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Compression algorithms are important for data oriented tasks, especially in the era of “Big Data”. Modern 
processors equipped with powerful SIMD instruction sets, provide us an opportunity for achieving better 
compression performance. Previous research has shown that SIMD-based optimizations can multiply 
decoding speeds. Following these pioneering studies, we propose a general approach to accelerate compres-
sion algorithms. By instantiating the approach, we have developed several novel integer compression 
algorithms, called Group-Simple, Group-Scheme, Group-AFOR, and Group-PFD, and implemented their 
corresponding vectorized versions. We evaluate the proposed algorithms on two public TREC datasets, a 
Wikipedia dataset and a Twitter dataset. With competitive compression ratios and encoding speeds, our 
SIMD-based algorithms outperform state-of-the-art non-vectorized algorithms with respect to decoding 
speeds.  

Categories and Subject Descriptors: E.4 [Coding and Information Theory]: Data Compaction and Compres-
sion; H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing| indexing methods; C.1.2 
[Processor Architectures]: [Single-instruction stream, multiple-data-stream processors (SIMD)] 

General Terms: Algorithms, Performance, Measurement, Experimentation 

Additional Key Words and Phrases: SIMD, inverted index, index compression, integer encoding 

  

1. INTRODUCTION 

In recent years, we have witnessed an explosive growth of Web data. The overwhelm-
ing data raises compelling computational challenges to Web search engines. Alt-
hough nowadays CPUs have powerful computational ability, the performance of Web 
search engines is largely inhibited by slow disk accesses, and the bandwidth of data 
transferred from disk to main memory becomes the limiting factor for the efficiency. 

For search engines, the performance of the primary structure, i.e., the inverted 
index, is a priority. Various techniques have been shown to be effective to improve 
the performance of inverted indexes, especially index compression [Navarro et al. 
2000]. Compression algorithms can reduce the space of posting lists, and therefore 
reduce the transfer of data from disk to memory [Manning et al. 2008, p. 85; Zhang et 
al. 2008]. To improve the efficiency of query evaluation, many studies have been de-
voted to developing efficient index compression algorithms [Dean 2009; Navarro et al. 
2000; Anh and Moffat 2005; Stepanov et al. 2011]. In particular, many researchers 
seek to exploit recent hardware features. For example, the SSE instruction sets [Intel 
2010] in Intel’s processors are collections of Single Instruction Multiple Data (SIMD) 
instructions introduced with the Pentium 4 in 2001. SSE instructions have accelerat-
ed 3D computing [Ma et al. 2002], audio and video processing [Liu et al. 2006], data-
base systems [Willhalm et al. 2013], and other CPU-intensive tasks [Chatterjee et al. 
2005]. SSE instruction sets operate on 128-bit registers: they are able to process four 
32-bit integers simultaneously. Inspired by this observation, some pioneering studies 
have incorporated SIMD-based optimization into compression algorithms [Stepanov 
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et al. 2011; Schlegel et al. 2010]. These studies indicate that the speed of index com-
pression can benefit from vectorization. We aim to develop a compression approach to 
leverage SIMD instructions present in modern processors. 

To design a suitable storage layout, we follow earlier work to store separately con-
trol patterns from compressed data and adopt a k-way vertical data organization 
[Lemire and Boystov 2015; Schlegel et al. 2010], which makes algorithms easily vec-
torized by SIMD instructions. Based on such a storage layout, we present a detailed 
description of the approach and describe strategies to best leverage SIMD-based op-
timization.  

We start from an existing compression algorithm that we wish to vectorize. While 
the existing algorithm would compress N integers, we compress 4N integers to a 4-
way data layout. Our approach is sufficiently flexible to accommodate several exist-
ing algorithms while providing good performance. We apply the approach to algo-
rithms of four categories covering most of the important practical compression algo-
rithms.  

Using our approach, we develop two novel compression algorithms (or algorithm 
families), i.e., Group-Simple and Group-Scheme. Group-Simple is extended from the 
traditional Simple algorithms [Anh and Moffat 2005; Anh and Moffat 2006], which 
can be considered as a word-aligned algorithm; Group-Scheme extends Elias Gamma 
coding [Elias 1975], which can be considered as a family containing both bit-aligned 
and byte-aligned variants. Group-Scheme is flexible enough to adapt to different data 
sets by adjusting two control factors, i.e., compression granularity and length de-
scriptors. We further present the SIMD-based implementations of Group-Simple and 
Group-Scheme respectively denoted as SIMD-Group-Simple and SIMD-Group-
Scheme.  

Besides these two families, we also develop Group and vectorized versions of 
AFOR [Delbru et al. 2012] and PForDelta [Zukowski 2006]. To evaluate the proposed 
methods, we construct extensive experiments on four public datasets. 

The contribution of this paper is summarized as follows: 

— Our approach provides a general way to vectorize traditional compression algo-
rithms.  

— We develop several novel compression algorithms based on the general compres-
sion approach, namely Group-Simple, Group-Scheme, Group-AFOR and Group-
PFD. These algorithms cover four major categories of traditional compression al-
gorithms.   

— We implement the corresponding vectorized versions of the proposed algorithms, 
i.e., SIMD-Group-Simple, SIMD-Group-Scheme, SIMD-Group-AFOR and SIMD-
Group-PFD. We also examine several important implementation ideas for optimiz-
ing the SIMD based algorithms. To the best of our knowledge, it is the first study 
to implement such a comprehensive coverage of vectorized compression algorithms 
in a unified approach. 

— We conduct extensive experiments on four diverse datasets, including the TREC 
standard data sets GOV2 and ClueWeb09B, a Wikipedia dataset and a Twitter 
dataset. Experiments show that our novel SIMD-based algorithms achieve fast 
decoding speed, competitive encoding speed and compression ratio compared with 
several strong baselines. 

— We integrate the proposed algorithms into an experimental search engine, and 
examine the performance of different algorithms by the time cost (i.e., query pro-
cessing performance) and space cost (i.e., index size). 
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The remainder of the paper is organized as follows. We review the technical back-
ground and related studies in Section 2. We present the general compression ap-
proach in Section 3. Section 4, Section 5 and Section 6 present the proposed algo-
rithms include Group-Simple, Group-Scheme, Group-AFOR and Group-PFD. We 
carefully study the encoding format and the compression/decompression procedure 
together with their corresponding SIMD-based versions. Section 7 presents the ex-
perimental results and detailed analysis. Section 8 concludes the paper and discusses 
possible extensions. 

2. RELATED WORK 

Inverted indexes provide a general way to index various types of documents, whether 
an article in Wikipedia, a tweet on Twitter, a news article in the New York Times, a 
status update in Facebook, etc. Although these types of text documents are different 
in content coverage and presentation format, we can represent all of them as token 
sequences and create an inverted index to facilitate their access. We first introduce 
the index representations for documents, and then review the existing compression 
algorithms in four categories. 

 Background for Inverted Index Compression 2.1

2.1.1 Index representations for Web documents 

Inverted indexes, as the primary structure of search engines, include two important 
parts: a dictionary and a collection of posting lists. A term in the dictionary corre-
sponds to a unique posting list. A posting list is composed of a sequence of postings, 
each posting might correspond to a triplet: <DocID, TFt, [pos1, pos2, …, posTF]>. Do-
cID is the document identifier, TFt is the document frequency of term, and posi de-
notes the document position of the ith occurrence of term t. We mainly focus on the 
compression of the frequency and position numbers in the posting lists.  

The postings in a posting list are usually sorted in an ascendant order of the value 
of the DocIDs. A commonly adopted technique is to perform d-gap on posting lists 
[Manning et al. 2008, p. 96]. Given a strictly increasing positive integer sequence d1, 
d2, …, dn, the d-gap operation replaces each integer di with di - di-1, where i > 1. With 
such a representation, our task is to design ways to effectively and efficiently com-
press postings lists in inverted index. The problem is of general interest: similar 
techniques are applicable to other fields, such as database compression [Lemke et al. 
2011, Raman et al. 2013].  

2.1.2 Bit packing techniques 

Typically, there are two types of data layout for storing a sequence of encoded inte-
gers. Horizontal layout stores n encoded integers according to the original order of 
the integer sequence, while k-way vertical layout distributes n consecutive integers 
to k different groups. Furthermore, the number of bits used to encode an integer in 
binary format is called bit width, while the effective bit width denotes the minimum 
number of bits to encode an integer in binary.  

In Figure 1, we present an illustrative example of a 4-way vertical layout. Int1 ~ 
Int8 denote 8 encoded integers and each four consecutive integers are stored in four 
different groups respectively. 
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...Int3Int1 Int2 Int4

0 128

Int7Int5 Int6 Int8

32 64 96
32 bits

 
    (a) Horizontal layout  

......Int1 Int5 Int2

0 128

Int3Int6 ... Int7

32 64 96

... Int8Int4  
    (b) Vertical layout 

Fig. 1.  Horizontal and vertical data layout. 

 

2.1.3 Evaluation metrics     

To evaluate the performance of compression algorithms, there are three widely used 
metrics, namely decoding speed, encoding speed and compression ratio. Decod-
ing/encoding speed measures the processing rate of integers by an algorithm. The 
compression ratio is defined as the ratio between the uncompressed size and com-
pressed size, and usually expressed as the average number of bits per encoded inte-
ger [Manning et al. 2008, p. 87].  

