
ar
X

iv
:1

40
3.

22
25

v3
 [

cs
.L

O
]

 1
2

Fe
b

20
15

On the variable hierarchy of first-order spectra

Eryk Kopczyński

University of Warsaw

Tony Tan

Hasselt University and Transnational University of Limburg

The spectrum of a first-order logic sentence is the set of natural numbers that are cardinalities
of its finite models. In this paper we study the hierarchy of first-order spectra based on the
number of variables. It has been conjectured that it collapses to three variable. We show the
opposite: it forms an infinite hierarchy. However, despite the fact that more variables can express
more spectra, we show that to establish whether the class of first-order spectra is closed under
complement, it is sufficient to consider sentences using only three variables and binary relations.

Categories and Subject Descriptors: F.1.3 [Complexity Measures and Classes]: Complexity
hierarchies; F.4.1 [Mathematical Logic]: Finite model theory

General Terms: Theory

Additional Key Words and Phrases: first-order spectra, bounded number of variables, non-
deterministic exponential time

1. INTRODUCTION

The spectrum of a first-order sentence Φ (with the equality predicate), denoted by
Spec(Φ), is the set of natural numbers that are cardinalities of finite models of Φ.
Or, more formally, Spec(Φ) = {n | Φ has a model with universe of cardinality n}.
A set is a spectrum, if it is the spectrum of a first-order sentence. We let Spec to
denote the class of all spectra. Without the equality predicate, it is known that if a
sentence has a model of cardinality n, then it also has a model of cardinality n+1.
The notion of the spectrum was introduced by Scholz, where he also asked whether

there exists a necessary and sufficient condition for a set to be a spectrum [Scholz
1952]. Since its publication, Scholz’s question and many of its variants have been
investigated by many researchers for the past 60 years. Arguably, one of the main
open problems on spectra is the one asked by Asser, known as Asser’s conjecture,
whether the complement of a spectrum is also a spectrum [Asser 1955].
Though seemingly unrelated, it turns out that the notion of spectra has a tight

connection with complexity theory. In fact, Asser’s conjecture is shown to be
equivalent to the problem NE vs. co-NE∗, when Jones and Selman, as well as
Fagin independently showed that a set of integers is a spectrum if and only if its
binary representation is in NE [Jones and Selman 1974; Fagin 1973; 1974]. It
also immediately implies that if Asser’s conjecture is false, i.e., there is a spectrum
whose complement is not a spectrum, then NP 6= co-NP, hence NP 6= P.
In this paper we study the following hierarchy of spectra, which we call the

∗NE is the class of languages accepted by a non-deterministic (and possibly multi-tape) Turing
machine with run time O(2kn), for some constant k > 0.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2018, Pages 1–0??.

http://arxiv.org/abs/1403.2225v3

2 · E. Kopczyński and T. Tan

variable hierarchy: For every integer k ≥ 1, define

Speck = {Spec(Φ) | Φ uses only up to k variables}
Obviously we have Spec1 ⊆ Spec2 ⊆ · · · . It was conjectured that the variable
hierarchy collapses to three variables, due to the fact that three variables are enough
to describe the computation of a Turing machine. For more discussion on this
conjecture, we refer the reader to a recent survey by Durand, et. al [Durand et al.
2012].
In this paper we show the opposite: The variable hierarchy has an infinite number

of levels. That is, for every k ≥ 3, Speck (Spec2k+2 (Corollary 4.2). Here
we should note that it is already known that Spec1 (Spec2 (Spec3. More
discussion is provided in the next section.
Our proof follows from the following observations.

—To describe a computation of a non-deterministic Turing machine with runtime
O(Nk) – for a fixed integer k ≥ 1 – with a first-order sentence acting on a
structure of cardinality N , 2k + 1 variables are sufficient.

—Conversely, for each first-order sentence Φ with k variables, checking whether a
structure of cardinality N is a model of Φ can be done on a non-deterministic
Turing machine in time O(Nk(logN)2) [Grandjean 1984; 1985; Grandjean and
Olive 2004].

Curiously, despite the infinity of the variable hierarchy, by standard padding argu-
ment, our proof implies that the class of first-order spectra is closed under com-
plement if and only if the complement of every spectrum of three-variable sentence
(using only binary relations) is also a spectrum (Corollary 3.5). This means that
to settle Asser’s conjecture, it is sufficient to consider only three-variable sentences
using only binary relations.
This paper is organised as follows. In Section 2 we discuss some related results.

In Section 3 we present a rather loose hierarchy: for every integer k ≥ 3, Speck (

Spec2k+3. Then in Section 4 we show that by more careful book-keeping, we obtain
a tighter hierarchy: For every integer k ≥ 3, Speck (Spec2k+2. In Section 5 we
briefly discuss how our results can be translated to the setting of generalised spectra.
We conclude with Section 6.

