

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 25, 2024

Towards Separation of Concerns in Flow-Based Programming

Zarrin, Bahram; Baumeister, Hubert

Published in:
Proceedings of the 14th International Conference on Modularity (Modularity '15)

Link to article, DOI:
10.1145/2735386.2736752

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Zarrin, B., & Baumeister, H. (2015). Towards Separation of Concerns in Flow-Based Programming. In
Proceedings of the 14th International Conference on Modularity (Modularity '15) (pp. 58-63). Association for
Computing Machinery. https://doi.org/10.1145/2735386.2736752

https://doi.org/10.1145/2735386.2736752
https://orbit.dtu.dk/en/publications/f8c60438-ded8-4a2c-af8b-0042956005b2
https://doi.org/10.1145/2735386.2736752

Towards Separation of Concerns in Flow-Based Programming ∗

Bahram Zarrin
DTU Compute

Technical University of Denmark
baza@dtu.dk

Hubert Baumeister
DTU Compute

Technical University of Denmark
huba@dtu.dk

Abstract
Flow-Based Programming (FBP) is a programming paradigm that
models software systems as a directed graph of predefined processes
which run asynchronously and exchange data through input and
output ports. FBP decomposes software systems into a network of
processes. However there are concerns in software systems which
do not fit this dominant decomposition. In this paper, we address the
cross-cutting-concerns in FBP by using some examples and propose
an aspect-oriented extension to FBP.

Categories and Subject Descriptors D.3.3 [programming lan-
guages]: specialized application languages

General Terms languages, design

Keywords separation of concerns, aspect-oriented, flow-based
programming

1. Introduction
Flow-Based Programming was first introduced in the early 1970s
by J. Paul Rodker Morrison [13] and it has become an active topic
again in computing science recently [1, 3–6, 14].

FBP decomposes software systems into processes. However
there are concerns in software systems which do not fit this dom-
inant decomposition. In order to improve the modularity of FBP
applications, we propose to extend FBP with an aspect-oriented [10]
approach that introduces a set of new concepts and mechanisms
to address cross-cutting concerns. To this end, we first present the
shortcomings of FBP with respect to cross-cutting concern modu-
larization by some examples. Afterwards, we analyze the benefits
of applying aspect-oriented techniques to FBP. Finally, we present
the design and implementation of Aspect-Oriented Flow-Based
Programming (AOFBP), an aspect-oriented extension to FBP, and
illustrate through examples how it solves the deficiencies mentioned
above.

The remainder of this paper is organized as follows. In Sect. 2,
we provide a brief introduction to flow-based programming. In
Sect. 3, we address cross-cutting issues in FBP by presenting some

∗ This research has been partially sponsored by the IRMAR project funded
by Danish Council for Strategic Research.

B

C

Do1

in

o2

o1

o1

A

in

in2

in1

Figure 1. An FBP diagram including some processing nodes.

examples. In Sect. 4, we propose the design of AOFBP. In Sect. 5,
we propose a prototype for AOFBP. In Sect. 6, we implement the
cross-cutting examples within the proposed extension. In Sect. 7,
we consider related work. And finally, Sect. 8 concludes the paper.

2. Flow-Based Programming
In the FBP development approach, an application is viewed as a
network of processes which are running asynchronously and are
communicating with each other by means of streams of structured
data chunks, called Information Packets (IPs). The focus of FBP is
on application data and its transformation.

As an example, we present a simple network of four processes
in Fig 1, which shows the main components of FBP networks. The
rounded rectangles are instances of processes, which are defined
in the process libraries either as atomic processes implemented
in specific languages or as composite processes defined by a sub-
network of processes. Processes can have parameters to be localized
for the needs of an application. Each process has input and output
ports, and each port has a unique name among the ports of its
process.

The processes are connected together through their ports by
means of connections that are presented as directed solid lines in the
network. The connections can be seen as bounded buffers with fixed
capacity in terms of the number of IPs they can hold at any time. An
IP can only be owned by a single process or a connection between
two processes at any point of time. IPs can be grouped together to
compose a sequential pattern within a stream, called a substream,
by sending a signal IP, called a bracket IP, at the start and the end of
the substream. These substreams can be nested or chained together
to travel through a network as a single object [14].