 Bit-aligned codes 2.2

In bit-aligned codes, the bit is the minimum unit to represent an integer. Such codes 
can be traced back to Golomb coding [Witten et al. 1999, p. 121] and Rice coding [Rice 
and Plaunt 1971]. Golomb coding encodes an integer by two parts, i.e., the quotient 
and the remainder. The quotient is unary encoded, and the remainder is binary en-
coded. The bit width depends on the divisor M, which is commonly set to 0.69 times 
the average value of all integers. For example, assume that the divisor is 4, we have 
14÷4=3 (2), thus 14 will be encoded as “000110”. Rice coding [Rice and Plaunt 1971] 
further requires M to be a power of two to acceleration the computation. Golomb cod-
ing and Rice coding have high compression ratio, but their encoding/decoding speed is 
low.  

Elias Gamma [Elias 1975] encodes an original integer x with two parts. The first 
part is the unary coding of the effective bit width, and the second part is the natural 
binary representation of x without the leading 1. For example, 14=23+6, thus 14 will 
be encoded as “0001110” by Elias Gamma.  

Schlegel et al. [Schlegel et al. 2010] proposed a vectorized version of Elias Gamma 
coding, called k-Gamma. k-Gamma encodes a sequence of k consecutive integers at a 
time. It first calculates the effective bit width b of the maximum integer in this se-
quence, and represents each integer with b bits. Then, the value of b is encoded in 
unary and the low b bits of each of k integers are encoded in binary. Schlegel et al. 
adopted the vertical data layout to keep k integers word-aligned, and applied SIMD 
instructions to vectorize for storing and loading the k integers. As discussed in Sec-
tion 5, k-Gamma can be viewed as one special variant of our proposed Group-Scheme. 

 Byte-aligned codes 2.3

Byte-aligned codes represent an integer in bytes. Variable Byte (VB) encoding [Man-
ning et al. 2008, p. 96] uses bytes to represent a non-negative integer, and the most 
significant bit of a byte is the continuation bit to indicate whether it is the last byte 
while the remaining bits store the natural binary representation of the integer. 

Group Variable Byte (GVB) [Dean 2009] aggregates the flag bits of a group of in-
tegers into a byte called control byte. When compressing 32-bit integers, a control 
byte consists of four 2-bit descriptors, where each descriptor represents the number 
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of bytes needed for an original integer in binary format (00 for 1 byte, 01, for two 
bytes, 10 for three bytes and 11 for four bytes). GVB encodes and decodes groups of 
four integers.  

There are two ways to code descriptors. If the descriptors are binary coded, the 
variant is called GVB-Binary. If the descriptors are unary coded, the variant is called 
GVB-Unary. GVB-Unary includes two variants G8IU and G8CU [Scholer et al. 2002, 
Stepanov et al. 2011]. Both G8IU and G8CU use 8-byte data areas supported by a 1-
byte control pattern. In G8IU, all data areas can be independently decoded, but the 
last few bytes may be wasted (e.g., when storing integers requiring 3 bytes, only 6 out 
of 8 bytes can be used). Similarly, the last few bits of the control pattern might be 
unused. In G8CU, we use all bytes, with integers allowed to overlap between two 
data areas.  

Stepanov et al. exploited SIMD instructions to accelerate the decoding speed of 
the three variants of GVB [Stepanov et al. 2011]. On x64 processors, integers packed 
with GVB can be efficiently decoded using the SSSE3 shuffle instructions: pshufb. 
We call Stepanov et al.’s implementations with vectorized decoding as SIMD-GVB-
Binary (or SIMD-GVB), SIMD-G8IU and SIMD-G8CU respectively in this paper. 

 Word-aligned codes 2.4

In word-aligned codes, we try to encode as many integers as possible into a 32-bit or 
64-bit word. Simple-9 [Anh and Moffat 2005; Anh and Moffat 2006] divides a 32-bit 
codeword into two parts: a 4-bit selector/pattern and a 28-bit encoded data. It sets up 
9 different selectors to instruct the encoding of consecutive integers in the 28-bit data. 
Zhang et al. proposed Simple-16 [Zhang et al. 2008] improving Simple-9 by extending 
the number of selectors from 9 to 16.  

Anh et al. [Anh and Moffat 2010] used a 64-bit word (a.k.a. Simple-8b and they re-
fer to 32-bit Simple family as Simple-4b). A codeword consists of a 4-bit selector and a 
60-bit data.  

Previous studies showed that the Simple family has good overall performance 
with respect to compression/decompression speed and compression ratio [Lemire and 
Boystov 2015].  

 Frame based codes 2.5

A frame refers to a sequence of integers with the same bit width. This category in-
cludes PackedBinary [Anh and Moffat 2010], PForDelta [Zukowski 2006; Zhang et al. 
2008; Yan et al. 2009], VSEncoding [Silvestri and Venturini 2010] and AFOR [Delbru 
et al. 2012]. PackedBinary encodes a frame of integers using the same effective bit 
width of b bits. However, PackedBinary cannot compress well when there are infre-
quent large integers (called exceptional values).  

 To deal with exceptional values, Zukowski et al. [Zukowski 2006] proposed 
PFORDelta (PFD), which separates normal integers from exceptional integers. The 
normal integers are still encoded with the same bit width, but the exceptional inte-
gers are kept in a global exception array and processed separately. Zukowski’s im-
plementation does not compress the exceptional values. As a follow-up, Zhang et al. 
[Zhang et al. 2008] use 8, 16 and 32 bits to store exceptions according to the maxi-
mum exceptional values. Yan et al. [Yan et al. 2009] proposed two new variants 
called NewPFD and OptPFD. They use the same bit width for a frame of 128 integers 
rather than for all integers. The difference between NewPFD and OptPFD lies in the 
selection of bit width b. NewPFD determines b by requiring more than 90% of the 



6                                                                                                                            Zhao et al. 
 

 
 

integers can be held in b bits, while OptPFD determines b by optimizing the overall 
compression ratio. 

Lemire and Boystov used SIMD instructions to optimize Packed Binary and 
PForDelta [Lemire and Boystov 2015]. They proposed a novel vectorized algorithm 
called SIMD-BP128 for fast decompression. They aggregate 128 successive integers 
as a frame and use vertical layout to pack them with a unified bit width b for the 
frame. For better compression ratios, they further proposed another new vectorized 
variant called SIMD-FastPFor, in which they design effective techniques to store the 
exceptional values. 

Packed Binary and PFORDelta adopt a fixed frame length (i.e., the number of in-
tegers in a frame) in contrast to approaches using varying frame lengths to improve 
compression ratio. Silvestri et al. proposed VSEncoding [Silvestri and Ven-
turini 2010], which uses a dynamic programming approach to partition a list of inte-
gers into frames. Frame lengths are chosen from the set {1, 2, 4, 8, 12, 16, 32, 64}. 
Similarly, Delbru et al. proposed AFOR (Adaptive Frame of Reference) [Delbru et al. 
2012], which uses only three different frame sizes: {8, 16, 32}.  

3. A GENERAL SIMD-BASED COMPRESSION APPROACH 

In this section, we present a general compression approach designed to incorporate 
SIMD-based vectorization in integer compression routines. We are motivated by pio-
neering studies on SIMD-based compression algorithms [Schlegel et al. 2010; Ste-
panov et al. 2011; Lemire and Boystov 2015]. We borrow and generalize the core ide-
as of previous SIMD-based algorithms.  

For convenience, we first summarize the terminology used throughout the paper 
in Table I.  

Table I. Our terminology. 

Terminology Explanation 

Snip 
Each primitive unary or binary codeword is referred to as a snip. 
We distinguish between two types of snips: control patterns and 
data snips.  

Control pattern 
A control pattern is a snip that describes how several integers 
are packed.  

Control area The data space storing several control patterns. 

Vector A vector denotes 128-bit data. 

Component A vector is further divided into four 32-bit data components.   

Data area 
The data space containing the data snips where integers are 
packed. 

Frame A frame denotes a sequence of integers. 

Quadruple A quadruple denotes four consecutive integers. 

Scalar 
Scalar algorithms use conventional instructions operating on 
single words. 

Vectorized 
Vectorized algorithms rely on vector instructions operating on 
several words at once. 

 

 Encoding Formats 3.1

The storage layout of a compression algorithm often consists of control patterns and 
data snips. Data snips represent the encoded integers in binary format, while control 
patterns code the auxiliary information necessary to interpret the data snips. Many 
compression algorithms such as VB [Scholer et al. 2002] and Rice [Rice and Plaunt 
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1971] interleave the control and data snips in a continuous stream. For example, in 
Simple-9, each 32-bit word contains a control pattern (4 bits) followed by a data snip 
(28 bits). Yet previous authors have found it convenient to separate control patterns 
from data snips in distinct space when designing SIMD compression algorithms 
[Schlegel et al. 2010; Lemire and Boystov 2015]. We adopt this idea. Thus, in creating 
a vectorized version of a scalar algorithm, we store continuously the data snips in the 
data area. Similarly, we regroup the control patterns in the control area separately. 
Moreover, we pack the data snips using a 4-way vertical data organization.  

We consider an existing integer compression algorithm where a control pattern 
describes a sequence of N consecutive integers. In our approach, we use this same 
control pattern to describe a sequence of 4N consecutive integers. I.e., the control 
pattern describes N integer quadruples. Each four integers in a quadruple are encod-
ed in the same way, and distributed into the four 32-bit data components of a 128-bit 
data vector.   

