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Abstract

Clique-width is a graph invariant that has been widely studied in combinatorics and computer
science. However, computing the clique-width of a graph is an intricate problem, the exact clique-
width is not known even for very small graphs. We present a new method for computing the
clique-width of graphs based on an encoding to propositional satisfiability (SAT) which is then
evaluated by a SAT solver. Our encoding is based on a reformulation of clique-width in terms of
partitions that utilizes an efficient encoding of cardinality constraints. Our SAT-based method is
the first to discover the exact clique-width of various small graphs, including famous graphs from
the literature as well as random graphs of various density. With our method we determined the
smallest graphs that require a small pre-described clique-width.

1 Introduction

Clique-width is a fundamental graph invariant that has been widely studied in combinatorics and com-
puter science. Clique-width measures in a certain sense the “complexity” of a graph. It is defined via a
graph construction process involving four operations where only a limited number of vertex labels are
available; vertices that share the same label at a certain point of the construction process must be treated
uniformly in subsequent steps. This graph composition mechanism was first considered by Courcelle,
Engelfriet, and Rozenberg [10, 11] and has since then been an important topic in combinatorics and
computer science.

Graphs of small clique-width have advantageous algorithmic properties. Algorithmic meta-theorems
show that large classes of NP-hard optimization problems and #P-hard counting problems can be solved
in linear time on classes of graphs of bounded clique-width [7, 8]. Similar results hold for the graph
invariant treewidth, however, clique-width is more general in the sense that graphs of small treewidth
also have small clique-width, but there are graphs of small clique-width but arbitrarily high treewidth
[9, 6]. Unlike treewidth, dense graphs (e.g., cliques) can also have small clique-width.

All these algorithms for graphs of small clique-width require that a certificate for the graph having
small clique-width is provided. However, it seems that computing the certificate, or just deciding whether
the clique-width of a graph is bounded by a given number, is a very intricate combinatorial problem.
More precisely, given a graph G and an integer k, deciding whether the clique-width of G is at most k
is NP-complete [16]. Even worse, the clique-width of a graph with n vertices of degree greater than 2
cannot be approximated by a polynomial-time algorithm with an absolute error guarantee of nε unless
P = NP, where 0 ≤ ε < 1 [16]. In fact, it is even unknown whether graphs of clique-width at most 4 can
be recognized in polynomial time [5]. There are approximation algorithms with an exponential error
that, for fixed k, compute f(k)-expressions for graphs of clique-width at most k in polynomial time
(where f(k) = (23k+2 − 1) by [30], and f(k) = 8k − 1 by [29]).

Because of this intricacy of this graph invariant, the exact clique-width is not known even for very
small graphs.
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Clique-width via SAT. We present a new method for determining the clique-width based on a
sophisticated SAT encoding which entails the following ideas:

1. Reformulation. The conventional construction method for determining the clique-width of a graph
consists of many steps. In the worst case, the number of steps is quadratic in the number of
vertices. Translating this construction method into SAT would result in large instances, even for
small graphs. We reformulated the problem in such a way that the number of steps is less than the
number of vertices. The alternative construction method allows us to compute the clique-width
of much larger graphs.

2. Representative encoding. Applying the frequently-used direct encoding [35] on the reformulation
results in instances that have no arc consistency [18], i.e., unit propagation may find conflicts much
later than required. We developed the representative encoding that is compact and realizes arc
consistency.

Experimental Results. The implementation of our method allows us for the first time to determine
the exact clique-width of various graphs, including famous graphs known from the literature, as well as
random graphs of various density.

1. Clique-width of small Random Graphs. We determined experimentally how the clique-width of
random graphs depends on the density. The clique-width is small for dense and sparse graphs and
reaches its maximum for edge-probability 0.5. The larger n, the steeper the increase towards 0.5.
These results complement the asymptotic results of Lee et al. [27].

2. Smallest Graphs of Certain Clique-width. In general it is not known how many vertices are re-
quired to form a graph of a certain clique-width. We provide these numbers for clique-width
k ∈ {1, . . . , 7}. In fact, we could compute the total number of connected graphs (modulo isomor-
phism) with a certain clique-width with up to 10 vertices. For instance, there are only 7 connected
graphs with 8 vertices and clique-width 5 (modulo isomorphism), and no graphs with 9 vertices
and clique-width 6. There are 68 graphs with 10 vertices and clique-width 6. The smallest one
has 18 edges.

3. Clique-width of Famous Named Graphs. Over the last 50 years, researchers in graph theory have
considered a large number of special graphs. These special graphs have been used as counterex-
amples for conjectures or for showing the tightness of combinatorial results. We considered several
prominent graphs from the literature and computed their exact clique-width. These results may
be of interest for people working in combinatorics and graph theory.

Related Work. We are not aware of any implemented algorithms that compute the clique-width
exactly or heuristically. However, algorithms have been implemented that compute upper bounds on
other width-based graph invariants, including treewidth [14, 19, 26], branchwidth [33], Boolean-width [24],
and rank-width [2]. Samer and Veith [31] proposed a SAT encoding for the exact computation of
treewidth. Boolean-width and rank-width can be used to approximate clique-width, however, the error
can be exponential in the clique-width; in contrast, treewidth and branchwidth can be arbitrarily far
from the clique-width, hence the approximation error is unbounded [4].

Our SAT encoding is based on a new characterization of clique-width that is based on partitions
instead of labels. A similar partition-based characterization of clique-width, has been proposed by
Heggernes et al. [23]. There are two main differences to our reformulation. Firstly, our characterization
of clique-width uses three individual properties that can be easily expressed by clauses. Secondly, our
characterization admits the “parallel” processing of several parts of the graph that are later joined
together.
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2 Preliminaries

2.1 Formulas and Satisfiability

We consider propositional formulas in Conjunctive Normal Form (CNF formulas, for short), which are
conjunctions of clauses, where a clause is a disjunction of literals, and a literal is a propositional variable
or a negated propositional variables. A CNF formula is satisfiable if its variables can be assigned true
or false, such that each clause contains either a variable set to true or a negated variable set to false.
The satisfiability problem (SAT) asks whether a given formula is satisfiable.

2.2 Graphs and Clique-width

All graphs considered are finite, undirected, and without self-loops. We denote a graph G by an ordered
pair (V (G), E(G)) of its set of vertices and its set of edges, respectively. An edge between vertices u
and v is denoted uv or equivalently vu. For basic terminology on graphs we refer to a standard text
book [13].

Let k be a positive integer. A k-graph is a graph whose vertices are labeled by integers from
{1, . . . , k}. We consider an arbitrary graph as a k-graph with all vertices labeled by 1. We call the
k-graph consisting of exactly one vertex v (say, labeled by i) an initial k-graph and denote it by i(v).
The clique-width of a graph G is the smallest integer k such that G can be constructed from initial
k-graphs by means of repeated application of the following three operations.

