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ABSTRACT

Geotagged data can be used to describe regions in the world
and discover local themes. However, not all data produced
within a region is necessarily specifically descriptive of that
area. To surface the content that is characteristic for a re-
gion, we present the geographical hierarchy model (GHM), a
probabilistic model based on the assumption that data ob-
served in a region is a random mixture of content that per-
tains to different levels of a hierarchy. We apply the GHM to
a dataset of 8 million Flickr photos in order to discriminate
between content (i.e., tags) that specifically characterizes
a region (e.g., neighborhood) and content that characterizes
surrounding areas or more general themes. Knowledge of the
discriminative and non-discriminative terms used through-
out the hierarchy enables us to quantify the uniqueness of
a given region and to compare similar but distant regions.
Our evaluation demonstrates that our model improves upon
traditional Naive Bayes classification by 47% and hierarchi-
cal TF-IDF by 27%. We further highlight the differences
and commonalities with human reasoning about what is lo-
cally characteristic for a neighborhood, distilled from ten
interviews and a survey that covered themes such as time,
events, and prior regional knowledge.

Categories and Subject Descriptors
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1.2.6 [Artificial Intelligence]: Learning—Knowledge ac-
quisition, Parameter learning
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1. INTRODUCTION

Finding characteristics that are specific to a geographic re-
gion is challenging because it requires local knowledge to
identify what is particularly salient in that area. Knowledge
of regional characteristics becomes critical when communi-
cating about or describing regions, for instance in the con-
text of a mobile travel application that provides country, city
and neighborhood summaries. This knowledge is especially
useful when comparing regions to make geo-based recom-
mendations: tourists visiting Singapore, for example, might
be interested in exploring the Tiong Bharu neighborhood if
they are aware it is known for its coffee in the same way the
San Francisco Mission district is.

Photo-sharing websites, such as Instagram and Flickr, con-
tain photos that connect geographical locations with user-
generated annotations. We postulate that local knowledge
can be gleaned from these geotagged photos, enabling us
to discriminate between annotations (i.e., tags) that specif-
ically characterize a region (e.g., neighborhood) and those
that characterize surrounding areas or more general themes.
This is, however, challenging because much of the data pro-
duced within a region is not necessarily specifically descrip-
tive for that area. Is the word “desert” specifically descrip-
tive of Las Vegas, or rather of the surrounding area? Can we
quantify to what extent the word “skyscraper” is descriptive
of Midtown, Manhattan, New York City or the United States
as a whole?

In this paper, we propose the geographical hierarchy model
(GHM), a probabilistic hierarchical model that enables us to
find terms that are specifically descriptive of a region within
a given hierarchy. The model is based on the assumption that
the data observed in a region is a random mixture of terms
generated by different levels of the hierarchy. Our model
further gives insight into the diversity of local content, for
example by allowing for identification of the most unique or
most generic regions amongst all regions in the hierarchy.
The GHM is flexible and generalizes to both balanced and
unbalanced hierarchies that vary in size and number of lev-
els. Moreover, it is able to scale up to very large datasets be-
cause its complexity scales linearly with respect to the num-
ber of regions and the number of unique terms. To evaluate
our model, we compare its performance with two methods:
Naive Bayes [16] and a hierarchical variant of TF-IDF [23].
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To investigate how well the descriptive terms surfaced by
our model for a given region correspond with human descrip-
tions, we focus on annotations of photos taken in neighbor-
hoods of San Francisco and New York City. We apply our
method to a dataset of 8 million geotagged photos described
by approximately 20 million tags. We are able to associate
to each neighborhood the tags that describe it specifically,
and coefficients that quantify its uniqueness. This enables
us to find the most unique neighborhoods in a city and to
find mappings between similar neighborhoods in both cities.

We contrast the neighborhood characteristics uncovered
by our model with their human descriptions by conducting
a survey and a user study. This allows us not only to assess
the quality of the results found by the GHM, but mainly to
understand the human reasoning about what makes a fea-
ture distinctive (or not) for a region. Beyond highlighting
individual differences in people’s local experiences and per-
ceptions, we touch topics such as the importance of support-
ing feature understanding, and consideration of adjacency
and topography through porous boundaries.

The remainder of this paper is organized as follows. We
first discuss related work in Section [2} We then present our
geographical hierarchical model in Section evaluate its
performance in Section @} and describe the user study in
Section [5] We finally conclude the paper and present future
outlooks in Section

2. RELATED WORK

Human activities shape the perception of coherent neigh-
borhoods, cities and regions; and vice versa. As Hillier and
Vaughan [14] pointed out, urban spatial patterns shape so-
cial patterns and activity, but in turn can also reflect them.
Classic studies such as those by Milgram and Lynch [17] on
mental maps of cities and neighborhoods reflect that peo-
ple’s perceptions go well beyond spatial qualities. They il-
lustrate individual differences between people, but also the
effects of social processes affecting individual descriptions.
People’s conceptualization of region boundaries are fuzzy
and can differ between individuals, even while they are still
willing to make a judgement call on what does or does not
belong to a geographic region |19]. Urban design is argued
to affect the imageability of locales, with some points of in-
terests for example may be well known, whereas other areas
in a city provide less imageability and are not even recalled
by local residents [17]. The perceived identity of a neigh-
borhood differs between individuals, but can relate to their
social identity and can influence behavior [27]. Various qual-
itative and quantitative methods, from surveys of the public
to trained observation, have been employed over the years to
gain such insights [19} |27} |11], with the fairly recent addition
of much larger datasets of volunteered geographic informa-
tion [12] and other community-generated content to benefit
our understanding of human behavior and environment in
specific regions. Geotagged photos and their tags are also
an invaluable data source for research about social photog-
raphy, recommendations, and discovery (8} 20].

We differentiate our approach from those aiming to dis-
cover new regions [29] or redefine neighborhood boundaries [9]
using geotagged data. Backstrom et al. [3] presented a model
to estimate the geographical center of a search engine query
and its spatial dispersion, where the dispersion measure was
used to distinguish between local and global queries. Ahern
et al. [1] used k-means clustering to separate geotagged pho-

tos into geographic regions, where each region was described
by the most representative tags. This work was followed up
by Rattenbury and Naaman [23], in which the authors pro-
posed new methods for extracting place semantics for tags.
While these prior works principally attempted to identify
new regions or arbitrary spaces, we instead aim to find the
unique characteristics of regions in a known hierarchy. For
each region at each level in the hierarchy we aim to find a
specifically descriptive set of tags, drawn from the unstruc-
tured vocabulary of community-generated annotations.