As much as possible, our encoding and decoding routines are just a vectorized ver-
sion of the original scalar routines:  if a control pattern specifies that 32 integers are 
packed using a bit width of 10, then we would pack 128 integers using the same bit 
width (10). Though simple, this approach is effective. 

For algorithms with exceptional values (e.g., PForDelta), it is infeasible to directly 
apply our strategy because we have exceptions in addition to control patterns and 
data snips. However, it is not difficult to extend our approach to include exceptions 
stored in a separate location.  

 SIMD-based Encoding and Decoding 3.2

SIMD (Single Instruction, Multiple Data) instructions are widely supported by mod-
ern processors. In particular, our SIMD-based algorithms focus on the SSE instruc-
tions available on all recent Intel processors [Intel 2010]. These instructions operate 
on 128-bit registers (called XMM registers) making it possible to process four 32-bit 
integers simultaneously. The main SSE instructions used in our algorithms are: 
 

� MOVDQA dst src: Copy from 128-bit data source src to 128-bit dst. src and dst must be 

16-byte aligned, and both cannot be a memory address at the same time (it requires at 

least one register). 

� MOVDQU dst src: Same as MOVDQA except that src and dst are allowed to be 16-byte 

unaligned. 

� PSRLDQ/PSLLDQ xmm1 imm8/xmm2: Regard xmm1 as an array of four 32-bit integers, 

and logically shift each integer right/left according the value of immediate imm8 or xmm2 

register. 

� PAND/POR xmm1 xmm2: execute AND/OR operation on the two 128-bit XMM registers. 

 
It has been noted that a 128-bit data vector can be loaded into 128-bit XMM regis-

ter, which is particularly useful for the vectorization of the scalar compression algo-
rithms. As discussed in Section 3.1, each four consecutive integers in a quadruple are 
distributed into four data components by adopting the 4-way vertical layout. More 
importantly, the four integers in a quadruple are encoded in the same way (e.g., with 
the same bit width), which makes it feasible to process four 32-bit data components 
simultaneously with SIMD instructions. For encoding and decoding integers, we are 
able to vectorize the shift and mask operations for each four integers with SIMD in-
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structions, which yields a 75% reduction in the number of executed operations. (See 
Section 4.4.)  

 Overall organization of the following sections 3.3

In Table II, we categorize commonly used (non-SIMD) compression algorithms in-
to four categories. We instantiate the proposed compression approach on several sca-
lar compression algorithms from these four categories. The roadmap of the following 
sections is listed as follows: 

– Word-aligned: In Section 4, we propose the Group-Simple algorithm, which ex-
tends the Simple-9 algorithm. 
– Bit/Byte-aligned: In Section 5, we propose the Group-Scheme family, which orig-
inates from the ideas of Elias Gamma and Group Variable Byte algorithms.  
– Frame based: In Section 6, we propose the Group-AFOR and Group-PFD  based 
on AFOR and PForDelta respectively. 

 
Table II. Algorithm categorization with the corresponding instantiations in our approach. We mark the instantiat-

ed algorithms in bold and present specific modification points to fit into the approach. 

Algorithm 
category 

Scalar algorithms 
Instantiations in our 
approach 

Specific modification 

Bit-aligned 

Golomb 
Rice 
Elias Gamma 
k-Gamma 

Group-Scheme 
�  Incorporate different compres-
sion granularities and length de-
scriptors into the encoding format. 

Byte-aligned 
Variable Byte 
Group Variable Byte 

Word-aligned 
Simple-9 
Simple-16 
Simple-8b 

Group-Simple 

� Provide ten optional controlling 
patterns and the effective bit width 
can be up to 32-bits (Simple only 
supports a maximum bit width of 
28 bits). 

Frame based  

PackedBinary 
PForDelta 
AFOR 
FastPFor 

BP128 
Group-PFor 
Group-AFOR 

� Apply split selection (AFOR) or 
bit width selection (Packed Binary) 
on a quarter of the original integer 
array. 

4. GROUP-SIMPLE ALGORITHM 

In this section, we extend the well-known Simple algorithm to a novel algorithm 
called Group-Simple, which uses the general approach in Section 4. Similar to Sim-
ple-9/16, Group-Simple still uses four bits to represent a control pattern. The differ-
ence is that a control pattern in Group-Simple instructs the compression of 128-bit 
data rather than 28-bit data. The encoding/decoding operation of a 128-bit data vec-
tor can be potentially optimized by SIMD instructions.  

 Encoding Format and Storage Layout 4.1

In this part, we first introduce the storage layout and optional patterns in Group-
Simple algorithm. 

4.1.1 Storage Layout  

In Simple-9/16 algorithms, a 32-bit codeword is divided into two parts: a 4-bit control 
pattern and 28-bit encoded data. Each control pattern corresponds to a 128-bit data 
vector, which is further divided into four 32-bit data components.  

In Figure 2, we present a schematic diagram for the storage layout in Group-
Simple. The major difference between Group-Simple and Simple-9/16 is that control 
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patterns and encoded data are stored separately in physical space to ease vectoriza-
tion: the control area stores all control patterns, and the data area stores all data 
components. The data area adopts the 4-way vertical storage layout. 

 

...s1 s2

Component Component Component Component ...

0 4 8

0 32 128 256160

Pattern 
Area

Selector

Data
Area

Data Vector Data Vector  
Fig. 2. Overall storage layout in Group-Simple. 

4.1.2 Control Patterns  

In Group-Simple, we use four bits to represent a control pattern. Each control pat-
tern corresponds to a triplet (SEL, NUM, BW), where SEL denotes the selector iden-
tifier for the optional patterns, NUM denotes the number of integers encoded in a 32-
bit data component, and BW denotes the bit width of an integer in the data compo-
nent. Table III shows the ten optional patterns in Group-Simple. With the increase of 
the selector identifier (SEL), the number of encoded integers (NUM) in a data com-
ponent decreases, and the bit width (BW) of each encoded integer increases. One ad-
vantage of Group-Simple over Simple-9/16 is that the maximum bit width for an en-
coded integer can be up to 32 bits, which is important for compressing document col-
lections with large docIDs.  

Table III. Optional patterns in Group-Simple. 

SEL 0 1 2 3 4 5 6 7 8 9 
NUM 32 16 10 8 6 5 4 3 2 1 
BW 1 2 3 4 5 6 8 10 16 32 

 Encoding Procedure 4.2

Our encoding procedure is similar to that of the original Simple-9 algorithm. We 
determine the control patterns, and store them along the corresponding data snips. 
In contrast with Simple-9, we store the control patterns and data snips in distinct 
locations. However our encoding process in preceded by the generation of a tempo-
rary buffer called quad max array that stores the maxima of quadruples. In what 
follows, we review the three key points of the encoding procedure in details. 
• Generation of the quad max array. Group-Simple adopts the 4-way vertical lay-

out, and each four integers from four consecutive components of a vector share 
the same control pattern. It indicates that each four integers in a quadruple 
share the same bit width, which is determined by the maximum integer in the 
quadruple. We refer to this integer as a quad max integer. The quad max array ������� stores all the quad max integers. Formally, the quad max numbers are 
generated taking of the maximum of each four integers in the input array as fol-
lows: ���������	 
 max�	������4 ∗ �	, ������4 ∗ � � 1	, ������4 ∗ � � 2	, ������4 ∗ � � 3	�, 
 
where input denotes the input array and i is the index variable. The quad max 
array is built and maintained in RAM, and released once we have generated the 
control patterns for all integers. 
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• Pattern selection algorithm. Similar to Simple-9/16, a naïve way to select the 
control patterns is to scan all the integers in a sequence. Here we propose a pat-
tern selection algorithm based on the quad max array, which only needs to pro-
cess a quarter of the original integers. We present the pattern selection algo-
rithm in Algorithm 1. It requires two input parameters (i1) MaxArr, the quad 
max array and (i2) L, the length of MaxArr. The algorithm returns with 
(o1) ModeArr, the array of generated selectors and (o2) TotalModeNum, the 
length of ModeArr. At each iteration, it examines each of the ten optional pat-
terns in an ascending order of the selector identifiers (SEL) and tries to find a 
pattern to fit the remaining quad max integers as many as possible. With the 
increase of the selector identifiers, the number of integers in a data vector de-
creases and the bit width increases.  More specially, Line 1~4 are the initializa-
tion steps for variables, Line 6~16 are the inner loop for pattern selection, and 
Line 17~19 are the update steps for the variables. It is worth explaining the in-
ner for loop for pattern selector in more details. When an integer has greater ef-
fective bit width than the current selector (BW), we consider the next pattern 
with a larger bit width. The loop in Line 14 ends when (1) the number of inte-
gers reaches the limit of the current selector, i.e., NUM ; (2) we have reached 
the end of MaxArr. We use the shift operation to obtain the largest number with 
an effective bit width of b bits, i.e., the variable mask. 

ALGORITHM 1. The pattern selection algorithm for Group-Simple. 

