
A UI-Centric Approach for the End-User Development of Multidevice 
Mashups
CINZIA CAPPIELLO, MARISTELLA MATERA, and MATTEO PICOZZI, Dipartimento di 
Elettronica, Informazione e Bioingegneria, Politecnico di Milano

In recent years, models, composition paradigms, and tools for mashup development have been proposed to 
support the integration of information sources, services and APIs available on the Web. The challenge is to 
provide a gate to a “programmable Web,” where end users are allowed to construct easily composite applica-
tions that merge content and functions so as to satisfy the long tail of their specific needs. The approaches 
proposed so far do not fully accommodate this vision. This article, therefore, proposes a mashup development 
framework that is oriented toward the End-User Development. Given the fundamental role of user inter-
faces (UIs) as a medium easily understandable by the end users, the proposed approach is characterized 
by UI-centric models able to support a WYSIWYG (What You See Is What You Get) specification of data 
integration and service orchestration. It, therefore, contributes to the definition of adequate abstractions 
that, by hiding the technology and implementation complexity, can be adopted by the end users in a kind 
of “democratic” paradigm for mashup development. This article also shows how model-to-code generative 
techniques translate models into application schemas, which in turn guide the dynamic instantiation of the 
composite applications at runtime. This is achieved through lightweight execution environments that can 
be deployed on the Web and on mobile devices to support the pervasive use of the created applications.

Categories and Subject Descriptors: D.1.7 [Visual Programming]: User Interfaces; D.2.6 [Programming 
Environments]: Interactive Environments; D.2.2 [Design Tools and Techniques]: Computer-Aided Soft-
ware Engineering; H.3.5 [Online Information Services]: Web-Based Services; H.5.3 [Group and Orga-
nization Interfaces]: Web-Based Interaction

General Terms: Design, Human Factors, Languages

Additional Key Words and Phrases: Mashups, model-driven mashup development, end-user development, 
multidevice mashups, data fusion, personal information management, Web interfaces

1. INTRODUCTION

Past years have seen an evolution in the way information seeking applications are con-
structed and deliver responses to users’ needs. Also enabled by the huge availability of 
online resources, one rising trend is to allow the users, not necessarily skilled program-
mers, to get rapid access to diverse resources offering functionality and data on the 
Web, and create new value by integrating them into simple but situated applications, 
the so-called mashups [Daniel and Matera 2014]. The proliferation of mobile devices,

Authors’ addresses: C. Cappiello, M. Matera, M. Picozzi, Dipartimento di Elettronica, Informazione e 
Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci, 32 - 20133 - Milano, Italy; emails:
{cinzia.cappiello, maristella.matera, matteo.picozzi}@polimi.it.



capable of running software applications pervasively, is also fueling the end users’ de-
sire of participating in the development of their own artifacts to satisfy the “long tail”
of specific and unexpected information needs not always addressed by common applica-
tions. The scenario emerging around mashup development is, therefore, characterized
by a strong potential for user-centric innovation that promotes users as producers of
significant value. Despite this potential, the research on Web mashups, and especially
on composition paradigms and tools, has not produced substantial improvements for
the end users. The consequence is that still only few experts are able to create their
own applications by programming manually the service integration [Namoun et al.
2010a].

We directly experienced some limits of mashup development practices in the context
of the research we have been conducting in recent years. We have tried to define com-
position paradigms and tools through which specific end-user communities, exploiting
the potential of mashup technologies, could construct applications responding to the
flexibility of tasks characterizing their working environments [Cappiello et al. 2011b;
Ardito et al. 2012]. Our research has addressed more than just unexperienced users;
rather, we have, in general, investigated how paradigms for fast prototyping, making
intensive use of high-level abstractions, could ease the access to the plethora of contents
available online today. Through a series of user studies, we came to the conclusion that
this goal can be reached only by methods and tools that hide technicalities to make
technologies accessible to the end users. This need is even more accentuated in the mo-
bile context, where even expert programmers need to get acquainted with very specific
technologies for application development that also vary substantially depending on the
target mobile device. Therefore, there is a need for composition paradigms that on one
hand should abstract from implementation details and on the other hand should sup-
port different kinds of integration logics for the creation of full-fledged service-based
applications running on different devices.

1.1. Contributions

In light of the previous considerations, we believe there are numerous opportunities for
research and development in the area of End-User Development (EUD) of mashups. In
our previous work, we investigated the integration of user interface (UI) components at
the presentation layer [Yu et al. 2007; Cappiello et al. 2011a, 2011b], showing how Web
mashups can be composed by synchronizing the UI of prepackaged applications. Some
field studies that we conducted to observe real users using our tools [Ardito et al. 2012]
highlighted the need for an “open platform,” where users would be enabled to create
new UI components by selecting pertinent data from different sources and by choosing
how to visualize the integrated result set. This article, therefore, introduces a UI-
centric composition paradigm that enables the creation of multidevice UI components
and UI mashups. The focus is on the following issues:

—User-driven development process. We argue that the user-driven creation of mashups
is more challenging than the provider-driven development of services. The main issue
is to help users understand easily the features of the available services, the way they
can be integrated, and the effect that each service may have on the overall compo-
sition. We, therefore, propose representations of services and of service composition
that abstract from programmatic interfaces or communication protocols while they
enhance role expressiveness. We investigated these aspects since the beginning of
our research on Web mashups. This article further clarifies our perspective on EUD
and provides a systematic and integrated view on the overall mashup life cycle and
the set of modeling abstractions we have been defining around the core concepts of
UI components and UI mashups.



—UI-centric abstractions for resource composition. We propose a new UI-centric model
for the composition of data mashups, based on associating data renderers, exposed by
Web services, to visual renderers available in some predefined UI templates. Creating
a UI for an integrated dataset is one of the most challenging tasks in the construction
of UI components and UI mashups; rarely, mashup tools provide facilities for UI
definition. The UI templates and the composition model proposed in this article
try to alleviate this task. They give life to an “integration-by-example” paradigm,
through which the composers program the integration of heterogeneous resources by
expressing at the UI level examples of what they would like to experience during the
execution of the final application. With respect to our previous work, the composition
model discussed in this article introduces several novelties—from the possibility for
the end user to express visually data integration operations, to the new UI-centric
flavor that we assign to these operations, to the possibility for the end users to define
from scratch new UI components.

—Multidevice deployment of composite resources. We propose a Domain-Specific Lan-
guage (DSL) that encapsulates the fundamental constructs of the composition model,
yet abstracting from specific UI templates and execution environments. A model-
driven engineering process is thus enabled to transform “examples” of data integra-
tion, visually defined by users, into application schemas, specified according to the
DSL syntax, that can be interpreted and instantiated on multiple devices. The need
for deploying mashups on different devices (tablet and smart phones, desktop PCs,
multitouch screens) was identified during field studies that we conducted to validate
our initial Web platform [Ardito et al. 2012]. This article illustrates the new modeling
abstractions and a platform architecture that cover the new emerged requirements.

—Lightweight integration of resources. The main challenge of the visual composition
paradigm illustrated in this article is not the definition of a new data integration or
service orchestration model; rather, our approach especially aims to promote abstrac-
tions that (1) capture and simplify the most salient aspects of composition making
them suitable for the average end users, (2) can be handled by lightweight archi-
tectures not requiring dedicated integration platforms and protocols, and (3) can
be ported on different client devices (even the mobile ones with limited computing
capabilities).

—Proof of concepts. We illustrate a reference architecture for the execution of UI com-
ponents and UI mashups on Web and mobile platforms. Through performance tests,
we show that the integration logic can be adopted even under the limitations posed
by mobile devices. By reporting on the results of two user studies, we discuss (1) the
suitability of the visual integration paradigm with respect to the capabilities of aver-
age end users and (2) the usability of the generated mashups. Through a systematic
usability inspection, we quantify the usability of the composition paradigm, also
taking into account the complexity of the user tasks.

1.2. Article Organization

This article is organized as follows. Section 2 introduces some background concepts 
and clarifies the rationale of our research. Section 3 illustrates our mashup develop-
ment process and the way its different activities can be performed through interactive 
environments offered by our tools. Section 4 defines the modeling constructs, the inte-
gration models, and the algorithms on which our approach is based. Section 5 illustrates 
the architecture of the composition platform. Section 6 reports on the evaluation that 
we conducted to assess the technological feasibility of the integration techniques, and 
the usability of both the composition paradigm and the final generated applications. 
Section 7 summarizes the EUD principles our work is inspired by and the lessons we



learned from our research on EUD of mashups. Section 8 finally draws our conclusions
and outlines our future work.

2. RATIONALE AND BACKGROUND

Web mashups are “composite” applications constructed by integrating ready-to-use
functions and content exposed by public or private services and Web APIs. The mashup
composition paradigm was initially exploited in the context of the consumer Web for cre-
ating applications rapidly by reusing programmable APIs and content scraped out from
Web pages. Soon, the potential of such lightweight integration practice also emerged
in other domains. For example, platforms for enterprise mashups [Jhingran 2006] were
proposed as tools for the enterprise users—not necessarily technology-skilled—to com-
pose their dashboards for process and data analysis.

Service composition has been traditionally covered by powerful standards and tech-
nologies that, however, can only be mastered by IT experts [Ro et al. 2008]. What
makes mashup development different from plain Web service integration is the possi-
bility, deriving from recent Web technologies, to merge ready-to-use resources at the
client-side, thus with reduced efforts and without the need of complex integration plat-
forms. Mashup development also emphasizes novel issues, such as the composition at
different layers of the application stack of heterogeneous resources that make use of
different technologies. In particular, the integration at the presentation layer is the very
innovative aspect that mashups bring into the Web technology scenario. It enables the
creation of full-fledged Web applications whose UI can be easily achieved by synchro-
nizing the UIs of different ready-to-use components. Mashup development can thus
be considered an alternative solution to service composition that can help realize the
dream of a “programmable Web” [Maximilien et al. 2007] even by non-programmer
users.

2.1. Mashups and User-Driven Innovation

Because of its intrinsic value as development practice to let end users produce new
value, mashup composition is in line with the so-called “culture of participation”
[Fischer 2009]; users are enabled to evolve from passive consumers of applications
to active co-creators of new ideas, knowledge, and products. There is indeed a specific
driver at the heart of the user participation to the mashup phenomenon: user driven
innovation, that is, the desire and capability of users to develop their own things, to
realize their own ideas, and to express their own creativity [von Hippel 2005].

According to recent works published in literature [Latzina and Beringer 2012], there
is also an increasing need to replace fixed applications with elastic environments that
can be shaped up flexibly, to accommodate different situational needs. New design
principles are emerging [Latzina and Beringer 2012] to promote paradigms where end
users can access contents and functions and flexibly use and compose such resources in
several situations and across several applications and access devices. If the composition
activity turns out to add significant new value, the advantage for the users is that they
achieve effective applications matching exactly their needs. Additionally, the providers
of the original resources can integrate the user innovation back into their core products
[Iyer and Davenport 2008] and improve their services to fulfill users’ requirements
without the need of carrying out the iterative experimentation generally required to
identify requirements and develop and test a new product. The end users are entirely
in charge of these aspects because they are enabled to create solutions that closely
meet their needs.

Such innovation potential is, however, not adequately supported by the approaches
for mashup composition proposed so far [Daniel et al. 2011]. The research on mashups
has been focusing on enabling technologies and standards, with little attention on



easing the mashup development process. In many cases, mashup creation still involves 
the manual programming of the service integration. Research teams and industrial 
players tried to define simplified composition paradigms, mostly based on visual nota-
tions and lightweight design and execution platforms running on the Web. However, 
many of such projects failed because of their inadequacy with respect to some key prin-
ciples defined and experimentally validated in the EUD domain [Namoun et al. 2010a; 
Casati et al. 2012]. According to the EUD vision, enabling a larger class of users to 
create their own applications requires the availability of intuitive abstractions, inter-
active development tools, and a high level of assistance [Burnett et al. 2004; Liu et al. 
2007]. In particular, to support the user-driven innovation potential, the challenge is to 
let users concentrate on the conception of new ideas, rather than on the technicalities 
beyond service composition. In other words, users should be enabled to easily access 
resources responding to personal needs, integrate them to compose new applications, 
and simply run such applications without worrying about what happens behind the 
scenes.

2.2. UI-Centric Composition of Mashups

Our claim is that EUD of mashups can be promoted by UI-centric approaches where 
composers are allowed to focus on user-oriented artifacts (i.e., user interfaces they 
are able to use rather than on programmatic interfaces). Nevertheless, operating at 
the UI level must offer the possibility to express how to integrate components so 
that programming constructs can be derived to guide the automatic generation and 
execution of the resulting application. Some projects (e.g., Dynvoker [Spillner et al. 
2008] and SOA4All [Krummenacher et al. 2009]) already had a similar intuition and 
focused on easing the creation of UIs on top of services to provide a direct channel 
between end users and services. However, such approaches addressed the interaction 
with single services, but they did not investigate the integration of multiple services.

The integration dimension has been investigated by a considerable body of research 
on mashup tools, the so-called mashup makers. Such tools support the integration of 
components at different layers of the application stack, especially at the data and pre-
sentation layer. Many tools offer composition paradigms based on graphical notations 
that abstract relevant mashup development aspects and operations. The mashup com-
posers define diagrams to express the internal logic of a mashup, without the need for 
writing code. The diagrams are then automatically translated into application code.

Among the most prominent proposals, Yahoo!Pipes (http://pipes.yahoo.com) is an 
online platform supporting the integration of RSS feeds through a dataflow composition 
language. Users specify the URI of some data sources into dedicated input boxes. Then, 
they connect such boxes and define diagrams, the so-called pipes, to specify how data 
parameters propagate from one source to another to achieve filtering and merge of 
the involved result sets. Different modeling constructs can be connected to determine 
the flow of parameters and also the order of activation of components. A preview of the 
mashup output is possible within the Web editor, where a panel shows the resulting 
RSS feeds in a textual format. Simple visualizations, in form of HTML tables or maps 
(in case of geolocalized feeds) can also be associated with the results. Ready pipes can 
be stored on the Yahoo!Pipes online repository and accessed via a unique URL, which 
allows one to execute the mashup and fetch the resulting RSS feeds.