2. RELATED WORKS

In this section we will briefly review the spectra problem and discuss some related
results. We refer the reader to a recent survey by Durand, et. al. for a more
comprehensive treatment on the spectra problem and its history [Durand et al.
2012]. Fagin’s paper [Fagin 1993] covers nicely the relation between the spectra
problem and finite model theory and its connection with descriptive complexity.
First, we remark that our result Speck (Spec2k+2, for each integer k ≥ 3 com-

plements previous known result that Spec1 (Spec2 (Spec3 [Durand et al.
2012], which can be proved as follows. First, a model of first-order sentence
with only one variable remains a model after cloning elements, thus Spec1 only
includes the empty set, and sets of form {n : n ≥ k}. In another paper we
show that the class of spectra of two-variable logic with counting quantifiers is
exactly the class of semilinear sets, and closed under complement [Kopczyński

ACM Transactions on Computational Logic, Vol. V, No. N, August 2018.

On the variable hierarchy of first-order spectra · 3

and Tan 2015]. Using the same methods, one can show that Spec2 is the class
of finite and cofinite sets, thus separating Spec2 from Spec1. On the other
hand, three variables are enough to simulate an arbitrary Turing machine, so it
is not difficult to construct a set in Spec3 which is not even semilinear, say, e.g.,
{n2 | n is the length of an accepting run of a Turing machine M}, hence, separat-
ing Spec3 from Spec2.

Related to the variable hierarchy is the arity hierarchy. Let Spec(arity k) denote
the spectra of first-order sentences using only relations of arity at most k. Fagin
showed that if there exists k such that Spec(arity k) = Spec(arity k+1), the arity
hierarchy collapses to k [Fagin 1975].

Lynch showed that NTIME[Nk] ⊆ Spec(arity k), where NTIME[Nk] denotes
the class of sets of positive integers (written in unary form) accepted by non-
deterministic multi-tape Turing machine in time O(Nk), where N is the input
integer [Lynch 1982]. The converse is still open and seems difficult. A proof for
Spec(arity k) ⊆ NTIME[Nk] seems to require that model checking for first-order
sentences (of arity k) on structures with universe of cardinality N can be done in
NTIME[Nk]. However, a result by Chen, et. al. states that checking whether
a graph of N vertices contains a k-clique, which is of constant arity 2, cannot be
done in time O(No(k)) unless the exponential time hypothesis fails [Chen et al.
2004; 2006; Impagliazzo and Paturi 1999].

Another body of related works is those by Grandjean, Olive and Pudlak which
established the variable hierarchy for spectra of sentences using relation and func-
tion symbols [Grandjean 1984; 1985; 1990; Grandjean and Olive 2004; Pudlák
1975]. Let F-Speck denote the spectra of first-order sentences using up to k vari-
ables with vocabulary consisting of relation and function symbols, and F-Spec(k∀)
denote the restriction of F-Speck to sentences written in prenex normal form
with universal quantifiers only and using only k variables. In his series of pa-
pers, Grandjean showed that NRAM[Nk] = F-Spec(k∀), for each positive integer
k, where NRAM[Nk] denotes the class of sets of positive integers accepted by
non-deterministic RAM in time O(Nk), and N is the input integer [Grandjean
1984; 1985; 1990]. By Skolemisation, it is shown that F-Speck = F-Spec(k∀) =
NRAM[Nk], for all k ≥ 1 [Grandjean and Olive 2004, Theorem 3.1]. Combined
with Cook’s hierarchy of non-deterministic time [Cook 1973] and the known inclu-
sions NTIME[T (n) logT (n)] ⊆ NRAM[T (n)] ⊆ T (n) log2 T (n), for each function
T (n) ≥ n, see [Grandjean 1985], it implies F-Speck (F-Speck+1, for all k ≥ 1.

This does not imply our hierarchy here: Speck (Spec2k+2. Obviously every
function can be translated into a relation in first-order logic. However, such trans-
lation requires at least one new variable for each function. It is not clear whether
there is a translation in which the number of new variables introduced depends only
on the arity of the functions, and not on the number of functions. At this point we
should also remark that F-Speck = F-Spec(k∀) can be much more expressive than
Speck. Take, for example, k = 1. The class Spec1 consists of only empty set and
sets of the form {n, n + 1, . . .}, whereas the class F-Spec(1∀) contains PRIMES,
the set of prime numbers [Grandjean 1990].

ACM Transactions on Computational Logic, Vol. V, No. N, August 2018.

4 · E. Kopczyński and T. Tan

3. AN EASIER HIERARCHY

For a positive integer N , we write BINARY(N) to denote its binary representation.
Correspondingly, for a set A ⊆ N, we write BINARY(A) ⊆ {1, 0}∗ to denote the
set of the binary representations of the numbers in A. To make comparison be-
tween languages and sets of positive integers, for a function T : N → N, we define
NTIME[T (n)] to be the class of sets of positive integers whose binary represen-
tations are accepted by a non-deterministic (possibly multi-tape) Turing machine
(NTM) with run time O(T (n)). The class NE denotes

⋃

k>0 NTIME[2kn].
Note that our definition implies that languages inNTIME[T (n)] consist of strings

that start with 1. This does not effect the generality of our results here. For every
language L, we can define L′ = {1} ·L and any Turing machine that accepts L can
be easily modified to one that accepts L′ without any change in complexity.
In the following for a positive integer n, we let [n] = {0, 1, 2, . . . , n − 1}. The

proof of the following Proposition will set a framework, which we will use again
later in the proofs of Theorems 3.2 and 4.1.