Input:   
MaxArr, the quad max array of integers with bit widths no larger than 32 
L, the length of MaxArr 
(NUMi, BWi), the optional patterns in Group-Simple in Table III 

Output:  
ModeArr, the array of generated selectors 
TotalModeNum, the length of ModeArr 

 1．Initialize ModeArr to be an empty array  
 2.   TotalModeNum←0 

 3.   l ← L   /* get a value copy of L */ 

 4.   j ← 0,  k ← 0   
 5.   while l > 0 do 
 6.    for i = 0 to 9 do 

 7.                (n, b) ← (NUMi, BWi)   

 8.                mask ← Power(2,b) - 1     

 9.       pos ← 0 
10.                while pos < min(n,l) AND MaxArr[j+pos] ≤ mask  
11.                       pos ← pos + 1 
12.               end 
13.               if pos = n OR pos = l then  
14.   exit from for loop 
15.       end 
16.  end 

17.         l ← l – pos, j ← j + pos 

18.        ModeArr[k] ← i, k ← k + 1 

19.        TotalModeNum ← TotalModeNum + 1; 
20. end   
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• Packing original integers into vectors. After pattern selection, we examine how 
to pack a sequence of integers into vectors with the generated control patterns. 
To encode a single data vector, the algorithm loops NUM times. Each time it us-
es the shift and mask operations to store four integers respectively into four 32-
bit data components, where NUM is the number of compressed integers in a 
component. The algorithm will encode 4NUM integers into a 128-bit data vector. 

Figure 3 presents an illustrative example for the encoding of a sequence of twenty 32-bit integers 
by using Group-Simple. The quad max integers are marked in bold. To hold the largest integer 64, 
we need at least a bit width of 6 bits. Therefore, the 5th selector in Table III is selected, which 
indicates that 5 integers are packed in a 32-bit data component and each encoded integer occupies 
6 bits.  

063 31 44

174 48 8

3723 42 52

811 3 14

2515 51 2

5263 48 14 51

2363 4 11 15

4231 48 3 51

370 17 8 25

5244 8 14 2

0 3232 bits

0 6

32 bits

1812 3224

0 6 1812 3224 30

Pattern 
Selection

Data Packing

32 bits

30

 

Fig. 3. An example to illustrate the encoding procedure of Group-Simple. 

 The Decoding Procedure 4.3

The key step in decompression is to decode a 128-bit data vector, which contains 
4NUM encoded integers (NUM is the number of integers in a data component corre-
sponding to the selector of the current data vector). In this procedure, the algorithm 
loops NUM times, and in each loop we use the shift and mask operations to decode 
four integers respectively from four data components. 

We present the decoding procedure of Group-Simple as follows: 

1) Read the start offset of the data area from the head pointer of SrcArr, and lo-
cate the start position of the control area, denoted by ModePos. The start po-
sition of the data area is denoted as DataPos. 

2) Read four bits from ModePos and obtain the current selector. 

3) Decode a 128-bit data vector at DataPos with the current selector. 

4) Move ModePos and DataPos forward by 4 bits and 128 bits respectively. If 
ModePos does not reach the end, go to step 2.  

 SIMD-based Implementation and Optimization Techniques 4.4

The SIMD-based implementation of Group-Simple is called as SIMD-Group-Simple. 
Once we have transformed the original Simple layout into the format in Figure 2, it 
is relatively easy to apply SIMD instructions to implement SIMD-Group-Simple: we 
can vectorize the shift and mask operations and process four integers from four data 
components simultaneously by using SIMD instructions.  

We review two optimization techniques that we put into practice:  
• In the encoding procedure, the generation of the quad max array involves condi-

tional statements for value comparison (i.e., identify the maximum value from 
four integers). The function of the quad max array is to determine the suitable bit 
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widths for encoded integers. To reduce conditional statements, we do not need to 
identify the exact quad max integers but the pseudo quad max integers instead. 
Following Lemire and Boystov, we use the logical OR operations to generate 
pseudo quad max integers, which may not be equal to the real quad max integer 
but have the same effective bit width [Lemire and Boystov 2015].  

• When decoding a single data vector, since both SEL and NUM have a fixed set of 
optional values, we use a SWITCH-CASE statement with one case for each possi-
ble value of the pair (SEL, NUM). For each case we use an optimized routine.  

These techniques yield a 20% and 50% improvement at the encoding and decoding 
speed respectively. 

5. THE GROUP-SCHEME COMPRESSION ALGORITHM FAMILY 

In the previous section, we have presented the instantiation of Simple algorithm with 
the proposed approach. Inspired by Elias Gamma [Elias 1975] and Group Variable 
Byte (GVB) [Dean 2009], we present another family of compression algorithms called 
Group-Scheme.  

 Variants in Group-Scheme family 5.1

To better describe the variants in Group-Scheme, we first introduce two terms: com-
pression granularity and length descriptor.  

- Compression granularity (CG) is defined as the minimum unit operated on (or 
allocated) by a compression algorithm. For example, the compression granularity of 
Elias Gamma and k-Gamma coding is 1 bit, while the compression granularity of 
Variable Byte encoding is a byte, i.e., 8 bits.  

- Length descriptor (LD) is defined as the minimal number of units necessary to 
represent (or encode) an integer. For instance, given a compression granularity of 2 
bits, the length descriptor of an integer 45810 (1110010102) is 5 because we need five 
2-bit compression units to hold nine bits. We need to represent the length descriptor 
itself either in binary or unary: e.g., 5 can be represented as “101” in binary or “11110” 
in unary. 

We set up four compression granularities for Group-Scheme: 1, 2, 4 and 8 bits. By 
combining optional values of compression granularities and the two storage tech-
nique for length descriptors (binary and unary), the Group-Scheme family contains 
eight variants in total as summarized in Table IV. 

Table IV. Length descriptors for algorithms in the Group-Scheme  family. 

Length  
Descriptor (LD) 

Compression Granularity (CG) 

1 bit 2 bits 4 bits 8 bits 

Binary 5 4 3 2 
Unary 1~32 1~16 1~8 1~4 

 
When the compression granularity is set to one bit and the length descriptor 

adopts the complete unary coding, Group-Scheme becomes k-Gamma [Schlegel et al. 
2010]. In this sense, Group Scheme is a generalization of k-Gamma. 

 Encoding formats and encoding/decoding procedure 5.2

5.2.1 Encoding formats 

Group-Scheme follows the format of data area described in Section 3, and the major 
difference lies in the control area, which is composed of several encoded length de-
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scriptors acting as a control pattern. Based on the coding type (binary/unary), Group-
Scheme stores length descriptors (LD) in two ways: 

 (a) Unary LD: There are two methods to store unary LDs. If a unary length de-
scriptor can be stored across bytes, we call it Complete Unary1 or CU for short. If 
length descriptors cannot be stored across bytes, we call it Incomplete Unary or IU.  
Note that we do not consider the 1-bit and 2-bit CG for incomplete unary LD, since 
the maximum number of bits needed for a single LD will exceed eight bits with 1-bit 
and 2-bit CG. Figure 4 shows the examples of IU and CU for the 4-bit and 8-bit com-
pression granularities. Figure 4 illustrates two observations. First, for length de-
scriptors, IU wastes some bits to be byte aligned, while CU does not require byte 
alignment. Second, for data areas, both IU and CU can store values across words. 

 

Fig. 4. An example to compare incomplete unary coding (IU) and complete unary coding (CU). Note that 
there is one data vector in (a) and (b) and two data vectors in (c) and (d). 

 
(b)  Binary LD: Figure 5 shows four different encoding formats for control area 

with binary length descriptors. The bit width of a LD is  �log�(32/CG)# = 5 −

 �log�CG# .We adopt aligned storage for length descriptors at the cost of some wasted 
bits. The aligned storage is mainly for accelerating and simplifying the encod-
ing/decoding procedure of length descriptors. The alignment depends on the CG. For 
example, 1-bit CG requires double-byte alignment, while 4-bit CG requires byte 
alignment. Although binary LDs are word aligned, the data area can store values 
across words. 

 

 
1 Following Stepanov et al., we use the terminologies of complete unary and incomplete unary  
to discriminate between cross-byte storage and byte-aligned storage  [Stepanov et al. 2011]. 
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LDLD LD

(a) 1-bit CG

5

0 16 bits

5 5

LDLD

4

0 8 bits

4

LDLD

3

0 8 bits

1 13

LDLD LD LD

2

0 8 bits

2 22

(b) 2-bit CG (c) 4-bit CG (d) 8-bit CG  
Fig. 5. The corresponding formats of Group-Scheme with different binary length descriptors. The compres-

sion granularity and length descriptor are shortened as CG and LD respectively. 

5.2.2 Encoding procedure 

We first find the maximum integer quadmax of a quadruple, and then we calculate 
the length descriptor as follows 

ValueOfLD 
 	-.�/01��������� � 1�#/234 % 1, 5���67	89
.�/01��������� � 1�#/234,											:��67	89  (1) 

The length descriptor (either unary or binary) is stored in the control area. We use 
the shift and mask operations to encode four integers by taking the low �log��������� � 1�/23# ; 23  bits of an integer. Furthermore, these four encoded 
integers are stored into four different 32-bit data components of a data vector respec-
tively. We update the pointer for the data component and the bit offset within the 
current component. For an across-word integer, we split it into two parts from high to 
low by using right-shift and mask operations. The first part is stored in the current 
data vector and the second one would be stored in the next data vector. The steps are 
repeated until all the integers are encoded. 

5.2.3 Decoding procedure 

We first read a length descriptor from the control area and calculate the bit width 
BW for the encoded integers of data area, where 

 5< 
	 =23 ; �ValueOfLD � 1�, 5���67	8923 ; ValueOfLD,													:��67	89  (2) 

We loop four times to extract four BW-bit integers respectively from four consecu-
tive 32-bit data components. Then we update the pointer for the data component and 
the bit offset within the current component. For an across-word integer, we first left-
shift the value recovered in the current data vector, and then add it to the value re-
covered in the next data vector. The steps are repeated until all the integers are de-
coded. 

