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A sliding window top-k (top-k/w) query monitors incoming data stream objects within a sliding window of
size w to identify the % highest-ranked objects with respect to a given scoring function over time. Processing
of such queries is challenging because, even when an object is not a top-k/w object at the time when it enters
the processing system, it might become one in the future. Thus a set of potential top-k/w objects has to
be stored in memory while its size should be minimized to efficiently cope with high data streaming rates.
Existing approaches typically store top-k/w and candidate sliding window objects in a k-skyband over a
two-dimensional score-time space. However, due to continuous changes of the k-skyband, its maintenance
is quite costly. Probabilistic k-skyband is a novel data structure storing data stream objects from a sliding
window with significant probability to become top-k/w objects in future. Continuous probabilistic k-skyband
maintenance offers considerably improved runtime performance compared to k-skyband maintenance, es-
pecially for large values of %, at the expense of a small and controllable error rate. We propose two possible
probabilistic k-skyband usages: () When it is used to process all sliding window objects, the resulting top-k/w
algorithm is approximate and adequate for processing random-order data streams. (ii) When probabilistic
k-skyband is used to process only a subset of most recent sliding window objects, it can improve the run-
time performance of continuous k-skyband maintenance, resulting in a novel exact top-k/w algorithm. Our
experimental evaluation systematically compares different top-k/w processing algorithms and shows that
while competing algorithms offer either time efficiency at the expanse of space efficiency or vice-versa, our
algorithms based on the probabilistic k-skyband are both time and space efficient.
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1. INTRODUCTION

Data stream processing has become an integral part of many applications requiring
continuous data processing, such as wireless sensor networks, stock trading, and net-
work monitoring. In contrast to traditional database systems, data stream processing
has to cope with high publication rates of data objects, while queries are mostly static
and continuous. Therefore, it is imperative to process incoming data streams both time
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efficiently and with a minimal memory footprint, such that the data of interest can be
identified and delivered to data destinations, such as end-users or other processes, in
near-real time.

We study a particular type of continuous queries which monitor top-k data objects
over sliding windows (top-k/w queries). The parameter £ limits the number of match-
ing data objects within a sliding window of size w to the top-k objects according to a
given scoring function. Sliding windows are used to restrict the temporal scope of real-
time data processing in the absence of explicit deletions of data objects [Mouratidis
and Papadias 2007]. They are commonly defined as either the number of most recent
data stream objects (count-based windows) or time intervals (¢ime-based windows)
[Mouratidis et al. 2006]. If a data object is not a top-k object in a query window at the
time of its arrival to the system, it can become one later on when higher-ranked objects
are dropped from the window while, simultaneously, only lower-ranked objects are ar-
riving. Therefore, the processing engine has to store in memory candidate objects with
potential to become top-k/w objects in the future. A straightforward approach would
maintain all sliding window objects in memory. However, since we are targeting envi-
ronments with high data publishing rates and queries with potentially large window
sizes, the set of top-k/w candidates has to be reduced, especially in scenarios where &
is much smaller than the number of sliding window objects.

Top-k/w queries hold a prominent position in the area of data stream processing as
they are useful for a number of applications [Jin et al. 2010]. Consider, for example, a
large-scale participatory sensing application where users carry their smartphones to
measure and report air pollution. A user might be interested to receive daily at most 10
notifications with the highest pollution-level readings over a predefined geographical
area, and also at the time when such readings are produced. Another example is
monitoring of smart grids where power grid operators need to identify over time a
limited number of sites with the largest or lowest energy production. Moreover, top-k/w
query processing is required in scenarios involving text retrieval [Haghani et al. 2010;
Mouratidis and Pang 2009] of, for example, Twitter messages or Facebook updates in
real time, to alleviate the problem of information overload experienced by users.

Although data stream processing has been a particularly active research area in the
last years [Chakravarthy and Jiang 2009], there are few solutions for both time- and
space-efficient processing of top-k/w queries [Koudas et al. 2004; Mouratidis et al. 2006;
Das et al. 2007; Mouratidis and Papadias 2007; Bohm et al. 2007]. Existing top-k/w
processing solutions are mainly based on the dominance property between data stream
objects placed in a two-dimensional score-time space. The dominance property states
that object @ dominates object b iff @ has a higher rank! than b, and a is younger than
b [Mouratidis et al. 2006]. Top-k/w and candidate stream objects, or nondominated
window objects as we call them in the article, are sliding window objects dominated
by at most £ — 1 other objects. Existing top-k/w processing algorithms typically main-
tain nondominated window objects over time in a special data structure—=~k-skyband
[Papadias et al. 2005]—to produce a resulting top-k data stream. However, due to con-
tinuous k-skyband modifications, that is, frequent insertions of incoming objects into
the data structure which cause pruning of dominated objects, continuous k-skyband
maintenance is extremely costly.

In literature we find two main approaches to efficient k-skyband maintenance: (i) ex-
haustive indexing [Mouratidis et al. 2006; Mouratidis and Papadias 2007] of window
objects in a regular grid which is tightly coupled with query indexing and (ii) buffer-
ing [Bohm et al. 2007] which stores a FIFO buffer of most recent window objects to
improve the k-skyband maintenance procedure. The buffer is used to avoid insertion

IDepending on a scoring function, either a smaller or larger score indicates a higher object rank.
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of arriving objects with low ranks into k-skybands, since all objects are the youngest
and thus nondominated at arrival time. On one hand, exhaustive indexing is efficient
in low-dimensional spaces, but not applicable for a wide range of applications that
process high-dimensional data objects. Moreover, it has a large memory footprint since
all window objects are referenced within a regular grid. On the other hand, the buffer-
ing approach requires less memory since it only stores k-skyband and buffer objects
in memory, where the buffer size is much smaller than the window size. However, as
our experiments show, this approach is relatively slow compared to other approaches,
although it does delay the insertion of buffer objects with low ranks into k-skybands.

To overcome the limitations of continuous k-skyband maintenance, we propose an
orthogonal approach which is both time and space efficient. It uses probabilistic k-
skyband, a data structure which is filled by objects that satisfy a probabilistic criterion,
to quickly decide from an incoming object score whether to keep the object as a top-k/w
candidate or discard it because of low chances to become a future top-k/w object. We
propose two possible probabilistic k-skyband usages.

(1) When probabilistic k-skyband is used for processing all sliding window objects, the
resulting algorithm is approximate. Probabilistic candidate pruning algorithm (PA)
is to our knowledge the first approximate algorithm for efficient top-k/w processing
of random-order data streams. As an approximate algorithm, it may generate both
false positive and false negative top-k/w objects with a controllable error rate.

(2) When probabilistic k-skyband processes only buffer objects, it improves the per-
formance of the buffering approach introduced in Béhm et al. [2007]. We call a
probabilistic k-skyband containing buffer objects probabilistic filter (PF): It is used
to quickly filter out buffer objects with low ranks and to prevent their insertion
into k-skybands at object arrival time, while such objects may be inserted into k-
skybands when exiting the buffer. The resulting algorithm—strict candidate prun-
ing algorithm with probabilistic filter (SAPF)—remains exact due to two insertion
attempts of buffer objects into k-skybands, as explained further in Section 5.

It is important to distinguish between data stream time and space distributions:
a space distribution defines how object values are distributed in the attribute space,
while a time distribution defines object ordering in the stream. A random-order data
stream is defined as a data stream for which any permutation of streaming data
objects is equally likely to appear in a stream, in other words, its time distribution is
random regardless of its space distribution. We can easily generate a random-order data
stream from any space distribution by randomly sampling objects in time. Random-
order data streams have been identified as a reasonable approximation of real-world
data streams (see, for example, Jin et al. [2010]), such as RSS feeds or aggregated
data streams stemming from large sensor networks. The random-order data stream
model was originally introduced in Munro and Paterson [1978], which is one of the first
papers in the field of data stream processing and recently has been used to describe
and analyze a number of real-world application scenarios [Guha and McGregor 2006;
Chakrabarti et al. 2008a, 2008b; McGregor 2008].

We have observed that lazy periodic pruning of dominated objects from k-skybands
has the potential to improve the runtime performance of the strict candidate pruning
algorithm (SA) which at all times stores strictly nondominated objects in k-skybands.
Thus we introduce the notion of a relaxed k-skyband which stores nondominated and
some dominated objects without affecting top-k/w processing correctness. A relaxed
k-skyband is periodically pruned and reduced to a k-skyband. Our exact algorithm
based on relaxed k-skybands is called the relaxed candidate pruning algorithm (RA).
This algorithm can be extended by a buffering approach which uses a probabilistic
k-skyband for processing buffer objects, while relaxed k-skybands process all sliding
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Table |. Comparison of Top-k/w Algorithms
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Exhaustive indexing Buffering
[Mouratidis et al. 2006 [Bohm
Mouratidis and et al.
Papadias 2007] 2007] PA RAPF
approximate buffering and
Main indexing of all window . pp : approximate
. L. . buffering pruning of window .
characteristics objects obiects pruning of
) buffered objects
Query-related probabilistic
data structure k-skyband or top-k set k-skyband k-skyband relaxed k-skyband
Filter data probabilistic
structure N/A k-skyband N/A k-skyband
Runtime
performance good poor excellent very good
Memory
consumption poor very good good very good
controllable error
Accuracy no errors no errors rate for no errors
random-order
streams

window objects. The resulting algorithm—relaxed candidate pruning algorithm with
probabilistic filter (RAPF)—is the best-performing exact top-k/w algorithm according
to our experiments. It can process data objects from all types of stream sources, even
highly correlated data streams such as sensor readings from a single sensor. In con-
trast, PA is best suited for processing random-order data streams. When comparing
RAPF to PA, RAPF generates correct results at the expense of a slightly increased
but controllable memory consumption and reduced runtime performance compared
to PA, while PA may generate false positive or false negative top-k/w objects with a
controllable error rate.

Table I contrasts existing approaches with PA and RAPF in terms of their main
properties and performance. It lists the data structures used for storing nondominated
window objects per each top-k/w query as well as data structures used for processing
buffer objects. Further on, it compares the runtime performance, memory footprint,
and accuracy of these top-k/w processing algorithms. The table clearly shows that both
PA and RAPF overcome performance limitations of existing techniques while in same
cases our performance improvements are by orders of magnitude, as demonstrated by
the experiments presented in Section 8.

The main article contributions can be summarized as follows.

(1) We introduce a completely novel concept, the probabilistic k-skyband, which stores
window objects with high probability to become top-k/w objects. The probabilistic
k-skyband exploits a probabilistic criterion which allows to quickly decide whether
an incoming object is valuable to be kept in memory. It is used by our approximate
top-k/w processing algorithm which runs by orders of magnitudes faster than al-
ternative exact algorithms and with a small and controllable error in terms of false
positives and false negatives.

(2) We apply the probabilistic k-skyband to process buffer objects and apply it together
with our relaxed k-skyband, resulting in a more efficient exact algorithm (RAPF)
for top-k/w processing. In addition, we formally prove that the new algorithm yields
correct processing results if the buffer size is at most half the window size.

(3) We analyze results of an experimental evaluation using sliding window k-
NN queries on random-order data streams generated from uniform, clustered
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Gaussian, and a real sensor dataset. The results show that PA significantly outper-
forms all exact approaches and offers an improved runtime performance even up
to two orders of magnitude for larger values of £ with the observed error rate below
the theoretical upper bound, while RAPF is superior to existing exact algorithms.