Hollenstein and Purves [15] examined Flickr images to ex-
plore the terms used to describe city core areas. For exam-
ple, they found that terms such as downtown are prominent
in North America, cbd (central business district) is popular
in Australia and citycenter is typical for Europe. The au-
thors further manually categorized tags in the city of Ziirich
according to a geographical hierarchy; even with local knowl-
edge they found that doing so was tedious because of tag id-
iosyncrasies and the diversity of languages. In contrast, our
method enables us to automatically obtain such classifica-
tions. Moreover, we are not just able to distinguish between
local and global content, but can classify a tag according to
a geographical hierarchy with an arbitrary number of levels.

Hierarchical mixture models can be used for building com-
plex probability distributions. The underlying hierarchy, that
encodes the specificity or generality of the data, might be
known a priori [18] or may be inferred from data by assum-
ing a specific generative process, such as the Chinese restau-
rant process [6] for Latent Dirichlet Allocation |7} 2], where
the regions and their hierarchy are learned from data. We
emphasize that, in this paper, we do not try to learn latent
geographical regions, but rather aim to describe regions that
are known a priori. Moreover, these regions are structured
according to a known hierarchy.

3. GEOGRAPHICAL HIERARCHY MODEL

Finding terms that are specifically descriptive of a region is a
challenging task. For example, the tag paname (nickname for
Paris) is frequent across many neighborhoods of Paris but is
specific to the city, rather than to any of the neighborhoods
in which the photos labeled with this tag were taken. The
tag blackandwhite is also a frequent tag, which describes a
photography style rather than any particular region in the
world where the tag was used. The main challenge we face is
to discriminate between terms that (i) specifically describe
a region, (ii) those that specifically describe a sibling, parent
or child region, and (iii) those that are not descriptive for
any particular region. To solve this problem, we introduce
a hierarchical model that is able to isolate the terms that
are specifically descriptive of a given region by considering
not only the terms used within the region, but also those
used elsewhere. Our model goes beyond the distinction be-
tween only global and local content [21] by probabilistically
assigning terms to a particular level in the hierarchy. In this
paper we present our model from a geographic perspective,
even though it is generic in nature: in principle any kind of
hierarchy can be used where labeled instances are initially
assigned to the leaf nodes.

3.1 Definitions

tag is the basic semantic unit and represents a term from a
vocabulary indexed by ¢ € {1,...,T}.
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Figure 1: We represent the geographical hierarchy
Country — City — Neighborhood as a geo-tree. Each
node v of the geo-tree is associated to a multinomial
distribution over tags 0,.

neighborhood is the basic spatial unit. The semantic rep-
resentation of a neighborhood is based on the collec-
tion of tags associated with the geotagged photos taken
within the neighborhood. Consequently, we associate
with each neighborhood n € {1,..., N}, where N is
the number of neighborhoods, the vector &, € NT,
where z,; is the number of times tag ¢ is observed in
neighborhood n.

geo-tree is the tree that represents the geographical hier-
archy. Each node v of the geo-tree is associated with a
multinomial distribution 6, such that 6, (¢) is the prob-
ability to sample the tag t from node v. We designate
the set of nodes along the path from the leaf n to the
root of the geo-tree as R, whose cardinality is |Ry|.
We use the hierarchy Country — City — Neighbor-
hood, illustrated in Figure [} as the leading example
throughout this paper.

3.2 Model

The principle behind our model is that the tags observed
in a given node are a mixture of tags specific to the node
and of tags coming from different levels in the geographic hi-
erarchy. We represent the tags as multinomial distributions
associated with nodes that are along the path from leaf to
root. This model enables us to determine the tags that are
specifically descriptive of a given node, as well as quantify
their level of specificity or generality. The higher a node is
in the tree, the more generic its associated tags are, whereas
the lower a node is, the more specific its tags are. The tags
associated with a node are shared by all its descendants.
We can formulate the random mixture of multinomial dis-
tributions with respect to a latent (hidden) variable z €
{1,...,|Rx|} that indicates for each tag the level in the geo-
tree from which it was sampled. For a tag ¢ observed in
neighborhood n, z = 1 means that this tag ¢ was sampled
from the root node corresponding to the most general dis-
tribution 6001, whereas z = | R, | implies that the tag ¢ was
sampled from the most specific neighborhood distribution
0. This is equivalent to the following generative process
for the tags of neighborhood n: (i) randomly select a node v
from the path R, with probability p(v|n), and (ii) randomly
select a tag ¢ with probability p(t|v). We suppose that tags
in different neighborhoods are independent of each other,
given the neighborhood in which they were observed. Con-
sequently, we can write the probability of the tags @1, ..., xy

observed in the N different neighborhoods as

p(xN). (1)

We further assume tags are independent of each other given
their neighborhood, such that we can write the probability
of the vector of tags x,, as:

p(@1,...,xn) =p(x1) ..

plan) = [ [ p(tin)™". 2)

The probability of observing tag ¢ in neighborhood n is then:

ptln) = Y p(tlo)p(vln) = 3 6u( ®3)
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which expresses the fact that the distribution of tags in
neighborhood n is a random mixture over the multinomial
distributions 6, associated with the nodes along the path
from the leaf n up to the root of the geo-tree. The random
mixture coeflicients are the probabilities p(v|n). By combin-
ing , and we obtain the log-likelihood of the data:
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=log [T [[ p(tln)*"*

n=1t=1

logp(xi,...,zN

Tt log p(t[n)

M= i[M=
IIMH )[M’ﬂ

ZTnt log Z 0,(t) p(vin). (4)

vERR

3
1
-

Classification. For a tag t observed in neighborhood n, we
can compute the posterior probability that it was generated
from a given level z of the geo-tree: we apply Bayes’ rule to
compute the posterior probability of the latent variable z
(el m) = bl _ -
U p(t|n, 2)p(z|n)
Since we assume that the distribution of tags in neighbor-
hood n is a random mixture over the distributions 6, asso-
ciated with nodes that forms the path R,, from leaf n up to
the root of the geo-tree, the probability is equal to

0. (t) p(v'|n)
p(v'[t,n) = :
> ven, Ou(t) p(v|n)
where v’ is the node in R,, that is at level z. Classifying a tag

t observed in leaf n amounts to choosing the node v’ € R,
that maximizes the posterior probability p(v'|t,n).