 SIMD-based Implementation and Optimization 5.3

Similar to Group-Simple, we can easily implement the SIMD-based version of Group-
Scheme, i.e., SIMD-Group-Scheme, which vectorizes the encoding/decoding opera-
tions for four consecutive integers in a data vector. In this section, we present several 
optimization techniques for efficient implementation of Group-Scheme and SIMD-
Group-Scheme. 

5.3.1 Packed decoding technique for length descriptors 

Our experiments empirically showed that the main bottleneck of the decoding proce-
dure lies in recovering the length descriptors. It becomes even worse for unary-coded 
length descriptors since we have to examine whether the current bit is the end of a 
length descriptor by using the condition statements. To alleviate this problem, we 
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propose to use the packed decoding technique [Lemire and Boystov 2015] to decode 
control patterns: 

(a) Unary LD:  At each time, we read a byte instead of a bit and decode all length 
descriptors in the byte. We compile a lookup table to speed up the decoding process. 
An 8-bit unary sequence totally has 28 = 256 possibilities. Corresponding to the 
256 possibilities, we generate all necessary decoding information and store the in-
formation with an array of 256 STRUCT elements. Each element contains the follow-
ing information: (1) the number of encoded integers, (2) the bit width of an encoded 
integer, and (3) the length of the last consecutive “1”s subsequence without an ending 
zero (i.e., in the format of “11…1”). For example, a unary sequence “10110011” (left to 
right) can be decomposed into four parts: “10”, “110”, “0” and “11”. We can obtain 
three length descriptors: 2, 3 and 1. Note that the last subsequence “11” contains two 
1s but does not end with a 0. To deal with such cross-byte length descriptors, we rec-
ord the incomplete part, and insert it at the beginning of the next 8-bit data.  

(b) Binary LD: Similar to unary LD, we can use a packed decoding technique by 
using lookup tables2. An extra type of information is needed: the total number of bits 
actually used in a data component for an 8-bit or 16-bit control sequence. This infor-
mation can help determine the current pointer for the data component and bit offset 
within the data component.  

Based on our experiments, the packed decoding technique for length descriptors 
can yield about 50% improvement at the decoding speed for most algorithms in 
Group-Scheme family. 

5.3.2 SIMD-based group unpacking for SIMD-Group-Scheme 

We not only use the packed decoding technique to simultaneously decode several 
length descriptors, we also use it to decode the data area. For each 8-bit or 16-bit 
pattern sequence, we have a sequence of SIMD assembly instructions to decode the 
corresponding integers. This optimization technique is effective to reduce the updat-
ing operations of bit offset for vectorized shifting right/left instructions. We describe 
the implementation details of these assemble functions respectively for unary and 
binary LD: 

(1) Unary LD: Assume that there are 4m integers to be decoded according to an 8-
bit unary pattern data in control area, where m ≥ 1. If the length descriptor is com-
plete-unary coded, a XMM register will be used to keep the number of unprocessed 1s 
in the last 8-bit unary sequence we just finished processing in the control area (called 
XMM1), and another XMM register (called XMM2) is used to keep the corresponding 
four incomplete integers of the last data vector in data area. The bit offset in the data 
component is stored in the least significant five bits of XMM3. The bit offset remains 
in the register and only need to be updated after decoding the 4m integers. All the 
XMM registers would be initialized to zero before decoding a sequence of integers. 
The steps in the assembly function are as follows: 

 
[Step 1] Load one 128-bit data vector to be decoded into a XMM register 
[Step 2] Decode the first four integers in the current vector. Left-shift these four inte-
gers by the value in XMM1 and execute vectorized bitwise OR with XMM2. Then the 
first four integers are decoded and written to memory. 

 
2 Recall we have four CU for binary LD (See Fig. 5). The size of lookup table for 1-bit CG is 215, while the size of the 
lookup table for 2-bit, 4-bit and 8-bit CG is 28. 
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[Step 3] Perform the vectorized shift and mask operations to decode the remaining 
(4m-4) integers using lookup tables as in Section 5.3.1, and then write them back to 
memory. 
[Step 4] Write the number of unprocessed unary bits into XMM1, and the correspond-
ing four incomplete integers from data area into XMM2. 
[Step 5] Update the bit offset in XMM3. 
 

These steps are designed for complete-unary length descriptors. When using in-
complete unary coding, the case becomes simpler: Steps 2 and 4 are not needed again, 
and a step similar to Step 3 is used to decode 4 m integers. 

(2) Binary LD: Similarly, assume that there are 4 m integers to be decoded accord-
ing to an 8-bit pattern data. When the length descriptor is coded in binary, the func-
tion structure is also simpler because LDs in the control area are word aligned.  

In our implementation, the packed decoding technique can yield about 30-100% 
improvement in the decoding speed for SIMD-Group-Scheme.  

 Bit Manipulation Instructions 5.4

While we use lookup tables to decode unary length descriptors in the Group-
Scheme family, we can also decode them with the advanced bit manipulation instruc-
tions supported by recent processors. For example, in our experimental servers, two 
relevant instructions LZCNT (count the number of leading zero bits) and TZCNT 
(count the number of trailing zero bits) are supported. We can use TZCNT in the en-
coding procedure and LZCNT in the decoding procedure. The decoding implementa-
tion with lookup tables is faster than that of TZCNT with larger compression granu-
larity (i.e., 4 bits and 8 bits) by up to about 10%, but worse with smaller compression 
granularity (i.e., 1 bit and 2 bits) by up to 30% for sequential algorithms. Indeed, 
with small compression granularity, we need more bits to encode an integer. In this 
case, with lookup tables, we can decode fewer length descriptors with a fixed-length 
pattern sequence. However, for vectorized algorithms, the implementation with 
lookup tables is general faster (up to 2x) than that of TZCNT. Besides the perfor-
mance itself, a major benefit of lookup tables is that it is convenient since it applies 
both for unary and binary descriptors. Based on these considerations, we apply 
lookup tables to implement all the group-scheme algorithms. 

6. INSTANTIATION OF THE APPROACH ON FRAME BASED ALGORITHMS 

In this section, we review the application of our SIMD-based compression approach 
to the fourth category of compression algorithms, which splits a sequence of integers 
into several frames. A frame refers to a sequence of integers with the same bit width. 
We call the instantiated algorithms as Group-AFOR and Group-PFD respectively.  

 Group-AFOR 6.1

The algorithm Group-AFOR is a modification of Adaptive Frame of Reference (AFOR) 
in [Delbru et al. 2012]. Group-AFOR partitions a sequence of integers into multiple 
frames of variable lengths. The frame length in AFOR, which is also known as the 
frame size, is restricted to three values {8,16,32}. To apply our approach, we multiply 
each frame size by 4: {32,64,128}. The optimal configuration of frame partition and 
frame lengths is obtained by using an efficient dynamic programing algorithm. The 
major difference is that we incorporate the quad max array to speed up the encoding. 
After the partition step, we use the 4-way vertical layout to encode each frame of the 
original array.  
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A similar algorithm we considered is VSEncoding algorithm [Silvestri and Ven-
turini 2010]. The major difference between AFOR and VSEncoding lies in the num-
ber of optional frame lengths: AFOR provides three lengths while VSEncoding pro-
vides five lengths. We implemented both the Group-VSEncoding and SIMD-Group-
VSEncoding in our approach. The result of SIMD-Group-VSEncoding was nearly 
twice as fast as the original VSEncoding algorithm. However, despite the gain in 
speed, one of our schemes (SIMD-Group-AFOR) offered better speed and better com-
pression ratios. Therefore, we do not discuss VSEncoding further. 

 Group-PFD 6.2

Similar to Group-AFOR, we require the frame size in Group-PFD to be a multiple of 
four. The major difficulty in wrapping PForDelta is how to process the exceptional 
integers in the original PForDelta algorithm. We first examine the exceptional en-
tries on the quad max array. Once an exception in the quad max array has been 
found, we further examine the integers in the corresponding quadruple from the orig-
inal array.  

The detailed encoding procedure for the SIMD-based version of PForDelta (i.e., 
SIMD-Group-PFD) is described as follows: 

[Step 1] Generate the max quad array MaxArr. 
[Step 2] Run the procedure of calculating the bit width in PForDelta on MaxArr : 

for each frame in MaxArr, identify the minimum bit width b such that the exception 
ratio of the frame is below a given threshold ζ(0<ζ<1). Meanwhile, record the posi-
tions of the exceptions in an array ExOffsetArr. 

[Step 3] According to the bit width of each data vector and ExOffsetArr, generate 
the normal array and exception array based on the original integer sequence: for 
each exception position in ExOffsetArr, we further examine whether each of the inte-
gers in the same quadruple is an exception. We update the exception array with the 
new exceptional positions.  

[Step 4] First, we apply SIMD instructions to encode the normal array with the 
vertical storage layout in the data vector. Then, we encode the exception array by 
following the Zhang et al. approach [Zhang et al. 2008], which selects the most eco-
nomical bit width (8, 16, 32). 

 
The decoding procedure is described as follows, which is similar to original 

PForDelta: 
[Step 1] Read the bit width and first exception offset for each data vector. 
[Step 2] Use SIMD instructions to decode the normal array. 
[Step 3] Use SIMD instructions to decode the exception array and write each ex-

ception into the corresponding position of the normal array. 