Proposition 3.1. NTIME[2n] ⊆ Spec3. More precisely, for every set of posi-
tive integers A where BINARY(A) ∈ NTIME[2n], there is a first-order sentence Φ
using only three variables and binary relations such that Spec(Φ) = A.

Proof. The proof is via the standard encoding of an accepting run of an NTM
with a square grid representing the space-time diagram. Let A be a set of positive
integers, where A ∈ NTIME[2n]. Let M be a t-tape NTM accepting BINARY(A)
in time O(2n) and space O(2n); or, equivalently, for every N ∈ A, M accepts
BINARY(N) in time and space O(N). By linear speed-up [Papadimitriou 1994,
Theorem 2.2], we can assume that M accepts BINARY(N) in time and space ≤ N .
This assumes thatN is big enough (greater than someN0), and this is not a problem
for spectra – numbers smaller than N0 can always be considered on a case-by-case
basis.
For N ∈ A, the accepting run of M on BINARY(N) can be described as a

square-grid [N]× [N], where each point (x, y) ∈ [N]× [N] depicting cell x in time
y is labelled according to the transitions of M . We will construct a first-order
sentence Φ such that the models of Φ are precisely such grids encoded as first-order
structures of the universe [N] with binary relations representing the labels of points
(x, y) ∈ [N]× [N], and therefore, Spec(Φ) = A.
The sentence Φ will be a conjunction of axioms which confirm that various parts

of the model work as expected. The proof will consist of two parts.

—Depicting the computation of M with just three variables.
Essentially, in this part we want to describe that the labels on the points (x−1, y),
(x, y), (x+1, y) and the labels on its surrounding points (x− 1, y+1), (x, y+1)
and (x + 1, y + 1) must “match” according to the transitions of M .

—Verifying that the input to M is the binary representation of the cardinality of
the universe.

The details are as follows.
Depicting the computation of M with just three variables. We first

declare a successor SUC and a total ordering< on the universe using three variables;
this allows us to identify the universe with [N], and is done simply by adding

ACM Transactions on Computational Logic, Vol. V, No. N, August 2018.

On the variable hierarchy of first-order spectra · 5

the well-known total order and successor axioms to Φ. The predicates MIN(x)
and MAX(x) state that x is the minimal and maximal element (0 and N − 1),
respectively.
For a formula φ(x, y) with two free variables x and y, we take the third variable

z, and define the operators ∆hφ(x, y), ∆hφ(x, y) and ∆vφ(x, y), where h and v
stand for horizontal and vertical, respectively, as follows:

∆hφ(x, y) := ∀z SUC(x, z) ⇒ φ(z, y)

∆hφ(x, y) := ∀z SUC(z, x) ⇒ φ(z, y)

∆vφ(x, y) := ∀z SUC(y, z) ⇒ φ(x, z)

It is straightforward to see that for every (x, y) when x is not the minimal and the
maximal elements and y is not the maximal elements,

—∆hφ(x, y) holds if and only if φ(x + 1, y) holds;

—∆hφ(x, y) holds if and only if φ(x − 1, y) holds;

—∆vφ(x, y) holds if and only if φ(x, y + 1) holds.

Let the alphabet of M be Σ, and Q be the set of states of M . We will require
the following relations to simulate the machine:

—SYMBOLia(x, y), which holds if and only if the x-th cell of the i-th tape contains
the symbol a at time y.

—STATEi
q(x, y), which holds if and only if the head on the i-th tape at time y is

over the x-th cell, and the state is q.

Now, to make sure that Φ depicts a computation of M correctly, we state the
following: On every “step” y = 0, . . . , N − 1, if the heads are in states q1, . . . , qt,
then for every cell x = 0, . . . , N − 1, the labels on (x − 1, y), (x, y), (x + 1, y) and
the labels on (x− 1, y+ 1), (x, y + 1) and (x+1, y+ 1) must “match” according to
the transitions of M .
Formally, it can be written as follows.

∧

q̄=(q1,...,qt)∈Qt

∀y
(

(

∧

1≤i≤t

∃x STATEi
qi(x, y)

)

→
(

∧

φ

∀x φ(x, y) → ψφ,q̄(x, y)
)

)

where the intuitive meaning of φ and ψφ,q̄ are as follows.

—The φ in the conjunction
∧

φ runs through all possible labels of (x− 1, y), (x, y)
and (x + 1, y), where each φ is of form:

∆h ℓab1(x, y) ∧ ℓab2(x, y) ∧ ∆h ℓab3(x, y)

Intuitively it means that (x − 1, y), (x, y) and (x + 1, y) are labelled with ℓab1,
ℓab2 and ℓab3, respectively, where each ℓab1, ℓab2 and ℓab3 is a conjunction of
the atomic relations STATEi

q, and SYMBOLia, as well as MIN and MAX, and their
negations to indicate whether x or y is the minimal or maximal element.

—The formula ψφ,q̄(x, y) is a disjunction of all possible labels on the points (x −
1, y+1), (x, y+1) and (x+1, y+1) according to the transitions of M , when the
points (x − 1, y), (x, y) and (x + 1, y) satisfy φ and the states of the heads are

ACM Transactions on Computational Logic, Vol. V, No. N, August 2018.