1. Disjoint union (denoted by ⊕);

2. Relabeling: changing all labels i to j (denoted by ρi→j);

3. Edge insertion: connecting all vertices labeled by i with all vertices labeled by j, i 6= j (denoted
by ηi,j or ηj,i); already existing edges are not doubled.

A construction of a k-graph using the above operations can be represented by an algebraic term composed
of ⊕, ρi→j , and ηi,j (i, j ∈ {1, . . . , k}, and i 6= j). Such a term is called a k-expression defining G. Thus,
the clique-width of a graph G is the smallest integer k such that G can be defined by a k-expression.

Example 1. The graph P4 = ({a, b, c, d}, {ab, bc, cd}) is defined by the 3-expression

η2,3(ρ2→1(η2,3(η1,2(1(a)⊕ 2(b))⊕ 3(c)))⊕ 2(d)).

Hence cwd(P4) ≤ 3. In fact, one can show that P4 it has no 2-expression, and thus cwd(P4) = 3 [9]. a

2.3 Partitions

As partitions play an important role in our reformulation of clique-width, we recall some basic termi-
nology. A partition of a set S is a set P of nonempty subsets of S such that any two sets in P are
disjoint and S is the union of all sets in P . The elements of P are called equivalence classes. Let P, P ′

be partitions of S. Then P ′ is a refinement of P if for any two elements x, y ∈ S that are in the same
equivalence class of P ′ are also in the same equivalence class of P (this entails the case P = P ′).

3 A Reformulation of Clique-width without Labels

Initially, we developed a SAT encoding of clique-width based on k-expressions. Even after several
optimization steps, this encoding was only able to determine the clique-width of graphs consisting of
at most 8 vertices. We therefore developed a new encoding based on a reformulation of clique-width
which does not use k-expressions. In this section we explain this reformulation, in the next section we
will discuss how it can be encoded into SAT efficiently.

Consider a finite set V , the universe. A template T consists of two partitions cmp(T ) and grp(T )
of V . We call the equivalence classes in cmp(T ) the components of T and the equivalence classes in
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grp(T ) the groups of T . For some intuition about these concepts, imagine that components represent
induced subgraphs and that groups represent sets of vertices in some component with the same label
in a k-expression. A derivation of length t is a finite sequence D = (T0, . . . , Tt) satisfying the following
conditions.

D1 |cmp(T0)| = |V | and |cmp(Tt)| = 1.

D2 grp(Ti) is a refinement of cmp(Ti), 0 ≤ i ≤ t.

D3 cmp(Ti−1) is a refinement of cmp(Ti), 1 ≤ i ≤ t.

D4 grp(Ti−1) is a refinement of grp(Ti), 1 ≤ i ≤ t.

We would like to note that D1 and D2 together imply that |grp(T0)| = |V |. Thus, in the first template
T0 all equivalence classes (groups and components) are singletons, and when we progress through the
derivation, some of these sets are merged, until all components are merged into a single component in
the last template Tt.

The width of a component C ∈ cmp(T ) is the number of groups g ∈ grp(T ) such that g ⊆ C. The
width of a template is the maximum width over its components, and the width of a derivation is the
maximum width over its templates. A k-derivation is a derivation of width at most k. A derivation
D = (T0, . . . , Tt) is a derivation of a graph G = (V,E) if V is the universe of the derivation and the
following three conditions hold for all 1 ≤ i ≤ t.

Edge Property : For any two vertices u, v ∈ V such that uv ∈ E, if u, v are in the same group in Ti,
then u, v are in the same component in Ti−1.

Neighborhood Property : For any three vertices u, v, w ∈ V such that uv ∈ E and uw /∈ E, if v, w are in
the same group in Ti, then u, v are in the same component in Ti−1.

Path Property : For any four vertices u, v, w, x ∈ V , such that uv, uw, vx ∈ E and wx /∈ E, if u, x are
in the same group in Ti and v, w are in the same group in Ti, then u, v are in the same component
in Ti−1.

The neighborhood property and the path property could be merged into a single property if we do not
insist that all mentioned vertices are distinct. However, two separate properties provide a more compact
SAT encoding.

The following example illustrates that a derivation can define more than one graph, in contrast to a
k-expression, which defines exactly one graph.

Example 2. Consider the derivation D = (T0, . . . , T3) with universe V = {a, b, c, d} and

cmp(T0) = {{a}, {b}, {c}, {d}}, grp(T0) = {{a}, {b}, {c}, {d}},
cmp(T1) = {{a, b}, {c}, {d}}, grp(T1) = {{a}, {b}, {c}, {d}},
cmp(T2) = {{a, b, c}, {d}}, grp(T2) = {{a}, {b}, {c}, {d}},
cmp(T3) = {{a, b, c, d}}, grp(T3) = {{a, b}, {c}, {d}}.

The width of D is 3. Consider the graph G = (V, {ab, ad, bc, bd}). To see that D is a 3-derivation
of G, we need to check the edge, neighborhood, and path properties. We observe that a, b are the only
two vertices such that ab ∈ E(G) and both vertices appear in the same group of some Ti (here, we
have i = 3). To check the edge property, we only need to verify that a, b are in the same component
of T2, which is true. For the neighborhood property, the only relevant choice of three vertices is a, b, c
(bc ∈ E(G), ac /∈ E(G), and a, b in a group of T3). The neighborhood property requires that b, c are in
the same component in T2, which is the case. The path property is satisfied since there is no template
in which two pairs of vertices belong to the same group, respectively.

Similarly we can verify that D is a derivation of the graph G′ = (V, {ab, bc, cd}). In fact, for all
connected graphs with four vertices, there exists an isomorphic graph that is defined by D (see Figure 1).
However, D is not a derivation of the graph G′′ = (V, {ab, ac, bd, cd}) since the neighborhood property
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Figure 1: All connected graphs with four vertices (up to isomorphism). The 3-derivation of Example 2
defines all six graphs. The clique-width of all but the first graph is 2.

is violated: bd ∈ E(G′′) and ad /∈ E(G′′), a, b belong to the same group in T3, while a, d do not belong
to the same component in T2. a

We call a derivation (T0, . . . , Tt) to be strict if |cmp(Ti−1)| > |cmp(Ti)| holds for all 1 ≤ i ≤ t.

Lemma 1. If G has a k-derivation, it has a strict k-derivation.

Proof. Let D = (T0, . . . , Tt) be a k-derivation of G. Assume there is some 1 ≤ i ≤ t such that
cmp(Ti−1) = cmp(Ti). If also grp(Ti−1) = grp(Ti), then Ti−1 = Ti, and we can safely remove Ti−1
and still have a k-derivation of G. Hence assume grp(Ti−1) 6= grp(Ti). This implies that i > 1. If
i = t, then we can safely remove Tt from the derivation and (T0, . . . , Tt−1) is clearly a k-derivation of
G. Hence it remains to consider the case 1 < i ≤ t− 1. We show that by dropping Ti we get a sequence
D′ = (T0, . . . , Ti−1, Ti+1, . . . , Tt) that is a k-derivation of G.