JackBe Presto (http://jackbe.com/products) also adopts a pipes-like approach for 
data mashups but with a greater set of operators with respect to Yahoo!Pipes and 
a larger coverage of data source types. Its composition environment, Presto Wires, of-
fers a diagrammatic notation to express several data transformation operators (e.g., 
filter, sort, join, group, annotate, merge, and split), on heterogeneous types of data 
sources. This notation is an abstraction of Enterprise Mashup Markup Language

http://pipes.yahoo.com
http://jackbe.com/products


(EMML), an XML-based DSL promoted by the Open Mashup Alliance (OMA,
http://www.openmashup.org/) for the definition of portable and interoperable data
mashups, with a special focus on enterprise mashups [Open Mashup Alliance (OMA)
2013]. Presto Wires allows the developer to choose from different data integration con-
structs and to drag and drop them onto a visual canvas. Similar to Yahoo!Pipes, it
offers a preview panel showing the computed dataset. Complex processing logic can be
also embedded as scripts, whereas conditional statements and expressions are coded
in XPath. Finally, ready mashups expressed in EMML can be stored on the Presto
server where they can be executed by an EMML engine. The output is an integrated
dataset, whose visualization can be configured only outside Wires, in a dedicated visu-
alization dashboard that supports a portal-like aggregation of UI widgets (the so-called
mashlets) offering a chart-based rendering of data.

mashArt [Daniel et al. 2009] also enables the creation of graph-based mashup mod-
els. Different from other tools, it proposes an integration approach, called universal
integration, which allows the integration of data, application logic, and UI components
inside one and the same modeling environment. The integration logic is based on an
event-driven, publish-subscribe paradigm [Yu et al. 2007], where operations of some
components subscribe to the occurrence of events in other components. Components
need to be prepackaged and wrapped to expose events and operations. Expressing the
actual mashup logic then requires defining dataflow connectors that associate source
events and target operations. The result is an XML-based specification of component
orchestration. The layout of the mashup can be finally defined by coding manually,
outside the tool, an HTML template with a set of placeholders for the display of UI
components.

With respect to manual programming, the previous platforms certainly facilitate
mashup development. However, to some extent, they still require the composer’s un-
derstanding of the integration logic (e.g., dataflow, parameter coupling, and composition
operator programming). In other words, such tools tried to supply abstractions for non-
programmers, but they just provided diagrammatic representations of the technology-
driven model for APIs invocation and composition. For example, in Yahoo!Pipes, each
service is represented by its URI and the XPath expressions for content extraction,
whereas in mashArt, each component is represented by means of the events and oper-
ations it exposes. Another critical aspect is that building the mashup UI requires its
manual coding or the adoption of external tools.

Asking the users to define a dataflow or control-flow logic, even assuming they would
be able to understand these technical concepts, is not realistic [Angeli et al. 2011].
Some studies about users’ expectations and the usability of mashup composition en-
vironments [Namoun et al. 2010a] highlighted fundamental issues concerning the
conceptual understanding of service composition. First of all, end users do not think
about connecting services. They do not even know what a Web service is or how it can
be invoked trough its programmatic interface, although they are able to understand
what a service can offer if they interact with any kind of service UI. Additionally, they
do not understand the difference between application design and execution. Therefore,
they feel extremely disoriented when they are required to define diagrams that do not
resemble at all the application they aim to build. This is true even when diagrams are
meant to provide abstractions for technical concepts.

Taking into consideration all these issues, our research has been focusing on natu-
ral, visual composition paradigms for the integration of components at the presentation
layer. By “natural,” we mean that the composers deal with interactive artifacts that are
closer to their mental model of the application they want to construct. The composition
paradigm requires acting directly on the user interface of the mashup in a kind of live
programming paradigm where each composition action has a visual feedback on the

http://www.openmashup.org/


artifact under construction. In our previous work [Cappiello et al. 2011b], we showed 
how the end users can be enabled to compose Web mashups by synchronizing 
the behavior of UI components. In Yu et al. [2007], we defined UI components as 
JavaScript/HTML stand-alone applications that can be instantiated and run inside any 
common Web browser and that, unlike Web services or data sources, are equipped with 
a UI that enables the interaction with the underlying service via standard HTML. The 
characteristic of such class of components is that their UI allows users to interactively 
navigate and manipulate the component’s content, also invoking business logic oper-
ations. UI components are in line with the Widget standard [Càceres 2012] recently 
proposed by the W3C. However, whereas the W3C standard just focuses on formats 
and metadata for packaging Web apps, UI components also expose an event-driven, 
publish-subscribe logic that gives them the capability to react (i.e., to enact operations 
that change their state) to events raised by other components. Events generate output 
parameters, which become input parameters for the coupled operations. Parameter 
passing thus enables an update of the status of the target component.

Other approaches successively proposed similar composition paradigms. For exam-
ple, the FAST mashup framework [Lizcano et al. 2013] allows users to define “nar-
rative” descriptions of the mashup they want to compose, and the composition envi-
ronment, based on natural language processing techniques, identifies keywords and 
generates suggestions on the components to be used. The addition of components into 
the composition workspace is possible in a drag&drop fashion, and the added compo-
nents are immediately executed, interactively showing their UI and dataset. A natural 
language specification of mashup requirements is also adopted by the NaturalMash tool 
[Aghaee et al. 2013]. Based on natural language sentences, the platform deduces which 
components should be added in the mashup to fulfill the expressed user goals; such 
components are then immediately added and run into the user workspace. However, 
one problem observed with these tools is that users have to learn how to express their 
goal in natural language because a specific syntax is required. Additionally, whereas 
the selection and inclusion of single components is performed “naturally,” the orches-
tration of components is based on a dataflow diagrammatic definition, very similar to 
the one adopted in mashArt for expressing event-driven component couplings, which 
requires users to couple input/output parameters.

The work presented in this article capitalizes on previous results on natural composi-
tion paradigms, but it goes one step forward by proposing a new paradigm to integrate 
easily data coming from different data sources into “pervasive” (not only Web-based) 
UI components. This contribution is an opportunity for “opening” mashup platforms 
and increasing their flexibility with respect to the user needs. One observed pitfall 
for mashup tools, including the platforms discussed earlier, is indeed the difficulty for 
the composer, especially if not a programming expert, to add new ready components 
fulfilling their composition needs. The platform presented in this article tries to solve 
this issue by offering a method for the rapid definition of data mashups and their UI. 
Our work in particular aims to promote the notion of UI-centric data integration, as 
a paradigm in which the UI of the final application guides querying and integrating 
different result sets.

Our main challenge is not the definition of new methods for data integration or 
service orchestration. We indeed recognize that other platforms already offer powerful 
solutions. However, although rich in the offered operations for data integration, in some 
cases such platforms require complex and heavy architectures for the creation and exe-
cution of mashups, but especially their composition paradigms do not focus at all on the 
UI of services and mashups. Our UI-centric abstractions aim to offer an alternative 
solution to make the composition process abstract with respect to technical details: 
interactive (i.e., based on live programming and immediate feedback mechanisms)



and light (i.e., not requiring dedicated integration platforms and protocols and eas-
ily portable on different client devices, even the mobile ones that are characterized
by limited computing capabilities). The UI centric nature of the composition process,
moreover, intrinsically supports the construction of the UI layer of the final mashup—a
feature rarely supported by other approaches.

2.3. Multidevice Mashups

The EUD of mashups that can be executed on different devices is a novel aspect covered
by our research, which enlarges the possibility for the users to run their applications
pervasively, thus creating a continuum across different usage contexts. In the field
of EUD of mobile applications, some approaches investigated the possibility of au-
thoring mobile apps directly on the mobile devices [Häkkilä et al. 2005; Davies et al.
2010]; however, especially due to the well-known screen limitations of such devices,
the proposed editors enable the configuration of very simple applications, the so-called
microservices [Danado et al. 2010], with poor contents and functions and not address-
ing at all the composition of remote services and APIs. Recently proposed services, like
IFTTT (If This Than That, https://ifttt.com/wtf) and Atooma (http://www.automa.com),
enable users to synchronize the behavior of different apps through simple conditional
statements. However, they do not support at all the integration of different datasets
and of corresponding UIs.

Chaisatien et al. [2011] illustrate a mobile generator system that, in line with our
perspective on the user-driven development of mashups, offers a desktop environment
that automatically generates the code of the mobile application. This approach is based
on a publish-subscribe paradigm for service synchronization that recalls our model for
UI mashup composition [Yu et al. 2007; Cappiello et al. 2011b]. The platform aims to
support fast prototyping because it is able to automatically generate a large part of
the application code; however, it requires the users to write scripts to structure their
applications, thus featuring those design barriers that programming languages typi-
cally bring with them. Another aspect is that although this approach enables content
extraction from Web documents, it does not support content integration. We believe
this is instead a fundamental feature, especially for the mobile usage context where
the quick access to heterogeneous content by means of integrated views can greatly
improve the user experience.

With respect to the previous works, one distinguishing feature of our approach is
the capability of abstracting from specific technologies of the target applications. In
line with the Model-Driven Engineering (MDE) philosophy, the work presented in this
article focuses on the generation of application schemas complying with a DSL and on
their interpretation in different execution platforms by means of native engines. This
is a very relevant feature, as recent studies on device share and traffic share report on
a generally observed attitude of users to access applications through different devices
(desktop and mobile) [Lipsman and Aquino 2013].

3. A UI-CENTRIC COMPOSITION PARADIGM

Our mashup development method allows the users to compose different resources at
different levels of granularity, operating iteratively on the UI of the interactive artifacts
to be created. The resulting process is represented in Figure 1(b), where it is also
compared with the mashup life cycle typically supported by the majority of the mash-
maker tools (Figure 1(a)) [Daniel et al. 2011]. Having a mashup idea, the composer can
start by selecting ready-to-use UI components, equipped with a predefined dataset and
a UI, to compose a UI mashup in an interactive dashboard supporting the inclusion
of components and their synchronization at the UI level. As reported in Figure 1(a),
the selection and composition of prepackaged components are also covered by other

https://ifttt.com/wtf
http://www.automa.com


Fig. 1. (a) Mashup life cycle as supported by the majority of mashmaker tools [Daniel et al. 2011] and
(b) the life cycle supported by our approach, also covering the selection of contents from data sources and
their integration into UI components.

approaches (e.g., Lizcano et al. [2013] and Daniel et al. [2009]). However, as illustrated
next in this section, our framework allows the composer to create new UI components
from scratch by integrating content retrieved through local or remote data sources.

The creation of UI components is a distinguishing feature of our composition ap-
proach. Another relevant aspect is that user-created UI components can be executed
as self-contained applications on multiple devices and can expose an event-driven logic
that makes them amenable to the synchronization with other components as well. The
rest of this section shows, by means of a reference example, how all these different
activities can be performed through an interactive Web environment offered by our
enabling platform.1

3.1. Selection of Data Components and UI Templates

The user who wants to create a new application starts by selecting one or more data
components and their predefined queries registered into the composition platform.
Data components are basic elements of our composition approach that provide access
to REST/SOAP Web services.

As an example, let us suppose the user is interested in retrieving information about
music events in a given city (e.g., Chicago) and in composing a mashup to be run on an
Android smart phone. Let us also assume that a number of relevant data components
are already registered in the platform. Through a Web-based design environment, the
user visually browses the available data components and selects the one publishing
pertinent information (e.g., Upcoming) and one of its parametric queries (e.g., the one
retrieving events in a specified city). He can also set parameter values to query the
service; for example, he inserts “Chicago” as the value of the city he is interested in.

As represented in Figure 2, a data panel on the left displays the results retrieved
through the selected query. The panel on the right, instead, is devoted to show a
UI template that the user can select among different alternative templates for data
presentation. In the example of Figure 2, the user selects a list-based template. Each
list item is represented by three visual elements, namely < title, subtitle, picture >.
These are the template visual renderers (vrs) that the user can fill in with some of the

1The video available at http://youtu.be/Y15ACpxNoZ8 shows our system at work in the different phases of 
mashup composition.

http://youtu.be/Y15ACpxNoZ8


Fig. 2. Schematic representation of the visual mapping activity. Drag&Drop actions allow the user to reduce
the data source schemas into local source schemas and to build a global schema guiding the integration of
multiple result sets.

data attributes displayed in the data panel. The list showing these items is called the
union subtemplate. In the final application, it will display the union of the datasets
retrieved through the queries selected by the user. The UI template also includes
a second view, the merge subtemplate, that allows the user to map, on an arbitrary
number of additional visual renderers, further attributes that he might want to add
as details of the items shown in the union subtemplate. In the final application, the
merge subtemplate is devoted to display joins of different datasets.

3.2. Visual Mapping

After the selection of data components and UI templates, the user proceeds with the
visual mapping activity. Through drag&drop actions he associates data items, visual-
ized in the left-hand data panel, with visual elements of the right-hand UI template.
Data item selections represent “examples” of the data the user would like to retrieve
and visualize through the final application; such examples are translated by the visual
editor into projection queries on the data components to be executed at runtime when
the integrated application has to be instantiated on the target device.

Thus, step by step, visual mapping actions define reductions of the original data
schemas exposed by the components. The two tables at the bottom of Figure 2 exem-
plify the schema reduction operated by the user on the service Upcoming and on an
additional data source, Last.fm, that the user has selected to retrieve further info on
Chicago’s music events. Such reductions are automatically coded in a mashup schema
expressed in an XML-based language. When the created application is executed, the
mashup schema guides the fusion of the retrieved result sets extracted by the two
involved services and their visualization according to the selected UI template. The



composer is not required, however, to be familiar with these service-related concepts, 
as schemas (both the reduced data schemas and the mashup schema) are implicitly 
deduced from his visual mapping actions.