The processes monitor the connections on their input ports. Once
an IP becomes available on these connections, they will take the
IPs, transform the data, and makes the results available to the output
ports of the processes. This triggers the connected connections at
the output ports and propagates the IPs within the network. If a
connection becomes full, processes feeding it will be suspended. If
a connection becomes empty the process attached to the connection
will be suspended [14].

3. Cross-Cutting Problem in FBP
To motivate the need for mechanisms for cross-cutting modularity,
we present some concerns whose implementation would benefit
from such mechanisms as follows.

3.1 Logging
Logging of program actions is one of the well-known cross-cutting
concerns in AOP. This is often useful when one wants to trace the
execution of the processes on their entry or exit points.

Figure 2(a) presents an application modeled as a composite
process which has three atomic processes; P1, P2 and P3 (P2 and
P3 are child processes of the composite process in the network).
In order to add the logging concern to this application and log the
entry points of the processes, a logging process should be added to
the entry point of each process and sub process in the application
network. To this end, each atomic process P1, P2 and P3 should
be replaced by a composite processes. These composite processes
have a logging process and the related process in its network and
are connected to the copy of the process inputs. A logging process
should also be added to the entry point of each non-atomic process
of the original network.

The extended version of the application, supporting this concern,
is presented in Fig 2(b). This shows, that the implementation of
the logging concern is scattered among the processes, and that this
concern cannot be modularized as a single process.

a)

P2P1 P3

Log

P2

Log

P1

Log

P3

Log

b)

Log

Figure 2. Adding the logging concern to a FBP network.

3.2 Waste Management Modeling
The aim of waste management modeling is to analyze the waste flow
and provide a life cycle assessment (LCA) of waste systems [17].
LCA is an approach for analysing environmental impacts related
to a product, process, or service “from cradle to grave” — from
the production of the raw materials to the final disposal as waste.
To compute the LCA, first a life cycle inventory (LCI) is created.
The LCI inspects every phase of the life-cycle. For each phase,
the inputs (in terms of raw materials and energy) and outputs (in
terms of emissions to air, water and as solid waste) are computed
and are aggregated over the lifecycle. The LCA is then formed by
converting the inputs and outputs from the LCI into their impacts
on the environment. The sum of these impacts then represents the
overall environmental effect of the lifecycle of a product or process.

The waste management system of, e.g., a city or municipality
can be modeled as an FBP network of waste processes as shown in
Fig. 3(a). Each waste process can be either an atomic waste process
or a composite waste process. In order to evaluate the LCA of a
waste management system, the LCA of each atomic or composite
processes are calculated and accumulated.

Figure 3(b) presents the extended version of the composite
waste process illustrated in Fig. 3(a). In order to add an LCA

a)

WP2WP1 WP3

LCA

WP2

LCA

WP1

LCA

WP3

+

+

b)

Figure 3. Adding life cycle assessment to a waste scenario.

P2P1 P3 P4 P5

aspect

A

pointcut

Figure 4. Join points in AOFBP are atomic or composite processes
among the hierarchy of FBP networks.

computation to the waste process, each atomic process should be
wrapped by a composite process, which utilizes an LCI process to
calculate the LCA of the atomic process. Afterwards, an aggregator
process should be added to each composite process to calculate
the accumulated LCA, which should be exposed to the parent
of the process as an LCA computation. This implementation of
LCA computation is cross-cutting across the hierarchy of the waste
processes and this concern cannot be modularized by FBP.

4. Extending FBP with Aspect-Oriented
Concepts

FBP does not provide mechanisms for modularizing cross-cutting
concerns. This deficiency leads to tangled and scattered process
definitions. On the one hand, one process addresses several concerns.
On the other hand, the implementation of a single concern is
scattered through many places in the other process definitions. In
this section, we propose to apply aspect-oriented concepts as a
complementary mechanism to FBP and present the design and
implementation of our aspect-oriented extension to FBP, which
we call Aspect-Oriented Flow-Based Language (AOFBP).