The new sequence D′ is clearly a k-derivation. It remains to verify that D′ is a derivation of G.
The template Ti+1 is the only one where these properties might have been violated by the removal of
Ti. However, since all three properties impose a restriction on the set of components of the template
preceding Ti+1, and since cmp(Ti−1) = cmp(Ti), the properties are not effected by the deletion of Ti.
Hence D′ is indeed a k-derivation of G.

By repeated application of the above shortening we can turn any k-derivation into a strict k-deriva-
tion.

Lemma 2. Every strict k-derivation of a graph with n vertices has length at most n− 1.

Proof. Let (T0, . . . , Tt) be a strict k-derivation of a graph with n vertices. Since |cmp(T0)| = n and
|cmp(T0)| = 1, it follows that t ≤ n− 1.

In the proofs of the next two lemmas we need the following concept of a k-expression tree, which
is the parse tree of a k-expression equipped with some additional information. Let φ be a k-expression
for a graph G = (V,E). Let Q be the parse tree of φ with root r. That is, Q contains a node for
each occurrence of an operation ⊕, ρi→j , and ηi,j in φ and for each initial k-graph i(v) in φ; the initial
k-graphs are the leaves of Q, and the other nodes have as children the nodes which represent the two
subexpressions of the respective operation. Consider a node q of Q and let φq be the subexpression of
φ whose parse tree is the subtree of Q rooted at q. Then q is labeled with the k-graph Gq constructed
by the k-expression φq. Thus the leaves of Q are labeled with initial k-graphs and the root r is labeled
with a labeled version of G. We call a non-leaf node of Q an ⊕-node, η-node, or ρ-node, according to
the operation it represents.

One ⊕-node of the parse tree can represent several directly subsequent ⊕-operations (e.g., the op-
eration (x ⊕ y) ⊕ z can be represented by a single node with three children). For technical reasons we
will also allow ⊕-nodes with a single child.

Each k-expression gives rise to a k-expression tree where each ⊕-node has no ⊕-nodes as children, let
us call such a k-expression tree to be succinct. Evidently, k-expressions and their (succinct) k-expression
trees can be effectively transformed into each other.

Lemma 3. From a k-expression of a graph G we can obtain a k-derivation of G in polynomial time.
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Proof. Let φ be a k-expression of G = (V,E) and let Q be the corresponding succinct k-expression
tree with root r. For a node q ∈ V (Q) let R(q) denote the number of ⊕-nodes that appear on the
path from r to q; thus R(r) = 1. We write U and L for the set of ⊕-nodes and the set of leaves of Q,
respectively. We let t := maxq∈LR(q). For 0 ≤ i ≤ t we define Ui = { q ∈ U : R(q) = t − i + 1 } and
Li = { q ∈ L : R(q) < t − i + 1 }. We observe that for each v ∈ V and 1 ≤ i ≤ t there is exactly one
q ∈ Ui ∪ Li such that v ∈ Gq

We define a derivation D = (T0, . . . , Tt) as follows. For 0 ≤ i ≤ t we put cmp(Ti) = {V (Gq) : q ∈
Ui ∪ Li } and grp(Ti) =

⋃
q∈Ui∪Li

grp(Gq) where grp(Gq) denotes the partition of V (Gq) into sets of
vertices that have the same label. By construction, D is a derivation with universe V . Furthermore,
since φ is a k-expression, |grp(Gq)| ≤ k for all nodes q of Q. Hence D is a k-derivation. It remains to
show that D is a k-derivation of G. Let 1 ≤ i ≤ t.

To show that the edge property holds, consider two vertices u, v ∈ V such that uv ∈ E and u, v are
in the same group in Ti. Assume to the contrary that u, v belong to different components c1, c2 in Ti−1.
Since u, v are in the same group in Ti, they are also in the same component of Ti. Hence there is an
⊕-node q ∈ Ui with u, v ∈ V (Gq) ∈ cmp(Ti). Let q1, q2 be the children of q with V (Gq1) = c1 and
V (Gq2) = c2. Hence uv /∈ E(Gq1)∪E(Gq1). However, since u, v are in the same group in Ti, this means
that u, v have the same label in Gq. Thus the edge uv cannot be introduced by an η-operation, and so
uv /∈ E(Gr) = E, a contradiction. Hence the edge property holds.

To show that the neighborhood property holds, consider three vertices u, v, w ∈ V such that uv ∈ E,
uw /∈ E, and v, w are in the same group of Ti. Assume to the contrary that u, v are in different
components of Ti−1, say in components c1 and c2, respectively. Since v, w are in the same group
of Ti, they are also in the same component c of Ti. Let q ∈ Ui be the ⊕-node such that v, w ∈
V (Gq) = c ∈ cmp(Ti), and let q1, q2 be the children of q with V (Gq1) = c1 and V (Gq2) = c2. Clearly
uv /∈ E(Gq1)∩E(Gq2), hence there must be an η-node p somewhere on the path between q and r where
the edge uv is introduced. However, since v and w share the same label in Gq, they share the same
label in Gp. Consequently, the η-operation that introduces the edge uv also introduces the edge uw.
However, this contradicts the assumption that uw /∈ E. Hence the neighborhood property holds as well.

To show that the path property holds, we proceed similarly. Consider four vertices u, v, w, x ∈ V , such
that uv, uw, vx ∈ E and wx /∈ E. Assume that u, x are in the same group in Ti and v, w are in the same
group in Ti. Assume to the contrary that u, v are in different components of Ti−1, say in components c1
and c2, respectively. Above we have shown that the neighborhood property holds. Hence we conclude
that u,w belong to the same component of Ti−1, and v, x belong to the same component of Ti−1. Since
u, x are in the same group in Ti, they are also in the same component of Ti, say in component c. Since
u,w belong to the same component of Ti−1, they also belong to the same component of Ti, thus w ∈ c.
By a similar argument we conclude that v ∈ c. Thus all four vertices u, v, w, x belong to c. Let q ∈ Ui
be the ⊕-node with V (Gq) = c ∈ cmp(Ti), and let q1, q2 be the children of q with V (Gq1) = c1 and
V (Gq2) = c2. Clearly uv /∈ E(Gq1) ∪ E(Gq2), hence there must be an η-node p somewhere on the path
between q and r where the edge uv is introduced. However, since v and w share the same label in Gq,
and u and x share the same label in Gq, this also holds in Gp. Hence the η-operation that introduces
the edge uv also introduces the edge xw. However, this contradicts the assumption that xw /∈ E. Hence
the path property holds as well. We conclude that D is indeed a k-derivation of G.

The above procedure for generating the k-derivation can clearly be carried out in polynomial time.

Example 3. Consider the 3-expression φ for the graph P4 of Example 1. Applying the procedure
described in the proof of Lemma 3 we obtain the 3-derivation D of Example 2. a

Lemma 4. From a k-derivation of a graph G we can obtain a k-expression of G in polynomial time.