3.3 Learning

The parameters of our model are the multinomial distribu-
tions 0, associated with each node v of our geo-tree and the
mixture coefficients p(v|n). In order to learn the model pa-
rameters that maximize the likelihood of data, given by ,
we use the Expectation-Maximization (EM) algorithm. This
iterative algorithm increases the likelihood of the data by
updating the model parameters in two phases: the E-phase
and M-phase. The structure of our model allows us to de-
rive closed form expressions for these updates. Due to lack
of space, we omit to show our computations and refer the
interested reader to Bishop [5]. If a node in the geo-tree
might contain a tag that was not observed in the training



set, maximum likelihood estimates of the multinomial pa-
rameters would assign a probability of zero to such a tag.
In order to assign a non-zero probability to every tag, we
“smooth” the multinomial parameters: we assume that the
distributions 6, are drawn from a Dirichlet distribution. The
Dirichlet distribution is a distribution of T-dimensional dis-
crete distributions parameterized by a vector a of positive
reals. Its support is the closed standard (7' — 1) simplex,
and it has the advantage of being the conjugate prior of
the multinomial distribution. In other words, if the prior of
a multinomial distribution is the Dirichlet distribution, the
inferred distribution is a random variable distributed also
as a Dirichlet conditioned on the observed tags. In order to
avoid favoring one component over the others, we choose
the symmetric Dirichlet distribution as a prior. We also as-
sume a symmetric Dirichlet prior for the mixture coefficients

p(vln).

Complexity. Learning the parameters of our model using
EM algorithm has, for each iteration, a worst case running-
time complexity of O(NTD), where N is the number of
leaves of the tree, T the vocabulary cardinality and D the
tree depth. GHM has therefore an important strength, as
the time-complexity of training GHM scales linearly with
respect to the number of leaves of the tree and the num-
ber of unique tags rather than the number of tag instances.
Furthermore, the number of iterations needed for EM to
converge, when trained on the Flickr dataset introduced in
Section [£.3] is typically around 10.

4. EVALUATION

In this section, we apply our model to a large collection
of geotagged Flickr photos taken in neighborhoods of San
Francisco and New York City. The quality of the descriptive
tags found by the GHM strongly supports the validity of
our approach, which we further confirm using the results of
the user study in Section [5} we approximate the probability
that GHM classifies a tag “correctly” by the average number
of times its classification matches the experts’ classification.
Moreover, the GHM allows us to quantify the uniqueness
of these neighborhoods and to obtain a mapping between
neighborhoods in different cities (Section , enabling us
to answer questions such as “How unique is the Presidio
neighborhood in San Francisco?” or “How similar is the Mis-
sion in San Francisco to East Village in New York City?”.
Finally, we compare the performance of our model with the
performance of other methods in classifying data generated
according to a given hierarchy (Section .

4.1 Dataset and classification

We now apply our model to a large dataset of user-generated
content to surface those terms considered to be descriptive
for different regions as seen through the eyes of the public.

Flickr dataset

Describing geographical areas necessitates a dataset that as-
sociates rich descriptors with locations. Flickr provides an
ample collection of geotagged photos and their associated
user-generated tags. We couple geotagged photos with neigh-
borhood data from the city planning departments of San

FrancisccEI and New York Cityﬂ and focus on the neighbor-
hoods of San Francisco (37 neighborhoods) and Manhattan
(28 neighborhoods). Flickr associates an accuracy level with
each geotagged photo that ranges from 1 (world level) to 16
(street level). In order to correctly map photos to neighbor-
hoods, we only focus on photos whose accuracy level exceeds
neighborhood level. We acquired a large sample of geotagged
photos taken in San Francisco (4.4 million photos) and Man-
hattan (3.7 million photos) from the period 2006 to 2013.
We preprocessed the tags associated with these photos by
first filtering them using a basic stoplist of numbers, cam-
era brands (e.g. Nikon, Canon), and application names (e.g
Flickr, Instagram), and then by stemming them using the
Lancasterﬂ method. We further removed esoteric tags that
were only used by a very small subset of people (less than
10). To limit the influence of prolific users we finally ensured
no user can contribute the same tag to a neighborhood more
than once a day. The resulting dataset contains around 20
million tags, of which 7,936 unique tags, where each tag in-
stance is assigned to a neighborhood. These tags form the
vocabulary we use for describing and comparing different re-
gions. The geo-tree we build from this dataset has 3 levels:
level one with a single root node that corresponds to the
United States, level two composed of two nodes that cor-
respond to San Francisco and Manhattan, and level three
composed of 65 leaves that correspond to the neighborhoods
of these cities.

Classifying tags

We applied our model to the Flickr dataset in order to
find tags that are specifically descriptive of a region. We
show the results for two neighborhoods in San Francisco—
Mission and Golden Gate Park— and two neighborhoods
in Manhattan—Battery Park and Midtown—in particular.
In Table [I] we show the top 10 most likely tags for each of
these four neighborhoods, where each tag is further classified
to the most likely level that have generated it. Effectively,
each tag observed in a neighborhood is ranked according to
the probability p(¢|n). Then, we apply to compute the
posterior probability of the latent variable p(z|t,n) and clas-
sify the tag accordingly. Recall that the value of the latent
variable z represents the level of the geo-tree from which it
was sampled. For example, a tag observed in neighborhood
n is assigned to the neighborhood level if the most likely
distribution from which it was sampled is the neighborhood
distribution 6,,. We consider such a tag as being specifically
descriptive of neighborhood n.