(4) Incontrast to existing approaches that focus on specific scoring functions and design
algorithms tightly coupled to the applied query indexing structures, we present a
formal generic model and implementation for processing top-k/w queries over data
streams which is independent of data representation as well as scoring function,
and may be applied both with and without query indexing.

The article is organized in the following way. Section 2 presents existing top-k/w pro-
cessing algorithms and serves as the motivation for our work. In Section 3 we present
our formal generic top-k/w stream processing model. Section 4 defines the probabilistic
and relaxed k-skybands as well as the algorithms for their computation. The buffering
approach and probabilistic k-skyband maintenance of buffer objects which enables fil-
tering of (relaxed) k-skyband objects are introduced in Section 5. Section 6 introduces
additional data structures needed to efficiently process multiple top-k/w queries. Both
time and space complexity of the introduced algorithms is presented in Section 7, while
in Section 8 we experimentally evaluate the performance of our algorithms and com-
pare them to those defined in Mouratidis and Papadias [2007] and Béhm et al. [2007].
Section 9 briefly reviews related work and compares existing solutions to our approach.
Section 10 concludes the article and identifies directions for future work.

2. BACKGROUND

The first paper addressing the problem of exact top-k/w processing over append-
only data streams presents two algorithms supporting monotone scoring functions,
namely the top-k monitoring algorithm (TMA) and skyband monitoring algorithm
(SMA) [Mouratidis et al. 2006]. To reduce the set of candidate objects maintained
in memory, the authors introduce a vital property for top-k/w processing—dominance
in a two-dimensional score-time space. This property enables pruning of non-candidate
objects because an object dominated by % or more than % objects from a query window
cannot become a top-k/w object in the future. In their subsequent paper, Mouratidis
and Papadias [2007] present two algorithms conceptually similar to TMA and SMA,
conceptual partitioning monitoring over sliding windows (CPM/w) and skyband near-
est neighbor (SNN), which are developed specifically for top-k/w queries supporting
distance scoring functions.

The previously listed algorithms divide the task of continuous top-k/w processing
into the following subtasks: (1) continuous maintenance of per-query data structures
storing top-k and candidate data objects, and (2) indexing of queries in a regular grid.
In particular, TMA and CPM/w continuously maintain only top-k objects within a query
structure, while SMA and SNN maintain a set of all top-k/w and candidate objects in a
k-skyband. In situations when a query data structure contains less than % objects, these
algorithms initiate the computation of top-k objects from scratch. Thus they require
exhaustive indexing of data objects within a regular grid. Additionally, a regular grid
is used for query indexing to identify the subspace of interest for each query and to
efficiently recompute top-k objects from scratch. The subspace of interest is bounded
by a threshold which is defined as the score of an object with rank % for a given query.
It is used to make a quick decision on whether an arriving object needs to be processed
for a query or not because a query monitors exclusively those objects which fall within
its subspace of interest.

Consider an example of a top-1 nearest-neighbor (NN) query ¢ over a count-based
window of size 6 which is defined as a point in a two-dimensional Euclidean space,
while objects 01, 09, ..., 011 represent points from the same space ordered by their time
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Fig. 1. Example objects in the two-dimensional score-time space.

Table Il. CPM/w and SNN Processing Steps for the Example

in Figure 1
processing CPM/w SNN
step top-k | threshold || k-skyband | threshold
1 01 S1 01 S1
2 09 S1 09 S1
3 09 s1 09,03 s1
4 09 s1 092,03 S1
5 09 s1 092,03 S1
6 02 s1 09,03 S1
7 09 S1 092,03 81
8 03 S3 03 S1
9 o7 S7 o7 87
10 o7 S7 o7 87
11 o7 s7 o7 S7

of appearance. Figure 1 shows these objects in a two-dimensional score-time space. At
each processing step i, object 0; enters the query window and expels object 0;_¢ from
the window. Table II shows the content of query data structures and query threshold
values for CPM/w and SNN when processing the example objects.

At processing step 1, object 01 appears and is automatically added to the top-k data
structure of CPM/w query q. This data structure contains only top-k objects from the
query window. Additionally, the query threshold is set to s;, that is, to the score of
object 01. This threshold is used for query indexing in the grid due to the fact that all
objects outside of the sphere of radius s; cannot become top-1 objects while o; is in
the query window. Therefore, query indexing reduces the number of appearing objects
that a top-k/w query needs to process by neglecting those objects which are certainly
not of interest for query ¢. Figure 2 demonstrates how query ¢ is indexed during this
processing step. All cells which are either encompassed or intersected by the indexing
threshold s; (cells in dark and light gray) need to be monitored. Each object that
appears in these cells will be inserted into the top-k data structure associated with
q only if its score is smaller than the query threshold. For example, when object os
appears at processing step 2, it replaces object 01 in the top-k data structure because
02 dominates o0; since it is both younger and has a smaller score than o0;. Although the
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Fig. 2. CPM/w and SNN query indexing.

query sphere has obviously been reduced, CPM/w does not re-index the query to reduce
the number of costly grid operations. In Figure 2 we see that the sphere of radius sg is
completely covered by light-gray cells and thus the query could be re-indexed. Such a
lazy approach to query indexing enables runtime performance improvement because it
reduces costly grid operations at the expanse of processing objects which are potentially
not top-k. Such approach shows good results in practice if score calculation is simple
because CPM/w only needs to compare the score of an arriving object with the score
of the k-th object in the top-k data structure. Therefore, in our example, subsequent
objects 03, 04, . .., 07 are ignored as they either fall out of the ¢’s subspace of interest or
their scores are larger than s,. At processing step 8, object os is expelled from the query
window by object og and thus removed from the top-k data structure, which becomes
empty. Now the set of top-k objects has to be recomputed from scratch: og becomes
the top-1 object while the query indexing threshold changes to s3. The query is not
re-indexed since s3 < s;. When og appears, it expels oz from the query window and the
set of top-k objects has to be recomputed from scratch once again: Object 07 becomes
the top-1 object and its score s; becomes the new query threshold. Now the query q has
to be re-indexed because s; > s;. Finally, subsequent objects s19 and s1; are ignored by
the query since their scores are larger than the current query threshold.

In contrast to CPM/w, SNN tries to reduce the number of recomputations of top-k
objects from scratch by keeping a k-skyband of query window objects in memory, instead
of only top-k objects. Let us investigate how SNN processes objects from the previous
example given in Figure 2. When object 01 appears at processing step 1, it is added to the
empty k-skyband associated with query g, while the query indexing threshold is set to
s1. When object oo appears, it is added to the k-skyband structure from which it prunes
the dominated object 0. The query indexing threshold changes and is set to sy but,
analogous to CPM/w, the query is not re-indexed. When object o3 appears, it is within
the monitored hypersphere and thus added to the query k-skyband. On the contrary,
subsequent objects 04, 05, . . ., 07 are ignored by the query as they either fall out of the ¢’s
subspace of interest or their scores are larger than s,. At processing step 8, object o9 is
removed from the k-skyband because it is no longer within the query window, and object
03 becomes the top-1 object. Again, the query is not re-indexed since s3 < s;. When og
appears, it expels o3 from the query window and the k-skyband has to be recalculated
from scratch. Thereafter, o; becomes the top-1 object and the query expands. Due to
the expansion, the query is re-indexed with the query threshold value set to s7.

Bohm et al. [2007] have noticed that an arriving object is always nondominated
by other window objects because it is the youngest irrespective of its rank, and thus
all arriving objects have to be inserted into the k-skyband unless a query indexing
mechanism is in place. This is quite inefficient because objects with low ranks soon
become dominated by objects with higher ranks. Thus Bohm et al. [2007] filter less
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Table Ill. SASF Processing Steps for the Example in Figure 1

processing SASF
step query k-skyband | strict filter | threshold | FIFO buffer
1 01 01 S1 01
2 02 02 s1 09,01
3 09 09,03 S1 03,02,01
4 09 09,03 S1 04,03,02
5 09 03,05 S1 05,04,03
6 02,03 05 S5 06,05,04
7 092,03,07 o7 S5 07,06,05
8 03,07 o7 S5 08,07,06
9 07 07,09 S5 09,08,07
10 07 09 S9 010,09,08
1 07 09 89 011,010,09

relevant and recent data objects by avoiding their insertion into a query k-skyband
at the time of appearance. In addition to a query k-skyband storing nondominated
window objects, they associate an additional data structure to each query, termed
the approximate k-skyband. Each approximate k-skyband contains only most recent
objects from a special FIFO buffer that is shared by all queries. The size of a FIFO
buffer is expected to be much smaller than the query window size. An object is inserted
into a query k-skyband either upon appearance (i.e., when entering the FIFO buffer)
if it is among top-k objects in the approximate k-skyband or when exiting the buffer if
it is not dominated by the objects currently residing in the approximate k-skyband.

To use a consistent algorithm naming scheme throughout the article, further on we
refer to this algorithm as the strict candidate pruning algorithm with a strict filter
(SASF), where strict filter denotes the approximate k-skyband, as it is basically a k-
skyband of strictly nondominated buffer objects. Note that the buffer and associated
strict filters enable a different query indexing strategy compared to CPM/w and SNN:
The query indexing threshold is defined as the score of the k-th object from the strict
filter.

Let us investigate the buffering approach by Bohm et al. [2007] through the same
example. Table III shows the content of data structures and query threshold values for
SASF when processing the example objects in Figure 1. In this example we define a
FIFO buffer of size 3 such that the buffer contains only 3 most recent objects at each
processing step. When object o1 appears at processing step 1 it is automatically added to
the query k-skyband, strict filter, and buffer, while s; becomes the new query threshold.
The query indexing strategy of SASF is different from CPM/w and SNN; since SASF
does not ignore objects appearing in the indexed cells whose score is larger than the
query threshold. Such objects are used to fill the strict filter. When object 0, appears at
processing step 2, it is added to the query k-skyband, query filter, and buffer, and expels
the dominated object o1 from both the query k-skyband and query filter. Analogous to
CPM/w and SNN, the query threshold update and related query re-indexing can be
postponed to reduce the number of costly grid operations. In the next processing step,
object o3 appears and is added into to the buffer and query filter. The former insertion is
automatic, while the latter is related to the fact that o3 is within the monitored cells. At
processing step 4, object o4 is inserted into the buffer and expels 07 from it. Since o4 is
not within the monitored cells, it is not added to the filter. When object o5 appears, it is
automatically added to the buffer and, although s5 is larger than the current indexing
threshold s3, it is added to the filter because it is within the monitored cells. Figure 3
shows this situation in the two-dimensional attribute space. We see that o5 is outside
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Fig. 3. Another example of query indexing.

of the query sphere of interest, but within the monitored cells. Such objects are ignored
by CPM/w and SNN, but not by SASF.?2 Additionally, object oz is expelled both from
the buffer and filter. The same happens with o3 when og appears. Furthermore, at this
processing step o5 becomes the only object in the filter, the query threshold is set to ss,
and the query has to be re-indexed since s; < s5. Most importantly, os is inserted to
the query k-skyband because its score is smaller than the new query threshold and it
was previously not inserted into the k-skyband. When object o7 appears, it is added to
the buffer and also to both the query filter and k-skyband due to the fact that its score
is smaller than ss5. Actually, it dominates and thus expels o5 from the filter. During
processing step 8, object o2 is expelled from the query window and has to be removed
from the query k-skyband. When this happens, o3 becomes the top-1 object. Similarly,
o7 replaces o3 as the top-1 object when object og arrives. At step 9, og is added to the
filter as it is within the monitored cells (not shown in figures) and the query has to be
re-indexed in step 10 when o7 is expelled from the buffer and related filter.