3.3. Couplings with UI Components and Device-Local Services

Once the integrated dataset and its visualization are in place, the user can also define 
couplings between visual renderers and other UI components available in the platform. 
A coupling synchronizes the event of selecting a visual renderer with the invocation of 
an operation exposed by another UI component or a device-local service. The aim is to 
further enrich the composition by enabling the exploratory access to complementary 
data, functionality, and visualizations that can enhance the fruition of the core inte-
grated dataset. For example, the event of selecting a geo-localized music event might 
activate the visualization of the event venue on a map by means of a map service. 
Also, on a smart phone the selection of a phone number can activate the dialing of the 
selected number.

As shown in Figure 2, a tool bar is displayed closed to each visual renderer in the 
merge subtemplate to highlight in form of icons the components that can be coupled 
with the parameters carried by the selection of the visual renderer. To create a coupling, 
the user moves one such icon on the desired visual renderer.

3.4. App Execution on Multiple Devices

Each visual action performed by the user contributes to the automatic generation of a 
platform-independent schema specifying the organization of the application. Once the 
composition is completed, the user saves the schema in the platform repository. In the 
example of Figure 2, the user saves the created schema and names it My events. He
will then be able to download the schema and properly execute the corresponding app 
on any device where a proper runtime environment is installed, according to a kind of 
“polymorphism” enabled by model-to-code generative techniques. The created schema 
indeed guides client-side execution engines to instantiate dynamically the designed 
mashup as a standalone app (e.g., on mobile devices) or, as described next, as a UI 
component within larger UI mashups.

3.5. UI Component Synchronization within Larger UI Mashups

This article especially focuses on the models and UI-centric mechanisms for creating 
multidevice UI components through data integration. However, to give a complete 
overview of the capabilities of our framework, we here summarize the main features 
of the paradigm for UI components synchronization [Cappiello et al. 2011b].

Figure 3 illustrates a UI mashup for searching information about music events, cre-
ated within an interactive Web workspace devoted to the synchronization of UI compo-
nents. To create a UI mashup, the user selects components from the visual palette on 
the left and includes them in the central canvas. Some components, so-called wrapped 
components, are prepackaged (i.e., provided with the initial installation of the platform 
or added, if needed) by platform administrators. Some other components are self-
created by the user through the visual mapping paradigm. In the example of Figure 3, 
the components based on GoogleMaps, Wikipedia, and Flickr are wrapped. The My 
events component is instead the one created by the user, as illustrated. Although My 
events was initially created as an app for an Android smart phone, thanks to the 
polymorphism of the created integration schema, in the example the component is 
instantiated as an HTML table within a < div > container of the workspace Web page.

As regards the composition paradigm, a live programming paradigm is also adopted 
at this level. Thanks to the intermixing of application design and execution, the users 
are provided with immediate feedback about the effect of their composition actions.



Fig. 3. Interactive Web workspace for the synchronization of UI components [Cappiello et al. 2011a, 2011b,
2012].

The selection of a component in the visual palette is immediately followed by the visu-
alization of the component UI; the user can thus start interacting with the component,
accessing and browsing its dataset and figuring out how the component works. Possible
couplings with components already included in the workspace are automatically identi-
fied based on compatibility rules [Cappiello et al. 2011b, 2012] and visually highlighted
through different colors of the component border (i.e., green if a coupling is possible,
red if not). A coupling can be defined by dragging one component onto another. In the
example of Figure 3, two couplings synchronize the selection of an artist in the My
events component with the display of a corresponding page in Wikipedia, and with the
display of related images in Flickr.

4. MODELING ABSTRACTIONS

In this section, we define the modeling abstractions, schematically represented in the
metamodel illustrated in Figure 4, on which our composition paradigm is based. Such
abstractions are transparent to the users performing the mashup composition. Their
systematic definition, however, facilitates the understanding of how the visual actions
operated by the users are transformed into models and how models are in turn parsed
by interpreters that instantiate the respective applications on the fly. Our approach
indeed complies with Model-Driven Engineering methods where modeling abstractions
guide the design of applications while generative layers mediate between high-level
visual models and low-level technical engines that execute the mashup.

4.1. UI Components

The fundamental blocks of our composition paradigm are UI components.

Definition 4.1 (UI Component). A UI component is a self-contained software mod-
ule that is bound to one or more services providing data and/or functionality and is
equipped with its own UI (its concrete UI). A UI component also exposes an event-driven



Fig. 4. Main modeling elements enabling the UI-centric composition paradigm.

logic characterized by a set of events, E, that can be generated by the user interaction 
with its concrete UI and can transport parameters, and a set of operations, O, that
some other components’ events can activate to change its status when a synchronized 
behavior within a composite application is needed.

As an example, all the components included in the Chicago events mashup illustrated 
in Figure 3 are UI components. The specificity of UI components with respect to other 
components (e.g., Web services) is indeed the presence of a UI as a means for the users 
to interactively navigate and manipulate the component’s content and invoke business 
logics operations.

4.2. UI Mashups

A UI mashup is a composite application that integrates UI components at the pre-
sentation layer. It reuses and synchronizes the UIs of the involved components. It also 
mediates possible data mismatches occurring when synchronizing the components, but 
it leaves the responsibility of data and business-logic management to each individual 
component. More precisely, a UI mashup can be characterized as follows:

Definition 4.2 (UI Mashup). A UI mashup can be defined as UI Mashup = 
<UIC, C, PT>, where UIC is the set of UI components included in the mashup, C 
is the set of couplings that determine the synchronized behavior of components within 
the mashup, and PT is the presentation template adopted to organize the UI of the 
mashup.

Components couplings are channels for intercomponent communication, defined ac-
cording to an event-driven, publish-subscribe integration logic [Yu et al. 2007; Cappiello 
et al. 2011b]. They establish how the occurrence of published events cause the execution



of subscribed operations, which in turn result into a state change in the target compo-
nent. More precisely:

Definition 4.3 (Components Coupling). Given two UI components, uics and uict, a
coupling synchronizing their behavior is a pair c =< euics (< output parameters >),
ouict (< input parameter >) >, representing the subscription of an operation of the
target UI component, ouict , to an event raised by the source UI component, euics , and
more specifically to the output parameters the event might transport.

For example, in the mashup of Figure 3, the coupling < selectArtistMyEvents
(ArtistName), showImagesFlickr(SearchKey) > is defined to synchronize the selection
of an artist’s name in the My events component with the display in the Flickr compo-
nent of images related to that artist. The selection event generates as output parameter
the ArtistName, and this data item is coupled to the SearchKey input parameter of the
Flickr operation. Such a parameter passing enables the update of the status of Flickr
every time a new artist is selected in My events.

It is worth noting that UI mashups intrinsically have a presentation layer derived by
the aggregation of each single component’s UI. As represented in Figure 4, the resulting
UI can be managed through a template (e.g., a grid-based HTML layout for the Web)
where each component’s UI is visualized within a viewport,2 that is, a window or any
other viewing area on the screen (e.g., an HTML div or iframe on the Web), hosting
the visualization and execution of the component.

Later in this section, we further characterize UI components as wrapped UI com-
ponents, which are prepackaged and included into the platform in form of scripts
wrapping the original services, and VI components, which are visually defined from
scratch by end users through the visual mapping paradigm.

4.3. Wrapped UI Components

Wrapped UI components are widgets that are prepackaged by expert developers who
manually program wrappers for the remote access to the underlying Web services and
APIs. When the accessed resources are not natively equipped with a UI, wrapping is
also aimed to create a UI and to program the event-driven logic needed for achieving
synchronization at the presentation level. In the example of Figure 3, the components
related to GoogleMaps, Flickr, and Wikipedia are all wrapped UI components. For
GoogleMaps, the wrapper supports the instantiation of its native UI within a < div >
tag, the invocation of the API methods triggered by the user interaction, and the logic
for event handling needed for the execution of the overall mashup. For the other two
components, wrappers also implement ad-hoc UIs that are not provided by the original
service; wrappers are thus in charge of populating HTML markup with content fetched
from the services and also manage any successive interactive access to the component
data.

4.4. VI Components

Visual Integration (VI) components are created by the users by mapping visually result
sets extracted by one or more data components to UI templates.

4.4.1. Data Components

Definition 4.4 (Data Components). A data component provides read-only access to
a remote or local data source. It can be defined as a pair d comp = <ep, Q>, where ep
represents the endpoint of the underlying service (e.g., the URI of a RESTful service)
and Q represents the set of predefined parametric queries.

2http://www.w3.org/TR/CSS21/visuren.html#visual-model-intro.

http://www.w3.org/TR/CSS21/visuren.html#visual-model-intro


To enable the invocation of a data component at runtime, its endpoint and the
queries are specified in a descriptor that is created when the component is regis-
tered into the platform. The registration is supported by a form-based user interface
where the user specifies the needed configuration data; configuration files are then
generated. For example, the Last.fm data component used in our reference scenario
is defined on top of the Last.fm RESTful API. Its registered endpoint is the URI
http://ws.audioscrobbler.com/2.0/ where the API is published. Q includes some para-
metric queries, for example, the one based on an operation to retrieve music events
located in a specified city. Queries are expressed as HTTP GET requests, for exam-
ple, “?method=geo.getevents&location=location_str&api_key=lastfm_api_key.” At run-
time, requests are instantiated by considering actual parameter values specified dur-
ing the composition or also during the component execution, for example, the value
“chicago” for the location_str parameter and the API key 0697XXX.

4.4.2. UI Templates

Definition 4.5 (UI Template). A UI template is an “abstract” representation of the
UI of a VI component. It is adopted during the visual mapping activity to guide the
selection and integration of data retrieved through data components. At runtime, it
is then used as a basis to instantiate the “concrete” UI displaying the integrated
dataset. The concrete UI organization reflects the one of the UI template, but it can
still assume different layout styles. More precisely, a UI template can be characterized
as UItemp = <type, VR, templE>, where:

—type is the template class (e.g., list, map, chart) selected by the user.
—V R is the set of visual renderers, vrk, that is, the elements that provide visual place-

holders for single data attributes or for the aggregation or fusion of data attributes
extracted from data components. The way visual renderers are displayed in the final
application is specific for each UI template type; they can be Points of Interest (POIs)
in a map, text fields in a list-based UI, or point in a scattered plot. At a higher level
of abstraction, each vr can be considered merely as a “receptor” of data attributes,
independent of its specific rendering in the component’s concrete UI.

—templE is the set of events that at runtime can be raised by the selection of template
visual renderers. For example, one may assume that some visual renderers be asso-
ciated with an onClick event transporting as parameter the displayed data item. VI
components thus inherit the set of events of the UI template they are based on.

Visual renderers can be grouped in two different subtemplates:

—union visual renderers (uvrk), included in the union subtemplate, are in charge of
displaying few characterizing attributes, representing data items concisely. Some
uvrk, called ID visual renderers, display key attributes used as identifiers of data
instances. The number of union visual renderers is predefined and depends on the
visual organization of the UI template. At least one ID visual renderer has to be
included, as at runtime the associated data attributes are exploited to join different
result sets and detect and manage duplicates.

—merge visual renderers (mvrk), included in the merge subtemplate, display additional
details for the data instances selected in the global subtemplate. Different from the
union subtemplate, the number of merge visual renderers is not defined a priori, as
the users can arbitrarily add visual renderers to display data items or even choose
not to have a merge subtemplate in their applications. Some mvrk can play the role
of coupling visual renderers, meaning that at runtime their selection can generate
events carrying as parameters the displayed data.

http://ws.audioscrobbler.com/2.0/


Fig. 5. Examples of map and chart UIs organized into union and merge subtemplates.

The choice of structuring UI templates into the two subtemplates just described
enables a specific policy for data integration that will be described later in this section.
It is also effective with respect to the usability of the resulting applications. Indeed,
it is coherent with the well-known “global-detail” pattern [Card et al. 1999], which
suggests providing a data overview first and then details on demand for the only items
selected by the users in the overview. This pattern is very common in Web application
design [Ceri et al. 2007]; more recently, it has being effectively adopted in mobile app
design as well [Burigat and Chittaro 2013]. It is also applicable in almost any type of
visualization. For example, Figure 5 illustrates the adoption of the two subtemplates
in two other types of UIs:

—Map-based UI template: The map-based UI represented in Figure 5(a) displays the
same result set displayed as a list in Figure 2. The map globally displays all the
retrieved data items, each one as a POI highlighted on the map; a pop-up balloon
then displays further details when a POI is selected.



—Chart-based UI template: The chart in Figure 5(b) represents traffic data for some
intersections in the city of Milan [Picozzi et al. 2013]. The result set is globally
represented by one or more series in the chart, each one corresponding to a measure
(e.g., the average number of vehicles) computed for different values of a dimension
(e.g., time). The selection of a series then leads to more detailed information, for
example, to the visualization of descriptive statistics computed by aggregating the
values in the series.

4.4.3. VI component Constituents.

Definition 4.6 (VI Component). Given the availability of data components and UI
templates, a VI component can be defined as the tuple V Icomp =< selQ,U I template,
V I schema, E, O >, where:

—selQ is the set of queries that the user selects from each involved data component
to gather the VI component data. For example, the VI component My events in the
example of Figure 3 is associated with two parametric queries to select data instances
from Last.fm and Upcoming based on the value of the city attribute (e.g., Chicago);

—U I template is the user-selected UI template associated with the component for the
visualization of its integrated dataset. In the My events component, the selected
U I template is the list.

—V I schema (Visual Integration schema) represents the set of mappings between data
items extracted through the queries in selQ and visual renderers characterizing the
U Itemplate. Independently of the adopted UI template, a VI schema is a tuple,
V I =< vr1, vr2, . . . , vrn >, where each vrk represents queries to retrieve and/or fuse
the associated data attributes.

—E and O are the sets of events and operations exposed by the component to
make it comply with the event-driven logic needed for UI synchronization. E ⊆
templEU Itemplate, that is, E is derived from the events associated with the UI tem-
plate (see Definition 4.5). For example, for the My events component, E includes the
selection of the list items in the merge subtemplate. O ⊆ selQ, that is, O is derived
from the set of queries exposed by the involved components. In the My events com-
ponent, an operation that updates its status is, for example, the one that queries the
underlying data sources searching for events based on a specified city name.

