On the Benefit of Synthetic Data for Company Logo
Detection

Christian Eggert

Anton Winschel

Rainer Lienhart

Multimedia Computing and Computer Vision Lab
University of Augsburg
Universitatsstr. 6a, 86153 Augsburg, Germany

{ christian.eggert, anton.winschel, rainer.lienhart } @ informatik.uni-augsburg.de

ABSTRACT

In this paper we explore the benefits of synthetically gen-
erated data for the task of company logo detection with
deep-learned features in the absence of a large training set.
We use pre-trained deep convolutional neural networks for
feature extraction and use a set of support vector machines
for classifying those features. In order to generate suflicient
training examples we synthesize artificial training images.
Using a bootstrapping process, we iteratively add new syn-
thesized examples from an unlabeled dataset to the training
set. Using this setup we are able to obtain a performance
which is close to the performance of the full training set.

Categories and Subject Descriptors

1.5 [Pattern Recognition]: Miscellaneous; 1.4.3 [Image
Processing and Computer Vision]: Enhancement

General Terms

Algorithms, Experimentation, Performance

Keywords

Logo detection, Logo classification, Synthetic training data,
Dataset augmentation

INTRODUCTION

It is in the nature of machine learning algorithms to gen-
eralize previously seen training examples to unknown in-
stances. For a robust prediction it is vital for the classifier
to have access to a large variety of training examples. How-
ever, building a dataset can be a slow and tedious task and
training examples are hard to come by for some machine
learning problems.

Usually there are two approaches to tackle this
problem: One way is to augment the training set by
generating syn- thetic variations of the collected
examples. Another ap- proach is to use the already
collected examples to search for

1.

© Owner/Author | ACM 2015. This is the author's version of the work. It is
posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in:
MM’15, October 26—-30, 2015, Brisbane, Australia.
DOI: http://dx.doi.org/10.1145/2733373.2806407 .

1283

g

Fongsnte : P e \

Feinherb-Dark chocolate
ala Mousse au Chocolat \[¥

Figure 1: A suggestion (red) for user feedback gen-
erated by our bootstrapping process.

related examples on a large unstructured dataset, browsing
through the suggestions and deciding which ones to add to
the training set. The problem with the latter approach is
located in the second step, since related examples usually
mean small variety.

For the task of company logo detection it is compelling
to use both approaches to reinforce each other. Company
logos are a special case because typically, only the context
in which a logo appears changes strongly while the actual lo-
gos themselves usually have relatively uniform appearances.
Context is comparatively easy to synthesize as we will de-
scribe in section 2. Due to the uniformity of the company
logos, similarity search has a good chance of success - espe-
cially when used in conjunction with high-level feature rep-
resentations like features extracted from deep convolutional
neural networks (DCNNs).

DCNNs have revolutionized many areas of computer vi-
sion. Typically, the convolutional layers of such a network
learn a feature representation while the last layers - usually
fully connected - are responsible for classification. Being
a data driven approach, DCNNs typically require a large
number of labeled instances to train. However, it has been
found [3] that the features extracted by the convolutional
layers generalize well to other computer vision tasks on dif-
ferent datasets. In order to repurpose a DCNN for a different
task, the last layers tend to be discarded and the output of
the previous layers are used as input for a different classifier,
such as support vector machines (SVMs) or random forests.

In this paper we apply the principles mentioned above to
the problem of company logo detection and recognition in
the absence of a large dataset. For our scenario we will as-



Figure 2: Two examples of synthetically generated images. Starting from a base image, a random perspective
transform is applied, followed by gaussian blur (not shown), color augmentation (exaggerated for viewing

purposes) and background replacement.

sume a limited number of labeled training examples with
pixel-level annotations and an unlabeled number of images,
some of which may contain additional instances of the logo.
This could for example be achieved by downloading a set of
images from an online photo-sharing website using the logo
names as keywords. Furthermore, we require a set of images
that is most likely free of the logos that we are attempt-
ing to detect. Again, this could be achieved by searching
an online photo-sharing site with random keywords such as
“landscape”.

Our contributions are as follows:

1. We show that by training a classifier from synthetic
training examples alone we are able to obtain a performance
that is comparable to a classifier trained from real images.

2. We show that in a single-shot scenario synthetic train-
ing examples can be beneficial to boost the effectiveness of
bootstrapping.

2. SYNTHETIC DATA GENERATION

Since we are using DCNNs solely as feature extractors and
assume them to come pre-trained, we are only left to train
the SVMs used for classifying the DCNN features. In the
absence of a large database, we turn to synthetically gener-
ated training images. The generation process is depicted in
figure 2.