4.1 Join Point Model and Pointcut Language
In AOFBP, join points are atomic or composite processes in an
FBP network which are modified by crosscutting functionalities.
Pointcuts are means to determine the join points. The AOFBP
pointcut designators allow one to select different types of processes
among different levels of process hierarchy in an FBP network as
presented in Fig. 4.

The grammar of the pointcut language is presented in Grammar 1.
The attributes of a process have been used as predicates to choose
relevant join points. The procType designator is defined to refer to
processes by matching process type. This designator takes a string
argument, which provides the string pattern to match the type of

Grammar 1. The grammar to define pointcuts in AOFBP.
<PortDesignator> ::= inPort (<String>,<String>,<String>)

|outPort (<String> , <String> , <String>)
|port (<String> , <String> , <String>)

<LevelDesignator> ::= level (<String>)
<ContextDesignator> ::= child (<PointcutExp> , <String>)

|parent (<PointcutExp> , <String>)
<ConDesignator> ::= inCon (<PointcutExp> , <String>)

|outCon (<PointcutExp> , <String>)
<Designator> ::= procType (<String>)

|<PortDesignator>|<LevelDesignator>
|<ContextDesignator>|<ConDesignator>

<ParExpr> ::= (<PointcutExp>)
<UnNot> ::= ^<PointcutExp>
<BinAnd> ::= <PointcutExp> & <PointcutExp>
<BinOr> ::= <PointcutExp> ‘|’ <PointcutExp>
<BinExpr> ::= <BinAnd>|<BinOr>
<PointcutExp> ::= <Designator>
|<Identifier>|<ParExpr>|<UnNot>|<BinExpr>

the process. The isComposite designator is defined to select either
composite processes or atomic processes only.

The pointcut language also provides means to query the input
and output ports of processes. Two designators, inPort and outPort,
are provided for these purposes. They accept three arguments, the
first two are string patterns which match the name and the type
of the ports, the last argument provides constraint on the number
of ports that should match the first two patterns. For instance,
inPort("*","*foo","2..*"), matches those processes with at least two
input ports with any name, but their type name should end with
“foo".

Querying processes based on their level in an FBP network is also
supported by the AOFBP pointcut language. This can be specified
by using a level designator which has one argument to match the
desired level. This argument, which is the same as the third argument
of port designators, is a string pattern to define a range. The value
for this argument can be a number, a list of numbers separated by “,",
or a range “min..max" (min and max can be either a number or the
wildcard “*"). For example, level("1..3"), specifies those processes
which are located in the first top three levels of process hierarchies.
The most top level is one in this sequence.

The pointcuts can be combined by operators such as the union “|",
intersect “&" and not operators, to select different type of processes.
We call the combined pointcuts a pointcut expression.

Selecting processes based on their parent or their child processes
is supported in AOFBP by parent and child designators. They have
two arguments, first, a pointcut expression to specify the desired
child or parent processes, second, the depth of the search through a
process hierarchy. Consequently the pointcut language provides
a means to select processes based on the processes which are
connected to them. The inCon and outCon specify the processes
connected to input or output ports of the desired process. Similarly,
they have two arguments. The first argument is a pointcut expression
to determine the desired connected processes and the second defines
the length of this connection in terms of the number of processes
between these two processes.

The pointcuts always expose the selected processes as the context
to the advice which is defined for them. We explain advices in
AOFBP in the following section.

4.2 Advice
An advice in AOFBP is either an atomic process or a composite
process which are executed at the join points specified by the desired
pointcut. Modeling advices as processes improves the reusability of
advices.

Like most of the aspect-oriented languages, AOFBP also sup-
ports different types of advices. Based on the injection positions
at join points, they can be categorized as before, after, and around
advice. For the before advice, the advice process is executed before
the process at the join point. It has access to all the input ports of the
process. Similarly, for the after advice, the process will be executed
after the execution of the process at the join point and the advice
has only access to the process output ports. For the around advice,
the process at the join point will be executed instead of the process
at the join point and the advice process has access to both input and
output ports of the process at the join point.

In addition, AOFBP classifies advices based on their impact on
the process at the join point as follows:

• Observers Fig. 5(a). These advices only observe the inputs and
outputs of the process and they do not have any impact on the
input and output values and the behavior of the process.