It is worth noting that, while for wrapped UI components the execution logic is 
blurred in the programmed wrapper and merely depends on the opportunistic strategy 
adopted by the programmer, in VI components a unique execution logic, replicated 
according to the technology of the target execution environments, is used to interpret 
the user-created schema and generate, through model transformations, the code for 
the component instantiation and execution.

4.5. Construction of the VI Schema

This section explains how the modeling elements illustrated thus far enable the con-
struction of VI schemas controlling the execution of VI Components. The creation of VI 
components is based on the integration of result sets coming from different data com-
ponents; thus, the creation of a VI schema is comparable to a data integration problem. 
Data integration is usually modeled as a triple < G, S, M >, where G is the global 
schema, defining the structure of the final integrated dataset, S is the heterogeneous 
set of source schemas, and M is the mapping between G and S that associates each 
element of G with a query over one or more sources in S [Lenzerini 2002]. We now 
illustrate how we approach this problem, given the specificities posed by our UI-centric 
composition approach.



Fig. 6. Global integration schema constructed through the union and merge mapping. Attributes from the
service local schemas are renamed according to the visual renderer names.

In order to increase the openness of our tools and to give to the end users the
freedom to select the data they deem pertinent, we assume that the source schemas for
the registered data components are not known a priori (i.e., specified/described by an
expert designer in the data component descriptors). Given a data component selected
by the user, the queries in selQ are run and a source schema is derived by interpreting
the returned result set. The result set representation in the data panel of the design
environment (see Figure 2) thus provides users with a situational source schema, sitsi,
that corresponds to the set of attributes retrieved through the executed query and not
necessarily to the source schema as exposed by the service provider.

The user selection of interesting data attributes in the data panel then defines the
source local schema, lsi ⊆ sitsi, while the association of such attributes with the visual
renderers in the UI template represents the mapping M between the source schema
sitsi and the global schema G. Indeed, the global schema G in our approach is structured
according to the set of visual renderers in the UI template, with each visual renderer
representing one or more queries on the source local schemas. G, however, is not
completely defined a priori. This because while the set of visual renderers in the union
subtemplate is known from the definition of the UI template, the structure of the merge
subtemplate is totally undefined as it is incrementally constructed as soon as the user
adds attributes in the subtemplate.

More formally, let us consider the set of data sources {s1, . . . , sj} selected by the
user. Associating some attributes of a data source si with the visual renderers of a UI
template corresponds to specifying assertions of the form VR → Qsi expressing that the
data visualized by each element vrk is retrieved by a projection query Qsi over si. The
set of all the attributes {si.ah} extracted through Qsi determines the source local schema
lsi, that is, the reduction of the situational source schema that actually contributes to
the construction of the integrated dataset.

Coherently with the structure of UI templates, lsi also consists of two parts:

—ulsi: ∀si.ah ∈ ulsi, uvrk → si.ah, that is, the subset of attributes mapped to the union
visual renderers; and

—mlsi: ∀si.ah ∈ mlsi, mvrk → si.ah, that is, the set of attributes mapped to the merge
visual renderers.

Let us consider our reference example illustrated in Figure 2, where a list-based
UI template is adopted for the integration of the two services s1 = U pcoming
and s2 = Last. f m. By selecting attributes from the two services and mapping
them to the visual renderers of the list UI template, the user defines the lo-
cal schemas ls1 =< name, venue name, photo url, descr, start date > and ls2 =<
title, name, image, city, address, phone >. In particular, as reported in Figure 6, the
first three attributes of each schema (i.e., < name, venue name, photo url > for s1 and
< title, name, image > for s2) are associated with the same union visual renderers in
the global schema (< uvr1, uvr2, uvr3 >), while the other remaining fields are mapped
to distinct merge visual renderers.

The table in Figure 6 represents how the attributes are renamed according to the
visual renderers they are associated with. The same attribute names are assigned to



Fig. 7. An excerpt of the XML-based VI schema for our reference example.

all the attributes associated with the union subtemplate (e.g., uvr1, uvr2, and uvr3),
while distinct names (e.g., from mvr3 to mvr5) are assigned to the attributes associated
with the merge subtemplate. The result consists of the two local schemas ls1 =<
uvr1, uvr2, uvr3, mvr1, mvr2 > and ls2 =< uvr1, uvr2, uvr3, mvr3, mvr4, mvr5 >. The two
data sources are then overlapped on the basis of the attributes associated with the ID
visual renderers,3 in the example uvr1 and uvr2.

The global schema G is obtained as a Universal Relation [Naumann 2002], i.e., as the
union of all the attributes in the local schemas. The assumption at the basis of the Uni-
versal Relation is that attributes with the same name in the schema refer to the same
property [Naumann 2002], and there is no reason to replicate them. Therefore, in the ex-
ample described above G = ls1

⋃
ls2 =< uvr1, uvr2, uvr3, mvr1, mvr2, mvr3, mvr4, mvr5 >.

4.5.1. Domain Specific Language. VI schemas are expressed into an XML-based specifi-
cation, that is automatically generated by the design environment without requiring
any intervention by the end user. The specification is based on a Domain Specific Lan-
guage that defines how each composition action has to be translated into rules for data
integration and UI synchronization to be executed at runtime for the automatic instan-
tiation of the final mashup. Figure 7 shows a simplified fragment of the XML-based
specification generated for our reference example. The global integration schema is
given by the specified visual renderers. In particular, for each vrk:

—The label attribute specifies the label to be displayed on the concrete UI. Labels can
be defined by the users when they perform the visual mapping.

—src specifies the data components providing the mapped data attributes, while query
specifies the corresponding queries. If multiple data components and queries are
specified for a given vrk, as represented in Figure 7 for uvr1, uvr2, and uvr3, corre-
sponding data union and fusion policies are applied at runtime.

—For merge visual renderers, the coupling attribute specifies the list of additional
UI components subscribed to the selection of the visual renderer (in the example,
Twitter, Flickr, and Wikipedia for the City visual renderer). Each coupling is then
interpreted as a pair < mvrk.event.parameter,U Icompi.operation >, specifying that

3The indication of the key attributes can derive from predefined settings in the UI template definition. The 
user can modify these settings through a function offered by the design environment.



an operation of the UI component U Icompi subscribes to the parameter generated
by the selection of the merge visual renderer.

The settings to invoke data components (URI and parameters for the initial selection
queries) are automatically added at the beginning of the schema (not reported in figure
for brevity). Data component properties may also include the definition of data filters
defined by the user and proposed at runtime to progressively refine the result set.
Finally, to support the synchronization of the VI component with other UI components,
the VI schema also specifies (1) events (the selection of visual renderers that carry as
parameter the displayed data items) and (2) operations (the queries selected by the
users for the creation of the integrated dataset).

4.6. Policy for Data Union and Fusion

The construction of VI schemas at design time is complemented with a policy for
querying at runtime the involved data components and for performing the union and
fusion of the obtained result sets. Figure 8 illustrates the different steps.

When a VI component is executed, the involved data components are queried accord-
ing to the local schemas specified in the VI schema. The union of all the data items
extracted by considering the union local schema, ulsi, of each involved data compo-
nent is computed (Step 1 in Figure 8) and rendered in the union subtemplate (Step 2).
Duplicates, that is, data items returned by different data sources referring to a same
real-word entity, may still exist. Their detection is performed only when the user selects
a specific instance from the union subtemplate (Step 3); in this case, indeed the merge
subtemplate has to visualize the fusion of all the attributes extracted from the different
sources that refer to the selected instance. The process, therefore, goes on with a data
fusion procedure that we call Data Fusion on Demand (Steps 3–7 in Figure 8): with the
aim of reducing the computational effort, we indeed contextualize duplicate detection
and fusion to the only instances actually selected by the user at runtime. This choice
prevents us from executing data fusion operations a priori, that is, for any instance
displayed in the union subtemplate.

Algorithm 1 specifies the adopted data fusion strategy, which consists of an initial
setup, a duplicate detection phase, and the final fusion and deduplication. In the setup,
for each result set RSi represented in an XML/JSON format, we build an array. For
example, each tuple of the result sets illustrated at the top of Figure 8 will correspond
to an array element. Hence, retrieving an instance or the value of its key attributes
consists in a direct access to an array element. A Comparison Set (CS), which is
the input for the successive duplicate detection phase, is then constructed as a new
array. In particular, given the user-selected item si belonging to a given result set
RSsi, CS is built by including all the data items in the result sets involved in the
composition but RSsi. The choice of not including RSsi originates from the assumption
that a service would not return duplicated items. For example, in Figure 8, si belongs to
the Upcoming result set. Thus, CS is initialized with the only items from the Last.fm
service. If another service is included in the composition (e.g., Eventful), CS would
consist of the union of the two result sets retrieved from Last.fm and Eventful.

In the duplicate detection phase (Step 4 in Figure 8), the key attributes of si, Ksi,
are then compared with the key attributes of all the instances in CS, Kcsi . An in-
depth search is performed among the CS elements. Regarding the comparison, the
function IsSimilar(Ksi, Kcsi ) computes a similarity score sc. If sc is greater than a
specific threshold, the items are considered similar.4 In our current implementation, the

4Possible values for sc range from 0 to 1. In our experiments, after executing the data fusion algorithm with
different threshold values, we determined that 0.965 is a value that effectively reduces the number of false
positives and negatives.



Fig. 8. Main steps for the union and fusion of data.

function is based on the Chapman’s Soundex metrics [Zobel and Dart 1996; Bleiholder
and Naumann 2008], whose algorithm encodes strings according to their pronunciation.
Similar-sounding names are assigned with the same code. String comparison then
takes into account such phonetic encoding.5 The complexity for the computation of
this measure is linear with the length of the strings to be compared [Zobel and Dart
1996]. Since in our case the compared strings have a limited length (in our reference
scenario we for example compared event titles), we thus assume a constant cost for the
similarity function.

5Soundex is the most common phonetic algorithm, is widely used as an alternative to exact-matching, and 
is also provided as a built-in function in many DBMS products like Oracle and MS SQL. Some studies also 
proved it works better than others measures (e.g., the Levenshtein index) for long sentences.



ALGORITHM 1: Data Fusion On Demand
RSi: result sets for the i-th data component
lsi: local schema for the service si
si: the instance selected by the user at runtime
CS: comparison set, including all the instances to be compared with si to identify duplicates
csi: i-th item of CS

GetLocalSchema(csi): returns the local schema of the origin data source of the instance csi
GetPrimaryKey(csi): returns the primary key values of the instance csi
GetMergeAttributes(lsi): extracts from the local schema lsi the attributes in mlsi
AddMergeAttributes(mlsi, mlsj): adds the attributes in mlsj to mlsi
IsSimilar(Ki, Kj): returns true if two passed primary keys are similar, based on the adopted
similarity measure

begin

// Initialization of the comparison set CS
forall the RSi, si /∈ RSi do

add RSi to CS
end

// Initialization of ls for the origin data source of si
lssi ← GetLocalSchema(si)
// Search for similar items with the comparison set CS
Ksi ← GetPrimaryKey(si)
forall the csi ∈ CS do

Kcsi ← GetPrimaryKey(csi)
// Similarity Evaluation
if IsSimilar(Ksi, Kcsi ) then

lscsi ← GetLocalSchema(csi)
Fuse(lssi,lscsi)
remove csi

end
end

end

Fuse(lssi,lsi) {
mlsi ← GetMergeAttributes(lsi)
mlssi ← GetMergeAttributes(lssi)
AddMergeAttributes(mlssi, mlsi)

}

In the fusion phase (Step 5 in Figure 8), if a similarity match is detected between
si and an item csi, the two items are fused; si is now composed of the attributes in
its union local schema, the attributes in its merge local schema, plus the attributes in
the merge local schema of the similar instance. The merge subtemplate is rendered by
displaying the new extended merge local schema (Step 6). Once the user returns to the
visualization of the union subtemplate, the policy for handling duplicates updates the
visualized union set. In particular, the identified duplicates are dropped out (Step 7)
and the only instance selected by the user is kept in the union list.

It is evident that the complexity of the previous algorithm is especially related to
the comparisons needed for the identification of duplicates. The best case corresponds
to the use of one single data component, which does not require the construction and
the analysis of CS. Of course, the number of comparisons grows with the number of
data components included in the mashup. However, our choice to compare the only



Fig. 9. Platform architecture.

instance selected by the user, si, with all the other instances in CS allows us to keep
the complexity linear to the cardinality of CS. Our algorithm is indeed organized as
a linear search of the user selected item in the CS array. In Section 6, we will in
particular show how the series of comparisons required by the duplicate detection
phase is feasible in a reasonable amount of time even on mobile devices with limited
computing capabilities. This is also due to the result pagination policies adopted by
services – service responses generally do not exceed few hundreds items. A further
optimization of the algorithm would consist in stopping the duplicate search within a
given result set as soon as a match in that result set is detected, under the assumption
that no duplicates exist in a same result set.

5. REFERENCE ARCHITECTURE

This section illustrates the reference architecture of our current platform prototype.
We especially concentrate on the execution engine in charge of running the created
mashups on multiple devices. Therefore, we specifically highlight the modules for in-
stantiating and synchronizing UI components.

To keep the overall approach lightweight, our architecture is strongly based on a
client-side execution logic. Of course, the same logic could be moved at the server side,
thus having a thin client with the only responsibility of handling the presentation of a
mashup and its event-driven logic. This is needed, for example, when persistence and
evolution of data and application schemas have to be managed.6 However, we believe
that a lightweight architecture is fundamental to encourage end-user development.
Moreover, because of the “interaction-intensive” nature of the resulting applications, a
server-side logic would imply a high volume of of requests to be managed by the server
that would downgrade performances. Finally, we chose to perform data fusion on the
client, and to not manage integrated datasets materialized on the server (see, e.g.,
Bozzon et al. [2012]), to enable the user to access at any moment fresh data, as they
are made available by service providers. Figure 9 illustrates the main architectural
components.