To conclude, both CPM/w and SNN require exhaustive indexing of data objects for
the purpose of recomputing top-k objects from scratch when there are less than k
objects within the top-k list. SNN tries to reduce the number of recomputations by
storing potential top-k candidates in a query k-skyband. Both CPM/w and SNN are
tightly coupled with query indexing to improve the runtime performance. The buffering
approach does not require exhaustive indexing of data objects, but rather uses two k-
skybands, the first for all window objects and the second for buffer objects, to disable
objects with low ranks to enter the first k-skyband. The buffering approach is formally
defined in Section 5.

3. TOP-K/W PROCESSING MODEL

In this section we present a generic data stream model for top-k/w processing and
introduce the problem of maintaining a minimal set of data objects needed to produce
a correct answer to a top-k/w query. The model is built assuming the data stream
processor architecture depicted in Figure 4, which is in accordance with the generic
architecture proposed in Golab and Ozsu [2003]. A single certain and append-only
data stream represents the processor input: each incoming data object is immutable
after entering the system and associated with a timestamp denoting its time of arrival.
Additionally, an object is considered valid for a top-k/w query while it belongs to the
query sliding window. Without loss of generality, the model assumes count-based sliding
windows and may be extended in a straightforward manner to support time-based
sliding windows. The processor accepts new top-k/w queries and query updates, and
outputs result streams, where each result stream is associated with an active top-k/w

2This is the main reason why query filter is named approximate k-skyband in Bohm et al. [2007].
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Fig. 4. Data stream processor architecture.

Table IV. Notation

‘ ‘ Symbol Description H
S a data stream
0; an object appearing at step ¢ (i-th object in S)
q a top-k/w query
wi objects in a window of ¢ at step i
T top-k objects from the window of ¢ at step i
R? result stream associated with g at step i
0 ‘; objects from a set O that according to a scoring
o

function s are ranked higher than o

o ; o objects from O that according to a scoring
function s dominate o

kST k-skyband of ¢ at step i

pS? probabilistic k-skyband of g at step i

rS? relaxed k-skyband of g at step i

query. We assume queries reference future data objects, that is, those objects entering

the system after query activation. As each incoming data object is seen only when

entering the system, unless explicitly stored in memory, the processor maintains only

a subset of objects from the input stream needed for efficient top-k/w processing.
Table IV provides the notation used throughout the article.

3.1. Model Definition

Given a data stream object o; = {c¢;, %} with sequence number i represented by its
content ¢; and time of appearance ¢, we define a data stream as an infinite set of
objects ordered by their time of appearance.

Definition 3.1 (Data Stream). A data stream S = {01,09,...,0;,...} is an infinite
set of data stream objects ordered by increasing times of their appearance such that
VOi,OJ'ESIi <Jjet <t

In other words, data stream objects are unique in their time of appearance, implying
that a single object may enter the system at a point in time. Besides being ordered by
their time of appearance, data stream objects may be ranked based on their content,
and thus we define a scoring function for calculating object-specific scores.

Definition 3.2 (Scoring Function). Let S be an incoming data stream. We define the
scoring function s : S — R as any function which assigns a score for all 0; € S.

Scoring functions are application specific and their explicit definition depends com-
pletely on the application scenario in which the processor is used. We are particularly
interested in those distance, aggregation, and relevance scoring functions which are
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commonly used in the application domains that we envision for our processor. Note that
the model supports generic scoring functions because we do not impose any specific con-
straints on the scoring function definition, such as monotonicity, which is frequently
assumed by many top-k processing techniques [Ilyas et al. 2008]. Our assumption is
that scoring functions are time independent, that is, s(o;) = s(c;) and that objects from
S have unique scores with respect to a query, implying that they can be ranked consis-
tently.? Scoring functions may assign ranks to objects either in descending or ascending
order of their scores. Without loss of generality, we assume the applied scoring function
(e.g., k-NN) is such that smaller scores are preferable to larger.
Hereafter we define top-k/w queries supported by our stream processing model.

Definition 3.3 (Top-k/w Query). We define a continuous top-k query over a count-
based sliding window of size n as a quintuple q = {s, k, n, ta, t¢c}, where s is a scoring
function, &, n € N, while ¢4 and # are two points in time such that ¢4 < #¢.

A top-k/w query is defined by a scoring function s associated with two additional
parameters: the query window size n (count-based window), and parameter % denoting
the number of top objects from the window that can be inserted in the query result
stream. Furthermore, as top-k/w queries are continuous, they have a predefined time
of activation ts and time of cancellation tc. We say that the query is active within the
period (¢4, tcl.

A data object is within the query window if the object enters the processor after
query activation and is among the n most recent data objects. This is formally stated
by the following definition. As the model supports count-based sliding windows, a
query window can be seen as a sequence of snapshots between two consecutive object
appearances. Thus step i is the time period [#;, #,1) between appearances of objects o;
and 0;1.

Definition 3.4 (Objects in a Query Window). We define the set of data objects in the
window of an active query g at step i as follows:

Wi=(oj:0;,€SAi>j>i—nAtc>t;>ta) @))

Only objects within a query window are of interest for top-k/w processing, and thus
our model supports ad-hoc queries referencing future objects. An important point in
the object’s lifetime is tiD = t1,, @ point in time when o; is dropped from the window
because a new object 0;, has just appeared and expelled o; from the window.

Definition 3.5 (Top-k/w Objects). We define the set of top-k data objects in the query
window of an active query q at step i as follows:

Tiqd:ef{o:oeWiq/\|W;’|;o|<k}, (2)

where WZ > 0 & {0’ : o' € W As(0') < s(0)} is the set of objects from WY that are ranked
higher than o according to s.

In other words, a data object o is a top-k/w object for a query ¢ if o is within the
current window of ¢ and there are less than £ higher-ranked objects than o in this
window. Another important point in the top-k/w object’s lifetime is tiR = t;, a point in
time when o; becomes a top-k/w object for the first time, that is, o; € qu_

Finally, we define the query result stream which the processor produces for each
active top-k/w query.

3A tie-breaking criterion can be used to give preference to more recent objects since the time of appearance
is unique for each object.
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Definition 3.6 (Result Stream). We define a result stream for a query g at step i as
the set of ¢’s top-k/w objects R £ (o ;i :0j € T Al <1} ordered by their increasing
times tjR .

3.2. Problem Statement

Let us now discuss when an object o; is inserted into a query result stream, that is,
what is the point in time tiR. According to Definition 3.5, an object within the window
of a top-k/w query becomes its top-k/w object when there are less than % higher-ranked
objects within the window. This can happen either: (1) at ; when o; enters the processor
and there are less than % higher-ranked objects within the query window, or (2) at a
later point in time ¢; when o; appears but is not a top-k/w object, while a top-k/w object
Oj_n € TJ‘-I_1 is dropped from the query window and o; has the highest rank among
top-k/w candidate objects.

The implementation of the first scenario is quite straightforward: An incoming data
object is compared against the list of current top-k/w objects for a query and, in case
its rank is higher than the rank of the k-th object, it is added to the result stream.
This requires continuous maintenance of top-k/w objects in memory because, although
these objects have already been inserted into the result stream, they are continuously
compared to arriving objects.

The second scenario requires a more elaborate solution, as has already been recog-
nized [B6hm et al. 2007; Mouratidis and Papadias 2007; Jin et al. 2010]: The processor
needs to instantly fill in the slot of a dropped top-k/w object because the newly arrived
object is not among the current top-k/w objects. The empty slot is filled in with an object
that currently has the highest rank among the top-k/w candidates. A simple solution
would be to keep all data objects within the query window in memory and regard them
as candidate data objects. However, this solution would have a large memory footprint
since the query window size can in general be much larger than k.

The problem we address in this article is the following: Given a deterministic and
unbounded data stream, we wish to continuously detect top-k/w data stream objects
such that we maintain a sufficient set of candidate objects in memory which allows
efficient processing of data stream objects. In other words, we are interested in top-k/w
algorithms that are primarily time efficient, but at the same time do not sacrifice the
space efficiency.

As stated in Section 1, current state-of-the-art algorithms use the dominance property
to identify data objects which are irrelevant for a top-k/w query such that they cannot
affect its result stream. Hereafter we state it formally.

TueOREM 3.7. A data object 0oj € W cannot become a top-k/w object of an active
queryq at stepsl =i+ 1,i+2,..., j+n— 1if there are k or more dominators of o; in
W{. More formally,

VOJEWL-‘I:|Wiqi0j|2k=>ﬂl>i10jEquv 3)

where W b 0; 2 (04 : 0m € W B 0, Aty > ¢;} is @ set of objects from WY that dominate
oj for q at step i.

Proor. Assume to the contrary that 3 : j+n > > iro; € T and that [WZ » o] > k.
Since all objects in W/ >0 ; are more recent than o;, we have |W/ >0 il =k =Vl

. . S . . . . . . .
J+n>1>in|W!> o >k, which is, according to expression (2), in contradiction
with our assumption. O
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A data object 0; is not a candidate data object for g if, at any step while o; is within
the window, it is dominated by k or more than k objects from the query window, that
is, there are at least k younger objects with higher rank than o;. In the rest of the
article we say that such an object is dominated for query g, and otherwise when o; is
dominated by less than % objects, we say it is nondominated for query q.

Using Theorem 3.7, we define query k-skyband that contains all nondominated and
only nondominated candidate objects for a query.

Definition 3.8 (k-Skyband). We define k-skyband &S/ < W associated with an
active query q at step i as the set of all data objects from the query window which are
dominated by less than £ data objects. More formally,

ka’dzef{o:ove/\|VViq;o|<k}. 4)

The k-skyband has to be maintained in memory over time to produce exact answers
to a top-k/w query, and thus represents the basic building block for top-k/w processing
algorithms.

4. TOP-K/W PROCESSING ALGORITHMS

This section presents two novel top-k/w processing algorithms. The first algorithm,
named the probabilistic candidate pruning algorithm (PA), relies on a probabilistic
criterion to decide whether an object, at the time of its appearance, has potential to be-
come a top-k/w object for a query. PA maintains a probabilistic k-skyband for each query
containing objects whose probability of becoming a top-k/w object is above a predefined
threshold, and thus introduces a controllable error rate. The second algorithm, which
stores top-k/w and candidate objects in a relaxed k-skyband, is the relaxed candidate
pruning algorithm (RA). It is an exact algorithm based on lazy pruning of dominated
objects from a relaxed k-skyband. The relaxed k-skyband stores all nondominated ob-
jects for a query but, contrary to a k-skyband, the relaxed k-skyband may also store
some dominated objects. To simplify the discussion, we present PA and RA when pro-
cessing a single top-k/w query q = {s, k, n, ta, {c}. Section 6 deals with processing of
multiple top-k/w queries.

4.1. Probabilistic Candidate Pruning Algorithm

In practice, most of the objects from a query k-skyband will never become top-k/w
objects since the k-skyband size is in general much larger than k. For each incoming
object, PA computes the probability that an object may become a top-k/w object. If the
probability is above a predefined threshold, the object is maintained in the probabilistic
k-skyband, or is discarded otherwise. PA is designed to process random-order data
streams, while it generates a large error rate in the case of data streams with highly
time-correlated objects, as we explain in the end of this section. In comparison to exact
top-k/w processing algorithms, the main drawback of PA is that, as an approximate
algorithm, it may introduce both false positive and false negative top-k/w objects.