• Adapters Fig. 5(b). These advices can change the input and
output values of the process as well as its behavior. For example,
for an around advice, the process at the join point will be
replaced by the process defined by the advice. Therefore, the
process should have the same ports as the process at the join
points. This allows us in the around advice to skip the execution
of the process at the join point or to resume the execution of
the process by adding an instance of the process to the advice
network.

• Collectors Fig. 5(c). This type of advices is only defined for com-
posite processes. Therefore, the related pointcut should target
the composite processes by having the isComposite designator
in the pointcut expression. These advices collect or aggregate
the values of specific outputs from child processes (only the top
level) of the composite process. They can add one or more extra
output ports in order to return the result of this operation. It does
not change the behavior of the processes.

All types of AOFBP advices can add new input or output ports to
the processes. The only limitation is that the cannot remove any ports
from the processes. Adding a new input port to the process at the
join point allows the advice to access more information required to
execute the advice. This provides the same thing that the introduction
rule does in AOP [10], which adds methods, properties, etc. to the
structures specified by the join points. Adding a new output to a
process allows us to support new computation aspects for the process
at the join point without any modification of that process. Removing
ports from the processes, however, changes the data flow of the
network, which, at the moment, is not supported by AOFBP. The
effect of removing ports can be simulated by ignoring the input
port of the advice network by not connecting the port of the advice
network to the internal processes of the network.

4.3 Weaving
AOFBP utilizes a dynamic weaver to apply the cross-cutting con-
cerns in FBP networks. The dynamic weaver modifies the in-
memory representation of the network inside the engine. In FBP, the
engine which determines when to execute a process in a network is
called the “Scheduler". Processes in FBP have different run states.
These are “not yet initiated", “terminated", “active", and “inactive".
The weaver evaluates the registered pointcuts whenever the sched-
uler wants to execute a process which is not initiated yet. If the
process matches any of the desired pointcuts, the weaver will apply
the defined advice to the process.

This adaptation is done by replacing the process at hand (P)
with a composite process as illustrated in Fig. 5. For the observer
advice, the process P will be replaced by a composite process which
forwards a copy of all the IPs transferring through the input or

A

P

A

P

A

P

A P P A A

PnP1

A

a)

b)

P2

c)

Figure 5. a) Advice composition for observer b) advice composi-
tion for adapter c) advice composition for collector

output ports of the process (P) to the (atomic or composite) process
defined for the related advice (A), cf. Fig. 5(a). For an adapter advice,
process P will be replaced by a composite process where the advice
process A will be located before or after the process P, according
to the type of the advice. If the advice is the “around" advice, the
composite process only contains the process “A", Fig. 5(b,c). The
weaver applies the “collector" advices differently. It will add the
advice process A to the context of the composite process at hand,
and then it will build up connections from all the desired output
ports of the child processes to the advice process, cf. Fig. 5(d).

After building up the composite process which is going to
replace the process at hand, i.e. P, and reconnecting all the related
connections, the weaver will delegate the execution of the composite
process to the scheduler of the FBP engine. This favours reuse and
makes the implementation of the weaver simpler and easier.

The weaver handles the aspect ordering and aspect interaction
problems as well. When several pieces of advice match the same
process, the aspect weaver executes them in the following order:
adapters, observers, collectors. Since the adapters can change the
inputs and outputs of the process, they should be executed before
the observers to make the changes visible for them. In the same way,
adapters and observers can add ports to the process. Therefore they
should be executed earlier to prepare these ports for the collectors.

If pieces of advices with the same type share a join point, they
are assumed to be independent processes and execute concurrently.
At the moment AOFBP does not support dependencies between
aspects. We intend to extend AOFBP with constructs to support
these types of dependencies.

5. Tool Support
AOFBP can be implemented as an extension for any FBP implemen-
tation such as JavaFBP, C#FBP, CppFBP, etc. As proof of concept,
we have implemented AOC#FBP based on C#FBP to support the
AOFBP concepts discussed in this paper.