The Platform Repository stores data component descriptors, wrappers and de-
scriptors for pre-packaged UI components, as well as the schemas of the user-created
artifacts, namely VI components and UI mashups.

6A recent extension of our platform to support resource sharing and collaboration among multiple users 
adopts a server-side logic for storing materialized views of datasets [Matera et al. 2013; Ardito et al. 2013].



The Design Environment (DE) is an Ajax Web application. It includes a Service
Querying module, in charge of querying the data components and transforming the
retrieved data into the visual representation offered by the data panel, and a Schema
Generator module, which translates the visual mapping actions into the XML-based VI
schema and stores it on the platform repository. Based on the mashup target device,
the DE can be detached from or can be run on the execution environment of the final
mashup. For example, in case of mashups to be executed on mobile phones, it would
be convenient to compose the mashups on other devices with a larger screen (e.g., a
desktop PC), not directly on the target devices.

The Execution Environment (EE) runs on the device where the mashup is exe-
cuted and interprets the generated mashup schema. The schemas are downloaded on
the client from the platform repository together with the wrappers for the execution
of prepackaged UI components, if needed. The EE itself can be downloaded from the
platform repository where it is available as a native application for the different mobile
operating systems or as a client-side script for the Web browser.

Once a mashup schema is downloaded, a Schema Interpreter parses it and invokes
other modules in charge of managing the different application aspects. Based on the VI
schema, the UI Controller (UIC) translates the specified visual renderers into code
for generating the corresponding UI layout. For example, if Android is the target
operating system, the set of visual renderers is translated into the Android layout
markup language handling the generation of screens—so-called activities. Based on the
visual mapping rules defined for each visual renderer, the Data Manager (DM) queries
the involved data sources and stores the retrieved data in a local data repository. If
needed, it handles the execution of data union and fusion. The UIC then handles the
population of each visual renderer with the resulting data.

At runtime, the previous modules manage the construction of the component’s con-
crete UI and the initial dataset. Other modules are needed to execute the resulting
composition. An Event Handler (EH) acts as an event bus. It listens to the events gen-
erated by the interaction at the UI level with visual renderers and communicates them
to the subscribed components. If the event is the selection of a union visual renderer, the
EH triggers possible data fusion procedures executed by the DM module; alternatively,
if the event occurs on a merge visual renderer on which a synchronization coupling
is defined, the EH delegates to the Coupling Manager module the invocation of the
operations in the subscribed components. On mobile devices, the Coupling Manager
also handles the synchronization with the device local services.

6. EVALUATION

In order to assess the feasibility and the validity of our approach, we evaluated the
performance of the generated mashups in the worst possible cases, that is, for their
execution on devices with limited computation capabilities when processing a high
number of data items. We also evaluated the usability of the composition paradigm
through (1) a user study focusing on the performance of a sample of users and their
satisfaction when using our composition platform and (2) an expert-based heuristic
evaluation also taking into account the complexity of the composition tasks. We also
preliminarily evaluated the usability of the generated mashups.

6.1. Performance of the Data Fusion Technique

Performance evaluation concentrated especially on the data fusion technique, being it
the most time-consuming operation to be executed at runtime. We focused on the most
strict conditions, namely the execution of data fusion at the client side, with the client
being a smart phone. We built a mobile mashup for the reference example described
in Section 3 by integrating data from the services Last.fm, Upcoming, and Do Staff



Table I. Comparison of Average Data Fusion Times for the Two Test Cases
on a Smart Phone and a Desktop Web Browser

Mobile Desktop
Number 2 services – 3 services – 2 services – 3 services –
of items mean time [s] mean time [s] mean time [s] mean time [s]
100 4.90 4.02 0.04 0.03
200 9.31 6.71 0.05 0.04

Fig. 10. Mean execution time for data fusion on the mobile device: time increases linearly with the number 
of performed comparisons.

Media. We thus executed the resulting app on a Samsung Galaxy SII with a dual-core 
processor (1.2GHz ARM Cortex-A9) and 1GB RAM. The component was also executed 
in the Firefox 24.0 Web browser on a Mac-Book Pro with OS X 10.8.5, 2.5GHz Intel 
Core i5 CPU and 8GB of DDR3 RAM.

We considered two test cases: (1) a mashup integrating two data components, Last.fm 
and Upcoming, and (2) the inclusion of a third data component, Do Staff Media. In
both cases, during the execution of the mashup, we measured the time elapsed from 
the selection of an item in the union subtemplate until the visualization of its details 
in the merge subtemplate. The measured time thus refers to the execution of duplicate 
detection and data fusion.

For each test case, we considered different numbers of compared items (from 10 to 
200). Given the result set of each service, we selected the items for the comparison set 
on the basis of their text attributes, to include the best, medium, and worst cases with 
respect to the Chapman’s Soundex similarity metrics. The comparison attribute was 
the one displayed by the Title visual renderer (i.e., the title of a concert).

As reported in the first two columns of Table I, processing 100 items retrieved from 
two different services on the mobile device took 4.90s, while it took 4.02s with three 
services. Similarly, processing 200 items retrieved from two and three services took 
9.31s and 6.71s, respectively. This shows that the execution time does not depend 
much on the number of services, rather it is influenced by the number and the length 
of texts to be compared. In fact, the third added service (Do Staff Media) returned data 
items with a text length much shorter than the other two services, and this reduced 
the average time needed for the comparison. The bottleneck, therefore, is given by the 
metrics used to estimate the similarity of the comparison attributes.

Figure 10 compares the average execution time on a mobile device for the two test 
cases. The time is linear in the number of the compared items—the higher the number 
of items, the higher the number of comparisons for duplicate detection. This shows 
that the execution time can be, for example, reduced through an adequate pagination



of the result set. The current implementation of the execution engine for Android smart
phones, for example, allows the users to set some limits on the number of items to be
downloaded by each service so that the execution time is optimized in relation to both
the data download and the execution of comparisons needed for fusing data.

We also ran the first test scenario (two services, 200 items in the comparison set) in a
Firefox Web browser executed on a desktop computer. Table I compares the performance
of data fusion when executed on the mobile device and in the Web browser of a desktop
PC. The execution in the Web browser took, of course, a much lower time (5.421ms in
average), but the behavior of the Web application was coherent with the one observed
for the Android app.

In relation to memory consumption of the generated app, it is important to note the
following:

—The size of the XML-based VI schema is 10kB, on average, and the schema is parsed
once, when the application is launched. Hence, we can assume that downloading and
parsing the schema do not have significant impact on the memory consumption of
the overall execution.

—The application data consists of the result sets coming from the involved data com-
ponents and the UI components (if any synchronization coupling is defined). Our
evaluation focused only on the memory usage by the data components. Indeed, ac-
tuating a synchronization coupling, starting from the integrated result set, allows
the user to navigate to additional (multimedia) content offered by UI components.
However, the time needed for querying the component and downloading its result
set does not depend on the application logic of our execution environment and would
not be different if the user would access the same content by using dedicated apps
or the Web browser.

To estimate an order of magnitude for the size of the downloaded dataset, we ran
the app to search music events from Last.fm and Upcoming. We repeated the search
for the 10 biggest cities in the United States. The observed average dimension of the
integrated result set was 356.11kB, with a maximum of 536.8kB. We can, therefore,
say that the memory consumption is reasonable even on mobile devices with limited
capabilities.

6.2. Usability of the Composition Paradigm

We assessed the usability of the composition paradigm through a user study that
involved 36 participants with varying work activities (e.g., students, employees, house-
wives), age (18–70), and skills. All had experience with the Internet and the mobile
world. Seventeen users were “experts,” that is, with some programming skills but with-
out any previous experience with service composition. Nineteen users were “novice,”
that is, never exposed to technical activities. The study specifically focused on the effec-
tiveness and intuitiveness of the composition paradigm, trying to measure such factors
in terms of efficiency, ease of use, and user satisfaction. We expected all users to be
able to complete the experimental tasks. However, we also expected a greater efficiency
(e.g., a reduced time for task completion) and a more positive attitude (in terms of per-
ceived usefulness, acceptability and confidence with the tool) by expert users. Their
technical background could indeed facilitate the comprehension of the experimental
tasks and improve the perception of the control over the composition method and thus
their general satisfaction.

Users were asked to fill in a pretest questionnaire to gather data on their knowledge
about computer science, services, and mashups. Then a training session followed in
which one researcher of our group gave a 10-minute demonstration to introduce the
participants to the design environment and the basic composition mechanisms. All the



Fig. 11. Completion time of the different composition steps within the two evaluation tasks for novices and 
expert users.

users were then asked to perform two composition tasks with incremental difficulty. 
Task 1 consisted in creating a component by using only one service and the list UI 
template. The aim was to let the users become familiar with the basic visual mapping 
mechanism. Task 2 was more demanding, asking the users to visually integrate the data 
retrieved by two services by using a map-based template. Two researchers observed 
the interaction and took notes of the difficulties encountered by the participants and of 
their comments. After the completion of each experimental task, users were asked to 
use the application they had just composed, to check the results of their composition. 
At the end, they filled in a satisfaction questionnaire.

Efficiency. All participants were able to complete both tasks without showing severe 
difficulties. Figure 11 illustrates the average time for the completion of the two tasks, 
distinguishing among the different phases in the composition process. The times denote 
a satisfying ease of use of the system; however, from the collected qualitative data, 
it resulted that some users complained about the initial difficulty in interpreting the 
service result set shown in the data panel. Most of the time spent for the visual mapping 
was indeed due to interpret the service results and especially to identify relevant data 
attributes. However, all the users, and especially the experts who knew what service 
querying generally requires, remarked that the visual representation makes service 
querying easier in comparison to manual programming, especially because it hides the 
XML or JSON syntax generally returned by services.

No statistically significant differences in task completion time were found between 
experts and novices. A Wilcoxon-Mann-Whitney test showed that technology expertise 
was not discriminant for both Task 1 (U = 15.5, p = .55) and Task 2 (U = 17, 
p = .42). The average time to complete Task 1 was about 3.83 minutes for novices and 
4.23 minutes for experts, whereas for Task 2 it was about 8.61 minutes for novices and 
7.99 minutes for experts. The difference in completion times for the two tasks reflects 
the greater number of steps in Task 2 with respect to Task 1.

The lack of significant differences between the two groups does not mean that the 
experts performance was bad. Indeed, the completion times for Task 2, which is the 
most significant in terms of complexity, revealed a trend toward a better performance of



the expert users. Completion time for Task 1 was unexpectedly higher for experts; the
reason, however, was especially the curiosity that experts showed and their engagement
in the composition tasks—they wanted to understand exactly how the method works
and, as also shown by the higher times for the execution of the created app during
Task 2 (see Figure 11), they were very diligent in checking the matching of the created
application with the previously performed composition. The novices instead trusted
more the correctness of the tool; some of their comments indeed expressed that having
a direct feedback of their composition actions helped them checking that the tool was
performing correctly.

The user efficiency was also analyzed along the number of actions performed to
complete the two tasks; the aim was to assess whether deviations occurred due to lack
of orientation. Also for this variable, no significant differences were found between
experts and novices both for Task 1 (U = 17.5, p = .31) and for Task 2 (U = 18,
p = .31), although, even in this case, the analyzed data revealed a trend toward a
better performance of expert users. In general, based on what we observed during
the test, the absence of significant differences for all the analyzed variables can be
interpreted as an indication that the tool enables even inexperienced users to complete
composition tasks in a limited time, independently of the users’ technical experience.

Ease of use. This dimension was assessed through some questions in the postques-
tionnaire that asked users to rate how easy it was to identify and include services
in the composition and to define visually data integration and service coupling. We
also asked users to score globally the ease of use of the method. Users could mod-
ulate their evaluation on a 5-point scale. The reliability of the questions was good
(α = .81). The correlation between the detailed questions and the ease-of-use global
score was also satisfying (ρ = .58, p < .001). This highlights the good external relia-
bility of the measures. On average, the users judged very good the ease of use of the
tool (mean = 3.7, meanS.E. = .58—the scale was from 1 = very negative to 5 = very
positive). Also, a t-test did not find significant differences between novice and expert
users (t(46) = .875, p = .39).

User satisfaction. It was assessed by using a semantic-differential scale that required
users to judge the method on 12 aspects. Users could modulate their evaluation on a
5-point scale (1 = very negative to 5 = very positive), whose reliability was assessed as
satisfying (α = 0.73). A user-satisfaction index, SI, was computed as the mean value
of the score across all the 12 items; its average value was very good (mean = 4.18,
meanS.E. = 0.46). Moreover, a question asked users to globally score the method on a
10-point scale (1 = very negative to 10 = very positive). The mean value of the global
satisfaction, GS, is very good (mean = 8.3, meanS.E. = .86). The correlation between
the SI index and the GSscore is satisfying (ρ = .41, p < .015).

The last two questions asked users to judge their performance as mashup develop-
ers and to indicate the percentage of requirements they believed they had satisfied
with their composition, based on the observation of the application they were able to
generate. This metric can be considered as a proxy of confidence. On average, users
stated to be very confident about their performance as app developers, being able to
cover the 92% of the requirements specified by the two experimental tasks (min = 50%,
max = 100%, meanS.E. = 13%). They also felt very satisfied about their performance
as composers (mean = 3.4, meanS.E. = .52; 1 = very negative, 4 = very positive). We
consider this as an indication of the perceived effectiveness of our composition method.

In summary, contrarily to what we expected, the experimental data revealed that the
lack of technology skills did not influence the user performance or the perception on
the ease of use of the tool. Qualitative data also revealed a very good satisfaction by the
expert users. We initially expected expert users to be bored by the composition tasks



because they were familiar with programming. Instead, several observations revealed
they were enthusiast about the method, recognizing it could help them speed up the
creation of applications. They, in particular, recognized several advantages related to
the possibility to create applications portable on different devices. They indeed observed
how even expert programmers could have difficulties mastering the technologies on
different execution platforms.