In this section we first present the mathematical background which allows us to cal-
culate the object’s probability to become a top-k object in the future, and subsequently
define the PA.

4.1.1. Mathematical Background. To explain the mathematical background of PA, let us
assume the stream processor has unbounded memory which, at every processing step,
can store all objects from the current query window. We define the score list L; of g at
step i as a list of data objects within the window of ¢ at i which are ordered by their

descending ranks L; = WY.
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Fig. 5. An example score list after several object appearances.

Let us assume that at step i a new object o; arrives such that its initial rank is [
in the score list. The rank of this object will change during time as new objects arrive
while the old ones are dropped from the window. Our goal is to find the probability
that o; will become a top-k/w object of ¢g. The initial rank / of 0; may have the following
properties:

(1) top-k rank: o; is a top-k/w object at step i,

(2) good rank: o; is not a top-k/w object at i but has probability p > o to become a
top-k/w object later on while still in the window, and

(3) poor rank: o; is not a top-k/w object at i and has low probability p < o to become a
top-k/w object later on.

If [ is a top-k or good rank, o; is stored in memory and referenced in the probabilistic
k-skyband. Otherwise, if [ is a poor rank, o; is ignored. To simplify the discussion, we
assume the following: (1) we know only the scores (i.e., ranks) of objects in L, and not
their actual sequence numbers in the data stream and (2) the cardinality of L is n at
all points in time, that is, we will ignore the initial period after query activation when
L is not full. Let a new rank of 0; in L; be I’ =1 — x + y at a later step j > i, where x
is the number of objects from L; with a higher rank than o; at step i that have been
dropped from the window during steps between i and j, and y is the number of objects
that have arrived in the meantime and have a higher rank than o;.

Figure 5 shows an example score list at step j, j > i. Object o; is shown as a black
square, objects that have arrived before o; are shown as empty or checked squares,
and objects that have arrived after o; are shown as gray squares. Note that objects
represented by checked squares have previously expired and thus are not elements of
L;. However, we have to take these objects into account because our assumption is that
any permutation of streaming data objects is equally likely in the stream. The initial
rank of 0; is [ = 4, and Figure 5 shows the score list at step j. The new rank [’ of 0; at
step j is 3 since two objects with higher ranks than o; have been dropped while only
one object ranked higher than o; has arrived.

LEmMma 4.1. For data objects from a random-order stream, the probability that x
objects have higher ranks than o; out of d objects which have been dropped during steps
i+1,i+2,...,i+dis

1-1 (n—1
() @)

EE T (5)
("a)

pdrop(la n, d’ .’JC) =

wherel <nand x <d.

Proor. We have to find the probability that, among d dropped objects, x are ranked
higher than o;. Since every object in L;, except for o;, has equal probability to be
dropped, there are (”;1) different possibilities to choose d dropped objects from n — 1
potentially dropped objects. Additionally, x of d dropped objects are ranked higher than

0;, and thus there are (1;1) different possibilities to choose x dropped objects from
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[ — 1 potentially dropped objects that are ranked higher than o;, and ( U’l‘:i) different

possibilities to choose d — x objects from n — [ potentially dropped objects with lower
ranks thano;,. O

Lemma 4.2. For data objects from a random-order stream, the probability that y
objects have higher ranks than o; out of a objects which have arrived during steps
1+1,14+2,...,i+ais

-1+ —~l+a—
n (e
n+a (et

a

parriual(ly n,a, y) = (6)

wherel <nandy < a.

Proor. We have to find the probability that, among a arrived objects, y are ranked
higher than o;. This is a conditional probability p(E|E;) = p(E; N E3)/p(Es), where
event K is “y of a arrived objects are ranked higher than o,;”, and event Ejy is “the rank
of 0; in L; is [”. The probability of event Ej is 1/n because there are n possible ranks of
0; in L;. The p(E; N E5) is the probability that the rank of o; in L; is [ and that among
a arrived objects y are ranked higher than o;. There are (”+Z_1) different possibilities
to choose a arrived objects from n+a — 1 equally possible ranks in L;. Additionally, we
know that the rank of o; in L; is ' = — x 4+ y, where x is the number of dropped among
higher-ranked objects. Therefore, there are (l_y’y ) different possibilities to choose y
arrived objects from [ — 1+ y objects that are ranked higher than o;. Analogously, there
are (”‘ét‘;‘y ) different possibilities to choose a — y arrived objects from n —[ +a — y
objects that are ranked lower than o;, and n + a possibilities to choose the rank of o; in
L,. Thereby, the probability p(E1 N Ep) is given by ("~ J)(" [147)) /("¢ )(n+a)), and

then we have p(E1|Ep) = p(Ex N Ez)/p(Ey) = n- (73" ) /("8 +a). O

The following lemma defines the theoretical criterion which we can use to decide
whether an incoming object needs to be maintained in memory.

LemmA 4.3. Let g be a top-k/w query over a count-based window of size n, and let o;
be a data object with rank | > k within the window of q at step i. For data objects from
a random-order data stream, an upper bound on the probability p;opi(l, n, k) that o; will
become a top-k/w object before it is dropped from the window of q is

n-1 k I'-1

ptheory(l, n, k) = Z Z Z[pdrop(lv n,s, l— Z/ + y) . parrival(l’ n,s, y)], (7)
s=110'=1y=0

where l < n.

Proor. The probability that object o; has rank !’ during step j is pranr(,1’,n,s) =
Zg;(l)[pdmp(l, n,s,L —1U'+y) - pariva, n,s,y)l, where s = j — i, since we need to sum
all products of probabilities pgrop(, 1, 8, %) - Parriva@, 1, s, y) for which I’ =1 — x + y.
Furthermore, we get the probability that object o; is a top-k during step j by summing
probabilities of top-k ranks I’ = 1,2, ..., k: proprstep, k. 11, 8) = Zf,:l Prantl,l', n, s). For
each processing step j =i+1,i+2,...,i+n—1,let E; be the event “o; is a top-k/w object
at step j”. Let piopi(l, n, k) = p(Z‘]";’Z} E;) be the probability of o; being a top-k/w object
at any step. Obviously, events E; 1, E; 9, ..., E;,,_1 are dependent and thus we can use
inequality p(Zf:';i Ej) < ZLJJ;';% p(E;) to bound the value of pypi(l, n, k). Finally, since
PE)) = Prophstep(l k. 1, 8) We get poppl k) < Y7138 S M paroplony sl — 1 + ) -
Parrival, 1,8, y)] = ptheory(lv n,k). O
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Since significant computational power is required to calculate pspeory(Z, 1, k) in prac-
tice, hereafter we present its upper bound pjractice(Z, 1, k) that we use for this purpose.

Note that during the last processing step, that is, when j =i + n — 1, just before o;
is dropped from the window, all other objects that have arrived before o; are already
dropped and thus its rank in L; exclusively depends on the ranks of objects which have
arrived after it. Therefore, using expression (6), we can calculate the probability that
object 0; hasrank /' at step j =i +n—1as

plast(l/, I,n) = parrival(la nn—1, I'—1)

B [ I )] ) S
N e N

The following theorem defines the basis of our probabilistic criterion which we use
to decide whether an incoming object needs to be maintained in memory.

THEOREM 4.4. Let q be a top-k/w query over a count-based window of size n, and let
o; be a data object within the window of q at step i and with rankl > L.* For data objects
from a random-order data stream, an upper bound on the probability pineory(, n, k) that
0; will become a top-k/w object before it is dropped from the window of q is

9 k (n—l) (n—l)
n r-1\1-1
ppractice(la n, k)= : § — s 9
dn -2 r=1 (2l+12)

wherel <nandl <n.

Proor. Let E; be the event “o; is a top-k/w object at step j”, and s = j—i. Lemmas A.1
and A.2 in the article appendix prove that the probability p(E;) as a discrete function
of step j is monotonically increasing and convex for all initial ranks I > L. Since o;
is not a top-k/w object upon its arrival, for such /s we have p(E;) = 0. Then, using
the triangle shown in Figure 6, we bound the value of each p(E;) with its projection

f:';i p(E;) < % - p(Eiyn_1). Furthermore,

p(E; 1) is equal to Zf,:l Diast’, 1, n), where pyus:(l', 1, n) is defined by Eq. (8). Finally,

we have Ppracticeln. ) = § - pBisn1) = g5 - Tioy SR, and pprcticel n. ) =
: 1+

YL PE)) = Preoryn k). O

As stated in the following definition, a probabilistic k-skyband stores only query
window objects with (good) initial ranks such that [ < L or such that the sum of
probabilities pyractice(l’, n, k) for ! =1; +1,1; + 2, ..., n is larger than the predefined
probability of error o.

Definition 4.5 (Probabilistic k-Skyband). We define probabilistic k-skyband pS{ <
W/ associated with an active query g at step i as

% - p(Ej1n—1) on the triangle diagonal: )

pSt = {Oj r0j € Win [ > Poracticel’ k) = o VI < Lﬂ} (10)
U=l;+1

where [; is the rank of o; in W at step ;.

-n—4., k- (—8.52., B218.bn2 4 A bn—A.h_5. 2_o.
Where I — 37-4k+2hn+3+y/3(C8I2n+d 218 kn?+akn—dk—5r2—2n+3)

T2 as defined in the article appendix.
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rlE) j—:i-p(En_l)

li X i+n-1 j
Fig. 6. Bounding p(E;), the probability that o; is a top-k/w object at step j.

Table V. Maximal Number of Object Candidates in a Probabilistic
k-Skyband (/imit) for o = 0.001

ITn\k]] 1] 2] 5 [10]20]50] 100 200 | 500 ||
10 [ 18 [ 21 [ 26 [ 3240 [ 56 | 72 | 91 [ 106
10 || 22 | 25 [ 30 | 37 | 46 | 65 | 86 | 116 | 172
105 || 25 | 28 [ 34 | 41 [ 51 | 72 [ 95 | 128 | 192
105 || 28 | 32 | 38 | 46 | 56 | 78 | 103 | 138 | 207

For data stream processing scenarios with specific o, we can compute the number
of objects to be maintained in the probabilistic k-skyband using Eq. (9). Hereafter, we
sketch the algorithm we use for this purpose.

To calculate this, we use a specific property of the values of ppracrice(!, 1, k): after a
certain rank [, we have pyractice(l” — 1,1, k) > 2 - ppractice(l”, n, k) for the probabilities of
its successive ranks (i.e., for VI” : I, < " < n). Therefore we have that VI” : [, <1” <
ncy +1 Ppracticel’, 1, R) < 2+ Ppractice(l”, n, k) since this geometric series converges.
We iteratively process ranks [ = L+ 1,L+2,... and calculate.5 p,qcrice(l, n, k) using
Eq. (9). We stop at the first rank ! = I, for which p,actice(lc, 1, k) < /2. If I, > [}, we have
Dpracticee, 1, B) + Z?/:lc +1 Ppracticel” . 1, B) < 2 - ppractice(le, n, k) < o, and therefore the
maximal number of candidates in a probabilistic k-skyband is equal to limit = [, — 1.
Otherwise (i.e., when [, < [;,) we iterate through ranks [, — 1,1, — 2, ..., . until we find
a first rank /,, for which it holds that Zﬁtﬁ’:lh_l DPpracticed”, 10, B) + 2 - Ppracticep, 1, B) > o,
and then limit = [,,. The number of objects in a probabilistic k-skyband is equal to
k+ limit.