The architecture of AOC#FBP is presented in Fig. 6. This
architecture can be reused for other FBP engines as well. The
implementation extends an FBP scheduler with an aspect weaver
that builds a wrapper around the FBP scheduler. The scheduler calls
the AOFBP weaver to check if there are any advices that can be
applied to the process at hand. To this end, whenever the scheduler
is going to initiate a process, it passes the meta-data of the current
process to the aspect weaver. The weaver examines all the registered
pointcuts to determine if there is any advice which should be applied
on the process. Since the process will be initiated only once during
their run-time life cycle, the adaptations will be applied only one
time to the process.

AOFBP# Engine

Aspect files

Aspect files

AOFBP# Scheduler

AOFBP#
Weaver

C#FBP
Scheduler

C#FBP Components

C#

AOFBP#
Aspects

C#FBP
Networks

Aspect filesAspect files

Aspect files
Network

files

C#FBP Engine

Figure 6. General architecture for AOFBP extensions

Grammar 2. The grammar to define networks in AOFBP.
<Attribute> ::= name |type |parent
<PortFilter> ::= in (<String> , <String>)

|out (<String> , <String>)
<PortCtor> ::= <Identifier> (<Type>)
<ProcRef> ::= <Identifier>()
<Param> ::= <Identifier> = <Value>
<ParamList> ::= <ParamList> , <Param> | <Param>
<ProcCtor> ::= <Identifier> (<ComponentID>)

|<Identifier> (<ComponentID> : <ParamList>)
<ProcExp> ::= <ProcRef> |<ProcCtor> |<Connection> |this
<Value> ::= <ProcExp> [<Attribute>] |<Number> |<String>

|<Object>
<InExp> ::= <Identifier> <ProcExp> |<PortCtor>
<OutExp> ::= <ProcExp> <Identifier>

|<ProcExp> <PortFilter> |<PortCtor> |<Value>
<Connection> ::= <OutExp> -> <InExp>
<Network> ::= <Network> ; <Connection> | <Connection>
<NetworkDef> ::= network <ComponentID> <Network> end

5.1 AOC#FBP
In order to support aspects in FBP, a base class for aspects has been
defined. This class provides all the required interfaces to define an
aspect such as advice and pointcuts. The instances of this class will
be loaded in the aspect repository of the AOFBP weaver. The weaver
will examine this repository to match the pointcuts of these aspects
with the meta-data of the current process.

In order to make the development of applications based on
AOC#FBP easier for the developers, a language has been imple-
mented to describe networks and aspects. As presented in Fig. 6,
the network and the aspect files which are defined by this language
will be compiled to the network and aspect objects that will be
interpreted by the C#FBP scheduler and the AOC#FBP weaver.

5.1.1 Defining Networks
A network can be defined in AOC#FBP based on the syntax
presented in Grammar 2. This syntax defines a network as a list of
connections which are separated by “;". Each connection defines a
flow from a specific port of a process expression to a specific port of
another process expression. The ports are identified by their names.
A process expression can be a process constructor to instantiate a
new instance of a component or it can be a process reference to refer
to a process instance defined earlier. The process constructor can
have arguments to initialize the component as well. A connection
can be used as a process expression to allow cascade definition of
connections. A network can be used as a sub network (composite
component) by assigning it a unique ComponentID. New networks
are created as copies of this network by referring to this ID. In
order to support sub network definition, the syntax provides means

Grammar 3. The grammar to define aspects in AOFBP.
<NamedPortFilter> ::= <PortFilter> as <Identifier>
<PortFilterList> ::= <PortFilterList> ,

<NamedPortFilter> |<NamedPortFilter>
<AdviceType> ::= before |after |around
<Collector> ::= collector <Identifier>

(<PortFilterList>) : <PointcutExp> <Network> end
<Observer> ::= observer <Identifier> <AdviceType> :

<PointcutExp> <Network> end
<Adapter> ::= adapter <Identifier> <AdviceType> :