 Connections with other frame based compression algorithms 6.3

In frame based compression algorithms, typically, a control pattern encodes a se-
quence of integers (excluding the exceptions), and most of these algorithms can in-
deed be vectorized in our approach3, including SIMD-FastPFor, PackedBinary, and 
SIMD-BP128 [Lemire and Boytsov 2015]. Among these algorithms, SIMD-BP128 
achieves the state-of-art decoding speed.  

 
3 A pattern is extended to encode 4N integers, while a pattern encodes N integers. 
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Lemire and Boytsov’s SIMD-BP128 aggregated 128 consecutive integers as a 
frame and adopted the 4-way vertical layout [Lemire and Boytsov 2015]. SIMD-
BP128 packs 128 integers with a fixed bit width, which is the minimum number of 
bits to hold the largest integer among these 128 integers. SIMD-BP128 can be natu-
rally fit into our compression approach with slight modifications. For SIMD-BP128, 
the frame size is fixed as 128 and it has a correspondingly low compression ratio (See 
Section 8).  

7. EXPERIMENTS  

In this section, we first introduce the experimental settings, and then evaluate the 
proposed compression algorithms with several state-of-the-art algorithms. The eval-
uation metrics concern the following three aspects respectively: encoding speed, de-
coding speed and compression ratio. Finally, we examine the performance of different 
algorithms by the time cost (i.e., query processing performance) and space cost (i.e., 
index size) in an experimental search engine.  

 Experimental Settings 7.1

(1) Server profile. Our experiments are run on a server with an Intel Xeon E5-
2620 processor (Sandy Bridge, 2.0GHz, 15MB L3 Cache) with 64GB of DDR3-1333 
RAM. The operating system is a 64-bit Linux with kernel version 2.6.32-71. All the 
compression algorithms are implemented in C++ and complied using GNU GCC 4.6 
with the optimization flag “-O3”. 

(2) Test collections. We test the algorithms on several datasets representing dif-
ferent characteristics. The basic statistics of the four datasets are shown in Table V. 
The first two datasets, TREC GOV2 and TREC Clueweb09B, are released by TREC, 
which are the standard test collections for the evaluation of the index and retrieval 
systems. The Wikipedia and Twitter datasets are mainly used to test the algorithm 
stability on various datasets. Wikipedia4 is well known for providing formal defini-
tions and knowledge on concepts and entities; Twitter is the most representative 
microblogging service, and we use the shared dataset by Kwak et al. [Kwak et al. 
2010]. For the Twitter collection, we aggregate all the tweets of a user as a document 
(a.k.a. user document), and treat the text in a user profile as the title of the “user 
document”. For these four datasets, we have extracted the title and body fields of 
each document, and then built an inverted index for each dataset with a search en-
gine system implemented by our group [Shan et al. 2012]. We find that over 90% of d-
gap and TF on all four datasets can be represented in 8 bits, which indicates the po-
tential compressibility of these four datasets. 

Table V. Basic statistics of the four datasets (1 M=1,000,000) . 

Statistics GOV2 ClueWeb09B WikiPedia Twitter 
# Documents 25M 50M 10M 9M 
# Terms 55M 88M 46M 31M 
# Postings 5,249M 11,975M 1,338M 1,466M 
# Tokens 19,446M 28,796M 3,441M 3,575M 

 
In what follows, we first present the evaluation experiments on the standard 

TREC datasets, and then further validate the performance of different algorithms on 
Wikipedia and Twitter datasets. For TREC datasets, we first randomly selected 

 
4 http://dumps.wikimedia.org/enwiki/ 
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10,000 queries from the query set of 2005 TREC Terabyte Track5, and then kept all 
the unique terms from these selected queries by excluding stopwords. Next we ex-
tracted the d-gap sequences and TF sequences from the posting lists of these selected 
terms, and performed the encoding/decoding operations using different compression 
algorithms. Finally, we average the performance over all the selected terms on encod-
ing speed, decoding speed and compression ratio as the final results. 

(3) Evaluation metrics. The results will be presented in the order of decoding 
speed, encoding speed and compression ratio. To reduce the effect from system dis-
turbance, the final result is the average of ten runs. We use the number of million 
integers per second (mis) as the speed metrics, and a larger value indicates better 
performance. We use the average bits needed per encoded integer (bits/int) as the 
metrics of compression ratio (rate), and a smaller value indicates better performance. 

(4) Methods to compare. We compared the proposed algorithms with several state-
of-the-art compression algorithms. An algorithm named with the prefix “SIMD-” in-
dicate that it has been optimized by SIMD instructions in the encoding/decoding pro-
cedure. For both the scalar and vectorized algorithms, we have adopted similar opti-
mization techniques as described in previous sections. We present the comparison 
algorithms as follows:  

  
– PForDelta. PForDelta has been one of the most competitive scalar compres-

sion algorithms in terms of encoding/decoding speed. Our implementation of 
PForDelta adopted the optimization method for compressing the exception 
values in [Zhang et al. 2008]. The exception ratio is set to 10% (SIMD-Group-
PFD also follows the same setting).  

– PackedBinary and SIMD-FastPFor [Lemire and Boystov 2015]. We set the 
frame size to 512 integers and use the open-source implementation provided 
by Lemire and Boystov.6  

– Our proposed algorithms include: Group-Simple, Group-Scheme, Group-
AFOR, Group-PFD and their corresponding SIMD based versions. As previ-
ously mentioned, SIMD-BP128 can be considered as a special variant of the 
proposed approach, thus we have re-implemented SIMD-BP128 with slight 
modifications in our approach and take SIMD-BP128 as one of our algorithms, 
too.  

 
Since Group-Scheme contains many variants, we first examine various combina-

tions of compression granularity and length descriptor, and only keep the variants 
with better performance in following experiments.  

 Variant Selection in the Group-Scheme Family 7.2

Group-Scheme variants are named in the pattern of “CG-LD”, where the compres-
sion granularity CG can be set to 1/2/4/8 bit(s) and the length descriptor LD can be 
set to B/IU/CU. In particular, k-Gamma (k=4) can be considered as a special variant 
of Group-Scheme, i.e., the variant “1-CU”.  The results of encoding/decoding speed 
and compression ratio are shown in Figure 6(a) and Figure 6(b) respectively.  

 
5 http://trec.nist.gov/data/terabyte/05/05.efficiency_topics.gz 
6 http://github.com/lemire/FastPFor 
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Fig. 6.  Performance comparison on compressing d-gaps of GOV2 within Group-Scheme. 

We first analyze the results of decoding speed in Figure 6(a). First, we observe 
that the SIMD-based algorithms significantly outperform the corresponding non-
SIMD algorithms with a large margin varying from 40% to 110%, which indicates the 
effectiveness of SIMD-based vectorization. For the 1-B, 2-B and 4-B cases, the im-
provement is small due to SIMD-based vectorization compared to the 8-B case. This 
is related to the average number of integers we can decode using a pattern sequence. 
For the 1-B case, a 16-bit pattern sequence can decode 12 integers (6 integers per-
byte control data); for the 2-B and 4-B cases, an 8-bit pattern sequence can decode 8 
integers. For the 8-B case, an 8-bit pattern sequence can decode 16 integers. For each 
8-bit or 16-bit pattern sequence (i.e., 16 bits for 1-B and 8 bits for 2-B, 4-B and 8-B), 
we pre-generate a sequence of SIMD assembly instructions to decode the correspond-
ing integers. This optimization technique is effective to reduce the updating opera-
tions of bit offset for vectorized shifting right/left instructions. Based on our empirical 
finding, the larger the number of integers a pattern sequence can decode is, the larg-
er improvement the corresponding SIMD-based algorithm is likely to yield. Second, 
for both the non-SIMD and SIMD-based variants, large compression granularities 
lead to good performance. The main reason is that large compression granularities 
correspond to smaller bit widths for LDs, thus the packed decoding technique can 
process more LDs in an 8-bit pattern sequence. Third, the SIMD-based variants with 
unary-coded LD (e.g. SIMD-based 4-CU) are faster than those with binary-coded LD 
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(e.g. SIMD-based 4-B) by 20% to 50%. The variant SIMD-based 8-IU achieves the 
fastest decoding speed, and has a relatively low compression ratio.  

For the encoding speed, we have similar observations, but the improvement by in-
corporating SIMD-based vectorization is small. 

We continue to analyze the results of compression ratio in Figure 6(b). With the 
increase in granularity, the compression ratio becomes worse. Smaller CU stores the 
encoded integers more compactly, but the corresponding length descriptors take up 
more space in control area. There is a trade-off between these two types of space cost. 
In our experiments, the former is the dominant factor for space cost. In addition, the 
unary-coded LD consistently leads to better compression ratio than binary-coded LD 
on all compression granularities. For Group-Scheme, variants with larger compres-
sion granularity (4 or 8 bits) have faster encoding/decoding speed, and variants with 
smaller compression granularity (1 or 2 bits) have better compression ratio with 
competitive encoding/decoding speed. Based on these findings, we select four compet-
itive variants and their corresponding SIMD-based implementation, including 
Group-Scheme 1-CU (simplified as GSC-1-CU), GSC-8-IU and SIMD-Group-Scheme 
1-CU (simplified as SIMD-GSC-1-CU) and SIMD-GSC-8-IU. 

After variant selection in the Group-Scheme family, we have all the comparison 
methods ready. We summarize the algorithms to compare and their abbreviations in 
Table VI. 
 

Table VI. Algorithm Abbreviations. The implementations in our approaches are marked in bold. 