Table V shows candidate limits of probabilistic k-skybands for typical values of
parameters & and window sizes n when ¢ = 0.001. We can see that the number of
candidates is much smaller than window size n, and decreases significantly compared
to n for large values of n. For small values of parameter %, the number of candidates is
larger in the probabilistic k-skyband than in the k-skyband since the expected size of
the latter is k[ln(3) — 1] for random-order data streams, as shown in Zhang [2008].

4.1.2. Algorithm Description. The probabilistic k-skyband is implemented by two self-
balancing binary trees, a top-k tree and candidate tree, storing objects sorted by de-
scending ranks. Note that complex data structures (R-tree and quadtree) have shown
an inadequate processing performance since they cannot cope with frequent object

5Note that summands in formula (9) may have large numerators and denominators. To avoid a potential
arithmetic overflow error, we sort numerators and denominators by their decreasing values in two lists, and
then calculate the quotient gradually by polling numerators and denominators of similar values from the list
to keep the intermediate result around the value of 1, and then divide it with the rest of the denominators.
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insertions and deletions, and therefore we have decided to use binary trees for object
maintenance. The top-k tree contains the k& highest-ranked data objects, while the can-
didate tree stores objects with lower ranks for which criterion Z?:l,- +1 Papprox(l',n, k) <
from Definition 4.5 holds. Each object is associated with its score and sequence number.
Additionally, we use a time tree which sorts objects by ascending sequence numbers to
efficiently detect dropped objects that need to be removed from the k-skyband.

Three additional attributes are associated with each query: (1) the maximal number
of candidates in a probabilistic k-skyband (limit), (2) threshold, and (3) a number
of additional candidate objects. The limit is numerically determined (e.g., values in
Table V) upon query activation using Eq. (9) from Theorem 4.4 and the criterion from
Definition 4.5, as previously specified, while the threshold is used for quick detection of
candidates with good ranks. The threshold value is initially set to the largest possible
score value since the probabilistic k-skyband is empty, while, when the probabilistic
k-skyband is full, it is set to the score of the candidate tree tail object. Additional
candidate objects are used together with query indexing to improve its performance.
The three attributes are used in the subsequent algorithm and are its only connection
with the mathematical background from Section 4.1.1.

ALGORITHM 1: PA: Process an incoming object

1: //step 1
2: if s(0) > threshold then

3:  abort because o has a poor rank
4: else

5. /lstep 2

6: if s(o) < s(toptree.tail) then

7: /Istep 3

8: report o as a top-k/w object;
9: add o to toptree;

10: if toptree.size > k then

11: move toptree.tail from toptree to candtree;
12: end if

13: else

14: /lstep 3

15: add o to q.candtree;

16: end if

17: end if

18: add o to timetree;

19: //step 4

20: if candtree.size > limit + additional then
21: if candtree.size > limit + additional then

22: remove candtree.tail from candtree and timetree;
23: end if

24:  set threshold = candtree .tail .score; //new tail

25: end if

As shown in Algorithm 1, the processing of an incoming data object is done in four
steps. We first compare the object score with the threshold (line 2) and abort the
procedure (line 3) when it is higher than the threshold because the object rank is poor,
or continue with the second step otherwise (lines 5-15). In the second step we compare
the object score with the score of the top-k tree tail (line 6). In the third step, the object
is inserted either into the top-k tree or into the candidate tree. If the object score is
smaller than the score of the top-k tree tail, it is reported as a top-k/w object and added
to the top-k tree (lines 8 and 9). Additionally, if the size of the top-k tree becomes larger
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than %, we move the top-k tree tail to the candidate tree (line 11). If the object’s initial
rank is good, it is added to the candidate tree (line 14). PA adds both top-k tree and
candidate tree objects to the time tree (line 18) because the candidate tree can contain
dominated objects which can be dropped from the query window. However, this does
not create a significant overhead as the candidate tree size is comparable to &, as shown
in Table V. When the candidate tree size reaches the predefined limit (line 20) in the
fourth step, a new threshold value is set (line 24) and, if it is overgrown (line 21), the
tail object is removed from the candidate tree and time tree (line 22).

ALGORITHM 2: PA: Remove a dropped top-k/w object
1: if s(o) < s(toptree.tail) then

2:  remove o from toptree and timetree,

3:  if candtree is not empty then

4 h < candtree.head,;

5: move A from candtree to toptree;

6: if h has not been previously reported then
7 report h as a top-k/w object;

8 end if

9: endif

10: else

11: remove o from candtree and timetree;
12: end if

13: if candtree.size < limit then
14:  reset threshold;

15: else

16: increase threshold,

17: end if

PA checks the oldest object in the time tree upon each new object arrival to find out
whether this object is dropped from the query window. When this happens, the dropped
object is removed from the probabilistic k-skyband. The algorithm for removing dropped
objects is presented in Algorithm 2. Since we add only probabilistic k-skyband objects to
the time tree, a dropped object is either a top-k object or a candidate tree object (line 1).
In the latter case we remove it from both the candidate and time trees (line 11). In
the former case (lines 2-9), we remove it from the top-k and time trees (line 2), and
move the candidate tree head to the top-k tree to fill in the empty slot in the top-k
tree (line 5). If the moved object has previously not been inserted into the query result
stream (line 6), it is reported as a top-k/w object (line 7). After each object removal, we
check the number of objects left in the candidate three (line 13). If there are less than
limit candidates, we have to reset the threshold value (line 14) to the largest possible
score. Otherwise, we increase the threshold value (line 16) to avoid its costly reset.
This value is increased by an absolute score difference divided by 2 of those two objects
from the candidate tree with the lowest ranks.

Finally, let us return to the example of a top-1/6 query introduced in Section 2 to show
the processing steps of PA so that it is comparable to CPM/w, SNN, and SASF. Table VI
shows the content of data structures and query threshold values for PA when processing
the example objects from Figure 1. For this example, we assume additional = 1 and
limit = 3, where the latter is calculated using the values of parameter £ = 1, query
window size n = 6, and a selected probability of error . When object 0, appears at
processing step 1, it is automatically added to the top-k tree. The indexing threshold
is undefined because the candidate tree is still not full. When object o2 appears at
processing step 2, it is added to the top-k tree while 0 is pushed to the candidate tree.
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Table VI. PA Processing Steps for the Example in Figure 1

PA
probabilistic k-skyband
processing step || top-k tree | candidate tree threshold
1 01 00
2 09 01 00
3 09 03,01 00
4 02 03,01, 04 [ele]
5 09 03,01, 05,04 S4
6 09 03,01, 05,04 S4
7 09 03,07, 05,04 S4
8 03 07,05, 04, 08 s
9 o7 05, 09, 04, 08 sg
10 o7 05, 09, 08 sg + 3 - (s — o)
11 o7 09, 08,011 o

In processing steps 3 and 4, objects 03 and o4 appear and are added into to the candidate
tree. When object o5 appears, it is added to the candidate tree and the query is indexed
for the first time with indexing threshold s4. Next, object og is ignored as it either falls
out of the ¢’s subspace of interest or its score is smaller than s,. At processing step 7,
object 01 is removed from the candidate tree because it is no longer within the query
window and the query is reindexed with the following threshold value s4 + % - (s4 — 85).
Then object o7 is added to the candidate tree and the threshold value is set to s4, while
query reindexing can be postponed to reduce the number of costly grid operations. In
the next processing step, og is dropped from the query window and has to be removed
from the top-k tree. An empty space in the top-k tree is filled with object o3 and the
threshold value increases to s4 + % - (s4 — s5). Next, object og is added to the candidate
tree and the query threshold is set to sg, while reindexing is again postponed. At step 9,
object o3 is dropped from the window and top-k tree, and thus o7 becomes a top-k
object. After this, og is added to the candidate tree. At processing step 10, object o4 is
dropped from the window and the query is reindexed with the threshold value set to
sg + % -(sg — s9). Next, object s1¢ is ignored by the query since its score is larger than the
current query threshold. Finally, at processing step 11, object o5 is dropped from the
query window, the threshold value is reset, and object 011 is added to the candidate tree.

4.1.3. Analysis of PA Error Rate. In the next lemma we bound the expected error rate of
PA in the case of random-order data streams.

LEmMMA 4.6. The expected error rate of PA is bounded by a predefined probability
of error o such that, per N processed objects streaming for a random-order stream, it
generates less than o - % false negative and less than % -0 - % false positive objects for a
top-k/w query with window size n.

ProoF. An incoming object has the probability k”i”“ to be added to the probabilistic
k-skyband, and the probability 1 — kimit — 2= (kfllm”t) to be 1gnored at arrival time.
Therefore, the probability of an event A defined as “an incoming object is ignored by
the probabilistic k-skyband” is equal to p(A) = %= (kflll”“”. The probability of an ignored
object to become a top-k/w object is expected to be less than e Since in (10) we

define o as the limit of the sum of these probabilities for all ignored ranks. Therefore,
the probability of a conditional event B|A defined as “an incoming object which is
ignored by the probabilistic k-skyband becomes a top-k/w object” is p(B|A) <

R A—
n—(k+limit) *
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Then for the probability of event AN B defined as “an incoming object is first ignored by
the probabilistic k-skyband and then it becomes a top-k/w object” we have p(AN B) =
p(A) - p(B|A) < "’(ktfimm trgan = »- Finally, per N processed objects, it is expected
that we have N- p(ANnB) <o - % missed top-k/w objects (i.e., false negative objects).
When an object is missed by the probabilistic k-skyband, a lower-ranked (and younger)
object becomes a top-k/w object (i.e., false positive). Additionally, each new object that
appears with rank % also becomes a false positive. The expected number of such objects
jg n=limittl) 1 _ 1. _tmittl) L ginceitis expected that at most nlimittD) ohjects still
have to be processed before the false negative is dropped from the window, and each of
them has probability * > to appear with rank k. Note that a false negative object is older
than consequential false positive objects, and thus will not generate any additional
false positives. O

Hereafter, we analyze why PA generates errors in the case of streams with time-
correlated distributions. A stream of temperature readings from a single sensor can be
used as an example since temperature typically slowly rises to its peak in the afternoon,
and then slowly falls to its lowest value during the night. Of course, there can be also
several local minima during the day when a thick cloud appears between the sensor
and sun. Let us assume that a query defines such a scoring function which equals the
current temperature value while it prefers larger scores. First, let us analyze the case
when temperature readings are monotonically increasing in time. Every new reading
is ranked higher than all previous readings in the query window. This is the best-case
scenario for top-k/w processing algorithms since new objects are the highest ranked
when entering the processor and thus quickly expel older objects from the query k-
skyband (its size is thus small). In the case of SA and RA, this happens because new
objects quickly over-dominate the old ones. In the case of PA, new objects are added to
the probabilistic k-skyband while the old ones are expelled due to the fact that this type
of k-skyband has a limited size (equal to the previously defined limit value). PA does
not generate errors since a situation when an expelled object can become top-k/w is not
possible. Now, let us analyze the case when temperature readings are monotonically
decreasing in time. This is the worst-case scenario for the top-k/w processing algorithms
since all appearing objects have to be kept in the k-skyband because they will become
top-k/w objects just before being dropped from the window, when all older and higher-
ranked objects are already dropped. In this case, the size of SA and RA k-skybands
is equal to the query window size. Note that in both monotonically increasing and
decreasing scenarios, all appearing objects become top-k/w objects at some point in
time, either immediately after appearance in the monotonically increasing scenario or
eventually in the monotonically decreasing scenario. Thus the resulting stream equals
the incoming stream, and the top-k/w processor is not able to filter such streams. In the
worst-case scenario, PA will miss almost all top-k/w objects because it has dropped them
from the probabilistic k-skyband since their initial ranks calculated when entering the
processor were estimated as poor.