<PointcutExp> <Network> end
<AdviceDef> ::= <Observer>|<Adapter>|<Collector>
<PonitCutDef> ::= pointcut <Identifier> : <PointcutExp>
<Statement> ::= <PonitcutDef>|<AdviceDef>
<StatementList> ::= <StatementList> ; <Statement>

|<Statement>
<Aspect> ::= aspect <Identifier> <StatementList> end

to create input or output ports for the sub network as well. A port
constructor, which takes the type of the port, can be used alone
(without any process expression) on the left or right side of “->"
or in a connection statement to define input or output ports for the
network. A specific identifier called “this" is reserved to refer to
the network instance and its meta-data. This identifier can be used
in order to refer to the attributes and input and output ports of the
network. The syntax also allows us to forward data directly from
value expressions (such as constant values and process attributes)
to a specific port of a process or an output port of the network. A
special construct called “PortFilter" has been defined to connect a
set of ports of a process (or the network by using “this" as process),
which can be specified based on the name and the type of the ports,
to an array port [14] of a process or an output port of the network.

5.1.2 Defining Aspects
The aspect definition in AOC#FBP, includes specifying the pointcuts
and the related advice. The aspects can be defined by the syntax
presented in Grammar 3. An aspect consists of a set of statements.
Each statement can be either a pointcut or an advice definition. A
pointcut can be expressed by using the pointcut language defined
by Grammar 1, which supports all the designators proposed for
AOFBP. An advice can be defined by three constructs provided by
the grammar to define different kinds of advice.

Observer and adapter advice share the same syntax except the
keywords at the beginning of the advice definition. They can be
defined by an identifier, advice type (before, after and around), a
pointcut, and an advice body, which is a network and can be specified
by the syntax presented at Grammar 2. The collector advice has a
different syntax than the others, and it can be defined by an identifier,
a pointcut, the advice body, and a list of “PortFilter" constructs. This
list specifies the set of the ports of the child processes that are
collected by the advice.

AOFBP advices can access different ports of the captured process
based on their type (before, after, and around). The before advice
can only access the input ports of the process. Their input and output
ports have the same name and type as the input ports of the process.
The after advice can only access the output ports of the process. Its
input and output ports have the same name and type of the output
ports of the process. The around advice has the same ports as the
exposed process.

6. Examples
6.1 Logging
In this example, the logging aspect has been implemented in AOFBP.
To this end, a pointcut called “all processes" has been defined to
specify the processes that should be logged. The pointcut selects

all the processes regardless what name and type they have or on
which level in the network they are located. An observer advice
has been defined to be applied to the processes exposed by the
pointcut. The advice utilizes a component called “Logger" to log the
information. The component has two arguments “name" and “type",
which specify the name and type of the process to be logged, and it
also has one input port array called “arguments". This is provided
to log all the values of the input ports of the process. The advice
defines a network by constructing an instance of the component and
providing the process name and type as the initialization parameters.
Finally, it connects all the input ports of the exposed processes to
the array port of the process called “arguments".

aspect logging
pointcut all_processes: procType("*");
observer logger before: all_processes

this in("*","*") -> arguments L(Logger :
name= this [name], type= this [type])

end
end

Whenever a process that matches the pointcut is to be initialized,
the advice will create an instance of the Logger component and
initialize it with the proper parameters and connections. The logger
component logs the information as soon as the arguments port
receives data.

6.2 Life Cycle Assessment
The life cycle assessment for waste management processes has been
implemented as an aspect in AOFBP. In order to calculate the LCA
of a waste scenario, the LCA of each atomic process is calculated
first, afterwards, the total LCA of the scenario is calculated by
accumulating the LCA of these atomic processes. To this end, two
different types of advice have been proposed.

The first type of advice is an observer which calculates the LCA
of the atomic processes. The advice defines a network with a process
instance of a component called “LCAComponent". This component
computes the LCA of a process based on the name and type of
the process and the amount of the waste. The component loads the
information regarding the elementary exchanges and the emissions
to the environment of the process from an XML file by using the
name and type of the process as the key. Based on this information,
it calculates the LCA of the process for the specific amount of waste
which is provided through the array input port called “WASTE IN".
The LCA component sends the result to an output port called “LCA".
The advice creates a new instance of the component and initializes
it with the name and type of the exposed process. Then it connects
all the waste input ports of the exposed process to the “WASTE IN"
port. As the result, it forwards the LCA computation from the LCA
port of the component to an newly created port called “LCA".