Despite the fact that the tag california is the most likely
(frequent) tag in both Mission and Golden Gate Park, it is
not assigned to the neighborhood distribution but rather to
the city distribution (we presume, if we were to add a new
State level to the geo-tree, that the tag california would
most likely be assigned to it). This confirms the notion that
the most frequent tag in a neighborhood does not neces-
sarily describe it specifically. We see that architecture is
applicable not only to the buildings in Golden Gate Park—
notably the De Young—but it also is a descriptor for San
Francisco in general. Our method is able to discriminate be-
tween frequent and specifically descriptive tags, whereas a

"https://data.sfgov.org (Accessed 11/2014)
Zhttp://nyc.gov (Accessed 11/2014)

3http://comp.lancs.ac.uk/computing/research/
stemming/(Accessed 11/2014)
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Mission GG Park | Battery Park Midtown
california { california I newyork I newyork I
mission flower manhattan § manhattan §
sf I park usa t usa t

usa sf wtc midtown
graffiti usa brooklyn skyscraper
art museum downtown timessquare
mural tree bridge light T
valencia ggpark gotham I moma
food deyoung memorial broadway
car I architecture I | light rockefeller

Table 1: For each neighborhood, we show the 10
most likely tags ranked according to their probabil-
ity p(t|n). We use the posterior probability p(z|t,n)
in order to assign each tag to the distribution that
maximizes this posterior probability: country (}),
city (}) or neighborhood (bold).

naive approach would still consider a very frequent tag in a
neighborhood as being descriptive. The same observation is
valid for the tags usa and 1ight, which are tags that are too
general and therefore not specifically descriptive of a neigh-
borhood. The tag car may seem misclassified at the city level
in San Francisco, until one realizes the city is well known for
its iconic cable cars. Considering that the tags art, mural
and graffiti are classified as being specific to Mission is
not surprising, because this neighborhood is famous for its
street art scene. The most probable tags that are specifically
descriptive of Midtown in Manhattan include popular com-
mercial zones, such as Rockefeller Center, Times Square and
Broadway, as well as the museum of modern art (MoMa).
The tag gotham, one of the most observed tags in Battery
Park, is assigned to city level, which is not unexpected given
that Gotham is one of New York City’s nicknames.

Neighborhood uniqueness

If you are interested in visiting the most unique neighbor-
hoods in San Francisco, which ones would you choose? With
our framework, we can quantify the uniqueness of neighbor-
hood n by using the probability p(z|n) of sampling local tags,
where z = |R,|. In fact, a high probability indicates that we
sample often from the distribution of local tags 6,,, and can
therefore be interpreted as indicator of a more unique lo-
cal character. We show a map of the city of San Francisco
in Figure [2| in which each neighborhood is colored propor-
tionally to its local-mixture coefficient. The darker the color
is, the more unique the personality of the neighborhood is.
The four most unique neighborhoods in San Francisco are
Golden Gate Park (0.70), Presidio (0.67), Lakeshore (0.65)
and Mission (0.60), which is not surprising if you know these
neighborhoods. The Golden Gate park is the largest urban
park in San Francisco, famous for its museums, gardens,
lakes, windmills and beaches. The Presidio is a national park
and former military base known for its forests, scenic points
overlooking the Golden Gate Bridge and the San Francisco
Bay. Lakeshore is known for its beaches, the San Francisco
zoo and also for San Francisco State University. The Mission
is famous for its food, arts, graffiti, and festivals.

Mapping neighborhoods between cities

Given a neighborhood in San Francisco, what is the most
similar neighborhood in Manhattan? To answer such a ques-
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Figure 2: Neighborhoods of San Francisco colored
according to their local mixture coefficient p(z|n),
where z = |R,|. A darker color indicates a larger
local mixture coefficient (‘uniqueness’).

tion, we can use our framework to find a mapping between
similar neighborhoods that are in different cities and even
different countries. Recall that each neighborhood n is de-
scribed by its local distribution 6,,. In order to compare two
neighborhoods n and n’, we compute the cosine similarity
between their respective local distributions 6,, and 0,,/, given
by:

sim(0n, 0,,/) = 3 i O (1) O (1) (©)

S 002 Y b (1)

The similarity range is [0,1], with sim(6,,0;) = 1 if and
only if §,, = 6,,. Table [2| shows the mapping from six San
Francisco neighborhoods to the most similar neighborhoods
in Manhattan respectively. We also include the second most
similar neighborhood when the similarities are very close. In
order to give some intuition about the mapping obtained,
we also show the top five common local tags obtained by
ranking the tags t according to the product of tag proba-
bilities 6,,(t) 0,/ (t). For example, the East Village in Man-
hattan is mapped to Mission in San Francisco; the strongest
characteristics they share are graffiti/murals, food, restau-
rants and bars. Moreover, despite the major differences be-
tween San Francisco and Manhattan, their Chinatowns are
mapped to each other and exhibit a highly similar distri-
bution of local tags (cosine similarity of 0.85). Finally, it is
not surprising that Treasure Island for San Francisco and
Roosevelt Island for Manhattan are mapped to each other,
since both are small islands located close to each city. We
however emphasize that the top common local tags between
neighborhoods are not necessarily most descriptive for the
individual neighborhoods. The top tags may rather provide
a shallow description (e.g. dragons in Chinatown, boats for
island) and are useful to gain some insight into the mapping
obtained, but we are aware that every Chinatown is unique
and not interchangeable with another one.




San Francisco | Manhattan

| Top common local tags

Mission

Golden Gate Park
Financial District
Treasure Island
Chinatown
Castro

East Village (0.23)

Roosevelt Island (0.38)
Chinatown (0.85)
West Village (0.06)

Washington Heights (0.26), Upper West Side (0.22)
Battery Park (0.29), Midtown Manhattan (0.27)

graffiti, food, restaurant, mural, bar

park, museum, nature, flower, bird

downtown, building, skyscraper, city, street
bridge, island, water, skylines, boat
chinatown, chinese, downtown, dragons, lantern
park, gay, halloween, pride, bar

Table 2: Mapping from San Francisco neighborhoods to the most similar ones in Manhattan. For each neigh-
borhood pair n and n’, we give the cosine similarity between their local distributions 6,, and 6,,,, and list the
top “common” local tags ranked according to the product of tag probabilities 0, (t) 6,/ (t).