6 · E. Kopczyński and T. Tan

q̄ = (q1, . . . , qt). Formally, ψφ,q̄(x, y) is of form:

ψφ,q̄(x, y) := ∆v

(

∆hψ
′
φ,q̄(x, y) ∧ ψ′′

φ,q̄(x, y) ∧ ∆hψ
′′′
φ,q̄(x, y)

)

where ψ′
φ,q̄, ψ

′′
φ,q̄, ψ

′′′
φ,q̄ are all the disjunctions of all possible labels on (x−1, y+1),

(x, y + 1) and (x + 1, y + 1), respectively, that are permitted by the transitions
of M , when the points (x− 1, y), (x, y) and (x+ 1, y) satisfy φ and the states of
the heads are q̄.

Of course, we also have to state that for every step y = 0, . . . , N − 1, there are only
t heads, i.e. on every step y = 0, . . . , N − 1, for every i = 1, . . . , t, there is exactly
one cell x where (x, y) is labeled with STATEi

q. This is straightforward.
Verifying the input to the Turing machine. The input will be provided in

binary. Recall that the elements of universe correspond to the numbers from 0 to
N − 1. We will need the following axioms.

—The relation DOUBLE(x, y) which holds if and only if x = 2y. It is defined
inductively by x = y = 0 and (x− 2) = 2(y − 1).

∀x∀y
(

DOUBLE(x, y) ⇔ (MIN(x) ∧MIN(y)) ∨
(∃z (SUC(z, x) ∧ ∃x (SUC(x, z) ∧ ∃z(SUC(z, y) ∧ DOUBLE(x, z)))))

)

—The relation HALF(x, y) which holds if and only if x = ⌊y/2⌋, i.e. y = 2x or
y = 2x+ 1.

∀x∀y (HALF(x, y) ⇔ DOUBLE(y, x) ∨ ∃z (DOUBLE(z, x) ∧ SUC(z, y)))

—The relation DIV(x, y) which holds if and only if x = ⌊(N − 1)/2y⌋. It is defined
inductively by ⌊(N − 1)/20⌋ = N − 1 and ⌊(N − 1)/2y⌋ = ⌊⌊(N − 1)/2y−1⌋/2⌋).

∀x∀y
(

DIV(x, y) ⇔ (MAX(x) ∧MIN(y)) ∨
∃z(SUC(z, y) ∧ ∃y(DIV(y, z) ∧ HALF(x, y)))

)

—The relation BIT(y) which holds if and only if the bit by of the binary represen-
tation bN−1 · · · b1b0 of N − 1 is 1, i.e., the integer x = ⌊(N − 1)/2y⌋ is odd.

∀y (BIT(y) ⇔ ∃x(DIV(x, y) ∧ ¬∃zDOUBLE(x, z)))

Finally, notice that because the relation BIT encodes the binary representation of
N−1, the relation denoted by INPUT that encodes the input string, i.e., the binary
representation of N , is defined by the following axiom:

∃x
(

¬BIT(x) ∧ INPUT(x) ∧
(

∀y < x (BIT(y) ∧ ¬INPUT(y)) ∧
∀y > x (INPUT(y) ⇔ BIT(y))

))

This completes our proof of Proposition 3.1.

Proposition 3.1 can be generalised to NTIME[2kn] as stated in the following
theorem.

Theorem 3.2. For every integer k ≥ 1, NTIME[2kn] ⊆ Spec2k+1.

Proof. The proof follows the same outline as the proof of Proposition 3.1. Let
A be a set of positive integers such that BINARY(A) ∈ NTIME[2kn] and M be a

ACM Transactions on Computational Logic, Vol. V, No. N, August 2018.

On the variable hierarchy of first-order spectra · 7

t-tape NTM accepting BINARY(A) in time Nk and space Nk. So the space-time
diagram is an [Nk]× [Nk] grid.
We identify numbers in [Nk] with vectors (pk, pk−1, . . . , p1) ∈ [N]k. The lex-

icographical successor relation SUC(pk, . . . , p1, qk, . . . , q1) can be defined as 1 +
∑

i piN
i−1 =

∑

i qiN
i−1.

As in the proof of Proposition 3.1, the first-order sentence essentially states the
following: On every “step” ȳ ∈ [N]k, if the heads are in states q1, . . . , qt, then
for every cell x̄ ∈ [N]k, the labels on (x̄′′, ȳ), (x̄, ȳ) and (x̄′, ȳ) and the labels on
(x̄′′, ȳ′), (x̄, ȳ′) and (x̄′, ȳ′) must “match” according to the transitions in M , where
x̄′ and ȳ′ are the lexicographical successors of x̄ and ȳ, respectively, and x̄′′ is the
lexicographical predecessor of x̄.
Accordingly, the relations SYMBOLia and STATEi

q are of arity 2k. The only

significant difference is the shift operators ∆h, ∆h and ∆v which use only one extra
variable, z, in their expansion. Let x̄ = (xk, . . . , x1) and ȳ = (yk, . . . , y1). The
operator ∆h is defined on any formula φ(x̄, ȳ) as follows:

∆hφ(x̄, ȳ) :=

k
∨

i=2

∃z
i−1
∧

j=1

(

MAX(xj) ∧ SUC(xi, z) ∧
∃x1(MIN(x1) ∧ φ(xk, . . . , xi+1, z, x1, . . . , x1, ȳ))

)

∨
(

∃z SUC(x1, z) ∧ φ(xk, . . . , x2, z, ȳ)
)

The operators ∆h and ∆v can be defined in a similar manner. As previously, it is
straightforward to see that

—∆hφ(x̄, ȳ) holds if and only if φ(x̄′, ȳ) holds, where x̄′ is the lexicographical suc-
cessor of x̄, and

—∆hφ(x̄, ȳ) holds if and only if φ(x̄′, ȳ) holds, where x̄ is the lexicographical suc-
cessor of x̄′, and

—∆vφ(x̄, ȳ) holds if and only if φ(x̄, ȳ′) holds, where ȳ′ is the lexicographical suc-
cessor of ȳ.