aspect LCA
pointcut p: inPort("*","waste","1..*");
observer process_LCA () before : p & ^isComposite

this in("*","waste") -> WASTE_IN lca_process(
LCAComponent: p_name= this [name], p_type =
this [type]);

lca_process() LCA -> LCA (LCA)
end;
collector composite_LCA(out("LCA","LCA") as inventory):

p & isComposite
inventory -> values AP(aggregation);

AP() result -> LCA (LCA)
end
end

The other advice is a collector which calculates the total LCA of a
composite process. The advice collects the values of the LCA output
ports of its child processes and it uses an aggregation component
to accumulate the LCA values. Since it forwards the results to a

newly created output port called “LCA", the advice will calculate
recursively the LCA of the whole waste scenario.

7. Related Work
Several papers have been published in order to support the FBP
concept [2, 8, 15]. The number of frameworks using FBP concepts
has been growing steadily. For example DataStage from IBM, which
is a tool for data transformation combining FBP with parallel
processing [3]. Other FBP implementation are PyF [4], DSPatch
[1], Pypes [5], and NoFlo [6].

At the moment none of the FBP implementations have addressed
the cross-cutting-concerns and provided mechanisms to implement
them. In the following, we mention related work to AOFBP which
address separation of concerns in different contexts. FuseJ [16] con-
siders aspects as components that demand special interaction with
the base components. A container based wrapping mechanism pro-
vides separation of concerns in this model. AO4BPEL[9] improves
the modularity and increases the flexibility of Web Service com-
position. Its major focus is on crosscutting dynamic changes, i.e.,
changes that affect several processes and several activities within
the same process. Composition Filters (CF) [7] provides separation
of concerns for object-based systems. CF wraps the system objects
with filters. Each filter has a filter type which defines the behavior to
be executed when the filter accepts the message. Filters can delegate
the messages to their internal or external objects. Filters are grouped
in so-called filter modules. Superimposition selectors are used to
indicate which filter modules should be applied to which objects in
the system.

The pointcut model of AOFBP allows one to capture join points
among process hierarchies, and its advice model can add new ports
to the captured processes at join points. In addition, it supports the
collector advice for composite processes. Furthermore, AOFBP does
not allow the advice to change the flow of the network and exchange
data directly between the processes inside the advice network with
the other processes outside the advice network.

8. Conclusion
In this paper we addressed the cross-cutting concerns in FBP by
providing some examples. Separation of concerns in FBP helps to
improve the modularity and maintainability of FBP applications.
To this end, we propose an aspect-oriented approach to FBP called
AOFBP to support aspect-oriented concepts in FBP.

We use the AspectJ approach to model join points in AOFBP
because processes in an FBP network are atomic processes which
have predefined interfaces (type, input ports, output ports). Unlike
the method signatures in AspectJ, they are more stable. While this
can reduce join point fragility [11], it does not help with type check-
ing and aspect modularity. Therefore, we also considered newer
approaches such as join point types and join point interfaces [12].
However, we found two difficulties: The first is selecting the desired
child processes and their ports within a composite process for the
collector advice. This creates a dependency from aspects to point-
cuts. The second is, that AOFBP advice can modify the interface
of the process at the join points and it also can have effects on the
pointcuts, furthermore it makes static type checking difficult as well.
These challenges in AOFBP and will be addressed in future work.

Based on a language to describe AOFBP networks and aspects
as well, we presented a generic architecture for developing AOFBP
extensions based on any FBP framework. As a prototype we
developed AOC#FBP as an extension for C#FBP.

Although several FBP extensions (e.g. JavaFBP, C#FBP) are
available to implement an FBP application in different programming
languages (e.g. Java, C#), the existing AOP extensions such as
AspectJ are not the right tools to address the crosscutting concerns

in FBP. On the one hand, if the FBP developers use the existing
AOP languages (like Aspect J), they have to define the join points
and the advice for the specific FBP scheduler. This makes a tight
dependency between the FBP application and the FBP extension,
which is in contrast to language-independence and modularity of
FBP. On the other hand, advices in AOFBP are not function calls, but
FBP processes, which run asynchronously. Therefore, the weaver
initializes the advice processes (connections and ports) in the join
points. Furthermore, FBP models applications at a higher level of
abstraction, and the separation of concerns should be addressed in
the same level.