4.2 Experimental evaluation

Evaluating models such as the GHM on user-generated con-
tent is hard because of the absence of ground truth. There
is no dataset that associates, with objectivity, regions to
specifically descriptive terms, or assigns terms to levels in a
geographic hierarchy. This is due to the intrinsic subjectiv-
ity and vagueness of the human conception of regions and
their descriptions [15]. In the absence of ground truth, a
classic approach is to generate a dataset with known ground
truth, and then use it to evaluate the performance of dif-
ferent classifiers. We follow the generative process presented
in Algorithm [1) using the geo-tree (3 levels, 68 nodes) built
from the dataset presented in Section[£:I] For each node v in
our geo-tree, we sample the distribution of tags 6, from the
symmetric Dirichlet distribution Dir(«). We set @ = 0.1 to
favor sparse distributions 6,. If the node is a leaf, i.e. it rep-
resents a neighborhood, we also sample the mixture coeffi-
cient p(z|v) from a symmetric Dirichlet distribution Dir(8).
We set 8 = 1.0 to sample the mixture coefficients uniformly
over the simplex and have well-balanced distributions. Now
that we have the different distributions that describe the
geo-tree, we can start generating the tags in each neighbor-
hood. We vary the number of samples per neighborhood in
order to reproduce a realistic dataset that might be very un-
balanced: data is sparse for some neighborhoods while very
dense for some others. For each neighborhood n, we sample
uniformly the continuous random variable ~, which repre-
sents the order of the number of tags in neighborhood n,
from the interval [3,6]. The endpoints of the support of
are based on the the minimum and maximum values ob-
served in the Flickr dataset presented in Section such
that an expected number of 18.8 x 10° tags will be gener-
ated, similar to the quantity of tags available in the Flickr
dataset. Once the number of tags v to be generated is fixed,
we sample, for each iteration, a level of the geo-tree and then
a tag from the distribution associated to the corresponding
node.

We can now assess the performance of a model by quanti-
fying its ability to correctly predict the level in the geo-tree
from which a tag observed in a neighborhood was sampled.
In addition to our model, we consider the following methods:

Naive Bayes (NB) is a simple yet core technique in in-
formation retrieval [16]. Under this model, we assume
that the tags observed in a class (node) are sampled
independently from a multinomial distribution. Each
class is therefore described by a multinomial distribu-
tion learnt from the count of tags that are observed
in that class. However, since we do not use the class
membership to train our methods, we assign a tag ¢,
observed in neighborhood n, to all the classes (nodes)

Algorithm 1: Generating tags in neighborhoods
Input: Geo-tree V, neighborhoods n € {1,..., N}, tags
t € {1,...,T}, hyper-parameters a, 3.
Output: Tags observed in each neighborhood

L1,...,LN.
1 forveV do
2 Sample distribution 6, ~ Dir(a);
3 if v is a leaf then
4 L Sample mixture coefficients p(z|v) ~ Dir(8);

5 forne{l,...,N} do

6 Initialize , = 0;

7 Sample order v ~ U [3, 6];
8 Set v = [2 x 107 |;

9 while Y,z < v do

10 Sample tree level z ~ p(v|n);
11 Sample tag t ~ p(t|z, n);
12 Increment tag count xn: < xn: + 1;

along the the path R,, which amounts to having a
uniform prior over the classes.

Hierarchical TF-IDF (HT) is a variant of TF-IDF that
incorporates the knowledge of the geographical hierar-
chy. This variant was used in the TagMaps method [23]
to find tags that are specific to a region at a given geo-
graphical level. The method assigns a higher weight to
tags that are frequent within a region (node) compared
to the other regions at the same level in the hierarchy.
We are able to represent each node with a normalized
vector in which each tag ¢t has a weight that encodes
its descriptiveness.

For the classification, we map a tag t observed in the leaf
n to the level £ that maximizes the probability p(z|t,n) (NB
and GHM), or the tag weight (HT). Using our ground truth,
we can then approximate the probability of correct classifi-
cation p(Z = z) by the proportion of tags that were correctly
classified. In our evaluation, we repeat the following process
1000 times: we first generate a dataset, hold out 10% of the
data for test purposes and train the model on the remain-
ing 90%. For fair comparison, we initialize and smooth the
parameters of each method similarly. Then, we measure the
classification performance of each method. The final results,
shown in Table [3] are therefore obtained by averaging the
performance of each method over 1000 different datasets.

Our GHM model is the most accurate at classifying the
tags to the correct level, greatly outperforming NB by 47%
and HT by 27%. Even though both GHM and HT take ad-



| Classification Accuracy (std)

Random 0.33 (0.00)
NB 0.51 (0.02)

HT 0.59 (0.02)
GHM | 0.75 (0.01)

Table 3: The average classification accuracy is
computed, for each method, over 1000 generated
datasets. We also indicate this accuracy if we classify
tags uniformly at random.

vantage of the geographical hierarchy in order to classify the
tags, the probabilistic nature of GHM enables a more re-
silient hierarchical clustering of the data, while the heuristic
approach of HT suffers from overfitting. For example, if the
number of samples available for a neighborhood is low, HT
might overfit the training data by declaring a frequent tag as
being characteristic, although not enough samples are avail-
able to conclude this. This is not case for GHM, because
the assumptions of random mixture enable us to obtain a
resilient estimate of the distributions, which declare a tag
as characteristic of a given level only if it has enough evi-
dence for it. This observation is strengthened if we choose
the maximum order 7 of the number of tags per node to be
4 instead of 6: the classification accuracy of GHM decreases
by 5% only (0.71), whereas the performance of HT decreases
by 13% (0.51). Taken together, these results suggest that, if
the data observed in a neighborhood is a mixture of data
generated from different levels of a hierarchy that encodes
the specificity /generality of the data, our method will be
successfully able to accurately associate a tag to the level
from which it was generated.

5. PERCEPTION FOCUSED USER STUDY

The results produced by our model might not necessarily be
intuitive nor expected, especially in the light of people’s dif-
fering individual geographic perspectives [19}[27}[11]. Trying
to objectively evaluate these, without taking into account
human subjectivity and prior knowledge, could be mislead-
ing. For the Castro neighborhood in San Francisco, for ex-
ample, the GHM classified the tag milk as specifically de-
scriptive. Someone who is not familiar with Harvey Milk,
the first openly gay person to be elected to public office in
California and who used to live in the Castro, would most
probably not relate this tag to the neighborhood. We thus
need to understand the correspondences and gaps between
our model’s results and human reasoning about regions.
We conduct a user-focused study to explore the premise
that the posterior probability of a tag being sampled from
the distribution associated with a region is indicative of the
canonical descriptiveness of this region. We further aim to
identify potential challenges in user-facing applications of
the model, and to uncover potential extensions to our model.
We held ten interviews and conducted a survey with local
residents of the San Francisco Bay Area focusing on their
reactions to the tags that our model surfaced. To assess the
performance of our model while reducing the bias of sub-
jectivity, we used the results of our user survey to obtain
the human classification of tags to nodes in the hierarchy,
allowing us to approximate the probability that our model

classified a tag correctly by the average number of times it
corresponded with human classification. We use the inter-
views to understand the reasons behind matches and mis-
matches.