For every class we start off with a small number b of base
images from which the synthetic images are to be derived.
For every base image we synthesize artificial training images
in the following way:

1. We select a random perspective transform and warp
both image and mask accordingly. The transformation is
given by

M = PTR,.R,R. (1)

where the image is regarded to be on a 3d-plane translated
from the origin by T while R,, R, and R. represent the
rotations of this plane around the coordinate axis associated
with the angles ©,, ©, and ©.. P defines a perspective
projection. For reasonably large, yet not extreme variations,
we limit the allowed angles to the range —50° < 0, < 50°,
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—50° < ©, < 50° and pick O, € {0°,90°,180°,270°} from
a uniform distribution.

2. In order to generate a larger visual variety, we modify
the color of the warped image by using the approach of [2].
We calculate the eigenvalues «;,7 = 1,2,3 and the corre-
sponding eigenvectors p; on the covariance matrix of RGB
values in the original base image. For each image we draw
three random numbers ~; distributed according to A(0,0.5)
and add to each pixel [Iﬁy, Izc't u Iff y]T a linear combination
of the eigenvectors, given by

Z Vit Pi
i=1...3

3. The logo is randomly blurred by convolution with a
gaussian kernel G(z,y, o) to simulate different scales. This
is done by picking o € {0,0.5,1.0,1.5} from a uniform dis-
tribution.

4. We remove the background of the logo using the pixel-
level annotations of the training set and copy the warped
and color-modified logo into a new image which contains no
logos. This is done to prevent the classifier from adapting
to features extracted from the background since the DCNN
only processes rectangular bounding boxes.

On the synthesized images, we apply selective search [7]
in order to obtain candidate regions. The candidate regions
are split into positive and negative examples as described
in section 3. Finally, we extract the DCNN features for the
image patches defined by the selective search windows.

(2)

3. CLASSIFICATION PIPELINE

For our experiments we use the following classification
pipeline: We are using selective search [7] to generate up
to 2000 bounding boxes with object proposals per image.
Images are limited to a maximum side length of 1024 pixels
and are rescaled if necessary. Each bounding box defines
an image patch which is resized to match the input dimen-
sions of the neural network and is propagated through the
DCNN. For our experiments, we use the 16-layer very deep
architecture by [5].



We use the DCNN output after the first fully connected
layer! without applying the ReLU [2] or employing the drop-
out. We have found the 4096-dimensional features extracted
by this configuration to yield the best results. One exception
is the output of the last pooling layer which delivers slightly
better results but are impractical to use due to their high
dimensionality.

The extracted features are Ly -normalized and used as in-
put for a series of linear SVMs. We train a separate SVM
for every class. Each candidate region is classified accord-
ing to the SVM which yields the highest score. We require
a confidence of at least 0.5 for a positive classification. If
no SVM yields a score greater than 0.5, the candidate re-
gion is classified as negative. A positive classification for the
image is given by the predicted class of the highest-scoring
candidate region.

For the initial training, we select candidate regions C
whose overlap — calculated using intersection over union
(ToU) — with the groundtruth annotation G is IoU(C, G) >
0.7 as positive examples for the SVM. As negative exam-
ples we choose candidate boxes with an overlap between
0.1 < IoU(C,G) < 0.3. Since the number of negative ex-
amples typically is a lot higher than the number of positive
examples, we only use a random subset of the negative ex-
amples for training.

4. MINING NEW TRAINING EXAMPLES

It is possible to train a decent classifier on purely syn-
thetic data (see section 5). In this section we investigate a
bootstrapping process which uses a rudimentary classifier -
trained only from a few real images - to mine new training
examples from a dataset containing unlabeled instances of
company logos. The newly found real training examples can
then be used as a basis to synthesize more training images.

Starting with a set of pre-trained SVMs - e.g. from a pre-
vious training run on synthetic images - we use our classifier
to predict the class labels of object proposals on a previously
unlabeled set of images as described in section 3. Typically,
the number [ of instances a user is willing to label is limited.
In order to extract the number of training examples that are
likely to be maximally beneficial to the performance of the
classifier, we follow the idea of version space bisection by [6].
We select | = 5 training examples which are located closest
to the decision surface of each SVM for the user to classify.
Intuitively, this approach provides the classifier with labels
to instances it is most uncertain about. In manually labeling
these examples, the classifier is therefore provided with the
currently most informative labels.

If classified as a positive example by the user, we generate
synthetic versions of this example as described in section 2.
We extract DCNN features from both the original example
as well as from the synthetic variations. If classified as a logo
by the user, the features are added as positive examples to
the corresponding SVM responsible for this class. To all
other SVMs the example is added as a negative example.

Additionally we make use of the set of logo-free images,
which is used to replace the background of synthesized logo
images (see section 2), for mining hard negatives. For this
purpose, we select at most one candidate box per image
that is classified as positive with the highest confidence on

1T]f[1i? layer is called FC6 in the CAFFE [1]-Model provided
by [5
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Figure 3: Influence of the number of variations on
the recognition performance for different numbers
of base images. The dotted line indicates the per-
formance when trained with all training examples
(no synthetic images)

the logo-free dataset and add them as negative examples to
the SVM which classified this image as positive.