This completes the definition of the space-time grid structure, and thus completes
our proof of Theorem 3.2.

Next, we recall a result by Grandjean which states that k-variable spectra, even
if we use function symbols, can be computed effectively.

Theorem 3.3 [Grandjean 1984; Grandjean and Olive 2004]. For every
integer k ≥ 1, F-Speck ⊆ NTIME[n22kn].

Combining Theorems 3.2 and 3.3, we obtain the following hierarchy:

Corollary 3.4. For every integer k ≥ 3, Speck (Spec2k+3.

Proof. The strict inclusion follows from

Speck ⊆ NTIME[n22kn] (NTIME[2(k+1)n] ⊆ Spec2(k+1)+1 = Spec2k+3.

The first inclusion follows from Theorem 3.3 and the third from Theorem 3.2.
The second strict inclusion follows from Cook’s non-deterministic time hierarchy
theorem [Cook 1973; Arora and Barak 2009, Theorem 3.2].

ACM Transactions on Computational Logic, Vol. V, No. N, August 2018.

8 · E. Kopczyński and T. Tan

The following corollary shows that to settle Asser’s conjecture, it is sufficient to
consider sentences using three variables and binary relations.
Define the following class:

Co-Specbin
3 :=

{

N+ − S
S = Spec(φ) and φ uses only
three variables and binary relations

}

Corollary 3.5. NE = co-NE if and only if Co-Specbin
3 ⊆ Spec.

Proof. The “only if” direction is trivial. The “if” direction is as follows. Sup-
pose Co-Specbin

3 ⊆ Spec. Since NTIME[2n] ⊆ Spec3 (and uses only binary rela-
tions), this means that for every A ∈ NTIME[2n], the complement N+−A ∈ Spec,
and hence, also N+ − A ∈ NE. By padding argument, this implies that for every
set A ∈ NE, the complement N+ −A also belongs to NE.

To end this section, we present a slightly weaker result of Theorem 3.3, i.e.
Speck ⊆ NTIME[n22kn], which is already sufficient to yield the hierarchy in
Corollary 3.4. First, we show the following normalisation of first-order logic with k
variables.

Proposition 3.6. (Normalisation of first-order logic with k variables)
Each first-order sentence φ with at most k distinct variables x̄ = (x1, . . . , xk) is
equivalent to an existential second-order sentence of the form: Φ := ∃R1 · · · ∃Rm φ′,
where each Ri is a relation symbol of arity ≤ k, and φ′ is a conjunction of first-
order sentences with variables x̄ = (x1, . . . , xk) of either of the forms (1) and (2)
below:

(1) ∀x1 · · · ∀xk−1 ∀xk ψ(x1, . . . , xk),
(2) ∀x1 · · · ∀xk−1 ∃xk ψ(x1, . . . , xk),
where ψ(x1, . . . , xk) is a quantifier-free formula in disjunctive normal form.

Proof. First, we assume that all the negations in φ are pushed inside to the
atomic formulae.
We associate each subformula θ(v1, . . . , vq) of φ, where 0 ≤ q ≤ k and each

vi ∈ x̄, including the sentence φ, with a new relation symbol Rθ of arity q. The
relation symbol Rθ intuitively represents θ. Note that a relation symbol of arity 0
is a Boolean variable which can be either true or false.
The formula φ′ is the conjunction of the atomic relation Rφ of arity 0 and the

formula δθ corresponding to subformula θ(v1, . . . , vq) of φ defined inductively as
follows.

—If θ is a negation of an atomic formula S(v1, . . . , vq), then

δθ := ∀v1 · · · ∀vq Rθ(v1, . . . , vq) ⇔ ¬S(v1, . . . , vq).
—If θ is of the form θ1 ⊛ θ2, with free variables v1, . . . , vq, where ⊛ ∈ {∧,∨} then

δθ := ∀v1 · · · ∀vq Rθ(v1, . . . , vq) ⇔ Rθ1(v1, . . . , vq)⊛Rθ2(v1, . . . , vq).

Note that if θ has no free variable, then δθ is Rθ ⇔ Rθ1 ⊛Rθ2 .
—If θ is ∀vq θ′(v1, . . . , vq−1, vq), then

δθ := ∀v1 · · · ∀vq−1 Rθ(v1, . . . , vq−1) ⇔ ∀vq Rθ′(v1, . . . , vq),

ACM Transactions on Computational Logic, Vol. V, No. N, August 2018.