5.1 Interview and survey methodology

Interviewees and survey respondents reacted to a collection
of 32 tags per neighborhood. To ensure a certain diversity
among the tags presented to the users, we select randomly
a subset of tags that are classified by the GHM as being de-
scriptive of (i) neighborhood level (e.g., graffiti), (ii) city
level (e.g., nyc), (iii) country level (e.g., usa), or (iv) an-
other neighborhood (e.g., mission for the Castro neighbor-
hood). We selected these tags randomly, with the probabil-
ity of choosing a given tag ¢t proportional to the probability
p(t|n). The survey aims to highlight to which extent locals’
perspectives match the results produced by our model, while
the interviews highlight the reasons why and allow us to un-
derstand better the human perception of descriptiveness.

Interview procedure. Our semi-structured interviews fo-
cused on how people describe neighborhoods, and investi-
gated their reasoning behind the level of specificity asso-
ciated to a tag in a given neighborhood. Each one-to-one
interview lasted 25-45 minutes. To ensure a wide range of
(former) local to newcomer perspectives, we interviewed a
total of 10 people (5F, 5M; ages 26-62, u = 37, 0 = 12)
that (had) lived in the San Francisco Bay Area from two
months to 62 years. Three of the participants worked in the
technology industry, two were students, one was a real es-
tate agent, one a building manager and one a photographer.
Each interview covered three different neighborhoods cho-
sen by the participant out of 11 well-known San Francisco
neighborhoods. However, one participant described only one
neighborhood (due to time constraints), while another par-
ticipant described four of them. Our interviews addressed:

1. Participants’ characterization of the neighborhoods us-
ing their own words to get an understanding of the
factors that are important to them.

2. Their considerations in whether a tag is perceived as
specifically descriptive or not. Interviewees were first
asked to classify the 32 tags presented to them as (not)
specifically descriptive for the neighborhood, and ex-
plain the reasons. Then, they were shown the subset
of tags that were classified by our model as specifically
descriptive.

We emphasize the fact that the participants were not told
about our model, nor that the terms presented to them were
actually Flickr tags. This provided broader insight into the
factors that led them to classify terms as (not) specifically
descriptive of a neighborhood, and allowed for identification
of factors not yet addressed by the model, without bias-
ing their judgment towards the assumptions we made (i.e.,
hierarchical mixture of tags). The interviews were recorded,
and transcriptions were iteratively analyzed, focusing on the
identification of themes in interviewees’ reasoning affecting
classifications of tags as (non-)descriptive.

Survey procedure. A total of 22 San Francisco Bay Area
residents (5F, 17M; ages 22-39, u = 33, 0 = 4.8), who had
lived there for an average of 5.6 years (o = 4.2), participated



in our survey about San Francisco and three of its neigh-
borhoods (Mission, Castro and North Beach). Of these 22
respondents, 18 provided tag classifications for the Mission
neighborhood, 12 for the Castro and 11 for North Beach.
This resulted in 1291 tag classifications, of which 561 for
the Mission, 381 for the Castro and 349 for North Beach.
The survey asked respondents to describe each neighbor-
hood with their own words using open text fields, and then
to classify the 32 tags presented to them as descriptive for
a given neighborhood, for a higher level (the city or coun-
try), or for another neighborhood. They could also indicate
if they did not find the tag descriptive for any level, or did
not understand its meaning.

5.2 Results

In this section, we present the results of the survey, and
provide examples from the interviews to illuminate the rea-
soning processes on whether a tag is descriptive for a specific
region. We compare the tag classifications provided by the
GHM with those supplied by the participants, and we specif-
ically focus on disagreements between neighborhood-level
tag classifications in order to identify challenges in human
interpretation of modeling results, and potential extensions
to our model.

5.2.1 Participant and model congruency

The model’s premise that locally frequent content is not nec-
essarily specific to that locale was strongly supported by the
interviews and the survey. None of the participants classi-
fied all of the tags that occurred frequently in a neighbor-
hood as specifically descriptive of the given neighborhood.
This supports the results of the GHM in classifications of
very frequent but wide-spread tags as not being specifically
descriptive of the neighborhood. Without prompting, inter-
viewees mentioned terms as being too generic or specific
for a given neighborhood. For example, one interviewee (F
28), when describing the Western Addition neighborhood,
picked haight as a descriptive tag, “because there’s Haight
Street in this neighborhood”, but not the tag streets, as
“there’s streets everywhere”. Similar interview examples in-
cluded: “california or usa is a generic, or general term”
(F 28), “I don’t think of ever describing Golden Gate Park
as in the USA. Unless I’'m somewhere far away, but then I
wouldn’t even say USA, I would say California or San Fran-
cisco” (F 41). This result implies that participants tend to
classify tags according to a geographical hierarchy, which
supports the validity of the assumptions we make about the
hierarchy of tags: tag specificity /generality depends on the
hierarchical level from which it was sampled.

