;Bi] =

P
ti2T

�[ti]

total(T )

�[ti] =

� Q
yk2Y

f�bk(ti[yk])g if 
 � !;

0 otherwise.


 =
Y
xj2X

f�aj (ti[xj])g

In data mining, an association rule X ! Y usu-

ally meansX implies Y and we cannot assume Y also

implies X because of the data distribution of X and

Y . Therefore, we change the calculation of expec-

tation such that we can accommodate the meaning

of fuzzy association rules. In the above equations,

we can see that the calculation of E[hX;Ai] is sim-

ilar to an ordinary expectation except it has taken

the membership threshold ! into account. E0[hY;Bi]

calculates the expectation of the consequent. If the

product of membership grades of the antecedent of

a record is less than !, the vote of the consequent of

that record will be zero.

The value of the certainty is ranging from -1 to

1. Only positive value tells that the antecedent and

consequent are related. The higher the value is, the

more related they are. Therefore, if the rule 'If X

is A then Y is B.' holds, the certainty of this rule

should be at least greater than zero.

Given the database in table 3, we can calculate

the certainty factor of the rule, 'If Salary is high then

Balance is low.' as follows.

ChhX;Ai;hY;Bii =
0:182� 0:23p
0:06� 0:0424

= �0:96



4 Experimental Results

In this section, we will examine the accuracy and per-

formance of discrete interval method and the meth-

ods proposed in this paper. We will describe the

parameter settings and the results of di�erent meth-

ods.

4.1 Experiment One

In this experiment, we use two attributes to illustrate

how the fuzzy set concept can solve the problem of

sharp boundary. We assume that there are three

intervals/fuzzy sets for each attribute.
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Figure 4: Data of Experiment One.

In �gure 4, the horizontal axis represents attribute

A and the vertical axis represents attribute B. We

generate the database such that records are clustered

in the inner box.

S = 0.25

Methods C L R

Discrete1 15 6 0

Discrete2 3 3 2

Signi�cance 7 3 2

Correlation 7 3 2

Table 4: Result Of Experiment One.

In table 4, S is the signi�cance factor and C, L,

R are numbers of candidate itemsets, large itemsets

and rules. The con�dence and certainty have been

set to 50%. Moreover, we have set the user speci�ed

membership threshold to 0.6. Discrete1 uses the in-

ner box as the interesting region and Discrete2 uses

the outer box.

We can see that all methods discover similar re-

sults except that Discrete1 cannot �nd rules. There-

fore, Discrete2 uses large region in order to �nd the

missing rules. However, the region is so large that

the semantics of the rules become meaningless. On

the contrary, the fuzzy sets have not overemphasized

the sparse elements but still give similar results.

4.2 Experiment Two

We assume there is a relation between the working

hour and the GPA of a student. The relation of the

two attributes is shown in �gure 5(a). The meaning

of the relation is that the GPA of a student will be

high if he works hard. Otherwise, he will get low

GPA. The data are generated according to the rela-

tion curve in �gure 5(a). In �gure 5(b), we can see

the data distribution of the two attributes.
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Figure 5: Data of Experiment Two.

The two attributes, Hour and GPA, have three

intervals/fuzzy sets such that the plane of Hour and

GPA is divided into nine regions. In �gure 5(b), we

can see that at least four areas are heavily shaded

which means that several rules should exist in the

database. The results in table 5 are quite similar to

those of experiment one. The signi�cance factor has

been set to 0.2 and 0.25 and the certainty factor is

50%.

S = 0.2 S = 0.25

Methods C L R C L R

Discrete 15 7 2 15 6 0

Signi�cance 15 11 5 15 10 5

Correlation 15 11 10 15 10 8

Table 5: Result Of Experiment Two.

In this experiment, we can see that the method us-

ing correlation to calculate certainty factor gives the

highest number of expected interesting rules. The

discrete interval method again �nd fewest rules than

our methods.

4.3 Experiment Three

In this experiment, we will give the experimental

results on the performance of the three methods.

There are three attributes in the database. Each

attribute has three intervals/fuzzy sets. We have

set the user speci�ed parameters such that all three

methods will give same number of rules. We have



run the programs with database size ranging from

5000 to 100000 records. Figure 6, shows the execu-

tion time of the three methods.
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Figure 6: Result of Experiment Three.

In �gure 6, the execution of all methods grow lin-

early as the number of records increased. In previous

experiments, the method using correlation will give

more rules than others. However, the performance

of this method turns out to be the worst because we

have to scan the database again when we calculate

the certainty factor. The method using signi�cance

give comparable performance with respect to the dis-

crete interval method and it �nds more relevant rules

than the discrete interval method. Therefore, the

trade-o� between signi�cance and correlation meth-

ods is performance and number of rules to be discov-

ered.

5 Conclusion

In this paper, we have proposed a method to han-

dle quantitative attributes. We assign each attribute

with several fuzzy sets which characterize the quan-

titative attribute. Using the fuzzy set concept, we

want to �nd fuzzy association rule. We have de-

�ned the signi�cance factor of itemset, the de�ni-

tion and certainty factor of fuzzy association rule.

Moreover, we have performed several experiments.

In those experiments, we have shown that our al-

gorithm has solved the problem of sharp boundary.

We have used two methods to measure the certainty

of fuzzy association rules, i.e. signi�cance and cor-

relation. In the experiments, we have found that

the method using signi�cance as certainty will give a

better performance. On the other hand, the method

using correlation as certainty will give more accurate

results.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Min-

ing association rules between sets of items in

large databases. In SIGMOD, pages 207{216,

Washington D.C., May 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms

for mining association rules in large databases.

In 20th International Conference on Very Large

Databases, Santiago, Chile, Sept. 1994.

[3] H. Bandemer and W. N�ather. Fuzzy data anal-

ysis. Kluwer Academic Publishers, Dordrecht,

Netherlands; Boston, 1992.

[4] D. Dubois and H. Prade. Possibility theory :

an approach to computerized processing of un-

certainty. Plenum Press, New York, 1988.

[5] U. M. Fayyad and R. Uthurusamy. E�cient al-

gorithms for discovering association rules. In

AAAI Workshop on KDD, Eds, pages 181{192,

Seattle, Washington, July 1994.

[6] A. Geyer-Schulz. Fuzzy rule-based expert sys-

tems and genetic machine learning. Physica-

Verlag, Heidelberg, 1995.

[7] J. Han and Y. Fu. Discovery of multiple level

association rules from large databases. In 21st

Int'l Conf. on VLDB, Z�urich, Switzerland, Sept.

1995.

[8] A. Kandel. Fuzzy expert systems. CRC Press,

Boca Raton, Fla., 1992.

[9] G. J. Klir and T. A. Folger. Fuzzy sets, uncer-

tainty, and information. Prentice Hall, Engle-

wood Cli�s, N.J., 1988.

[10] J. S. Park, M.-S. Chen, and P. S. Yu. An e�ec-

tive hash-based algorithm for mining associatin

rules. In SIGMOD, pages 175{186, San Jose,

1995. ACM.

[11] A. Sarasere, E. Omiecinsky, and S. Navathe. An

e�cient algorithm for mining association rules

in large databases. In 21st Int'l Conf. on VLDB,

Z�urich, Switzerland, Sept. 1995.

[12] R. Srikant and R. Agrawal. Mining quantitative

association rules in large relational tables. 1995.

[13] L. A. Zadeh and J. Kacprzyk. Fuzzy Logic for

the Management of Uncertainty. John Wiley &

Sons, Inc., 1992.