Proof. Let D = (T0, . . . , Tt) be a k-derivation of G = (V,E). Using the construction of the proof of
Lemma 1 we can obtain a strict k-derivation of G from any given k-derivation of G. Hence we may
assume, w.l.o.g., that D is strict. Let C =

⋃t
i=0 cmp(Ti). We are going to construct in polynomial time

a k-expression tree for G, which can clearly be turned into a k-expression for G in polynomial time.
We proceed in three steps.
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First we construct a k-expression tree Q⊕ that only contains ⊕-nodes and leaves. For each component
c = {v} of T0 we introduce a leaf q(c, 0) with label 1(v). For each 1 ≤ i ≤ t and each component
c ∈ cmp(Ti) we introduce an ⊕-node q(c, i). We add edges to Q⊕ such that q(c′, i−1) is a child of q(c, i)
if and only if c′ ⊆ c. Properties D1 and D3 of a derivation ensure that Q⊕ is a tree. Note that Q⊕ is
not necessarily succinct, and may contain ⊕-nodes that have only one child.

In the next step we add to Q⊕ certain ρ-nodes to obtain the k-expression tree Q⊕,ρ. We visit the
⊕-nodes ofQ⊕ in a depth-first ordering. Let q(c, i) be the currently visited node. Between q(c, i) and each
child q(c′, i−1) of q(c, i) we add at most k ρ-nodes (so that the edge between q(c, i) and q(c′, i−1) becomes
a path) such that afterwards q(c, i) has a child q′ with grp(Gq′) = { g ∈ grp(Gq(c,i)) : g ⊆ c } ⊆ grp(Ti).
This is possible because of properties D2 and D4 of a derivation.

As a final step, we add η-nodes to Q⊕,ρ and the k-expression tree Q. Let uv ∈ E be an edge of G.
We show that there is an ⊕-node q in Q⊕,ρ above which we can add an η-node p (q is a child of p) which
introduces edges including uv but does not introduce any edge not present in E .

Let q(c, i) be the ⊕-node of Q⊕,ρ with smallest i such that u, v ∈ V (Gq(c,i)). We write q = q(c, i)
and c = V (Gq) and observe that c ∈ cmp(Ti). Among the children of q are two distinct nodes q1, q2
such that u ∈ V (Gq1) and v ∈ V (Gq2). It follows that there are distinct components c1, c2 ∈ Ti−1 with
u ∈ c1 and v ∈ c2. By the edge property, u and v belong to different groups of Ti, and so u and v have
different labels in Gq, say the labels a and b, respectively. We add an η-node p above q representing the
operation ηa,b. This inserts the edge uv to Gq. We need to show that ηa,b does not add any edge that
is not in E. We show that for all pairs of vertices u′, v′ ∈ c where u′ has label a and v′ has label b in
Gq, the edge u′v′ is in E.

We consider four cases.
Case 1: u = u′, v = v′. Trivially, u′v′ = uv ∈ E.
Case 2: u = u′, v 6= v′. Assume to the contrary that u′v′ /∈ E. Since v and v′ have the same label

in Gq, they belong to the same group of Ti. The neighborhood property implies that u and v belong to
the same component of Ti−1, a contradiction to the minimal choice of i. Hence u′v′ ∈ E.

Case 3: u 6= u′, v = v′. This case is symmetric to Case 2.
Case 4: u 6= u′, v 6= v′. Assume to the contrary that u′v′ /∈ E. It follows by from Cases 2 and 3

that uv′, vu′ ∈ E. The path property implies that u and v belong to the same component of Ti−1, a
contradiction to the minimal choice of i. Hence u′v′ ∈ E.

Consequently, we can successively add η-nodes to Q⊕,ρ until all edges of E are inserted, but no edge
outside of E. Hence we obtain indeed a k-expression tree for G.

This procedure for generating the k-expression tree can clearly be carried out in polynomial time,
hence the lemma follows.

We note that we could have saved some ρ-operations in the proof of Lemma 4. In particular the
k-expression produced may contain ρ-operations where the number of different labels before and after
the application of the ρ-operation remains the same. It is easy to see that such a ρ-operations can be
omitted if we change labels of some initial k-graphs accordingly.

Example 4. Consider the derivation D of graph G in Example 2. We construct a 3-expression of
G using the procedure as described in the proof of Lemma 4, however, to save space, we give the
construction in terms of k-expressions instead of k-expression trees. First we obtain φ⊕ = ((1(a) ⊕
1(b)) ⊕ 1(c)) ⊕ 1(d). Next we insert ρ operations to represent how the groups evolve through the
derivation: φ⊕,ρ = ρ1→2((1(a) ⊕ ρ1→2(1(b)) ⊕ ρ1→31(c))) ⊕ 1(d). Finally we add η operations, and
obtain φ⊕,ρ,η = η1,2(ρ1→2(η2,3(η1,2(1(a)⊕ ρ1→2(1(b)))⊕ ρ1→31(c)))⊕ 1(d)). a

By Lemma 2 we do not need to search for k-derivations of length > n − 1 when the graph under
consideration has n vertices. The next lemma improves this bound to n − k + 1 which provides a
significant improvement for our SAT encoding, especially if the graph under consideration has large
clique-width.

Lemma 5. Let 1 ≤ k ≤ n. If a graph with n vertices has a k-derivation, then it has a k-derivation of
length n− k + 1.
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Proof. Let k ≥ 1 be fixed. We define the k-length of a derivation as the number of templates that contain
at least one component of size larger than k (these templates form a suffix of the derivation). Let `(n, k)
be the largest k-length of a strict derivation over a universe of size n. Before we show the lemma, we
establish three claims. For these claims, the groups of the considered derivations are irrelevant and
hence we will be ignored.

Claim 1: `(n, k) < `(n+ 1, k).
To show the claim, consider a strict derivation D = (T0, . . . , Tt) over a universe V of size n with

k-length `. We take a new element a and form a strict derivation D′ over the universe V ∪{a} by adding
the singleton {a} to cmp(Ti) for 0 ≤ i ≤ t and adding a new template Tt+1 with cmp(Tt+1) = {V ∪{a}}.
The new derivation D′ has k-length `+ 1.

Claim 2: Let D = (T0, . . . , Tt) be a strict derivation over a universe V of size n of k-length `(n, k).
Then, Tt−`(n,k)+1 has exactly one component of size k + 1 and all other components are singletons.