A question arises on whether it is possible to calculate the PA error rate for data
streams with correlated time distribution. The main idea behind PA is that it is possible
to calculate the probability that an object o;, which appears at step i and has rank ! > &
within the window of query q, will eventually become a top-k/w object for g. This
probability can be calculated for random-order streams as shown in Section 4.1.1, but
unfortunately cannot be calculated for data streams with an arbitrary correlated time
distribution.

PA guarantees a bounded error rate even if the stream space distribution is time
varying, as long as its time distribution stays random. PA has problems processing data
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streams that are correlated in time, or when the data stream time distribution changes
from random to correlated. To avoid this problem, we can employ a hybrid PA/RAPF.5
algorithm which monitors a small buffer of recent stream objects and switches the
processing algorithm from approximate PA to exact RAPF when such time distribution
change is detected, and vice-versa. Such a hybrid algorithm can guarantee a bounded
error rate while offering the best processing efficiency. However, the implementation
of a hybrid algorithm is a nontrivial task since it requires special techniques for data
stream monitoring which should be adapted for each use-case and application scenario.
For this reason, it is out of the scope of this article, but represents a possible direction
for future work on adaptive top-k/w processing.

4.2. Relaxed Candidate Pruning Algorithm

RA maintains a relaxed k-skyband and shows better processing performance compared
to continuous maintenance of a k-skyband as applied in Bohm et al. [2007]. This comes
at the expense of a slightly increased but controllable memory consumption. RA uses
lazy pruning of dominated objects when the k-skyband size reaches a predefined limit.
The pruning process reduces a relaxed k-skyband to a k-skyband.

Definition 4.7 (Relaxed k-Skyband). We define relaxed k-skyband rS? associated
with an active query g at step i as a set of objects from the query window W which is
a superset of the corresponding k-skyband: £S! < rS? € W/.

Analogously to PA, the relaxed k-skyband is implemented by two self-balancing
binary trees, a top-k tree and candidate tree, storing objects sorted by descending ranks.
The top-k tree contains the % highest-ranked data objects, while the candidate tree
stores objects with lower ranks. Each object is associated with its score and sequence
number. Additionally, we use a time tree which sorts objects by ascending sequence
numbers to efficiently detect dropped objects that need to be removed from the relaxed
k-skyband. Only top-k/w objects are added to the time tree because, as shown in the
following lemma, other objects are already dominated when being dropped from the
query window.

LemMA 4.8. A data object oj which is in the k-skyband of an active query q with
window size n at step j +n — 11is also among q’s top-k/w objects. More formally,

Yo; € k,S';’.Hk1 =o0j € qu+n71- (11)
Proor. All data objects within the window of ¢ at step j + n — 1 are more recent

than o; € £S?, | and thus will be dropped later from the window. Therefore, from

J+n—
expression (4) we have |qu+n_1 > 0j| = |qu+n_1 > o| < k, and then from expression (2)
it directly follows thatoj € T J‘{rn71. m|

Two additional attributes are associated with an RA top-k/w query: (1) pruning coef-
ficient y, and (2) candidate tree limit. The pruning coefficient represents the percentage
of the acceptable overhead of the candidate tree size compared to a k-skyband, and is
used to calculate the candidate tree limit expressed as the number of objects in the
candidate tree. When this limit is reached, RA triggers the pruning of dominated ob-
jects in the relaxed k-skyband. After each pruning, we set the candidate tree limit to
(1 + y) multiplied by the current candidate tree size. The initial value of the candidate
tree size is set to be a few times larger than k. The following lemma defines the size of
such a bounded relaxed k-skyband.

6Note that RAPF is our exact algorithm which we define in the following sections.
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LemmA 4.9. The expected number of objects in the relaxed k-skyband of an RA query
isequal to (14 §)-n' — § - kin the case of a random-order stream, where n’ = k-In(}) is
the expected number of objects in the corresponding k-skyband.

Proor. The pruning of a relaxed k-skyband is triggered when the number of candi-
dates reaches its candidate tree limit. After each pruning, the relaxed k-skyband has
the same number of objects as the corresponding k-skyband since all dominated objects
are pruned from it. If the expected number of objects in the k-skyband is n/, the number
of objects in the relaxed k-skyband varies between n’ and 2+ (1+y)-(#' — k). The former
size corresponds to the moment immediately after a pruning, while the latter size cor-
responds to the moment just before the next pruning. Therefore the average number of
objects in a relaxed k-skyband is “HH IR _ 20y k) _ (1 4 2. — £ F. Finally,
in Zhang [2008] it is shown that in the case of random-order streams n' = k- In(3). O

The processing of an incoming data object is done in three steps as shown in
Algorithm 3. We first compare the object score to the score of the top-k tree tail object
(line 2). If the object score is smaller than the score of the top-k tree tail, the object
is reported as a top-k/w object (line 4) and added to the top-k and time tree (line 5),
while the top-k tree tail is moved to the candidate tree and removed from the time
tree (lines 7-9). Otherwise, the object is added to the candidate tree (line 12). When
the number of objects in the candidate tree becomes larger than the predefined candi-
date tree limit (line 15), the pruning process is triggered (line 16) and the new candidate
tree limit is calculated (line 17). After each pruning, only nondominated data objects,
that is, k-skyband objects, remain in the relaxed k-skyband.

ALGORITHM 3: RA: Process an incoming object

1: //step 1

2: if s(o) < s(toptree.tail) then

3: /lstep 2

4: report o as a top-k/w object;
5: add o to toptree and timetree;
6: if toptree.size > k then

7: t < toptree.tail,

8: move ¢t from toptree to candtree;
9: remove ¢ from timetree;

10:  end if

11: else

12:  add o to candtree; //step 2
18: end if

14: //step 3

15: if candtree.size > limit then

16: prune dominated objects from candiree;
17:  setlimit = (1 + y) - candtree.size;

18: end if

To efficiently prune dominated objects from the candidate tree, we use an auxiliary
priority queue called the dominator tree which, during pruning, stores £ most recent
objects sorted by their sequence numbers. The pruning process is performed as in
the DominatingSet algorithm proposed in Tsaparas et al. [2003] to prune dominated
tuples while processing top-k join queries. As shown in Algorithm 4, after the initial
filling of the dominator tree with top-k tree objects (lines 2 and 3), RA traverses the
candidate tree from head to tail so that each encountered object is either inserted into
the dominator tree, in case this object is younger than the dominator tree head (line 8),
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ALGORITHM 4: RA: Prune dominated objects

1: domiree < {}
2: for all o in toptree do
3: add o to domtree;

4: end for

5: for all o in candtree do

6: h < domtree.head,

7. if t, > t;, then

8: add o to domtree;

9: remove h from domiree;
10: else

11: remove o from candtree;
12: end if

13: end for

or removed from the candidate tree (line 11) since it is dominated by % objects in the
dominator tree.

ALGORITHM 5: RA: Remove a dropped top-k/w object

1: remove o from toptree;
2: repeat
3:  h <« candtree.head,;

if & is not null then

remove h from candiree;

end if
until 4 is null or 4 is in the window;
if 4 is not null then
9: add A to toptree and timetree;
10:  if his previously not reported then

11: report h as a top-k/w object;
12: endif
13: end if

When removing a dropped object, upon each object arrival, RA checks whether the
oldest object in the time tree, that is, a top-k object, is dropped from the query window.
The object needs to be removed from the relaxed k-skyband, while a candidate tree
object head takes its position in the top-k tree. As shown in Algorithm 5, the object
is first removed from the top-k tree (line 1) and then we identify the head object
from the candidate tree which takes its place (lines 2-7): We first check that the
candidate tree is nonempty, and then ensure the current head object is within the
window since the candidate tree may contain objects that have already been dropped
from the window. These are removed from the candidate tree, either while searching
for a head object within a query window (line 5) or during the subsequent pruning,
as defined in Algorithm 4. If the candidate tree is nonempty (line 8), the identified
head object is moved to the top-k tree and time tree to fill in the empty slot (line 9).
Additionally, if the moved object has previously not been inserted into the query result
stream (line 10), it is instantly reported as a top-k/w object (line 11).

Finally, let us again return to the example of a top-1/6 query introduced in Section 2
to show the processing steps of RA so that it is comparable to CPM/w, SNN, SASF,
and PA. Table VII shows the content of query data structures when processing the
example objects from Figure 1. We do not show query threshold values since RA cannot
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Table VII. RA Processing Steps for the Example

in Figure 1
RA
relaxed k-skyband
processing step || top-k tree | candidate tree

1 01
2 09 01
3 09 03,01
4 09 03,01, 04
5 02 03, 91,05, 04
6 09 03,05, 0g
7 09 03,07, 05, Og
8 03 07,05, 08, Og
9 o7 05, 09, 08, Og
10 07 95,09, 98, 96,010
11 o7 09, 011, 010

be indexed without additional modifications which we explain in the following sections.
For this example, we assume the initial candidate tree limit is equal to limit = 4xk =4
and that the pruning coefficient is y = 0.5. When object 0; appears at processing step
1, it is automatically added to the top-k tree. After this, when object oo appears at
processing step 2, it is added to the top-k tree while o; is pushed to the candidate
tree. In the processing steps 3 and 4, objects 03 and o4 are added to the candidate tree.
When object 05 appears, it is added to the candidate tree, which becomes oversized and
thus the pruning process is started. It prunes dominated objects 0; and o4 from the
candidate tree. After this, the value of the limit becomes limit = (1 + y) - 2 = 3, where
2 is the current size of the candidate tree. Another pruning of the candidate tree is
initiated after og enters it, but this process does not prune any objects, while the limit
changes to the value limit = [(1 + y) - 3] = 5. In the processing step 7, object o7 is
also added to the candidate tree. Afterwards, 04 is dropped from the query window and
has to be removed from the top-k tree. An empty space in the top-k tree is filled with
object o3, and object og is added to the candidate tree. At step 9, object o3 is dropped
from both the query window and top-k tree, and thus o7 becomes a top-k object, while
09 is added to the candidate tree. The adding of object 01 to the candidate tree starts
another pruning process which prunes objects o5, og, and 0g. The limit also changes
and becomes limit = (1 + y) - 2 = 3. Finally, object 011 is added to the candidate tree.

5. OBJECT BUFFERING AND FILTERING

In practice, as already stated in Section 2, arriving objects with low ranks are non-
dominated, but soon become dominated by higher-ranked and more recent objects.
Thus, Bohm et al. [2007] avoid the insertion of objects with low ranks into k-skybands
by employing a special FIFO buffer in combination with an approximate k-skyband,
an additional data structure associated with each top-k/w query. The approximate k-
skyband is a k-skyband containing only buffer objects and is used to filter out arriving
objects with low ranks so that they are not inserted into a query k-skyband, but rather
reside within the approximate k-skyband while within the buffer. Thus we call the
approximate k-skyband a strict query filter.

We extend the contribution of B6hm et al. [2007] by proving that any subset of buffer
objects can be used as a query filter. Thus we propose that our probabilistic k-skyband
containing buffer objects is used as a query filter. The resulting probabilistic query
filter has the potential to significantly improve runtime performance of the buffering
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approach introduced in Béhm et al. [2007]. Hereafter, we formally define the extended
version of the buffering approach to top-k/w processing.