Threats to Validity. We now analyze some issues that may have threatened the
validity of the user study, also to highlight under which conditions the study design
offers benefits that can be exploited in other contexts, and under which circumstances
it might fail.

Internal validity can be threatened by some hidden factors compromising the
achieved conclusions:

—Learning effect. A learning effect could, in general, offer an advantage to the par-
ticipants during the experiment, enabling them to improve their performance along
the series of assigned tasks. In our study, this factor was alleviated by asking each
subject to apply each of the two tasks starting from different services; different order
combinations of services were considered for the different users.

—Subject experience. It was alleviated by the fact that none of the subjects had any ex-
perience with our tool. We further tried to alleviate this threat by not disclosing much
information during the short training session performed prior to the experiment.

—Method authorship. We eliminated the biases that different facilitators running
the experiment could introduce, as we had the same instructor for every session
of the study. In this way, we avoided any variability in the initial training as well as
in the way users had been observed.

—Information exchange. Since the study took place over 10 days, it is difficult to be
certain whether the involved subjects did not exchange any information. However,
participants were recruited from different working and living contexts; thus, for
many of them, it was difficult to know each other and communicate. The participants
were asked to return all the material (e.g., the description of tasks) at the end of each
session. We asked participants coming from the same contexts (e.g., students of a
same course or employee of a same company) to perform the test in the same day, in
close or even parallel sessions.

—Understandability of the material. Possible misunderstandings expressed by the
users in the different sessions were cleared up without, however, providing details
that could help them accomplishing the tasks.

External validity refers to the possible approximation of truth of conclusions in the 
attempt to generalize the results of the study in different contexts. With this respect, 
the main threats of our study are:

—Representativeness of the results. Given the context in which the study took place, 
and especially the nature of the assigned tasks (the tasks referred to the search of 
music events in the Milan area), the results could be representative with regard 
to casual users and to the leisure domain (mono-method bias). We cannot predict 
the effect of the use of the tool in other domains, by knowledgeable users and for 
the creation of more critical applications (e.g., in an enterprise context). Given the 
generality of the composition paradigm with respect to the involved services, we 
can, however, suppose that the experience of users in a given domain would not 
contrast the results of our study, but rather it would accentuate the trend toward 
a positive user experience in terms of efficiency, effectiveness, and satisfaction. It is 
also true that our aim was to assess the usability of the interaction paradigm, not the 
capability of the tool to improve the user productivity in given domains. 
Therefore,



we believe the representativeness of the results is not much affected. To alleviate this
threat, we have already started carrying out a series of new user studies to validate
other customizations of our platform in specific working domains [Ardito et al. 2012,
2014].

—Complexity of composition tasks. To limit the duration of the experiment, we decided
to use relatively small composition tasks applied to few representative data sources.
We also limited the number of UI components the users could choose among. There-
fore, we were not able to assess how easy it is for the users to identify the right ser-
vices. It is worth noting that in this study we were not much interested in aspects re-
lated to selection of services, which we instead investigated in other works [Cappiello
et al. 2012]. However, it could be interesting to assess through further studies the
usability of the assistance mechanisms that our tool offers for service selection.

Construct validity might have been influenced by the measures that we applied in
the quantitative analysis and by the reliability of the questionnaire. We alleviated the
first threat by adopting measures, such as efficiency, that are commonly employed in
user studies [Dix et al. 2003]. In addition, the subjective measures, such as perceived
ease of use and perceived satisfaction, are based on the Technology Acceptance Model
(TAM) [Davis 1989], a well-known and thoroughly validated model for evaluating in-
formation technologies. The reliability of the questionnaire was tested by applying
the Cronbach test to each set of closed questions intended to measure subjective vari-
ables. As reported in the previous section, all the values obtained were higher than the
acceptable minimum threshold (>0.70) [Maxwell 2002].

Conclusion validity refers to the validity of the statistical tests applied. In our
study, this was alleviated by applying the most common tests that are employed in the
empirical software engineering field [Juzgado and Moreno 2001].

6.3. Task-Weighted Usability of the Composition Paradigm

In addition to evaluating the usability of the composition paradigm, we also conducted
an expert-based usability inspection to analyze in detail the flow of the composition
tasks and the way the complexity of the tasks influences the usability of the composition
environment. For the analysis, we adopted the method illustrated in Dyk and Renaud
[2004], which proposes some measures to weigh the outcome of heuristic evaluations
of Web sites by some factors that take into account the nature of the tasks (i.e., their
repetition and complexity).

By surveying works on the usability evaluation of mashup tools [Sarraj and Troyer
2010; Namoun et al. 2010b; Aghaee and Pautasso 2013], we identified a set of usability
criteria specific for this class of applications. We then selected the most relevant ones
and revised their formulation to take into account the peculiarities of our composition
process. The resulting set of criteria is reported in Table II. We finally associated the
criteria with composition phases and detailed steps occurring in each phase. In partic-
ular, we considered three main phases and in total six different steps that correspond
to the composition steps we also focused on during the user study described in the
previous section:

—Phase 1—Service Selection: It refers to the initial steps for the users to get ori-
ented into the composition editor (S1) and to make a decision on their composition
goal through the selection of data components and UI templates (S2). The choice
of the UI template is trivial, while the service selection might be more demanding
due to the need of understanding what content is provided by the different services
registered into the platform. Steps S1 and S2 can be iterated till the user makes a
decision.



Table II. Heuristics for the Different Phases and Steps of the Composition Process

Phase 1: Service Selection
Steps Criteria
S1 Ph1_C1. Is it clear, based on the adopted notation and visual mechanisms, how users can

access the available data sources and a UI templates?
S1 Ph1_C2. Does the mashup tool force a user to start by defining new queries/components

before s/he can do anything else?
S2 Ph1_C3. How easy is it to identify what kind of data the available data components are

able to provide?
S2 Ph1_C4. How easy is to identify what kind of visualizations the available UI templates are

able to provide?
S2 Ph1_C5. If two different elements have to be compared (data components and/or UI

templates), can you see them at the same time?
S2 Ph1_C6. Does the system inform users of the success or failure of their selection actions?
Phase 2: Visual Mapping
Steps Criteria
S3 Ph2_C1. Are possible composition actions easy to understand?
S3 Ph2_C2. Does the mashup tool allow the user to fool around or make sketchy things when

one is not sure which way to proceed?
S3 Ph2_C3. Is it clear what a user should do to complete the visual mapping task?
S4 Ph2_C4. Do associating data items to UI template seem especially complex or difficult to

work out (e.g., when combining data from several services)?
S3 Ph2_C5. Can the user easily go back to undo some operations (e.g., addition of a data item,

addition of a component)?
S3 Ph2_C6. Does the mashup tool use an easy composition paradigm which makes it difficult

to make mistakes?
S3 Ph2_C7. Does the system inform users of the success or failure of their visual mapping

actions?
S5 Ph2_C8. Are user actions linked to changes in the interface? Can users easily check the

effect of their composition actions?
S5 Ph2_C9. Is it easy to find out the progress made, or check what stage of the work has been

reached?
S5 Ph2_C10. Is it possible to try out partially completed versions of the mashup?
Phase 3: App execution
Steps Criteria
S6 Ph3_C1. Is it clear how to store the app schema on the remote repository?
S6 Ph3_C2. How easy is it to download and install the app on the user device?
S6 Ph3_C3. Does the system inform users of the success or failure of their actions?

—Phase 2—Visual Mapping: It includes the steps for identifying how to accomplish
the composition tasks, that is, which are the relevant data items and the visual
renderers they can be associated with (S3), for executing the visual mapping actions
(S4), and for checking if the result of the visual mapping corresponds to the initially
defined goals (S5). Given the live programming paradigm offered by our platform,
Steps S2–S5 can be iteratively repeated by the users.

—Phase 3—Mashup Execution: It consists of saving the mashup schema and ex-
ecuting the corresponding app (S6), as a component in the Web dashboard or as
a self-contained app in mobile execution environments. Saving the VI component
schema is trivial, while opening it within any execution environment can be more
complex, especially if the component has to be executed on a mobile device.

Following the method defined in Dyk and Renaud [2004], three independent evalu-
ators (three researchers of our department already exposed to our method) analyzed 
the Web design environment and assigned a usability score to each criteria. They, in 
particular, gave a score to each single page enabling the execution of the steps the 
heuristic referred to, according to a scale of four values, ranging from 0 = feature never



Table III. Task-Weighted Usability Scores for Phase 2 (Visual Mapping)

Steps Criteria Score Max Score Score/Max R+C TWF UC
S3 Ph2_C1 12.00 18.00 0.67 1+0.5 1.67 0.08
S3 Ph2_C2 12.00 18.00 0.67 1+0.1 1.22 0.06
S3 Ph2_C3 12.00 18.00 0.67 0.8+0.8 1.78 0.08
S4 Ph2_C4 7.00 9.00 0.78 1+1 2.2 0.12
S4 Ph2_C5 6.00 9.00 0.67 1+0.1 1.2 0.06
S4 Ph2_C6 9.00 9.00 1.00 1+0.1 1.2 0.09
S4 Ph2_C7 9.00 9.00 1.00 1+0.1 1.2 0.09
S5 Ph2_C8 9.00 9.00 1.00 1+0.1 1.2 0.09
S5 Ph2_C9 9.00 9.00 1.00 1+0.1 1.2 0.09
S5 Ph2_C10 9.00 9.00 1.00 0.8+0.1 1 0.07
Raw score 80.34
Task-weighted score 82.45

available to 3 = feature universally available. Each evaluator then assigned a global
score to each criteria summing up the scores given to each single page. The global
scores of all evaluators were in turn summed up to compute the final score.

Table III reports the measures we computed for the different heuristics for Phase 2.
We report the detailed values of the measure only for this phase because it is the
central phase of our composition process and also the most demanding for the users.
For example, given the criteria PH2 C1, the sum of all the scores assigned by reviewers
to the three pages for accessing the list of available services and UI templates is 12
(column Score). The column MaxScore then reports the maximum score that could be
assigned to that criteria, while the next column reports the ratio between the Score
and MaxScore.

Besides assigning usability scores to each criteria, the evaluators also assigned suit-
able values to the repetition (R) and the complexity (C) of each step. R was quantified
through values ranging from 0.1 = low occurrence to 1 = regular occurrence through
the interaction. Similarly, C was quantified with values ranging from 1 = high com-
plexity to 0.1 = low complexity. For example, the criteria Ph2 C1 was assigned with
R = 1 and C = 0.5 because it is highly repetitive and has a medium complexity.

The ratio R+C
max(R+C) was then computed to indicate how important a particular criteria

is, also taking into account the repetition and the complexity of the task it refers to.
In Table III, these values for all the criteria are reported in the column TWF (Task
Weighted Factor).

For each criteria, the final usability coefficient was then computed as

UC = Score
MaxScore

· R + C∑
(R + C)

The overall usability scores for each phase were then computed as follows:

—The percentage raw (i.e., non–task-weighted) usability score is given by

RawScore =
∑

(Score)∑
(MaxScore)

· 100;

—The percentage task-weighted usability score is given by

Task Weighted Score =
∑

UC · 100.

As reported in Table III, the two measures for Phase 2 are 80.34 and 82.45, respec-
tively. In other words, considering the nature of tasks led to an increase of the overall
usability score. This is an indication of the attention we paid on the usability of the
tasks with a higher repetition and complexity.



The scores totaled for the other two phases are:

—Phase 1: RawScore = 76.7, T askWeightedScore = 73.94;
—Phase 3: RawScore = 77.78, T askWeightedScore = 64.71.

The values for Phase 1 indicate in general a good usability level, even though the task-
based weighting revealed that perhaps more attention could have been given to some
specific tasks. In particular, this was true for the Step S2 (“Decision on goals based on
service and UI template selection”), which totaled an R+C score of 0.33 for the criteria
Ph1_C5 related to the comparison of different result sets or UI templates. We are
indeed aware that this activity in our composition environment is still complex for the
end user because result sets from different services (and also different UI templates)
are shown in separate tabs. The user is, therefore, forced to go back and forth through
different tabs if he wants to compare them.

Similar observations also apply to the score computed for Phase 3. In particular, the
task-weighted score is downgraded by the evaluation of criteria Ph3_C2, which relates
to the download and installation of the created app. This activity might result indeed
difficult for novice users and we are aware the evaluated version of the platform does
not provide adequate assistance.

6.4. Usability of the Generated Mashups

In the early phases of the platform design, we conducted a preliminary assessment of
the usability of the generated mashups. Through a survey, we asked the users to judge
one such mashup and to provide feedback about its functionality and organization.
Besides defining a usable composition paradigm, we indeed wanted to make sure the
target applications would be usable too.

We especially addressed mashups to be run on smart phones, as we believe the user
experience with mobile applications is more critical given the limited capabilities of the
target devices. In order to reach a reasonable number of users, we created an animated
mockup emulating the interaction with a generated application, and we published it
online together with a questionnaire aimed to gather the opinions of the users. The
mockup was organized as a guided tour: the users could emulate the interaction with
the mashup by clicking on the available buttons and links and proceed step by step
through the different application screens. The emulated application allowed the users
to choose among two different mashups (one about music events, the other about
movies) to simulate the situation in which the user creates and stores on the platform
repository multiple application schemas. Each mashup was configured to retrieve and
integrate data from multiple services, according to the data fusion policy described
in the previous sections. The users could also refine the selection of components (both
data and UI components) and choose which services had to be actually used at runtime.
They could also configure dynamically some filters on the retrieved data.

Forty-eight users responded to the survey. They were students, employees, managers,
and workers, and their age ranged from 20 to 35 years. The results were very positive.
Eighty-two percent found that interacting with the application was easy and intuitive.
On a scale of 5 values (from 1 = not easy at all to 4 = easy and 5 = very easy), 59% of
users judged it “very easy,” and 23% “easy.” The majority of the users then especially
appreciated some characterizing features:

—Eighty-two percent of the participants appreciated the possibility to further person-
alize the application by choosing at runtime the data sources to be considered for
data extraction. In particular, 50% of users found it excellent and 32% good.