We proceed to show the claim. Let j = t− `(n, k), and observe that j is the largest index where all
components of Tj have size at most k. Let c1, . . . , cr be the components of Tj+1 of size greater than 1
such that |c1| ≥ |c2| ≥ · · · ≥ |cr|. Thus |c1| > k. We show that r = 1. Assume to the contrary that
r > 1. We pick some element ai ∈ ci, 2 ≤ i ≤ r, and set X =

⋃r
i=2 ci \ {ai}. The derivation D induces a

strict derivation D′ over the universe V ′ = V \X. Observe that n′ = |V ′| < |V | = n. Evidently D′ has
the same k-length as D, hence `(n′, k) ≥ `(n, k), a contradiction to Claim 1. Hence r = 1, and c1 is the
only component in Tj+1 of size greater than k, all other components of Tj+1 are singletons. We show
that |c1| = k+ 1. We assume to the contrary that |c1| > k+ 1. We pick k+ 1 elements b1, . . . , bk+1 ∈ c1
and set X = c1 \ {b1, . . . , bk+1}. Similarly as above, we observe that D induces a strict derivation D′′
over the universe V ′′ = V ′ \ X, and that D′′ has the same k-length as D. Since |V ′′| < |V | we have
again a contradiction to Claim 1. Hence Claim 2 is established.

Claim 3: `(n, k) ≤ n− k.
To see the claim, let D = (T0, . . . , Tt) be a strict derivation over a universe V of size n of k-length

`(n, k). Let j = t − `(n, k). By Claim 2 we know that Tj+1 has exactly one component of size k + 1
and all other components are singletons (hence there are n − k − 1 singletons). We conclude that
|cmp(Tj+1)| = n−k. SinceD is strict, we have n−k = |cmp(Tj+1)| > |cmp(Tj+2)| > · · · > |cmp(Tt)| = 1.
Thus `(n, k) = t− j ≤ n− k, and the claim follows.

We are now in the position to establish the statement of the lemma. Let D = (T0, . . . , Tt) be a
k-derivation of a graph G = (V,E) with |V | = n. By Lemma 1 we may assume that D is strict. Let `
be the k-length of D and let j = t− `. By Claim 3 we know that ` ≤ n− k. We define a new template
T ′j with cmp(T ′j) = cmp(Tj) and grp(T ′j) = grp(T0), and we set D′ = (T0, T

′
j , Tj+1, . . . , Tt). We claim

that D′ is a k-derivation of G. Clearly D′ is a derivation, but we need to check the edge, neighborhood,
and path property for T ′j and Tj+1 in D′. The properties hold trivially for T ′j since all its groups are
singletons. For Tj+1 the properties hold since T ′j has the same components as Tj . Thus D′ is indeed a
k-derivation of G. The length of D′ is `+ 1 ≤ n− k + 1, hence the lemma follows.

Example 5. Again, consider the derivation D of Example 2. D defines P4 which has clique-width 3 [9].
According to Lemma 5, it should have a derivation of length n− k + 1 = 4− 3 + 1 = 2. We can obtain
such a derivation by removing T1 from D, which gives D′ = (T0, T2, T3). a

By combining Lemmas 3, 4, and 5, we arrive at the main result of this section.

Proposition 1. Let 1 ≤ k ≤ n. A graph G with n nodes has clique-width at most k if and only if G
has a k-derivation of length at most n− k + 1.

4 Encoding a Derivation of a Graph

Let G = (V,E) be graph, and t > 0 an integer. We are going to construct a CNF formula Fder(G, t)
that is satisfiable if and only if G has a derivation of length t. We assume that the vertices of G are
given in some arbitrary but fixed linear order <.
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For any two distinct vertices u and v of G and any 0 ≤ i ≤ t we introduce a component variable
cu,v,i. Similarly, for any two distinct vertices u and v of G with u < v and any 0 ≤ i ≤ t we introduce a
group variable gu,v,i. Intuitively, cu,v,i or gu,v,i are true if and only if u and v are in the same component
or group, respectively, in the ith template of an implicitly represented derivation of G.

The formula Fder(G, t) is the conjunction of all the clauses described below.
The following clauses represent the conditions D1–D4.

(c̄u,v,0) ∧ (cu,v,t) ∧ (cu,v,i ∨ ḡu,v,i) ∧ (c̄u,v,i−1 ∨ cu,v,i) ∧ (ḡu,v,i−1 ∨ gu,v,i)
for u, v ∈ V , u < v, 0 ≤ i ≤ t.

We further add clauses that ensure that the relations of being in the same group and of being in the
same component are transitive.

(c̄u,v,i ∨ c̄v,w,i ∨ cu,w,i) ∧ (c̄u,v,i ∨ c̄u,w,i ∨ cv,w,i) ∧ (c̄u,w,i ∨ c̄v,w,i ∨ cu,v,i) ∧
(ḡu,v,i ∨ ḡv,w,i ∨ gu,w,i) ∧ (ḡu,v,i ∨ ḡu,w,i ∨ gv,w,i) ∧ (ḡu,w,i ∨ ḡv,w,i ∨ gu,v,i)

for u, v, w ∈ V , u < v < w, 0 ≤ i ≤ t.

In order to enforce the edge property we add the following clauses for any two vertices u, v ∈ V with
u < v, uv ∈ E and 1 ≤ i ≤ t:

(cu,v,i−1 ∨ ḡu,v,i).

Further, to enforce the neighborhood property, we add for any three vertices u, v, w ∈ V with uv ∈ E
and uw /∈ E and 1 ≤ i ≤ t, the following clauses.

(cmin(u,v),max(u,v),i−1 ∨ ḡmin(v,w),max(v,w),i)

Finally, to enforce the path property we add for any four vertices u, v, w, x, such that uv, uw, vx ∈ E,
and wx /∈ E, u < v and 1 ≤ i ≤ t the following clauses:

(cu,v,i−1 ∨ ḡmin(u,x),max(u,x),i ∨ ḡmin(v,w),max(v,w),i)

The following statement is a direct consequence of the above definitions.

Lemma 6. Fder(G, t) is satisfiable if and only if G has a derivation of length t.

5 Encoding a k-Derivation of a Graph

In this section, we describe how the formula Fder(G, t) can be extended to encode a derivation of width
at most k. Ideally, one wants to encode that unit propagation results in a conflict on any assignment
of component and group variables representing a derivation containing a component with more than
k groups. First we will describe the conventional direct encoding [35] followed by our representative
encoding. Only the latter encoding realizes arc consistency [18].

5.1 Direct Encoding

We introduce new Boolean variables lv,a,i for v ∈ V , 1 ≤ a ≤ k, and 0 ≤ i ≤ t. The purpose is to
assign each vertex for each template a group number between 1 and k. The intended meaning of a
variable lv,a,i is that in Ti, vertex v has group number a. Let F (G, k, t) denote the formula obtained
from Fder(G, t) by adding the following three sets of clauses. The first ensures that every vertex has at
least one group number, the second ensures that every vertex has at most one group number, and the
third ensures that two vertices of the same group share the same group number.