On the variable hierarchy of first-order spectra · 9

which is equivalent to

δθ :=
(

∀v1 · · · ∀vq−1∀vq Rθ(v1, . . . , vq−1) ⇒ Rθ′(v1, . . . , vq)
)

∧
(

∀v1 · · · ∀vq−1∃vq Rθ′(v1, . . . , vq) ⇒ Rθ(v1, . . . , vq−1)
)

.

—If θ is ∃vq θ′(v1, . . . , vq−1, vq), then

δθ := ∀v1 · · · ∀vq−1 Rθ(v1, . . . , vq−1) ⇔ ∃vq Rθ′(v1, . . . , vq),

which is equivalent to

δθ :=
(

∀v1 · · · ∀vq−1∃vq Rθ(v1, . . . , vq−1) ⇒ Rθ′(v1, . . . , vq)
)

∧
(

∀v1 · · · ∀vq−1∀vq Rθ′(v1, . . . , vq) ⇒ Rθ(v1, . . . , vq−1)
)

.

Note that in the definition above, if θ is an atomic formula, then Rθ is θ itself.
Written formally,

Φ := ∃R1 · · · ∃Rm Rφ ∧
∧

θ

δθ,

where R1, . . . , Rm are all the Rθ’s and θ spans over all the subformulae of φ. It is
straightforward to see that Φ and φ are equivalent.

The following complexity result is an easy consequence of the normalisation
lemma:

Corollary 3.7. For every positive integer k, Speck ⊆ NTIME[2knn2].

Proof. By the above lemma, each first-order sentence φ using k variables is
equivalent to the normalised formula Φ := ∃R1 · · · ∃Rm φ′. By our construction,
the quantification-depth of φ′ is k. Hence, on the domain [N], where N = Θ(2n),
one can obtain a propositional Boolean formula Fφ,N with size O(Nk)†, such that
N ∈ Spec(φ) if and only if Fφ,N is satisfiable.
It is well known that the satisfiability of problem of a propositional Boolean

formula F of size ℓ with variables pi of indices i ≤ ℓ, hence, of total length |F | =
O(ℓ log ℓ) (in a fixed finite alphabet), can be solved in time O(ℓ log2 ℓ) on a non-
deterministic Turing machine. We present it here in our specific case where, as
a straightforward consequence of Proposition 3.6, the Boolean formula Fφ,N so
obtained is a conjunction of DNF formulae, i.e. of the form Fφ,N : C1 ∧· · ·Cm, and
each Ci is a DNF formula. It is easy to see that the satisfiability problem of formula
in such a form can be decided by the following non-deterministic algorithm:

—For each conjunct Ci, choose (non-deterministically) a disjunct γi of Ci. Note
that γi is a conjunction of literals.

—Check deterministically whether the conjunction G := γ1 ∧ · · · ∧ γm which is a
conjunction ℓ1 ∧ · · · ∧ ℓq of literals is satisfiable. This can be done by sorting the
list of literals ℓ1, . . . , ℓq of G in lexicographical order and checking that the sorted
list contains no pair of contiguous contradictory literals p,¬p.

†The size of a propositional Boolean formula is the total sum of the number of appearances of
each atom.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2018.

10 · E. Kopczyński and T. Tan

It is a folklore result that a list of non-empty words w1, . . . , wq can be sorted in
lexicographical order on a multi-tape Turing machine in O(λ log λ), where λ =
|w1|+ · · ·+ |wq|. Here, we have λ = |G| ≤ |Fφ,N | = O(ℓ log ℓ). Altogether, it takes
O(ℓ log2 ℓ) time.

4. A FINER HIERARCHY

In this section we are going to present a finer hierarchy of the spectra: For every
integer k ≥ 3, Speck (Spec2k+2. The outline of the proof follows the one in the
previous subsection.

Theorem 4.1. For every integer k ≥ 2, NTIME[2(k+
1

2
)n] ⊆ Spec2k+2.

Proof. We follow the outline of Proposition 3.1 and Theorem 3.2. Now M
is an NTM that accepts BINARY(N) in time NkR and space NkR, where R =
⌊
√
N − 1⌋. The space-time diagram of the computation of M is then depicted as

an [Nk · R]× [Nk · R] grid.
Each point in [Nk ·R]× [Nk ·R] grid can be identified as a point in [N]k × [R]×

[N]k × [R]. By the converse of the pairing function (r) 7→ (πx(r), πy(r)), where
πx(r) = r mod R = r1, and πy(r) = ⌊(r/R)⌋ = r2, each point in ((x̄, r1), (ȳ, r2)) ∈
[N]k × [R]× [N]k × [R] can be represented as (x̄, ȳ, r) ∈ [N]k × [N]k × [N], where
r = r1 + r2R.
So the computation of M can be viewed as labelling of the point (x̄, ȳ, r) ∈

[N]k × [N]k × [N]. The only difference now is we need to define the shift operators
∆r

h, ∆
r

h and ∆r
v – the analog of the shift operators ∆h, ∆h and ∆v, respectively, in

the proof of Theorem 3.2.
As previously, we define the order <, minimum MIN, maximum MAX, and the

induced successor relation SUC. We also define the following relations:

—ADD(x, y, z) which holds if and only if x+ y = z.

∀x∀y∀z

ADD(x, y, z) ⇔
(

(MIN(y) ∧ x = z) ∨
(∃y′ ∃z′ SUC(y′, y) ∧ SUC(z′, z) ∧ ADD(x, y′, z′))

)

—MUL(x, y, z) which holds if and only if xy = z.