Category Abbreviation Algorithms 

Bit-aligned 

Rice Rice

Gamma Gamma

GSC-1-CU Group-Scheme-1-CU

SIMD-GSC-1-CU SIMD-Group-Scheme-1-CU

Byte-
aligned 

VarByte Variable Byte
GVB Group Variable Byte
G8IU Group Variable Byte (Unary)
G8CU Group Variable Byte (Unary)

GSC-8-IU Group-Scheme-8-IU
SIMD-GVB SIMD Group Variable Byte (Binary)
SIMD-G8IU SIMD Group Variable Byte (Unary)
SIMD-G8CU SIMD Group Variable Byte (Unary)

SIMD-GSC-8-IU SIMD-Group-Scheme-8-IU

Word-
aligned 

Simple-9 Simple-9

Simple-16 Simple-16

G-SIM Group-Simple

SIMD-G-SIM SIMD-Group-Simple

Frame 
based 

PackedBinary PackedBinary

PForDelta PForDelta

AFOR AFOR

G-AFOR Group-AFOR

G-PFD Group-PForDelta

SIMD-BP128 SIMD-BP128

SIMD-FastPFOR SIMD-FastPFOR

SIMD-G-AFOR SIMD-Group-AFOR

SIMD-G-PFD SIMD-Group-PForDelata
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 Evaluation on the Compression of Posting Lists 7.3

In this section, we evaluate the performance of compressing d-gaps and TF sequences 
of posting lists. Our Group-AFOR, Group-Simple and Group-PFD algorithms will be 
abbreviated as G-AFOR, G-SIM and G-PFD respectively in the following tables. We 
first present the results on GOV2 and ClueWeb09B datasets in Table VII and Table 
VIII, and then present the results on Wikipedia and Twitter datasets in Table IX. For 
all tables, we organize the results of algorithms by categories. Note that we consider 
Group-Scheme as bit-aligned since it originates from Elias Gamma coding. 
 

Table VII. Comparison of decoding/encoding speed on GOV2 and ClueWeb09B (mis). 

Category Algorithm 

Decoding Speed Encoding Speed 

GOV2 ClueWeb09B GOV2 ClueWeb09B 

d-gap TF d-gap TF d-gap TF d-gap TF 

Bit-aligned 

Rice 67 81 71 84 60 74 61 86 

Gamma 50 84 58 101 63 85 66 97 

GSC-1-CU 376 443 364 475 211 232 205 248 

SIMD-GSC-1-CU 463 777 534 969 222 243 217 263 

Byte-
aligned 

VarByte 538 655 519 671 518 627 495 641 
GVB 514 503 510 506 260 265 253 270 
G8IU 531 537 508 545 148 121 126 130 
G8CU 489 510 464 507 146 119 124 124 

GSC-8-IU 801 809 740 801 509 516 458 516 
SIMD-GVB 823 831 823 823 252 270 247 267 
SIMD-G8IU 1695 1719 1501 1613 149 125 127 130 
SIMD-G8CU 1282 1325 1243 1285 145 123 128 127 

SIMD-GSC-8-IU 1756 1772 1546 1635 534 552 497 552 

Word-
aligned 

Simple-9 522 644 506 743 93 114 90 145 

Simple-16 484 613 500 744 49 61 52 82 

G-SIM 943 1129 1009 1266 183 208 178 232 

SIMD-G-SIM 1855 1954 1577 1922 242 237 204 265 

Frame-
based 

PackedBinary 1392 1392 1252 1359 244 244 237 244 

PForDelta 1186 1048 1028 999 36 42 33 50 

AFOR 725 579 672 569 247 208 195 211 

G-AFOR 804 756 643 779 242 224 212 223 

G-PFD 1194 1057 1020 1007 89 102 80 120 

SIMD-BP128 2273 2049 1671 2155 592 539 318 792 

SIMD-FastPFOR 1912 1692 1258 1405 188 130 139 134 

SIMD-G-AFOR 1976 1819 1440 1673 368 354 366 367 

SIMD-G-PFD 2126 1711 1695 1543 220 210 170 192 

 

7.3.1 Decoding Speed 

In Table VII, nearly all SIMD-based Group algorithms (e.g. SIMD-Group-Simple) 
outperform the corresponding non-SIMD group algorithms (e.g. Group-Simple) and 
original scalar algorithms (e.g. Simple). The major observations are listed as follows: 

(1) In the bit/byte-aligned category, Rice and Elias Gamma have slow decoding 
speed. Overall, GVB has relatively better decoding speed, but it is still much lower 
than our proposed GSC-8-IU. Combining the results in Fig. 6, we can observe that 
the SIMD-Group-Scheme 1/2/4-CU and SIMD-Group-Scheme 1/2/4-B have slower 
decoding speed than others of our proposed algorithms, that is mainly because these 
algorithms have small compression granularity, and thus they tend to spend more 
time on decoding length descriptors.  
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(2) In the word-aligned category, Group-Simple is much faster than traditional 
Simple algorithms (1.5~2.5 times). The major reason is that Group-Simple relates a 
control pattern to four 32-bit data components while Simple-9/16 relates a control 
pattern to only a 28-bit data. SIMD-Group-Simple is significantly faster than Group-
Simple (1.5~2 times) and traditional Simple algorithms (3~3.8 times).  

(3) In the frame based category, SIMD-BP128 has achieved the fastest decoding 
speed, which is similar to Lemire and Boytsov’s finding [Lemire and Boytsov 2015]. 
As discussed in Section 6.3, SIMD-BP128 can be considered as a special variant of 
our compression approach. Following SIMD-BP128, SIMD-Group-PFD and SIMD-
FastPFor also achieve competitive decoding speed. SIMD-Group-AFOR is two times 
as fast as Group-AFOR, and Group-AFOR is slightly faster than AFOR.  

7.3.2 Encoding Speed 

Compared to decoding speed, encoding speed is less important than decoding speed 
since the index is usually built offline. We mainly want to examine whether the in-
corporation of SIMD instructions can accelerate the encoding procedure. The results 
are shown in the last four columns of Table VII.  
Overall, we observe that SIMD based implementation leads to some improvement in 
encoding speed, e.g., SIMD-Group-AFOR is faster than Group-AFOR and AFOR by 
nearly 50%, but the improvement is relatively smaller than that for decoding speed. 
In addition, our Group algorithms have faster encoding speed: (a) Group-Scheme 
variants are faster than GVB and Elias Gamma by 3~4 times; (b) Group-Simple is 
faster than Simple-9 (1.5~2 times) and Simple-16 (2.5~4 times). The key reason for 
improvement lies in the use of the quad max array. We only need to process a quarter 
of all the integers with the help of the quad max array. 
 

Table VIII. Comparison of compression ratio on GOV2 and ClueWeb09B (bits per integer). 

Category Algorithm 
GOV2 ClueWeb09B 

d-gap TF d-gap TF 

Bit-aligned 

Rice 5.0 3.1 5.1 2.4 

Gamma 6.7 2.8 4.8 2.2 

GSC-1-CU 6.0 3.3 4.9 2.5 

Byte-aligned 

VarByte 8.3 8.0 8.3 8.0 
GVB 10.1 10.0 10.2 10.0 
G8IU 9.2 9.0 9.2 9.0 
G8CU 9.2 9.0 9.2 9.0 

GSC-8-IU 8.6 4.9 8.8 8.3 

Word-aligned 

Simple-9 6.3 4.0 5.3 3.1 

Simple-16 5.9 3.7 5.0 2.9 

G-SIM 6.5 4.8 6.2 3.8 

Frame based 

PackedBinary/BP128 7.0 7.1 8.8 6.1 

PFORDelta 5.9 4.7 6.2 4.3 

FastPFor 5.8 3.6 5.4 2.9 

AFOR 6.0 4.0 5.3 3.1 

G-AFOR 6.1 4.7 6.0 3.6 

G-PFD 6.2 5.1 6.8 4.5 

 

7.3.3 Compression Ratio 

Table VIII shows the comparison of compression ratio. Since the incorporation of 
SIMD instructions does not affect compression ratio, we only present the results of 
non-SIMD algorithms. Overall, the proposed group algorithms have relatively lower 
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compression ratio compared to the corresponding original algorithms. The main rea-
son is that bit width is determined by the maximum integer in a group, which may 
potentially lead to more wasted storage. To achieve better vectorization, our algo-
rithms use extra space but still have competitive compression ratios, e.g., GSC-1-CU 
is slightly worse than the best baselines Rice and Gamma (in terms of compression 
ratio) but they are 6~10 times faster than Rice and Gamma.  

 

7.3.4 Results on Wikipedia and Twitter datasets 

We continue to evaluate different algorithms on Wikipedia and Twitter datasets, 
which are used to examine the algorithm stability. Due to space limit, we only report 
the results on d-gaps, and the results on TFs have similar findings. 
 

Table IX. Performance comparison on d-gaps of Wikipedia and Twitter Datasets. 