We are aware that people will not agree with every clas-
sification made by our model. Tags classified by the GHM
as specifically descriptive of a neighborhood, were not nec-
essarily perceived as such by all respondents; variations oc-
curred between neighborhoods and between participants. As
a consequence, evaluating the results of an aggregate model
‘objectively’, as if there were only a single correct represen-
tation of a neighborhood, is difficult. However, to place the
the GHM classification into context with human classifica-
tion, we use the results of our survey to reduce subjective
biases: we obtain a majority vote human classification by
assigning each tag to the class that users have chosen most
often. We then approximate the probability that the GHM
classifies a tag ‘correctly’ by the average number of times

its classification matches this human majority classification.
For most tags the majority assignment is aligned with the
assessment of the model (Table . We obtained an average
classification correspondence of 0.77, with a highest classifi-
cation accuracy of 0.84 for the Mission neighborhood. The
alignment between the model and human classification for
the Castro neighborhood was 0.81. Alignment was lowest
for the North Beach neighborhood with a correspondence of
0.66, mainly caused by tag classifications as ‘another neigh-
borhood’ (Table . Such mismatches occur for a multitude
of reasons. First of all, as a very basic requirement, partici-
pants have to understand what a tag refers to, before they
can assign it to a specific level. For example, in the sur-
vey, 8% of the answers given for the Mission neighborhood
were “I don’t know what this is” (Table . This issue oc-
curred less for the selection of tags for the Castro (1%) and
North Beach (0%). The terms that users understood were
necessarily perceived as either descriptive (i.e. assignable to
a level in the geographical hierarchy) or non-descriptive (i.e.
not belonging to any level in the hierarchy). The proportion
of individual answers that are “non-descriptive” is around
34%, which included answers to tags such as cat, sticker
and wall for the Mission. The fact that these tags indeed de-
scribe content that occurs frequently in the Mission doesn’t
imply that they are perceived as descriptive per se by all
users.

People’s local experiences shape and differentiate their
perceptions. The interviews illustrated how tags were in-
terpreted in multiple ways; church was taken to refer to a
church building, or to the streetcars servicing the J-Church
light-rail line, and was not seen as descriptive by the ma-
jority of participants (see Castro in Table . Local terms
surfaced by our model, such as walls in the Mission, rep-
resented the neighborhood’s characteristic murals to a long-
time local interviewee (M 49), whereas this term was a mean-
ingless for others. While the majority of survey respondents
classified night and coffee as unspecific for the Mission, the
same interviewee (M 49) for example saw night as descrip-
tive for its bars, restaurants and clubs and thought coffee
referred to the copious amounts of coffee shops. Similarly,
while one interviewee described North Beach as “party land”
(M 46), another claimed “I don’t believe there’s much of a
nightlife there” (F 26). While these results highlight an op-
portunity for discovery and recommendation of local content
that users may not be aware of, it also means that a careful
explanation might be necessary.

5.2.2 Model extensions

Beyond misunderstanding tags or finding them not specif-
ically descriptive of a certain neighborhood, the interviews
provided additional clues about the mismatches identified in
our survey, as well as individual differences. They are orga-
nized below in potential opportunities for extensions of the
GHM model.

Sub-region detection. According to the majority of our
survey participants, 11 tags classified by the GHM as specif-
ically descriptive of North Beach were actually descriptive
of another neighborhood. From our interviews, we learned
that the terms surfaced by our model for the North Beach
neighborhood included references to the bay’s waterside and
to the tourist attraction Fisherman’s Wharf (see for exam-
ple wharf, seal, crab, bay, pier in Table [5)). The locals



Mission

| Castro | North Beach

Neighborhood-level tag count
Neighborhood-level tag classifications

17 17
(100%) | 201  (100%) | 185  (100%

Tags not understood

Tags seen as non-descriptive for any level
(Part of) neighborhood

Higher-level node (CA/USA)

Other neighborhood

)

8%) | 3 (%) | o0 (0%)
(40%) | 50  (25%) | 62 (33%)
(39%) | 67  (33%) | 37  (20%)
(8%) | 38 (19%) | 7 (4%)
(5%) | 43 (22%) | 79 (43%)

Table 4: The distribution of answers given by survey participants. The (rounded) percentages are computed

with respect to the total number of answers given.

| Mission | Castro | North Beach
Tag count 32 32 32
Tag classications 561 381 349
GHM alignment 0.84 0.81 0.66
Misaligned tag count | 5 6 11

Misaligned tags night, coffee, sidewalk

cat, brannan

mission, streetcar, dolorespark
church, sign, night

embarcadero, bridge, water
alcatraz, seal, sea, crab,
wharf, boat, bay, pier

Table 5: Alignment of GHM tag assignments with the majority of survey respondents’ assignment for each
survey neighborhood. Misalignment would for example be a tag classified as neighborhood level by the GHM
while the majority of survey respondents had assigned it to another neighborhood or another level.

that responded to our survey (see Table [4)) and also the in-
terviewees clearly made a distinction between Fisherman’s
Wharf and North Beach, whereas the set of administrative
regions we used for our model did not: according to the data
from the city planing department of San Francisco, Fisher-
man’s Wharf is not a neighborhood in itself and is simply a
sub-region of North Beach. Clarifications of region borders
and detecting emerging sub-neighborhoods (e.g. “as you go
further down south it’s a totally different neighborhood”),
would improve the quality of the neighborhood tags pre-
sented to the user. From the modeling perspective, the GHM
already allows for considering predefined sub-regions in cer-
tain neighborhood, since the geo-tree can be unbalanced and
have a different depth for certain sub-trees.

Permeable adjacency and topography. Using permeable
adjacency by considering adjacent neighborhoods appears
promising. For example, the mismatching tag dolorespark
(see Table refers to the park right on the edge of the
Mission and Castro, which however was placed outside the
Castro neighborhood by the majority of our survey respon-
dents. Interviewees defined neighborhood boundaries differ-
ently, and sometimes indicated they didn’t know neighbor-
hoods well “It’s a little difficult because it’s right next to the
Presidio. I kind of, maybe confuse them from each other”
(F 26). Interviewees extended their reasoning about activi-
ties or points-of-interest that could spill over into adjacent
neighborhoods. For example, the Golden Gate Bridge, offi-
cially part of the Presidio neighborhood, but photographed
from a wide range of other neighborhoods was mentioned
as a distant-but-characteristic feature: “you can see the Bay
Bridge from there” (M 46). Extensions that consider wider
topography and fuzzy boundaries could improve the quality
of the results.

Representative lower levels. Interviewees at times cited
neighborhoods’ unique character as representative of wider

regional developments, e.g. gentrification of neighborhoods,
or “California is known for being. .. very liberal...and it’s
almost as if a lot it comes from Castro” (M 35). Hierarchi-
cal modeling offers opportunities beyond the identification
of locally descriptive content; it could also help find neigh-
borhoods that are representative of a higher level in the
geographical hierarchy.