A data stream S is associated with a FIFO buffer which stores b most recent data
objects similarly to Definition 3.4, where n is replaced by b: B; = {o o0 € SAL >
J > 1 — b}. Typically b « n, and the buffer is represented in memory as a singly-linked
list of objects added by ascending sequence numbers, and is shared by all queries. We
associate an auxiliary data structure to each query, called a query filter. The query
filter is associated with the query’s scoring function and parameter £ but, in contrast
to a k-skyband or a relaxed k-skyband associated with the query, it refers only to &
objects from the buffer instead of n objects from the query window.

The query filter is used as an intermediary between the buffer and query k-skyband.
It maintains top-k and candidate objects from the buffer, sorted by descending ranks,
and makes two attempts to insert an object into a query k-skyband. The first attempt
occurs upon object arrival while the second attempt happens just before the object
is dropped from the buffer. In the first attempt, an object is inserted into a query k-
skyband only if it is a top-% object in the query filter. In the second insertion attempt,
if the object is not among top-k objects in a query filter, it is surely dominated for the
query and thus may safely be ignored. The logic behind the two insertion attempts is
formally stated in the following theorem which shows that an object cannot become a
top-k object while in the buffer iff it was not a top-k object when entering the buffer and
if buffer size is less than half of the window size. This theorem is originally included in
Bohm et al. [2007] and we include it here for completeness.

THEOREM 5.1. Let B be a recent buffer of size b and let o; be a data object which
arrives to the system at step i when a query q is active. If o; is not among top-k objects

inaset OCB; é 0;, and b < %1, 0; cannot become a q’s top-k/w object while in the

buffer (i.e., at stepsl =i,i+1,...,i +b—1).

Proor. Ifevery element from O C B; > 0; s still in the window of ¢ at stepi+b6—1, it

holdsthatVvl:i+b>1>i= |0 C B; é 0; C Wiq I; 0;| > k, and then from expression (2)
wehave Bl :i+b>1>iAo; € qu. Let 0;_p.,1 be the oldest object in B; which will be
expelled from B at step i + 1. If 0;_p1 is still in the window of ¢ at stepi + b — 1, all
other objects in B; are also within ¢’s window since they are more recent than o;_4,1.

Finally, using expression (1) we geti —b+1+n—1>i+b—1and thusb < ’“2’—1 |

Therefore if b < %1, objects delayed in the buffer cannot become top-k/w objects
while in the buffer. In practice, buffer size is typically chosen such that it is much
smaller than n and larger than k.

From Theorem 3.7 we conclude that an object is dominated for the query when it is
expelled from the buffer iff its rank is lower than the rank of any subset of % objects
left in the buffer. Thus any subset of buffer objects can be used as a query filter.

The algorithm defined in Bohm et al. [2007] uses two k-skybands associated with a
query, one k-skyband containing top-k and candidate objects from the query windows
and the other k-skyband with buffer objects for object filtering. Thus we call this
algorithm the strict candidate pruning algorithm with strict filter (SASF). To improve
the performance of the query filter, we introduce the probabilistic filter (PF) which
maintains a probabilistic k-skyband of buffer objects while reusing the probabilistic
criterion defined in Eq. (7) and Definition 4.5 by replacing the window size n with buffer
size b. The probabilistic k-skyband can be used as a query filter with both SA- and RA-
based queries. The algorithms behind the former and latter queries are called strict
candidate pruning algorithm with probabilistic filter (SAPF) and relaxed candidate
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pruning algorithm with probabilistic filter (RAPF), respectively. The SA-based query
from Bohm et al. [2007] uses the k-skyband as a query data structure, while our
RA-based query uses the relaxed k-skyband. The following lemma proves that RAPF
offers a correct result stream, that is, it is an exact algorithm.

LemmA 5.2. Relaxed candidate pruning algorithm with probabilistic filter (RAPF)
is an exact top-k/w processing algorithm when the buffer size is b < %1

Proor. To prove this lemma we have to show that any relaxed k-skyband rSj-

associated with a probabilistic filter pS? always (i.e., Vj) contains all top-k/w ob-
jects from the RAPF query window of size n. Assume to the contrary that at a step
J i1 < J < i+ n there exists a top-k/w object o; which is missing from the query
k-skyband: 30; € T{ A o; ¢ kSY. If o; is missing from rS%, we conclude that pS? did not
insert it there because, according to Definition 3.8, a k-skyband does not prune objects
which may become top-k/w objects in the future. From the preceding discussion, we
know that PF makes two attempts to insert an object into a query k-skyband, one upon
its arrival and the other just before it is dropped from the buffer. Let us first analyze
the case when PF missed to insert o; into 7S{ in the first attempt so that o; becomes
a top-k/w object while in the buffer (i.e., i + b > j > i). We know that o; will not be

inserted in the first attempt only if |O > 0; C B; > 0; C Wf > 0;| > k, where O is a set
of objects in pSib, that is, in PF at step i. However, from the proof of Theorem 5.1 we
have a contradiction j:i +b> j>iAo; € T;I. Let us now analyze the case when PF

missed to insert o; into 7S} ., in the second attempt so that o; becomes top-k/w object
after being dropped from the buffer (i.e.,i +b < j < i +n). As we know from the previous
discussion, PF will not insert o; in the second insertion attempt only in the following
cases: (a) this object was already inserted in the first attempt and (b) this object was
dominated by % or more objects from PF at step i + b when being dropped from the
buffer. If the object was inserted into the query k-skyband, it certainly cannot be miss-
ing since the k-skyband always keeps objects which may become top-k/w objects in the
future, and thus we conclude that case (a) is impossible. For case (b), let us assume that

object o; is not inserted into rSf ', because at step i +b it holds that |O C B; > oi| >k,

b

where O is a set of objects in pS;,,. All data objects in O C B, & 0; are more recent

than o; and thus dropped later from the window of ¢. Thus VI : i +n > [ > i + b we have

|O > o;| = |0 > 0;| > k, and then from Theorem 3.7 it directly follows that o; cannot
become a top-k/w object of ¢ at any such step, thatis,l #j:i+n>j>i+bnro; e T}
Since from the first insertion attempt we have j :i +b > j > i Ao; € TJ‘-I, we conclude
thatdj:i+n>j>ino; e TJ‘-I, which is in contradiction with our first assumption. 0O

Please note that it is straightforward to extend this lemma to the following variations
of top-k/w processing algorithms:

—RASF (relaxed candidate pruning algorithm with strict filter) that uses a relaxed
query k-skyband associated with a strict query filter;

—RAREF (relaxed candidate pruning algorithm with relaxed filter) that uses a relaxed
query k-skyband associated with a relaxed query filter;

—SAPF (strict candidate pruning algorithm with probabilistic filter) that uses a strict
query k-skyband associated with a probabilistic query filter;

—SASF (strict candidate pruning algorithm with strict filter) that uses a strict query
k-skyband associated with a strict query filter; and
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—SAREF (strict candidate pruning algorithm with relaxed filter) that uses a strict query
k-skyband associated with a relaxed query filter,

where RARF and SARF use RA as the basis for the relaxed query filter (RF).

6. SUPPORTING MULTIPLE TOP-K/W QUERIES

This section considers a more general processing task with multiple top-k/w queries
simultaneously active in the system. It requires additional data structures and some
modifications when compared to a single query.

(1) We need a query tree, a self-balancing binary tree for storing of all active queries
or query filters in the system. Therefore, when using SA and RA with filters (SF
or PF), we maintain only query filters and not their queries in the query tree since
each filter has a reference to its query.

(2) To store all data objects that are referenced by at least one query or filter, we use a
self-balancing binary tree named object tree.

(3) It is possible to share a common time tree among all queries and filters in the
system, which makes the implementation more efficient compared to separate time
trees for all queries.

(4) We apply a single recent object buffer which is shared among all query filters in the
system.

(5) We create an object wrapper for each object referenced by a query/filter which has
references to the original object in the object tree and a corresponding query in the
query tree.

In such a setting, a processing approach which does not use query indexing sequen-
tially traverses the query tree and processes each incoming data object against the
traversed query/filter. Additionally, before each object processing, we always remove
dropped objects, that is, object wrappers, from the common time tree and query/filter
k-skybands. Sequential processing is supported by all presented algorithms including
those without filters, but is usually inefficient compared to algorithms which rely on
query indexing. In the next section we explain how query indexing can be used to
minimize the number of queries/filters that have to process arriving objects.

6.1. Indexing of Top-k/w Queries

Query indexing reduces the number of objects that a top-k/w query needs to process
by identifying and neglecting those objects which are certainly not of interest for the
query. Each algorithm defines its own query indexing threshold. If we closely analyze
PA, Algorithm 1 states that a query does not need to be informed about a newly arrived
object if its score is larger than the score of the last candidate object. This score is
equal to the threshold attribute which is associated to each PA query, and we use it
as the query indexing threshold. However, SA and RA do not define such an indexing
threshold and need to process all incoming objects. When SA and RA are used with
filters (i.e., SF, RF, or PF), the query indexing threshold is defined as the score of the
top-k element in the query filter since, in both insertion attempts, only objects with
scores smaller than this object are forwarded to the corresponding query. Note that
all threshold values change in time. Similarly to PA, for PF we increase the threshold
value (lines 13-17 in Algorithm 2) after each object removal such that it is not reset.
The threshold value is increased such that to its previous value we add an absolute
difference in scores of the two objects from the candidate tree with the lowest ranks.
When the candidate tree becomes full again, the score of its tail becomes the new
threshold value (lines 20-25 in Algorithm 1). In the case of PF we have additional = 0
and thus do not use additional candidate objects.
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Fig. 7. Indexing of subscriptions for various scoring functions.

Query indexing techniques depend on the scoring functions associated with top-
k/w queries. Hereafter we sketch indexing techniques for distance and aggregation
functions to illustrate how query indexing can improve top-k/w processing performance.

As an example, Figure 7 depicts scoring functions defined in two-dimensional at-
tribute spaces for the following functions: (a) weighted attribute distance, (b) dis-
tance, and (c) weighted sum. The weighted attribute distance is defined as s(o) =
c1-|xs —xpl, c2 - |ys — ¥pl, where ordered pairs (s, y5) and (x,, y¥,) are points representing
the query and object, respectively, while ¢; and ¢ are constants. Similarly, a distance
function is defined as s(0) = /(xs — x,)% + (5 — ¥,)2. In the case of a weighted sum, the
scoring function is defined as s(0) = (k1 - x, + k2 - yp).

Distance and aggregation functions process structured data objects represented
as points in a multidimensional attribute space. Following the existing approaches
[Mouratidis et al. 2006; Mouratidis and Papadias 2007; Bohm et al. 2007], we also use
a regular grid to index queries in such spaces. A regular grid divides an attribute space
in cells of equal size, while a query threshold defines the query subspace of interest
as shown in Figure 7. In the case of weighted attribute distance and distance scoring
functions, the query subspace of interest is defined as s(o) < th, while in the case of
weighted sum, it is defined as s(o) > th, where th is the query threshold. Usually, each
cell contains a list of queries whose subspace of interest completely or at least partially
covers the cell. This makes the processing of incoming objects more efficient since only
interested queries are informed about an object appearing in the cell. Note that the
subspace of interest is covered by the cells of interest from the regular grid that encom-
pass a larger portion of the attribute space than the subspace of interest itself. When
the query subspace of interest changes (i.e., expands or contracts) this may change
the corresponding cells of interest. However, this situation happens less often than a
regular threshold change.