—Ninety percent of users appreciated the possibility to dynamically select the UI
components to be actually coupled at runtime with the integrated dataset.



—Ninety percent of the participants judged excellent some mechanisms provided by
the applications to filter the integrated result set (e.g., the one based on user-specified
keywords).

Such results reveal a very positive users’ attitude about some features that intrin-
sically characterize our approach (e.g., the flexibility in the choice of the data and UI
components) and also some other mechanisms specifically added to ease the fruition of
data (e.g., the possibility to personalize filters).

It is worth noting that the usability of the generated applications was also indirectly
assessed through the last question in the survey filled in by composers during the
study on the usability of the composition paradigm (see previous section). This question
asked the users to judge their experience as composer of the created application. The
reaction to this question was very positive, and this can be considered an expression
of satisfaction not only about the composition paradigm but also about the created
application.

7. LESSON LEARNED

We conclude this article by outlining some guidelines for the EUD of mashups that we
derived first by analyzing the most notable EUD requirements studied and validated
in different user-centric studies [Green and Petre 1996; Burnett et al. 2004; Lieberman
et al. 2004; Ko et al. 2004; Wu et al. 2007] and also by “learning” from real users while
observing their behavior. We indeed conducted several user studies that allowed us
to analyze working communities using our platform to accomplish their specific tasks
[Cappiello et al. 2011b; Ardito et al. 2012, 2013; Picozzi et al. 2013].

Closeness of mapping. In order to help users understand the features provided by
the available components, the effect that each component may have on the overall
composition, the way it can be integrated with other components, it is important to
come up with representations of services that abstract from technical details and
instead increase the expressiveness of the roles that services play in the mashup.
In other words, the effect that can be achieved through the inclusion of components
needs to be emphasized [Green and Petre 1996]. As proposed by our method, one
solution could be to let users manipulate (e.g., add, remove, or modify) visual objects
and visual properties. Also, actions on visual objects should immediately produce the
visualization of their effects on the data and the UI of the corresponding component.
Therefore, users can operate on service visualization properties rather than config-
uring technical details for service invocation and integration. Experiments with real
users, conducted by us within our research project [Cappiello et al. 2011a] as well as
by other independent researchers [Namoun et al. 2010a, 2010b], assessed that this
kind of visual approach, focusing on some forms of immediate visualization of services,
increases the user-perceived usefulness and ease of use. As highlighted by the user
study described in this article, self-efficacy (i.e., the user perception of being in control
of the composition process) is also enhanced.

Progressive evaluation. In order to further enhance the users’ perception of and the
control on the effects that services and composition actions have on the application
under construction, it is important to provide feedback on “how the user is doing”
[Green and Petre 1996]. The end users are not able to distinguish between design and
execution phase; therefore, since the very first composition action, the user must be
able to see a running application and to observe incrementally the effect of any other
subsequent composition action. Immediate execution paradigms, based on WYSIWYG
representations, where each single composition action is observable through the
immediate execution of the modified application, are therefore good candidates to



support progressive evaluation. These mechanisms also avoid the so-called premature 
commitment because the user is not forced to make decisions without being able to 
observe and evaluate the effect of such decisions. Together with closeness of mapping 
mechanisms, they also contribute to enhance self-efficacy.

Composition assistance. In order to further smooth design barriers, it is also 
important to aid those users that do not have sufficient development knowledge. 
Composition can be assisted or guided in multiple ways, for instance, by providing 
default system-driven service couplings, when possible, while also giving to the users 
the right level of control to modify the automatically provided solutions, or offering 
recommendations for further services and composition patterns that can fit the current 
composition. This article does not focus on this specific aspect; however, we assessed 
the effectiveness of both these kinds of assistance mechanisms in our previous work 
[Cappiello et al. 2012]. In general, as also proved by other independent studies 
[Namoun et al. 2010b], end users find helpful any kind of hints that the system is able 
to provide during the mashup composition.

Abstraction gradient. Another fundamental ingredient is to accommodate different 
users skills and attitudes and also varying composition contexts. In other words, 
users must be provided with different abstraction levels [Green and Petre 1996], to 
ensure a “gentle slope of difficulty” [Lieberman et al. 2004]. Different “composition 
styles” can be offered to reflect different composition granularities. For example, our 
platform enables the end users to embed prepackaged, ready-to-use components into 
a composition workspace, possibly taking advantage of preconfigured rules for the 
automatic definition of component couplings [Cappiello et al. 2011b], without any need 
of defining additional settings for components execution and integration. However, 
the users can also define additional integration logic to synchronize the UIs of the 
different components [Yu et al. 2007] as well as build their own UI components. 
Other approaches also found it useful to provide different representation metaphors 
accommodating different levels of complexity. For example, the NaturalMash platform 
[Aghaee et al. 2013] offers a natural language paradigm to express desiderata on 
components to be added in a mashup. The tool then offers a WYSIWIG representation 
of components similar to the one offered by our platform as well as an additional wired 
notation to let the users express component couplings.

Domain-specific focus. In order to allow users to understand the possibilities offered 
by the mashup platform and to make sense of the services and components that are 
available for composition, it is important to restrict the platform to a well-defined 
domain the user is comfortable with. That is, it is important to develop a general 
platform that can be, however, easily customized as far as the offered components 
and the provided composition features are concerned. In this regard, our approach 
allows the end users to create their own components. Domain specificity, however, in 
some cases, requires the intervention of experts to customize the composition plat-
form. In this respect, our approach specifically promotes metadesign scenarios [Fis-
cher et al. 2004], since component creation can also be performed by domain experts 
who exploit their domain knowledge to create sensible components for the end users. 
Moreover, the separation between the mashup UI and the mashup application logic, 
which is enforced by our Visual Integration model, facilitates the adoption of different 
UIs, thus different interaction metaphors, to accommodate the needs and the back-
ground of specific users’ communities. The customization of UI templates is indeed a 
requirement emerged in some studies we have been conducting to validate some as-
pects of our methodology related to metadesign and domain specificity [Ardito et al. 
2012].

.



Elasticity. So far, software systems have been conceived as prepackaged sets of
data, functionality, and visualizations that software developers build for the end
users. Elastic systems [Latzina and Beringer 2012] diverge from such idea and try
to promote paradigms where contents, functionality, and presentations on different
devices are totally decoupled from each other and from specific contexts of use. They
emerge at use time, depending on the actions for data exploration and composition
that the users perform while fulfilling their situational information needs. Elasticity,
in other words, goes beyond the adoption of easy-to-use composition paradigm, but
it goes beyond, aiming to define flexible frameworks that can enlarge the validity of
applications across varying needs. The idea is to capitalize on a proper separation of
concerns for not constraining a platform to a specific context of use. Software design
patterns, first of all Model-View-Controller (MVC), already addressed separation of
concerns. However, elasticity focuses not on programming practices to facilitate the
development and maintenance of the final applications. Rather it aims to empower the
end users to shape up their applications dynamically. The approach discussed in this
article is totally in line with the notion of elasticity. We pursue it especially thanks
to the adoption of UI templates that act as elastic containers adaptable to different
interaction metaphors and different access devices. This aspect allowed us to focus on
the definition of general composition paradigms characterized by natural, UI-centric
mechanisms that exploit separation of concerns to facilitate the specialization to
different domains, users characteristics, and usage situations.

8. CONCLUSION

In this article we introduced our perspective over the EUD of mashups. We discussed
how a UI-centric model, mainly based on UI templates, can enable a lightweight inte-
gration process for the definition of unified data views and their synchronization with
remote APIs or device local services. For the execution of the resulting mashups, we
adopt an “on-demand” data fusion technique; thus, the efforts required for comparing
and merging different datasets concentrate only on the information the user is really
interested in. Indeed, we also aim to achieve lightweight architectures and integration
policies, mainly deployable on client devices that might also have limited computing
capabilities. Some validation experiments proved that this choice requires reasonable
computational costs and is effective for the end users. The article also discussed how
different architectural choices (e.g., privileging data integration on the server) can
easily replace the current client-side logic and further optimize the mashup execution
performance.

The composition method illustrated in this article mainly addresses casual end users
with limited (or even totally absent) programming experience. To simplify the composi-
tion, the platform makes use of some default settings, for example, related to the opera-
tions and the events that each VI component exposes. User studies highlighted that de-
spite these simplifications, which limit in a sense the freedom of the composers, expert
users also felt comfortable when using the platform. On the one hand, experts might
prefer more flexibility as they are used to programming their applications without any
constraint; on the other hand, we are also very confident that few extensions to the
composition paradigm can fulfill their expectations. For example, they can be enabled to
configure advanced features of components, such as more complex queries, an extended
event-driven logic, and more sophisticated policies for data fusion and conflict resolu-
tion. Our current work is devoted to improving the design environment along this direc-
tion, trying to achieve a full-fledged approach accommodating different expertise levels.

The possibility to deploy applications that can be realistically used by the end users
has been assessed in different usage contexts where our platform has being used:



—When supporting a community of managers at the Milan Municipality in monitoring
the city tourism services through the sentiment analysis of user-generated contents
[Cappiello et al. 2011b].

—When supporting a community of professional guides of an archaeological park in
creating applications executable on mobile devices and multitouch screens. Such
applications help the guides in their presentations during the park visit and allow
them to share material with the park visitors [Ardito et al. 2012, 2013].

—When supporting city traffic planners by generating synchronized visualizations of
traffic data gathered by multiple city sensors [Picozzi et al. 2013].

We are also aware of some limitations of our approach:

—First of all, the openness of the platform that we wanted to strengthen through
the creation of VI components could be hindered by the need for registering data
components. This is true even if the registration activity is easy to perform. The
standardization of methods for API invocation and instantiation, or the definition of
API ecosystems characterized by homogeneous programming interfaces would help
a lot with this respect. These are topics the research community is now starting in-
vestigating. However, the current heterogeneity of formats and protocols necessarily
demands for some descriptive layers through which the platform can understand
how to query services.

—The addition in the platform of wrapped UI components might be a further, even
stronger barrier; different of data component registration, UI component wrapping
is totally out of reach for casual users and requires expert developers to perform
the initial population of the platform with relevant UI components. For this reason,
also in relation to the registration of data components, we envisage the adoption
of our platform in metadesign scenarios, where other stakeholders (i.e., expert pro-
grammers and domain experts) are supposed to configure the platform for its initial
use by the end users. However, we expect that the method for the creation of VI
components be fruitful for the addition of new components by the end users.

—The definition of visual templates currently requires the creation by hand of
HTML/JavaScript presentation templates. We are, however, working on the cre-
ation of an environment where visual templates can be defined visually. Also, the
dynamic (i.e., at runtime) shift from one template to another, to pursue the notion of
elasticity, requires assessing if the nature of data makes it possible the visualization
change and identifying how a same dataset could be visualized through different
visualization styles. In our current prototype, the user is in charge of assessing these
aspects. We are, however, defining techniques to support a full polymorphism of the
integrated result sets.

—Native runtime engines optimize the application execution on different devices, but
they can also limit portability. For this reason, we are now improving our mashup
execution logic in the Web browser, by exploiting HTML5 APIs for the invocation
of remote and device-local services, and responsive CSSs and media queries for
optimizing the presentation on devices with varying screen size.

Despite these known limitations, the conducted user studies encouraged us as they 
showed that users appreciated our approach and were able to use the platform with 
efficiency and satisfaction. Such studies also allowed us to collect very useful feedback 
on possible extensions of the approach. For example, the need of collaborative mecha-
nisms for sharing and co-creating artifacts largely emerged. Some recent extensions of 
our platform already go toward this direction [Matera et al. 2013; Ardito et al. 2014]; 
we are now working to further improve and validate such new features.



We are also designing new extensions to enable the definition of mashups whose com-
position and execution is “distributed” along multiple devices. This entails an evolution
of the mashup logic, from a single-instance, stateless application to a long-lasting, state-
ful application where both the application schema and the state representation need
to be maintained across multiple instances and different sessions. Such a new logic
will also require the revision of the composition models and of the interactive compo-
sition paradigm, to take into account the concurrent contributions of multiple users to
the creation of applications that can be in turn distributed across several users and
execution devices.

REFERENCES

Saeed Aghaee and Cesare Pautasso. 2013. Guidelines for efficient and effective end-user development of
mashups. In Proceedings of the 4th International Symposium on End-User Development (IS-EUD’13),
Yvonne Dittrich, Margaret M. Burnett, Anders I. Mørch, and David F. Redmiles (Eds.). Lecture Notes
in Computer Science, Vol. 7897. Springer, 260–265.

Saeed Aghaee, Cesare Pautasso, and Antonella De Angeli. 2013. Natural end-user development of web
mashups. In Proceedings of the 2013 IEEE Symposium on Visual Languages and Human Centric Com-
puting. IEEE, 111–118.

Carmelo Ardito, Paolo Bottoni, Maria Francesca Costabile, Giuseppe Desolda, Maristella Matera, Antonio
Piccinno, and Matteo Picozzi. 2013. Enabling end users to create, annotate and share personal informa-
tion spaces. In Proceedings of the 4th International Symposium on End-User Development (IS-EUD’13).
Lecture Notes in Computer Science, Vol. 7897. Springer, 40–55.

Carmelo Ardito, Paolo Bottoni, Maria Francesca Costabile, Giuseppe Desolda, Maristella Matera, and
Matteo Picozzi. 2014. Creation and use of service-based Distributed Interactive Workspaces. J. Vis.
Lang. Comput. 25, 6 (2014), 717–726. DOI:http://dx.doi.org/10.1016/j.jvlc.2014.10.018

Carmelo Ardito, Maria Francesca Costabile, Giuseppe Desolda, Maristella Matera, Antonio Piccinno, and
Matteo Picozzi. 2012. Composition of situational interactive spaces by end users: A case for cultural
heritage. In Proceedings of the 7th Nordic Conference on Human-Computer Interaction (NordiCHI’12).
ACM, 79–88.