∀x∀y∀z

MUL(x, y, z) ⇔
(

(MIN(y) ∧MIN(z)) ∨
∃y′ ∃z′ (SUC(y′, y) ∧MUL(x, y′, z′) ∧ ADD(z′, x, z)

)

—IS-R(x) which holds if only if x = R.

∀x
(

IS-R(x) ⇔
(

∃y MUL(x, x, y) ∧ ¬∃x′∃y′ x′ > x ∧MUL(x′, x′, y′)
))

—LESS-R(x) which holds if only if x < R.

∀x
(

LESS-R(x) ⇔ ∃y y > x ∧ IS-R(y)
)

—LESS-R2(x) which holds if only if x < R2.

∀x
(

LESS-R2(x) ⇔ ∃y ∃z IS-R(y) ∧ MUL(y, y, z) ∧ x < z
)

ACM Transactions on Computational Logic, Vol. V, No. N, August 2018.

On the variable hierarchy of first-order spectra · 11

—PROJECT(r, x, y) which holds if only if x = πx(r) = r mod R and y = πy(r) =
⌊r/R⌋.

∀r∀x∀y

PROJECT(r, x, y) ⇔
(

LESS-R2(r) ∧ LESS-R(x) ∧ LESS-R(y)∧
∃z ∃z′ (IS-R(z′) ∧MUL(y, z′, z) ∧ ADD(x, z, r)

)

Using the relations above, it is straightforward to write the definitions below as
first-order axioms using at most five variables:

—Cyclic successor in [R]:
RCYC(x, y) if and only if x, y ∈ [R], and either y = x+1, or x = R−1 and y = 0.

—Horizontal successor in [R2]:
SUCX(r, r′) if and only if r, r′ ∈ [R2], πy(r) = πy(r

′) and RCYC(πx(r), πx(r
′)).

—Vertical successor in [R2]:
SUCY(r, r′) if and only if r, r′ ∈ [R2], πx(r) = πx(r

′) and RCYC(πy(r), πy(r
′)).

—Horizontal minimum in [R2]:
MINX(r) if and only if r ∈ [R2] and πx(r) = 0.

—Vertical minimum in [R2]:
MINY(r) if and only if r ∈ [R2] and πy(r) = 0.

All the definitions above use at most five variables, which is ≤ 2k + 2, for each
integer k ≥ 2.
The operators ∆r

hφ, ∆
r

hφ and ∆r
vφ are defined as follows.

∆r
hφ(x̄, ȳ, r) := ∀z

(

SUCX(r, z) ⇒
(

(MINX(z) ∧ ∆hφ(x̄, ȳ, z)) ∨
(¬MINX(z) ∧ φ(x̄, ȳ, z)))

))

∆
r

hφ(x̄, ȳ, r) := ∀z
(

SUCX(z, r) ⇒
(

(MINX(r) ∧ ∆hφ(x̄, ȳ, z)) ∨
(¬MINX(r) ∧ φ(x̄, ȳ, z)))

))

∆r
vφ(x̄, ȳ, r) := ∀z

(

SUCY(r, z) ⇒
(

(MINY(z) ∧ ∆vφ(x̄, ȳ, z)) ∨
(¬MINY(z) ∧ φ(x̄, ȳ, z)))

))

where ∆h is to access the successor of x̄, ∆h the predecessor of x̄ and ∆v the
successor of ȳ. They are all defined just like in the proof of Theorem 3.2. This
completes our proof of Theorem 4.1.

Now, combining both Theorems 4.1 and 3.3, as well as the argument in the proof
of Corollary 3.4, we obtain that:

Speck ⊆ NTIME[n22kn] (NTIME[2(k+
1

2
)n] ⊆ Spec2k+2,

hence, establishing the following hierarchy.

Corollary 4.2. For every integer k ≥ 3, Speck (Spec2k+2.

5. TRANSLATING OUR RESULTS TO CLASSES NP AND SO∃
In this section we are going to show how our results can be translated into relations
between the class NP and the class of existential second-order sentences SO∃. We
provide a brief review of their definitions here. For more details, we refer the reader
to Immerman’s textbook [Immerman 1999].

ACM Transactions on Computational Logic, Vol. V, No. N, August 2018.

12 · E. Kopczyński and T. Tan

Let SO∃ denote the class of existential second-order sentences. A sentence Φ ∈
SO∃ defines a class of structures {A | A |= Φ}. A celebrated result of Fagin states
that SO∃ = NP, where the input to the NP Turing machine is the binary encoding
of the structures.
Let SO∃(var k) be the class SO∃ where the first-order sentences uses only up to

k variables. Now, Theorems 3.2 and 4.1 can be respectively rewritten as:

For any integer k ≥ 1, NTIME[nk] ⊆ SO∃(var 2k + 1) (1)

For any integer k ≥ 2, NTIME[nk+1/2] ⊆ SO∃(var 2k + 2) (2)