Category Algorithm 
Decoding Speed 

(mis) 
Encoding Speed 

(mis) 
Compression Ratio 
(bits per integer) 

Wiki Twitter Wiki Twitter Wiki Twitter 

Bit-aligned 

Rice 67 67 60 60 5.4 5.5 

Gamma 48 46 61 61 7.2 7.5 

SIMD-GSC-1-CU 445 429 218 219 6.3 6.6 

Byte-aligned 
SIMD-G8IU 1775 1841 144 153 9.4 9.2 

SIMD-GSC-8-IU 1936 2028 515 528 9.0 8.8 

Word-aligned SIMD-G-SIM 1809 1975 230 238 7.0 7.1 

Frame based 

PFORDelta 1202 1264 35 34 6.5 6.4 

SIMD-BP128 2003 2133 449 507 7.8 7.7 

SIMD-FastPFor 2041 2210 177 195 6.2 6.3 

SIMD-G-AFOR 1810 1929 430 439 6.6 6.7 

SIMD-G-PFD 2230 2434 198 201 6.7 6.7 

 
In Table IX, we can observe that our proposed algorithms still work well on these 

two datasets: 1) Overall, our SIMD-based algorithms have faster encoding/decoding 
speed and slightly worse compression ratio than the corresponding non-SIMD algo-
rithms. 2) Rice has the best compression ratio. 3) SIMD-BP128 has the best decoding 
speed followed by another two competitive algorithms SIMD-Group-PFD and SIMD-
FastPFor. 4) Frame based algorithms have similar compression ratio except that 
SIMD-BP128 has a lower compression ratio (-15%). 

 Evaluation on query processing performance 7.4

In the previous experiments, we have studied the decoding speed of different algo-
rithms. A more direct comparison is to examine the overall performance of query 
evaluation with different compression algorithms. The time cost for per query pro-
cessing typically includes the following steps: loading posting lists from disks to 
memory, decoding d-gaps, decoding TFs, recovering DocIDs based on d-gap, locating 
documents with skip pointers, scoring the candidate documents and top-k documents 
retrieval by using heap sort. Among these steps, only the first three steps are related 
to compression algorithms, i.e., loading posting lists from disks to memory, decoding 
d-gaps, and decoding TFs.  

In our experiments, we have found that the cost from the disk IO is large and not 
stable. Therefore, we follow the method of using a warm cache [Delbru et al. 2012], 
i.e., the time measurements are made when the part of the index read during query 
processing is fully loaded in memory. The query processing speed is measured by the 
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query rate, i.e., the number of queries a system can process per second. Furthermore, 
we execute each query ten times, and take the average of ten runs as the final per-
formance for a query. 

 
Table X. Performance rankings on average query processing rate  

(the number of queries processed per second). 

GOV2 ClueWeb 
Algorithms Query Rate Algorithms Query Rate 

SIMD-BP128 168.4  SIMD-BP128 68.2  
SIMD-G-PFD 166.7  SIMD-G-SIM 67.9  
SIMD-G-SIM 166.4  SIMD-G8IU 66.8  

SIMD-FastPFor 164.2  SIMD-G-PFD 66.6  
SIMD-G8IU 162.9  SIMD-FastPFor 66.2  

SIMD-G-AFOR 161.8  SIMD-G-AFOR 65.1  
SIMD-GSC-8-IU 160.5  PackedBinary 63.4  

PackedBinary 156.0  SIMD-GSC-8-IU 62.6  
SIMD-G8CU 148.1  SIMD-G8CU 60.5  

G-SIM 146.0  Group-Simple 59.7  
PFORDelta 143.1  PFORDelta 57.1  
G-AFOR 134.4  VarByte 52.7  
VarByte 130.7  Group-AFOR 52.4  
AFOR 127.1  SIMD-GVB 50.7  

SIMD-GVB 126.1  SIMD-GSC-1-CU 49.8  
Simple-9 122.2  Simple-9 49.5  

SIMD-GSC-1-CU 119.3  AFOR 49.0  
GVB 118.8  Simple-16 48.9  

Simple-16 118.2  GVB 47.6  
G8IU 117.4  G8IU 46.9  
G8CU 107.8  G8CU 42.5  
Rice 32.1  Rice 13.5  

 
We still use the GOV2 datasets and the same TREC query set described in Section 

7.1 for evaluation. The query evaluation adopts the DAAT (document-at-a-time) scor-
ing way and the top-k retrieval with k set as 10. We use the Okapi BM25 probabilis-
tic model [Robertson et al. 1999] to measure the relevance between a candidate doc-
ument and a query. Two types of queries are considered: AND query and OR query. 
We make use of the skipping lists for AND queries. For OR queries, we considered 
WAND [Broder et al. 2003; Ding and Suel 2011] and MaxScore [Jonassen et al. 2011; 
Shan et al. 2012].  

To better see the advantage of SIMD-based algorithms, we present the results for 
AND query processing performance descendingly in Table X. We can observe 1) most 
of the top ten ranks are occupied by SIMD-based algorithms; 2) the proposed Group 
compression algorithms with SIMD instructions have outperformed the non-SIMD 
Group algorithms. 3) The SIMD-BP128 and SIMD-Group-Simple achieve competitive 
performance. In our experiments, decoding of d-gap and TF roughly takes 15%~35% 
of the overall time cost, therefore the improvement is less significant than that for 
decoding speeds in Table VII.  

The results on OR queries are similar to what have been observed for AND que-
ries, but the overall performance difference between algorithms is relatively small.  

 Evaluation on index sizes 7.5

In this part, we compare the index sizes of different compression algorithms. Gener-
ally, the procedure of index creation includes two major steps:  
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(1) Segment creation: We gradually add documents to the in-memory inverted in-
dex. Once it has reached the limit of segment memory, we flush in-memory segment 
data to the disk. In this step, several local indices will be generated and the posting 
lists are not compressed.  

(2) Index merging and optimizing. We merge all local indices into a global index 
and perform index optimization. In particular, we focus on the size of posting lists 
stored on the disk, which consist of three parts in our experiment: d-gaps, TFs and 
skip list pointers for posting blocks. The skip distance of skip list pointers is set to 
512 postings. Skip lists and dictionary take little space. Therefore the overall index 
size is determined by the size of encoded posting lists. An algorithm with a better 
compression ratio will generate a smaller index size. Our proposed SIMD-based algo-
rithms take up at least 128 bits no matter how small the size of posting lists is. 
Therefore, we adopt the traditional compression algorithms for short posting lists: 
posting lists with a size less than 64 are compressed by Variable Byte encoding.  

  
Table XI shows the index sizes of different datasets by using different compres-

sion algorithms. Among all the algorithms, Rice has yielded the smallest indices on 
all datasets. The overhead for the index can be roughly divided into two parts, i.e., 
control patterns and encoded data. Group-based algorithms will save space for con-
trol patterns by sharing the pattern in the group but take up more space for the en-
coded data due to the alignment requirement. The final index size is impacted by this 
trade-off. For example, our algorithms Group-Simple and Group-AFOR take up a bit 
more space than their corresponding scalar algorithms, i.e., Simple-9, and AFOR; 
while our algorithms GSC-1-CU (extended from Elias Gamma) and GSC-8-IU (ex-
tended from G8IU) result in smaller index sizes compared to Elias Gamma and G8IU 
respectively.  

 
Table XI. Comparison of index sizes on four datasets with different compression algorithms (MB). 

Category Algorithm GOV2 Clueweb09B Wiki Twitter 

Uncompressed Uncompressed 40466 92062 11994 12518 

Bit-aligned 

Gamma 9571 16285 4479 4140 

Rice 7280 15120 3842 3387 

GSC-1-CU 8604 16144 4021 3755 

Byte-aligned 

VarByte 12096 26378 4917 4725 
GVB 14167 31382 5418 5282 

G8CU 13691 29812 5715 5356 
G8IU 13852 30149 5766 5416 

GSC-8-IU 12883 28614 5176 4988 

Word-aligned 

Simple-9 9078 17189 4236 3943 

Simple-16 8650 16315 4139 3826 

G-SIM 9629 19948 4316 4068 

Frame based 

PackedBinary 10180 23355 4460 4202 

PForDelta 8699 19434 4095 3806 

AFOR 8071 15982 3870 3576 

G-AFOR 8963 18668 4118 3856 

 

8. CONCLUSIONS AND FUTURE WORK 

In this paper, we studied the problem of optimizing compression algorithms by using 
SIMD instruction sets. We generalized the ideas of previous studies for SIMD-based 
vectorization, and proposed a general approach. Based on this approach, we devel-
oped several novel compression algorithms, including Group-Simple, Group-Scheme, 
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Group-AFOR and Group-PFD, together with their corresponding vectorized imple-
mentations. We conducted extensive experiments on four large datasets and found 
that our algorithms performed consistently well on all the datasets. For example, the 
proposed SIMD-Group-Simple has competitive query evaluation speed. The proposed 
Group-Scheme has the flexibility to tune on different compression metrics with two 
adjustable factors: the variants with larger compression granularity have more com-
petitive encoding/decoding speed, and the variants with smaller compression granu-
larity have more competitive compression ratio. We summarize the major highlights 
of our work in Table XII. 
 

Table XII. Summary of the highlights of our proposed algorithms. 

Algorithm 
Categories 

Algorithms based on 
our approach 

Highlights 

Bit aligned 
Group-Scheme 

Flexible control over the trade-off between decoding speed 
and compression ratio with different compression granular-
ity and length descriptor Byte aligned 

Word aligned  Group-Simple Competitive query processing speed  

Frame based 
BP-128 
Group-PFor 
Group-AFOR 

The fastest encoding/decoding speed (SIMD-BP128) and 
competitive encoding/decoding speed (SIMD-Group-PFD) 

 
In the future, we will study how to apply SIMD techniques on other Intel architec-

ture, i.e., 256-bit or the coming 512-bit vector registers with AVX instructions, and 
other architectures including PowerPC and ARM. Furthermore, we will test the algo-
rithms on other domains, such as database and image processing.  
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