Temporality. Time of day, shifting character of a neigh-
borhoods, events, long-term history, and even change itself
were referenced by interviewees: “I think of night, ...there’s
a lot of activity during night time with the bars and the
clubs. .. but before. . . you wouldn’t be caught there at night-
time. ..20 years ago it was a different neighborhood.” (M
49). Since the Flickr tag collection we used spanned mul-
tiple years, some aspects of neighborhoods, represented in
tags surfaced by our model, that were characteristic at one
time but no longer as prominent at present (such as the
Halloween celebrations in the Castro neighborhood), were
considered out of place (M 32). Yet other interviewees still
found such tags characteristic, and freely associated: “I think
of outrageous costumes, and also the costumes that people
see when it’s not Halloween” (F 26). Combining hierarchi-
cal modeling with features detecting diurnal rhythms 13| or
events [25] would provide additional insight in such content
changes over time. However, we must be aware that this ne-
cessitates a dataset that is much more prolific than the one
at hand: we need to have a sufficient number of geotagged
samples per time period.

The non-tagged. More recent socio-economic developments
were mentioned by the interviewees, but not represented in
the dataset of tags. For example, one interviewee argued
that, while the terms for SoMa did capture the neighbor-
hood (“I think it’s really descriptive and pretty accurate”),
he would himself add “something about startups and ex-
pensive apartments that really aren’t all that great. $3500



a month for one bedroom. That would be a good descrip-
tor.” (M 32). Note that even the absence of a feature could
be characteristic: “There’s not a lot to do around there.”
(M 35). Distinguishing however between what is absent in
a neighborhood, and what is not represented in a dataset
is a challenge [24]. Findings proxies for such features, such
as proposed by Quercia et al. [22], requires rigor because it
might introduce error and biases. Combining different data
sources and model features can however provide additional
opportunities.

6. DISCUSSION AND CONCLUSIONS

In this work we proposed a probabilistic model that allows
for uncovering terms that are specifically descriptive of a
region within a given geographical hierarchy. By applying
our model to a large-scale dataset of 20 million tags associ-
ated with approximately 8 million geotagged Flickr photos
taken in San Francisco and Manhattan, we were able to as-
sociate each node in the hierarchy to the tags that specif-
ically describe it. Moreover, we used these descriptions to
quantify the uniqueness of neighborhoods, and find a map-
ping between similar but geographically distant neighbor-
hoods. We further conducted interviews and a survey with
local residents in order to evaluate the quality of the results
given by the GHM and its ability to surface neighborhood-
characteristic terms, which span both terms known and un-
known to locals. The classification accuracy of GHM, mea-
sured with respect to the classification of tags made by lo-
cals, provides strong support for the validity of our approach.
However, the results of the interviews also highlighted the
difference between the performance of a model at classifying
community-generated data, and its performance as judged
subjectively by an individual. This highlights the impor-
tance of taking user subjectivity into account, and the need
for explanation and framing. As a consequence, the tradi-
tional evaluation of modeling approaches that are fed with
user-generated data faces the challenge of both the repre-
sentation and the subjectivity inherent to vernacular geog-
raphy. It is important to note that the dataset itself was
not formally labeled and rather only contained free-form,
often noisy user-generated tags. While unstructured user-
generated tags can be cleaned, for instance through canon-
icalization [28], one can utilize other structures inherent in
the data to find meaning. Our work takes advantage of the
latent geographical patterns exhibited by geotagged data,
and shows how we can relate tags to regions within a geo-
graphical hierarchy.

Representation. We used a specific type of dataset (tags)
in this paper to describe geographical regions. We are aware
that the tags generated by other online communities that
use different social photo sharing services, such as Insta-
gram, may yield different descriptions of regions. For ex-
ample, if tagging in such a service is more emotive rather
than descriptive of the content, our method would surface
different local qualities. User-generated data is only repre-
sentative of the activity of a community within it, and not
necessarily of all people in a certain region. Large-scale so-
cial media datasets, whether they consist of check-ins, status
updates, or photos uploaded to a community-based service,
are the result of communicative acts influenced by service
design features and evolving community norms (24} 26, |§|.
In our case, not all local features are captured and shared

on Flickr. The content that is present can however be used
as relative hints at local trends, and provide comparative in-
sights. Consequently, when we here state locally descriptive,
we therefore mean descriptive for the content generated in
that locale, not necessarily for all human activity.

Vernacular geography. Spatial knowledge that is used to
communicate about space and regions has been referred to as
vernacular geography |15] or naive geography [11]| that car-
ries with it a certain intrinsic vagueness in its nature [10].
Individuals’ descriptions of places are inherently subjective,
as are interpretations of what is and what is not descriptive
for a locale [4]. Towards any community, online or offline,
the perception of place is considered to be of a shared frame
of reference [19]. Photo tags generated by the Flickr commu-
nity are no exception. However, our qualitative exploration
is aimed at understanding what factors come into play when
describing space, and how might they manifest into a prob-
abilistic model. Fuzzy regional boundaries, temporal events,
hidden landmarks all underscore types of regions and terms
we surfaced through the interviews, as well as the kinds of
tag descriptors discovered quantitatively. We find a mixed
method approach brings a clearer understanding of online
communities and naive geography alike.

Future work. As illustrated by our generative interviews,
the presentation of our model’s results ought to take into
account subjective interpretations, support the discovery of
new conceptual clusters and their explanation. The inter-
views also pointed to the possibility of using certain neigh-
borhoods as embodying the spirit of its encompassing re-
gion, e.g., the Castro described as an influential San Fran-
cisco neighborhood, or technology companies moving into
SoMa reflecting changes in the city as a whole. The rela-
tionship between the leaves of a geographical tree, temporal
change and events, sub-regions, and fluid local boundaries
that consider wider topographical features represent poten-
tial viable extensions to our model, conditioned on the fact
that the dataset at hand includes enough data and spans
a long period of time. For example, we could extend our
model to account for the porosity of frontiers between neigh-
borhoods and the fact that there is no consensus about the
exact boundaries of a neighborhood: we define, for each re-
gion, a set that is composed of the regions that are adjacent
to it. The probability of observing tag in a certain region
then includes a new term that accounts for the possibility
of sampling tags from adjacent regions. The learning proce-
dure for this extension would be very similar to the GHM’s
learning procedure.
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