(lv,1,i ∨ lv,2,i ∨ · · · ∨ lv,k,i) for v ∈ V , 0 ≤ i ≤ t,
(l̄v,a,i ∨ l̄v,b,i) for v ∈ V , 1 ≤ a < b ≤ k, 0 ≤ i ≤ t,
(l̄u,a,i ∨ l̄v,a,i ∨ c̄u,v,i ∨ gu,v,i) ∧ (l̄u,a,i ∨ lv,a,i ∨ ḡv,w,i) ∧ (lv,a,i ∨ l̄v,a,i ∨ ḡu,v,i)

for u, v ∈ V , u < v, 1 ≤ a ≤ k, 0 ≤ i ≤ t.
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Together with Lemma 6 this construction directly yields the following statement.

Proposition 2. Let G = (V,E) be graph and t = |V | − k + 1. Then F (G, k, t) is satisfiable if and only
if cwd(G) ≤ k.

Example 6. Let G = (V,E) and k = 2. Vertices u, v, w ∈ V in template Ti, are in one component, but in
different groups. Hence the corresponding component variables are true, and the corresponding group
variables are false. The clauses containing the variables lu,a,i, lv,a,i, lw,a,i with a ∈ {1, 2} after removing
falsified literals are:

(lu,1,i ∨ lu,2,i) ∧ (lv,1,i ∨ lv,2,i) ∧ (lw,1,i ∨ lw,2,i) ∧ (l̄u,1,i ∨ l̄v,1,i) ∧ (l̄u,1,i ∨ l̄w,1,i) ∧
(l̄v,1,i ∨ l̄w,1,i) ∧ (l̄u,2,i ∨ l̄v,2,i) ∧ (l̄u,2,i ∨ l̄w,2,i) ∧ (l̄v,2,i ∨ l̄w,2,i)

These clauses cannot be satisfied, yet unit propagation will not result in a conflict. Therefore, a SAT
solver may not be able to cut off the current branch. a

5.2 The Representative Encoding

To overcome the unit propagation problem of the direct encoding, as described in Example 6, we propose
the representative encoding which uses two types of variables. First, for each v ∈ V and 1 ≤ i ≤ t we
introduce a representative variable rv,i. This variable, if assigned to true, expresses that vertex v is the
representative of a group in template Ti. In each group, only one vertex can be the representative and
we choose to make the first vertex in the lexicographical ordering the representative. This results in the
following clauses:

(rv,i ∨
∨
u∈V,u<v gu,v,i) ∧

∧
u∈V,u<v(r̄v,i ∨ ḡu,v,i) for v ∈ V , 0 ≤ i ≤ t

Additionally we introduce auxiliary variables to efficiently encode that the number of representative
vertices in a component is at most k. These auxiliary variables are based on the order encoding [34].
Consider a (non-Boolean) variable Lv,i with domain D = {1, . . . , k}, whose elements denote the group
number of vertex v in template Ti. In the direct encoding, we used k variables lv,a,i with a ∈ D.
Assigning lv,a,i = 1 in that encoding means Lv,i = a. Alternatively, we can use order variables o>v,a,i
with v ∈ V , a ∈ D \ {k}, 0 ≤ i ≤ t. Assigning o>v,a,i = 1 means Lv,i > a. Consequently, o>v,a,i = 0 means
Lv,i ≤ a.

Example 7. Given an assignment to the order variables o>v,a,i, one can easily construct the equivalent
assignment to the variables in the direct encoding (and the other way around). Below is a visualization
of the equivalence relation with k = 5. In the middle is a binary representation of each of the k labels
by concatenating the Boolean values to the order variables.

Lv = 1 ↔ lv,1,i = 1 ↔ 0000 ↔ o>v,1,i = o>v,2,i = o>v,3,i = o>v,4,i = 0

Lv = 2 ↔ lv,2,i = 1 ↔ 1000 ↔ o>v,1,i = 1, o>v,2,i = o>v,3,i = o>v,4,i = 0

Lv = 3 ↔ lv,3,i = 1 ↔ 1100 ↔ o>v,1,i = o>v,2,i = 1, o>v,3,i = o>v,4,i = 0

Lv = 4 ↔ lv,4,i = 1 ↔ 1110 ↔ o>v,1,i = o>v,2,i = o>v,3,i = 1, o>v,4,i = 0

Lv = 5 ↔ lv,5,i = 1 ↔ 1111 ↔ o>v,1,i = o>v,2,i = o>v,3,i = o>v,4,i = 1 a

Although our encoding is based on the variables from the order encoding, we use none of the asso-
ciated clauses. We implemented the original order [34], which resulted in many long clauses and the
performance was comparable to the direct encoding.

Instead, we combined the representative and order variables. Our use of the order variables can be
seen as the encoding of a sequential counter [32]. We would like to point out that if u and v are both
representative vertices in the same component of template Ti and u < v, then o>u,a,i = 0 and o>v,a,i = 1

must hold for some 1 ≤ a < k. Consequently, o>u,k−1,i = 0 (vertex u has not the highest group number in

Ti), o
>
v,1,i = 1 (vertex v has not the lowest group number in Ti), and o>u,a,i → o>v,a+1,i: These constraints

can be expressed by the following clauses.
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(c̄u,v,i ∨ r̄u,i ∨ r̄v,i ∨ ō>u,k−1,i) ∧ (c̄u,v,i ∨ r̄u,i ∨ r̄v,i ∨ o>v,1,i) ∧∧
1≤a<k−1(c̄u,v,i ∨ r̄u,i ∨ r̄v,i ∨ ō>u,a,i ∨ o>v,a+1,i) for u, v ∈ V , u < v, 0 ≤ i ≤ t.

Example 8. Consider a graph G = (V,E) with u, v, w, x ∈ V and the representative encoding with k = 3.
We will show that if u,v,w, and x are all in the same component and they are all representatives of their
respective group numbers in template Ti, then unit propagation will result in a conflict (because there
are four representatives and only three group numbers). Observe that all corresponding component
and representative variables are true. This example, with falsified literals removed, contains the clauses
(ō>u,2,i), (ō>u,1,i∨o

>
v,2,i), (o>v,1,i), (ō>u,2,i), (ō>u,1,i∨o

>
w,2,i), (o>w,1,i), (ō>u,2,i), (ō>u,1,i∨ o>x,2,i), (o>x,1,i), (ō>v,2,i),

(ō>
v,1,i ∨ o>

w,2,i), (o>w,1,i), (ō>v,2,i), (ō>
v,1,i ∨ o

>
x,2,i), (o>x,1,i), (ō>w,2,i), (ō>

w,1,i ∨ o
>
x,2,i), (o>x,1,i). Literals that

are falsified by unit clauses are shown in bold. Notice that (ō>v,1,i ∨ o>w,2,i) is falsified, i.e., a conflicting
clause. a

Both the direct and representative encoding require n(n+ k − 1)(n− k + 2) variables. The number
of clauses depends on the set of edges. In worst case, the number of clauses can be O(n5 − n4k) due to
the path condition.