5. EXPERIMENTS

We conduct our experiments on the FlickrLogos-32 data-
set [4] which consists of 4280 training and validation im-
ages and 3960 test images containing both images of 32 logo
classes and images containing no logos. The training set con-
tains 10 examples per class while both the validation and the
test set contain 30 positive examples each. Additionally, the
validation set contains 3000 non-logo images.

First we establish the baseline for our logo recognition
system by combining the positive examples from both train-
ing and validation set and use them for training. Using the
training process described in section 3 and after two rounds
of hard negative mining on the non-logo part of the valida-
tion set, we obtain a precision of 0.996, a recall of 0.786 and
a F1-Score of 0.879.

In our first experiment we evaluate the performance of
the classifier when trained on a purely synthetic training set
using a fixed amount of base images. This will help us to
determine a reasonable number of synthetic images to gener-
ate per real example and will serve as a baseline to evaluate
the impact of the bootstrapping procedure. We start with a
single base image per class b = 1 and progressively generate
more synthetic images from each base image. Figure 3 shows
the F1-Score for the logo recognition system as a function
of the number of variations v. Remarkably, only a few base
images are required to achieve a performance which is close
to the performance of the recognition system trained with
the full training set. Unsurprisingly the influence of syn-
thetic training examples diminishes as the number of base
images b increases, since the base images can already provide
enough variation for the SVMs.

In our second experiment we use the classifiers trained in
the first experiment as a starting point for the bootstrap-
ping process described in section 4 (synth). For comparison
we use the same bootstrapping process without dynamically
synthesizing new training examples (w/o synth).



Precision vs. Recall
r

1.0
c
k=]
@
O
o
o
0.4H — b=1 bootstrap
0.3l| — b=3bootstrap| i U1 6 I .
— b=5 bootstrap 1
021 . i A N PR i
01 . i i i
0.0 0.2 0.4 0.6 0.8 1.0
Recall
Figure 4: Precision-Recall curve for synthesized

training sets with b =1, b =3 and b = 5. The dotted
line indicates the performance when training with
all examples (no synthetic images). In the case of
synthetic training data, the number of variations is
v = 40. Three learning rounds were performed for
bootstrapping.

Learning rounds b 1 2 3 4
synth 1 0483 0.632 0.646 0.681
synth 3 0730 0.791 0.795 0.807
synth 5 0.770 0.803 0.815 0.819
w/o synth 1 0515 0.517 0.514 0.517
w/o synth 3 0.730 0.748 0.751 0.759
w/o synth 5 0770 0.791 0.792 0.790

Table 1: Influence of the number of learning rounds
(I = 5) on the performance of the classifier for differ-
ent number of base images given as F1-Score. The
initial classifiers were trained with v = 40.

In order to simulate a user providing input, we use the
annotations provided from the FlickrLogos validation set.
In each training round we select | = 5 examples from each
SVM which are classified according to the overlap with the
groundtruth.

While this approach for simulating user input yields re-
producible results, it does have the weakness that it relies on
the assumption that all logo instances in the dataset have
been labeled. Clearly this is not always the case. In the
process, we noticed some limitations in the annotations of
the FlickrLogos dataset: One such example is shown in fig-
ure 1. The bounding box around the groundtruth annota-
tions is shown in green which is a typical annotation for this
particular class. The bounding box marked in red shows a
suggestion for a new training example as generated by our
bootstrapping process. Despite clearly being an instance of
the company logo used in a different context, this example
will be classified as a negative example during the bootstrap-
ping process since instances like this are not annotated in
the dataset, possibly confusing the classifier.

Table 1 shows the results of this experiment in terms of
the F1-Score. While in every scenario synthetic training im-
ages are beneficial to the bootstrapping process, the effects
are most strongly pronounced when the number of initial
training images is small. This is especially obvious in the
case of a single training image. As the initial training set
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grows larger the effects of bootstrapping diminishes as well
as the effect of synthetic images. However, using this boot-
strapping strategy we are still able to achieve 91% of the
performance of the original dataset while using only 8% of
the original training images in the case of b = 3.

Figure 4 shows the effect of mining new training examples
in terms of precision and recall. We show the performance of
classifiers trained from synthetic data and compare it with
the performance of the classifier that has been subjected to
three rounds of bootstrapping with synthesizing from newly
mined training examples.

6. CONCLUSION

We have shown that training sets for company logo classi-
fication can be successfully enhanced with synthetic images
when little training data is available. This is especially true
when used in conjunction with a bootstrapping strategy. In
this work we have exclusively used pre-trained DCNNs for
feature extraction. We expect strong performance gains for
DCNNSs that have been specifically adapted to the task of
logo detection. We imagine that synthetic images could also
be beneficially employed in this regard which we will inves-
tigate in future works.
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