Indeed, let M be a non-deterministic Turing machine accepting a binary language
L within time O(nk), where n is the length of the input string w = w0 . . . wn−1 ∈
{0, 1}∗ . The input can be viewed as a structure over [n] with vocabulary the binary
successor relation SUC and the unary predicate S, where S(x) holds if and only if
wx = 1.
The formula Φ constructed in the proof of Theorem 3.2 (resp. Theorem 4.1)

can be viewed as an SO∃(var 2k + 1) (resp. SO∃(var 2k + 2)) formula, where the
predicates SYMBOLia and STATEi

q, as well as DOUBLE, HALF, DIV, BIT , etc. are
existentially quantified.
On the other hand, Theorem 3.3 can be rewritten as:

SO∃(var k) ⊆ NTIME[nk log2 n] (3)

Equations 3 and 2 then yield the chain of inclusions:

SO∃(var k) ⊆ NTIME[nk log2 n] (NTIME[nk+1/2] ⊆ SO∃(var 2k + 2)

and hence, SO∃(var k) (SO∃(var 2k + 2), for each k ≥ 3.

6. CONCLUDING REMARKS

In this paper we present two results that we believe contribute to our understanding
of the spectra problem. The first is that there is an infinite hierarchy of first-order
spectra based on the number of variables: Speck (Spec2k+2. The proof is based
on tight relationships between the class NE and first-order spectra Spec.
The second result is that to settle Asser’s conjecture it is sufficient to consider

sentences using three variables and binary relations. This seems to be the furthest
we can go. As mentioned in Section 2, we recently showed that the class of spectra
of two-variable logic with counting quantifiers are exactly semilinear sets, and closed
under complement [Kopczyński and Tan 2015].

Acknowledgement

We would like to thank Etienne Grandjean for his careful reading and in providing
most of the literature pointers for Section 2, and in suggesting Proposition 3.6 and
Corollary 3.7. His very extensive comments have guided and helped us in improving
our manuscript. We also thank the anonymous reviewer for his careful review and
Ron Fagin for some discussions on related results. The first author is supported
by the Polish National Science Centre Grant DEC - 2012/07/D/ST6/02435. The
second author is supported by FWO Pegasus Marie Curie fellowship.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2018.

On the variable hierarchy of first-order spectra · 13

REFERENCES

Arora, S. and Barak, B. 2009. Computational complexity – A modern approach. Cambridge
University Press.

Asser, G. 1955. Das repräsentenproblem in prädikatenkalkül der ersten stufe mit identität.
Zeitschrift für mathematische Logik und Grundlagen der Mathematik 1, 252–263.

Chen, J., Huang, X., Kanj, I. A., and Xia, G. 2004. Linear FPT reductions and computational
lower bounds. In STOC. 212–221.

Chen, J., Huang, X., Kanj, I. A., and Xia, G. 2006. Strong computational lower bounds via
parameterized complexity. Journal of Computer and System Sciences 72, 8, 1346–1367.

Cook, S. 1973. A hierarchy for nondeterministic time complexity. Journal of Computer and

System Sciences 7, 4, 343–353.

Durand, A., Jones, N. D., Makowsky, J. A., and More, M. 2012. Fifty years of the spectrum
problem: survey and new results. Bulletin of Symbolic Logic 18, 4, 505–553.

Fagin, R. 1973. Contributions to the model theory of finite structures. Ph.D. thesis, University
of California, Berkeley.

Fagin, R. 1974. Generalized first-order spectra and polynomial-time recognizable sets. In Pro-

ceedings of SIAM-AMS Complexity of Computation. Vol. 7.

Fagin, R. 1975. A spectrum hierarchy. Zeitschrift für mathematische Logik und Grundlagen der

Mathematik 21, 123–134.

Fagin, R. 1993. Finite-model theory – a personal perspective. Theoretical Computer Sci-

ence 116, 1&2, 3–31.

Grandjean, E. 1984. The spectra of first-order sentences and computational complexity. SIAM

Journal on Computing 13, 2, 356–373.

Grandjean, E. 1985. Universal quantifiers and time complexity of random access machines.
Mathematical Systems Theory 18, 2, 171–187.

Grandjean, E. 1990. First-order spectra with one variable. Journal of Computer and System

Sciences 40, 2, 136–153.

Grandjean, E. and Olive, F. 2004. Graph properties checkable in linear time in the number of
vertices. Journal of Computer and System Sciences 68, 3, 546–597.

Immerman, N. 1999. Descriptive complexity. Graduate texts in computer science. Springer.

Impagliazzo, R. and Paturi, R. 1999. Complexity of k-sat. In IEEE Conference on Computa-

tional Complexity.

Jones, N. and Selman, A. 1974. Turing machines and the spectra of first-order formulas. The

Journal of Symbolic Logic 39, 139–150.

Kopczyński, E. and Tan, T. 2015. Regular graphs and the spectra of two-variable logic with
counting. To appear in SIAM Journal on Computing . Also in http://arxiv.org/abs/1304.0829.

Lynch, J. 1982. Complexity classes and theories of finite models. Mathematical Systems The-

ory 15, 2, 127–144.

Papadimitriou, C. H. 1994. Computational complexity. Addison-Wesley.

Pudlák, P. 1975. The observational predicate calculus and complexity of computations. Com-

mentationes Mathematicae Universitatis Carolinae 16, 395–398.

Scholz, H. 1952. Ein ungelöstes problem in der symbolischen logic. The Journal of Symbolic

Logic 17, 160.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2018.