6 Experimental Results

In this section we report the results we obtained by running our SAT encoding on various classes of
graphs. Given a graph G = (V,E), we compute that G has clique-width k by determining for which
value of k it holds that F (G, k, |V | − k + 1) is satisfiable and F (G, k − 1, |V | − k + 2) is unsatisfiable.
We used the SAT solver Glucose version 2.2 [1] to solve the encoded problems. Glucose solved the
hardest instances about twice as fast (or more) as other state-of-the-art solvers such as Lingeling [3],
Minisat [15] and Clasp [17]. We used a 4-core Intel Xeon CPU E31280 3.50GHz, 32 Gb RAM machine
running Ubuntu 10.04.

Although the direct and representative encodings result in CNF formulas of almost equal size, there
is a huge difference in costs to solve these instances. To determine the clique-width of the famous named
graphs (see below) using the direct encoding takes about two to three orders of magnitude longer as
compared to the representative encoding. For example, we can establish that the Paley graph with
13 vertices has clique-width 9 within a few seconds using the representative encoding, while the solver
requires over an hour using the direct encoding. Because of the huge difference in speed, we discarded
the use of the direct encoding in the remainder of this section.

We noticed that upper bounds (satisfiable formulas) are obtained much faster than lower bounds
(unsatisfiable formulas). The reason is twofold. First, the whole search space needs to be explored for
lower bounds, while for upper bounds, one can be “lucky” and find a solution fast. Second, due to our
encoding, upper bound formulas are smaller (due to a smaller t) which makes them easier. Table 1
shows this for a random graph with 20 vertices for the direct encoding and the representative encoding.

Table 1: Runtimes in seconds of the direct and representative encoding on a random graph with 20
vertices and 95 edges for different values of k. Up to k = 9 the formulas are unsatisfiable, afterwards
they are satisfiable. Timeout (TO) is 20,000 seconds.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16

direct 1.39 14.25 101.1 638.5 18,337 TO TO TO TO 30.57 0.67 0.50 0.10 0.10
repres 0.62 2.12 8.14 12.14 33.94 102.3 358.6 9.21 0.40 0.35 0.32 0.29 0.29 0.28

We examined whether adding symmetry-breaking predicates could improve performance. We used
Saucy version 3 for this purpose [25]. After the addition of the clauses with representative variables, the
number of symmetries is drastically reduced. However, one can generate symmetry-breaking predicates
for Fder(G, t) and add those instead. Although it is helpful in some cases, the average speed-up was
between 5 to 10%.
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Our experimental computations are ongoing. Below we report on some of the results we have obtained
so far.

6.1 Random Graphs

The asymptotics of the clique-width of random graphs have been studied by Lee et al. [27]. Their
results show that for random graphs on n vertices the following holds asymptotically almost surely: If
the graphs are very sparse, with an edge probability below 1/n, then clique-width is at most 5; if the
edge probability is larger than 1/n, then the clique-width grows at least linearly in n. Our first group of
experiments complements these asymptotic results and provides a detailed picture on the clique-width
of small random graphs. We have used the SAT encoding to compute the clique-width of graphs with
10, 15, and 20 vertices, with the edge probability ranging from 0 to 1. A plot of the distribution is
displayed in Figure 2. It is interesting to observe the symmetry at edge probability 1/2, and the how
the steepness of the curve increases with the number of vertices. Note the “shoulders” of the curve for
very sparse and very dense graphs.

Table 1. Runtimes in seconds of the direct and representative encoding on a random
graph with 20 vertices and 95 edges for di↵erent values of k. Up to k = 9 the formulas
are unsatisfiable, afterwards they are satisfiable. Timeout (TO) is 20,000 seconds.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16

direct 1.39 14.25 101.1 638.5 18,337 TO TO TO TO 30.57 0.67 0.50 0.10 0.10
repres 0.62 2.12 8.14 12.14 33.94 102.3 358.6 9.21 0.40 0.35 0.32 0.29 0.29 0.28

reduced. However, one can generate symmetry-breaking predicates for Fder(G, t)
and add those instead. Although it is helpful in some cases, the average speed-up
was between 5 to 10%.

Our experimental computations are ongoing. Below we report on some of the
results we have obtained so far.

6.1 Random Graphs

The asymptotics of the clique-width of random graphs have been studied by Lee
et al. [27]. Their results show that for random graphs on n vertices the following
holds asymptotically almost surely: If the graphs are very sparse, with an edge
probability below 1/n, then clique-width is at most 5; if the edge probability is
larger than 1/n, then the clique-width grows at least linearly in n. Our first group
of experiments complements these asymptotic results and provides a detailed
picture on the clique-width of small random graphs. We have used the SAT
encoding to compute the clique-width of graphs with 10, 15, and 20 vertices, with
the edge probability ranging from 0 to 1. A plot of the distribution is displayed
in Figure 2. It is interesting to observe the symmetry at edge probability 1/2,
and the how the steepness of the curve increases with the number of vertices.
Note the “shoulders” of the curve for very sparse and very dense graphs.
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the clauses with representative variables, the formula hardly contains symmetries
anymore. However, one can generate symmetry breaking predicates for FD(G, t)
and add those instead. Although it helpful in some cases, the average speed-up
was between 5 to 10%.

6.1 Random Graphs

The asymptotics of the clique-width of random graphs have been studied by
Johansson [10], and more recently by Lee et al. [11]. Their results how that for
random graphs on n vertices the following holds asymptotically almost surely:
If the graphs are very sparse, with an edge probability below 1/n, then clique-
width is at most 5; if the edge probability is larger than 1/n, then the clique-
width grows linearly in n. Our first group of experiments complement these
asymptotic results and provide a detailed picture on the clique-width of small
random graphs. We have used the SAT encoding to compute the clique-width
of graphs with 10, 15, and 20 vertices, with the edge probability ranging from 0
to 1. A plot of the distribution is displayed in Fig 2. It is interesting to observe
the symmetry at edge probability 1/2, and the how the steepness if the curve
increases with the number of vertices.
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Fig. 2. Relation on the edge probability and the clique-width of small random graphs.
Each dot in the graph represents the average clique-width of 100 graphs.

6.2 The Clique-Width Numbers

For every integer k > 0 let nk denote the smallest number such that there exists
a graph with nk many vertices of clique-width k. We call nk be the n’th clique-
width number. From the characterizations known for graphs of clique-width 1,
2, and 3, respectively [8], it is easy to determine the first three clique-width
numbers as 1, 2, and 4. However, already to determine n4 is not straightforward,

edge probability

Fig. 2. Average clique-width of random graphs with edge probabilities between 0 and 1.
Each dot in the graph represents the average clique-width of 100 graphs.Figure 2: Average clique-width of random graphs with edge probabilities between 0 and 1. Each dot in

the graph represents the average clique-width of 100 graphs.