Carmelo Ardito, Maria Francesca Costabile, Giuseppe Desolda, Rosa Lanzilotti, Maristella Matera, and
Matteo Picozzi. 2014. Visual composition of data sources by end users. In Proceedings of the Interna-
tional Working Conference on Advanced Visual Interfaces (AVI’14). ACM, 257–/260. DOI:http://dx.doi.org/
10.1145/2598153.2598201

Jens Bleiholder and Felix Naumann. 2008. Data fusion. ACM Comput. Surv. 41, 1 (2008).
Alessandro Bozzon, Stefano Ceri, and Srdan Zagorac. 2012. Materialization of web data sources. In SeCO

Book, Stefano Ceri and Marco Brambilla (Eds.). Lecture Notes in Computer Science, Vol. 7538. Springer,
68–81.

Stefano Burigat and Luca Chittaro. 2013. On the effectiveness of Overview+Detail visualization on mobile de-
vices. Pers. Ubiquitous Comput. 17, 2 (2013), 371–385. DOI:http://dx.doi.org/10.1007/s00779-011-0500-3

Margaret M. Burnett, Curtis R. Cook, and Gregg Rothermel. 2004. End-user software engineering. Commun.
ACM 47, 9 (2004), 53–58.

Marcos Càceres. 2012. Packaged Web Apps (Widgets): Packaging and XML Configuration (2nd ed.). W3C
Recommendation. Retrieved from http://www.w3.org/TR/widgets/.

Cinzia Cappiello, Florian Daniel, Maristella Matera, Matteo Picozzi, and Michael Weiss. 2011a. Enabling end
user development through mashups: Requirements, abstractions and innovation toolkits. In Proceedings
of the 3rd International Symposium on End-User Development (IS-EUD’11). Lecture Notes in Computer
Science, Vol. 6654. Springer, 9–24.

Cinzia Cappiello, Maristella Matera, Matteo Picozzi, Florian Daniel, and Adrian Fernandez. 2012. Quality-
aware mashup composition: Issues, techniques and tools. In Proceedings of the 8th International Con-
ference on the Quality of Information and Communications Technology (QUATIC’12). IEEE Computer
Society, In print.

Cinzia Cappiello, Maristella Matera, Matteo Picozzi, Gabriele Sprega, Donato Barbagallo, and Chiara
Francalanci. 2011b. DashMash: A mashup environment for end user development. In Proceedings of
the 11th International Conference on Web Engineering (ICWE’11). Lecture Notes in Computer Science,
Vol. 6757. Springer, 152–166.

Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. 1999. Readings in Information Visualization:
Using Vision to Think. Academic Press.

http://dx.doi.org/10.1016/j.jvlc.2014.10.018
http://dx.doi.org/10.1145/2598153.2598201
http://dx.doi.org/10.1145/2598153.2598201
http://dx.doi.org/10.1007/s00779-011-0500-3
http://www.w3.org/TR/widgets/


Fabio Casati, Florian Daniel, Antonella De Angeli, Muhammad Imran, Stefano Soi, Chritopher R.
Wilkinson, and Maurizio Marchese. 2012. Developing mashup tools for end-users: On the importance of
the application domain. IJNGC 3, 2 (2012).

Stefano Ceri, Maristella Matera, Francesca Rizzo, and Vera Demaldé. 2007. Designing data-intensive web
applications for content accessibility using web marts. Commun. ACM 50, 4 (2007), 55–61.

Prach Chaisatien, Korawit Prutsachainimmit, and Takehiro Tokuda. 2011. Mobile mashup generator system
for cooperative applications of different mobile devices. In Proceedings of 11th International Conference
on Web Engineering (ICWE’11). Lecture Notes in Computer Science, Vol. 6757. Springer, 182–197.

José Danado, Marcin Davies, Paulo Ricca, and Anna Fensel. 2010. An authoring tool for user generated
mobile services. In Future Internet (FIS’10). Lecture Notes in Computer Science, Vol. 6369. Springer,
Berlin, 118–127. DOI:http://dx.doi.org/10.1007/978-3-642-15877-3_13

Florian Daniel, Fabio Casati, Boualem Benatallah, and Ming-Chien Shan. 2009. Hosted universal composi-
tion: Models, languages and infrastructure in mashart. In Conceptual Modeling - ER 2009, Proceedings of
the 28th International Conference on Conceptual Modeling (ER’09). Lecture Notes in Computer Science,
Vol. 5829. Springer, 428–443.

Florian Daniel and Maristella Matera. 2014. Mashups - Concepts, Models and Architectures. Springer.
DOI:http://dx.doi.org/10.1007/978-3-642-55049-2

Florian Daniel, Maristella Matera, and Michael Weiss. 2011. Next in mashup development: User-created
apps on the web. IT Professional 13, 5 (2011), 22–29.

Marcin Davies, Anna Fensel, François Carrez, Maribel Narganes, Diego Urdiales, and José Danado. 2010.
Defining user-generated services in a semantically-enabled mobile platform. In Proceedings of the
12th International Conference on Information Integration and Web-based Applications and Services
(iiWAS’10). ACM, 333–340.

Fred D. Davis. 1989. Perceived usefulness, perceived ease of use, and user acceptance of information tech-
nology. MIS Q. 13, 3 (Sept. 1989), 319–340. DOI:http://dx.doi.org/10.2307/249008

Antonella De Angeli, Alberto Battocchi, Soudip Roy Chowdhury, Carlos Rodrı́guez, Florian Daniel, and Fabio
Casati. 2011. End-user requirements for wisdom-aware EUD. In Proceedings of the International Sym-
posium on End-User Development (IS-EUD’11), Maria Francesca Costabile, Yvonne Dittrich, Gerhard
Fischer, and Antonio Piccinno (Eds.) Lecture Notes in Computer Science, Vol. 6654. Springer, 245–250.

Alan Dix, Janet E. Finlay, Gregory D. Abowd, and Russell Beale. 2003. Human-Computer Interaction (3rd ed).
Prentice-Hall, Upper Saddle River, NJ.

Gerhard Fischer. 2009. End-user development and meta-design: Foundations for cultures of participation. In
Proceedings of the 2nd International Symposium on End-User Development (IS-EUD’09). Lecture Notes
in Computer Science, Vol. 5435. Springer, 3–14.

Gerhard Fischer, Elisa Giaccardi, Yunwen Ye, Alistair G. Sutcliffe, and Nikolay Mehandjiev. 2004. Meta-
design: A manifesto for end-user development. Commun. ACM 47, 9 (2004), 33–37.

Thomas R. G. Green and Marian Petre. 1996. Usability analysis of visual programming environments: A
‘Cognitive Dimensions’ framework. J. Vis. Lang. Comput. 7, 2 (1996), 131–174.

Jonna Häkkilä, Panu Korpipää, Sami Ronkainen, and Urpo Tuomela. 2005. Interaction and end-user pro-
gramming with a context-aware mobile application. In Proceedings of the INTERACT 2005, IFIP TC13
International Conference. Lecture Notes in Computer Science, Vol. 3585. 927–937.

Bala Iyer and Thomas H. Davenport. 2008. Reverse engineering Google’s innovation machine. Harvard
Busines Review 86, 4 (2008), 58–69.

Anant Jhingran. 2006. Enterprise information mashups: Integrating information, simply. In Proceedings of
the 32nd International Conference on Very Large Data Bases. ACM, 3–4.

Natalia Juristo Juzgado and Ana Marı́a Moreno. 2001. Basics of Software Engineering Experimentation.
Kluwer.

Andrew Jensen Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six learning barriers in end-user program-
ming systems. In Proceedings of the 2004 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’04). IEEE Computer Society, 199–206.

Reto Krummenacher, Barry Norton, Elena Paslaru Bontas Simperl, and Carlos Pedrinaci. 2009. SOA4All:
Enabling web-scale service economies. In Proceedings of the 3rd IEEE International Conference on
Semantic Computing (ICSC’09). IEEE Computer Society, 535–542.

Markus Latzina and Joerg Beringer. 2012. Transformative user experience: Beyond packaged design. Inter-
actions 19, 2 (2012), 30–33.

Maurizio Lenzerini. 2002. Data integration: A theoretical perspective. In Proceedings of the 21st ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM, 233–246.

Henry Lieberman, Fabio PaternÚ, and Volker Wulf. 2004. End User Development. Human-Computer Inter-
action Series, Vol. 9. Springer.

http://dx.doi.org/10.1007/978-3-642-15877-3_13
http://dx.doi.org/10.1007/978-3-642-55049-2
http://dx.doi.org/10.2307/249008


Andrew Lipsman and Carmela Aquino. 2013. Mobile Future InFocus - 2013. White Paper. ComScore. Re-
trieved from http://www.comscore.com/Insights/Press_Releases/2013/2/comScore_Releases_the_2013_
Mobile_Future_in_Focus_Report.

Xuanzhe Liu, Gang Huang, and Hong Mei. 2007. Towards end user service composition. In Proceedings of
the 31st Annual International Computer Software and Applications Conference (COMPSAC’07). IEEE
Computer Society, 676–678.

David Lizcano, Fernando Alonso, Javier Soriano, and Genoveva López. 2013. A web-centred approach to
end-user software engineering. ACM Trans. Softw. Eng. Methodol. 22, 4 (2013), 36.

Maristella Matera, Matteo Picozzi, Michele Pini, and Marco Tonazzo. 2013. PEUDOM: A mashup platform
for the end user development of common information spaces. In Proceedings of the 13th International
Conference on Web Engineering (ICWE’13). Lecture Notes in Computer Science, Vol. 7977. Springer,
494–497.

E. Michael Maximilien, Hernán Wilkinson, Nirmit Desai, and Stefan Tai. 2007. A domain-specific language
for web APIs and services mashups. In Proceedings of the 5th International Conference on Service-
Oriented Computing (ICSOC’07). Lecture Notes in Computer Science, Vol. 4749. Springer, 13–26.

Katrina Maxwell. 2002. Applied Statistics for Software Managers. Prentice Hall.
Abdallah Namoun, Tobias Nestler, and Antonella De Angeli. 2010a. Conceptual and usability issues in the

composable web of software services. In ICWE Workshops, Florian Daniel and Federico Michele Facca
(Eds.). Lecture Notes in Computer Science, Vol. 6385. Springer, 396–407.

Abdallah Namoun, Tobias Nestler, and Antonella De Angeli. 2010b. Service composition for non-
programmers: Prospects, problems, and design recommendations. In Proceedings of the 8th IEEE Euro-
pean Conference on Web Services (ECOWS’10). IEEE Computer Society, 123–130.

Felix Naumann. 2002. Quality-Driven Query Answering for Integrated Information Systems. Lecture Notes
in Computer Science, Vol. 2261. Springer.

Open Mashup Alliance (OMA). 2013. OMA EMML Documentation. Retrieved from http://www.openmashup.
org/omadocs/v1.0/.

Matteo Picozzi, Nervo Verdezoto, Matti Pouke, Jarkko Vatjus-Anttila, and Aaron J. Quigley. 2013. Traffic
visualization—applying information visualization techniques to enhance traffic planning. In Proceed-
ings of the International Conference on Computer Graphics Theory and Applications and International
Conference on Information Visualization Theory and Applications (GRAPP & IVAPP’13). SciTePress,
554–557.

Agnes Ro, Lily Shu-Yi Xia, Hye-Young Paik, and Chea Hyon Chon. 2008. Bill organiser portal: A case study
on end-user composition. In WISE Workshops. Lecture Notes in Computer Science, Vol. 5176. Springer,
152–161.

Wael Al Sarraj and Olga De Troyer. 2010. Web mashup makers for casual users: A user experiment. In iiWAS,
Gabriele Kotsis, David Taniar, Eric Pardede, Imad Saleh, and Ismail Khalil (Eds.). ACM, 239–246.

Josef Spillner, Marius Feldmann, Iris Braun, Thomas Springer, and Alexander Schill. 2008. Ad-hoc usage
of web services with Dynvoker. In Proceedings of the 1st European Conference towards a Service-Based
Internet (ServiceWave’08). Lecture Notes in Computer Science, Vol. 5377. Springer, 208–219.

Tobias Van Dyk and Karen Renaud. 2004. Task analysis for e-commerce and the web. In The Handbook
of Task Analysis for Human-Computer Interaction, Dan Diaper and Neville Stanton (Eds.). Lawrence
Erlbaum, Mahwah, NJ, 68–81.

Eric von Hippel. 2005. Democratizing Innovation. MIT Press.
Jen-Her Wu, Yung-Cheng Chen, and Li-Min Lin. 2007. Empirical evaluation of the revised end user com-

puting acceptance model. Computers in Human Behavior 23, 1 (2007), 162–174. DOI:http://dx.doi.org/
10.1016/j.chb.2004.04.003

Jin Yu, Boualem Benatallah, Régis Saint-Paul, Fabio Casati, Florian Daniel, and Maristella Matera. 2007.
A framework for rapid integration of presentation components. In Proceedings of the 16th International
Conference on World Wide Web (WWW’07). ACM, 923–932.

Justin Zobel and Philip Dart. 1996. Phonetic string matching: Lessons from information retrieval. In Proceed-
ings of the 19th Annual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval (SIGIR’96). ACM, New York, NY, 166–172. DOI:http://dx.doi.org/10.1145/243199.243258

Received November 2013; revised November 2014; accepted February 2015

http://www.comscore.com/Insights/PressReleases/2013/2/comScoreReleasesthe2013MobileFutureinFocusReport
http://www.comscore.com/Insights/PressReleases/2013/2/comScoreReleasesthe2013MobileFutureinFocusReport
http://www.openmashup.org/omadocs/v1.0/
http://www.openmashup.org/omadocs/v1.0/
http://dx.doi.org/10.1016/j.chb.2004.04.003
http://dx.doi.org/10.1016/j.chb.2004.04.003
http://dx.doi.org/10.1145/243199.243258