At the moment, AOFBP does not provide mechanism to change
the data-flow of an FBP network. We plan to provide means to
specify sub graphs of the processes in a network as join points
and to add mechanisms for advices to substitute the subgraph with
alternatives. This will allow us to support optimization concerns in
FBP as well.

References
[1] DSPatch - C++ flow-based programming library, Apr. 2014. http:

//www.flowbasedprogramming.com/.
[2] ETL data streaming with EAI-style transactional data delivery guaran-

tees, and transparent checkpoint/restart capability, Apr. 2014. http:
//ohua.sourceforge.net/ohua-paper.pdf.

[3] IBM InfoSphere DataStage, Apr. 2014. http://www01.ibm.com/
software/data/infosphere/datastage/.

[4] PyF – Python FBP implementation, Apr. 2014. http://
pyfproject.org/.

[5] Pypes – scalable, standards based, extensible platform for building ETL
solutions, Apr. 2014. http://www.pypes.org/.

[6] H. Bergius. NoFlo, Apr. 2014. http://noflojs.org/.
[7] L. Bergmans and M. Aksit. Composing crosscutting concerns using

Composition Filters. Commun. ACM, 44(10):51–57, Oct. 2001.
[8] N. Carriero and D. Gelernter. Coordination Languages and their

Significance. Communications of the ACM, 35(2), 1992.
[9] A. Charfi and M. Mezini. Ao4bpel: An aspect-oriented extension to

bpel. World Wide Web, 10(3):309–344, 2007.
[10] R. Filman, T. Elrad, S. Clarke, and M. Ak?it. Aspect-oriented Software

Development. Addison-Wesley Professional, first edition, 2004.
[11] K. Gudmundson. Addressing practical software development issues

in aspectj with a pointcut interface. in proceedings of the workshop
on advanced separation of concerns. ECOOP Workshop on Advanced
Separation of Concerns, 2001.

[12] M. Inostroza, E. Tanter, and E. Bodden. Join point interfaces for
modular reasoning in aspect-oriented programs. In Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ESEC/FSE ’11, pages 508–511,
New York, NY, USA, 2011. ACM.

[13] J. P. Morrison. Data stream linkage mechanism. IBM Syst. J., 17(4):383–
408, Dec. 1978.

[14] J. P. Morrison. Flow-Based Programming, 2nd Edition: A New
Approach to Application Development, CreateSpace. CreateSpace
Independent Publishing Platform, 2010.

[15] W. Stevens. How Data Flow can Improve Application Development
Productivity. IBM System Journal, 21(2), 1982.

[16] D. Suvée, B. De Fraine, and W. Vanderperren. A symmetric and
unified approach towards combining aspect-oriented and component-
based software development. In Proceedings of the 9th International
Conference on Component-Based Software Engineering, CBSE’06,
pages 114–122, Berlin, Heidelberg, 2006. Springer-Verlag.

[17] D. Özeler, Ü. Yetis, and G. Demirer. Life cycle assesment of municipal
solid waste management methods: Ankara case study. Environment
International, 32(3):405 – 411, 2006.

http://www.flowbasedprogramming.com/
http://www.flowbasedprogramming.com/
http://ohua.sourceforge.net/ohua-paper.pdf
http://ohua.sourceforge.net/ohua-paper.pdf
http://www01.ibm.com/software/data/infosphere/datastage/
http://www01.ibm.com/software/data/infosphere/datastage/
http://pyfproject.org/
http://pyfproject.org/
http://www.pypes.org/
http://noflojs.org/

	Introduction
	Flow-Based Programming
	Cross-Cutting Problem in FBP
	Logging
	Waste Management Modeling

	Extending FBP with Aspect-Oriented Concepts
	Join Point Model and Pointcut Language
	Advice
	Weaving

	Tool Support
	AOC#FBP
	Defining Networks
	Defining Aspects

	Examples
	Logging
	Life Cycle Assessment

	Related Work
	Conclusion