6.2 The Clique-Width Numbers

For every k > 0, let nk denote the smallest number such that there exists a graph with nk vertices
that has clique-width k. We call nk the kth clique-width number. From the characterizations known
for graphs of clique-width 1, 2, and 3, respectively [5], it is easy to determine the first three clique-
width numbers (1, 2, and 4). However, determining n4 is not straightforward, as it requires nontrivial
arguments to establish clique-width lower bounds. We would like to point out that a similar sequence
for the graph invariant treewidth is easy to determine, as the complete graph on n vertices is the smallest
graph of treewidth n−1. One of the very few known graph classes of unbounded clique-width for which
the exact clique-width can be determined in polynomial time are grids [23]; the k×k grid with k ≥ 3 has
clique-width k + 1 [20]. Hence grids provide the upper bounds n4 ≤ 9, n5 ≤ 16, n6 ≤ 25, and n7 ≤ 36.
With our experiments we could determine n4 = 6, n5 = 8, n6 = 10, n7 = 11, n8 ≤ 12, and n9 ≤ 13.
It is known that the path on four vertices (P4) is the unique smallest graph in terms of the number
of vertices with clique-width 3. We could determine that the triangular prism (3-Prism) is the unique
smallest graph with clique-width 4, and that there are exactly 7 smallest graphs with clique-width 5.
There are 68 smallest graphs with clique-width 6 and one of them has only 18 edges. See Figure 3 for an
illustration. Additionally, we found several graphs of size 11 with clique-width 7 by extending a graph
of size 10 with clique-width 6.

Proposition 3. The clique-width sequence starts with the numbers 1, 2, 4, 6, 8, 10, 11.
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Figure 3: Smallest graphs with clique-width 3, 4, 5, and 6 (from left to right).

We used Brendan McKay’s software package Nauty [28] to avoid checking isomorphic copies of the
same graph. There are several other preprocessing methods that can speed up the search for small
graphs of prescribed clique-width k ≥ 2. Obviously, we can limit the search to connected graphs, as the
clique-width of a graph is clearly the maximum clique-width of its connected components. We can also
ignore graphs that contain twins—two vertices that have exactly the same neighbors—as we can delete
one of them without changing the clique-width. Similarly, we can ignore graphs with a universal vertex,
a vertex that is adjacent to all other vertices, as it can be deleted without changing the clique-width. All
these filtering steps are subsumed by the general concept of prime graphs. Consider a graph G = (V,E).
A vertex u ∈ V distinguishes vertices v, w ∈ V if uv ∈ E and uw /∈ E. A set M ⊆ V is a module if
no vertex from V \M distinguishes two vertices from M . A module M is trivial if |M | ∈ {0, 1, |V |}.
A graph is prime if it contains only trivial modules. It is well-known that the clique-width of a graph
is either 2 or the maximum clique-width of its induced prime subgraphs [9]. Hence, in our search, we
can ignore all graphs that are not prime. We can efficiently check whether a graph is prime [21]. The
larger the number of vertices, the larger the fraction of non-prime graphs (considering connected graphs
modulo isomorphism). Table 2 gives detailed results.

Table 2: Number of connected and prime graphs with specified clique-width, modulo isomorphism.

clique-width

|V | connected prime 2 3 4 5 6

4 6 1 0 1 0 0 0
5 21 4 0 4 0 0 0
6 112 26 0 25 1 0 0
7 853 260 0 210 50 0 0
8 11,117 4,670 0 1,873 2,790 7 0
9 261,080 145,870 0 16,348 125,364 4,158 0
10 11,716,571 8,110,354 0 142,745 5,520,350 2,447,190 68

6.3 Famous Named Graphs

The graph theoretic literature contains several graphs that have names, sometimes inspired by the
graph’s topology, and sometimes after their discoverer. We have computed the clique-width of several
named graphs, the results are given in Table 3 (definitions of all considered graphs can be found in
MathWorld [37]). The Paley graphs, named after the English mathematician Raymond Paley (1907–
1933), stick out as having large clique-width. Our results on the clique-width of Paley graphs imply
some upper bounds on the 9th and 11th clique-width numbers: n9 ≤ 13 and n11 ≤ 17.

7 Conclusion

We have presented a SAT approach to the exact computation of clique-width, based on a reformulation
of clique-width and several techniques to speed up the search. This new approach allowed us to system-
atically compute the exact clique-width of various small graphs. We think that our results could be of
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Table 3: Clique-width of named graphs. Sizes are reported for the unsatisfiables.

graph |V | |E| cwd variables clauses UNSAT SAT

Brinkmann 21 42 10 8,526 163,065 3,932.56 1.79
Chvátal 12 24 5 1,800 21,510 0.40 0.09
Clebsch 16 40 8 3,872 60,520 191.02 0.09
Desargues 20 30 8 7,800 141,410 3,163.70 0.26
Dodecahedron 20 30 8 7,800 141,410 5,310.07 0.33
Errera 17 45 8 4,692 79,311 82.17 0.16
Flower snark 20 30 7 8,000 148,620 276.24 3.9
Folkman 20 40 5 8,280 168,190 11.67 0.36
Franklin 12 18 4 1,848 21,798 0.07 0.04
Frucht 12 18 5 1,800 20,223 0.39 0.02
Hoffman 16 32 6 4,160 64,968 8.95 0.46
Kittell 23 63 8 12,006 281,310 179.62 18.65
McGee 24 36 8 13,680 303,660 8,700.94 59.89
Sousselier 16 27 6 4,160 63,564 3.67 11.75
Paley-13 13 39 9 1,820 22,776 12.73 0.05
Paley-17 17 68 11 3,978 72,896 194.38 0.12
Pappus 18 27 8 5,616 90,315 983.67 0.14
Petersen 10 15 5 1,040 9,550 0.10 0.02
Poussin 15 39 7 3,300 50,145 9.00 0.21
Robertson 19 38 9 6,422 112, 461 478.83 0.76
Shrikhande 16 48 9 3,680 59,688 129.75 0.11

relevance for theoretical investigations. For instance, knowing small vertex-minimal graphs of certain
clique-width could be helpful for the design of discrete algorithms that recognize graphs of bounded
clique-width. Such graphs can also be useful as gadgets for a reduction to show that the recognition
of graphs of clique-width 4 is NP-hard, which is still a long-standing open problem [16]. Furthermore,
as discussed in Section 1, there are no heuristic algorithms to compute the clique-width directly, but
heuristic algorithms for related parameters can be used to obtain upper bounds on the clique-width.
Our SAT-based approach can be used to empirically evaluate how far heuristics are from the optimum,
at least for small and medium-sized graphs.

So far we have focused in our experiments on the exact clique-width, but for various applications it is
sufficient to have good upper bounds. Our results (see Table 1) suggest that our approach can be scaled
to medium-sized graphs for the computation of upper bounds. We also observed that for many graphs
the upper bound of Lemma 5 is not tight. Thus, we expect that if we search for shorter derivations,
which is significantly faster, this will yield optimal or close to optimal solutions in many cases.

Finally, we would like to mention that our SAT-based approach is very flexible and open. It can
easily be adapted to variants of clique-width, such as linear clique-width [22, 16], m-clique-width [12],
or NLC-width [36]. Hence, our approach can be used for an empirical comparison of these parameters.
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