To our knowledge, the indexing of top-k/w queries in vector space (i.e., top-k/w queries
with relevance scoring functions) is a very challenging and still open research problem
which is specifically related to filtering of document streams, and is further discussed
in Mouratidis and Pang [2009, 2011], Haghani et al. [2010], and Rao et al. [2014].

7. COMPLEXITY ANALYSIS

In this section we analyze the time and space complexity of SA from Bohm et al.
[2007], and our RA and PA for the average- and worst-case scenarios. We assume the
random-order data stream model in the average-case scenario, as is common practice
in literature. In the worst-case scenario, the scores of data objects are monotonically
increasing in time, and thus every incoming object has to be stored in memory as it will

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 1, Publication date: March 2015.



1:30 K. Pripuzi¢ et al.

become a top-k/w object at a later point in time when n — & older objects are dropped
from the query window. Note that the complexity analysis is performed with respect to
a single top-k/w query if otherwise not explicitly stated.

7.1. Space Complexity Analysis

We express space complexity as the number of data objects referenced in memory per
query. The space complexity of SA is O(n) in the worst case as all data objects will
eventually become top-k/w objects. In the average-case scenario, the expected number
of objects in a strict query k-skyband is O(k - In(3)) = O(n'), as shown in Zhang [2008].
Similarly, the worst-case space complexity of RA is O(n), and O’ - (1 + §)) = O(n)
in the average-case scenario because the number of objects referenced by each query
varies between n’ and n' + y - (W' — k), where y is the pruning coefficient. The space
complexity of PA is always O(k + limit), where limit is the probabilistic limit on the
number of candidates.

Please note that the space complexity for a query filter (i.e., SF, RF, or PF) can be
expressed analogously as for the corresponding query without a filter (i.e., SA, RA, or
PA): we just need to replace n with b in the previous expressions, where b is the number
of buffer objects.

The worst-case space complexity of a query k-skyband for SA and RA with filters
is O[n — (b — k)] = O(n) due to the fact that b — k& objects from the recent buffer will
be kept in the query filter. In the average case, only £ of & nondominated objects
in the buffer will be inserted to a query k-skyband. Thus the space complexity of a
query k-skyband is O(n' — b + k) = Ok - In(}) — k- ln(%) + k) = Ok - (1 +In(3))) and
Ok-(1+In(R))-(1+ %)= 5 -k) = O(k-(14In(3))) for SA and RA with filters, respectively. It
is important to recall that, in the case when query filters are used, there is an additional
overhead of b objects stored in the recent buffer. However, this buffer is shared by all
queries in the system.

7.2. Time Complexity Analysis

For the time complexity analysis, we assume that u top-k/w queries with parame-
ters k and n are processed simultaneously as they share the common time tree which
influences processing performance. Furthermore, each incoming object is processed
sequentially, while in each processing cycle a new data object appears and the old-
est is dropped from all query windows. Note that we express time complexity as the
complexity of a processing cycle per query.

SA has time complexity of O(n + logo(u - k) in the worst case, where logs(u - k) is due
to the maintenance of the common time tree, and O(n’) in the average case. The time
complexity of RA in the worst case is O(loga(n — k)? + loga(u - k) because the pruning
process will never be started, while logz(n — k)? is due to candidate tree operations. The
time complexity of RA in the average case is O(logs((n' —k)-(1+1))*) = O(loga(n)), which
takes into account the addition of an incoming data object to a candidate or top-k tree
and object pruning every y - (n' — k) processing cycles. For PA, in the worst case, k+Ilimit
data objects will be added into the probabilistic k-skyband during n processing cycles,
while on average k + limit osz.ects will be added per n incoming objects. Therefore, the
time complexity is O(1+2- 2t Joa0(y - (k+1imit))) in both cases due to the addition of
an incoming object with a goog rank into the time tree and removal of the lowest-ranked
candidate tree object from the time tree. Note that the most time-consuming task per
PA cycle is object score calculation and thus the time complexity when k+limit <« nand
u < nis approximately O(1), where <« denotes “more than hundred times less than”.

Note that processing with filters adds additional processing cycles and hereafter
we analyze time complexity of the SA and RA with query filters. We express time
complexity for a query filter maintenance by replacing n with b in the expressions for
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the SA, RA, and PA without filters as follows: O(b+logo(u-k)) and O(k-ln(%)) = O(b’) for

SF, O(loga(b — k)? +logs(u- k) and O(logy(b)) for RF, and O(1) for PF. We get the worst-
case time complexity of a query k-skyband maintenance by replacing n withn— b+ £k in
the expressions for the SA and RA without filters as O(n—b+k+loge(u-(n—b+k))) and
O(logo(n — b)? + logs(u - (n — b + k))) for the strict and relaxed k-skyband, respectively.
In the average case, the number of insertions into a query k-skyband is n - % per

window size n. In other words, an insertion happens every ’l—j-th cycle on average because
(n- %)/ n = %. From the space complexity analysis we know that the average space

complexity of a query k-skyband is O(k- (1 +In(3))) in this case. Therefore the average-
case time complexity of a query k-skyband maintenance for the SA and RA with filters

is Ok k- (1+In(})) = O(% (1 +1n(}))) and O(% - logs(k - (1 + In(}))), respectively.

8. EXPERIMENTAL EVALUATION

In this section we present an experimental study to evaluate: (1) the error rate of PA for
different probabilistic criteria, (2) space consumption, and (3) processing performance
of our algorithms PA, RA, RAPF, with SA and SASF defined in Bohm et al. [2007],
and CPM/w and SNN from Mouratidis and Papadias [2007]. All algorithms are im-
plemented in Java and experiments were performed in Java SE runtime environment
6u45 on a PC with 3.30 GHz Intel(R) Core(TM) i3-2120 CPU (with one core disabled).
During the experiments, we allocated 2GB (out of 4GB) of available memory to the
Java virtual machine.

We have selected sliding window k-NN queries as a use-case for our evaluation since
they are considered as one of the most prominent top-k/w problems. Queries and data
objects are represented as points in a d-dimensional attribute space. The score of an
object with respect to a query is calculated as the Euclidean distance between points
representing the object and query. Similarly to existing continuous k-NN monitoring
approaches [Mouratidis and Papadias 2007; Béhm et al. 2007; Cheema et al. 2009], we
use the regular grid as a query indexing structure.

As shown in Table VIII, one real and three synthetic datasets are used in the ex-
perimental evaluation. The real dataset is the Lausanne urban canopy experiment
(LUCE) deployment data collected from a large-scale wireless sensor network within
the project SensorScope.” This experiment took place on the EPFL campus from July
2006 to May 2007, and aimed at better understanding of micro-meteorology and at-
mospheric transport in the urban environment. It required high temporal and spatial
density of measurements in order to cover heterogeneous areas of the campus. From
the available data (radio duty cycle, radio transmission power, radio transmission fre-
quency, primary buffer voltage, secondary buffer voltage, solar panel current, global
current, and energy source), we extract the solar panel current, global current, primary
buffer voltage, and secondary buffer voltage to create a data stream by sorting sensor
readings from different sensors by their timestamps. This dataset is highly correlated
in time and thus closer to the worst- than to the average-case scenario for top-k/w
processing. For the synthetic datasets we randomly sampled the real dataset and gen-
erated uniform and clustered Gaussian data, and thus all of them are very close to
the average-case scenario. The LUCE deployment data was preprocessed to extract
four-dimensional data objects, and normalized to the values within the interval [0, 1].
The synthetically generated data is also within that interval. The clustered data has
two randomly chosen cluster centers and variance equal to 0.1 for each dimension.

The default scenario used in all experiments is the following: We either generate or
extract the set of b + N data objects, and simulate the arrival of the first b objects to

"http://lcav.epfl.ch/files/content/sites/lcav/files/research/Sensorscope/sensorscope-monitor.zip.
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Table VIII. Used Datasets

H Dataset Type Space distribution | Time distribution H
uniform synthetic uniform random
clustered synthetic clustered random
randomized real | synthetic real random
real natural real correlated

Table IX. Simulation Parameters

H Parameter Symbol | Value H
data stream objects N 108
active queries u 400
top objects k 9
count-based sliding window n 4.104
buffer b 2000
data dimensionality d 2
grid resolution o 10
PA: probability of error o 1073
PA: additional objects a 10
RA: pruning coefficient y 0.2

the processing engine before starting the experiments. Note that data streams from
the synthetic datasets are all random-order data streams, while a stream of objects
from the real dataset is not such a stream. After that we activate u continuous queries
which we randomly sample from the dataset. Next, we simulate the arrival of N objects,
and finally analyze the query result streams and processor performance. The default
simulation parameters used in the experiments are specified in Table IX.

8.1. Error Rate of PA

PA produces approximate results for top-k/w queries and may erroneously report ob-
jects as potential top-k/w (false positives), or miss some objects that would become top-
k/w (false negatives). Figure 8 shows the observed average number of false negative
and false positive objects per subscription for three different synthetic datasets. To cal-
culate the average values, we have run 200 iterations of the experiment. The observed
error rate is O for all datasets when k2 = 1. For other values of parameter k, the error

rate is much smaller than the theoretical upper bound which is o - % =1073. 4}%4 =0.25

for the expected number of false negatives and % 0 - % = 0.375 for the expected number
of false positives, as defined in Lemma 4.6. In the proof of this lemma we counted all
potentially false positive objects as certain false positives. However, in practice many of
these objects become top-k/w later on and thus the observed number of false positives
is much smaller than that of false negatives.

Note that PA introduces large error rates when scores of objects are monotonically
increasing in time, for example, in our real dataset which is highly correlated in time,
because PA discards many incoming objects without knowing that they will become
top-k/w in the future. In the opposite case when scores of incoming data objects are
monotonically decreasing, PA will not generate errors since the distance scoring func-
tion prefers smaller scores.

8.2. Processing Cost

Figure 9 compares the processing cost of different algorithms expressed as simulation
runtime with query indexing for the uniform, clustered, randomized real, and real
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dataset. We vary & in all experiments, while all other parameters are set to default
values as listed in Table IX.

Note that RAPF and RAPF2 use the recent buffer of size b6 = 2000 and b =
n/2 = 20000, respectively, where the latter buffer size corresponds to the theoretical
maximum as proven in Theorem 5.1. Therefore RAPF2 presents a version of RAPF
when memory is unconstrained.® The runtime increases in the case of the clustered
dataset compared to the uniform dataset, mostly by the decrease of regular grid per-
formance when processing spatially correlated data. In the case of synthetic datasets,
we see that, for £ = 1 and k& = 3, algorithm PA, RAPF2, SNN, and CPM/w perform sim-
ilarly. However, SNN and CPM/w scale poorly with increasing k, while RAPF, RAPF2,
and especially PA scale significantly better with k. As expected, PA is faster than RAPF,
and up to one order of magnitude faster than CPM/w and SNN. RAPF2 is from 4 up
to 8x faster than CPM/w and SNN. Therefore RAPF2 should be used when memory is
unconstrained. However, note that RAPF2 also has lower memory consumption than
CPM/w and SNN which use an exhaustive indexing strategy and store all query win-
dows objects in memory. Finally, SASF shows the worst time performance compared to
other algorithms.

Very interesting results are observed in the case of the real dataset with stream
objects that are highly correlated in time, as shown in Figure 9(d). We see that all
algorithms perform much worse in this case compared to the processing of random-
order data streams. CPM/w and SNN, which are designed to process mostly uniform
datasets, perform much worse than our RAPF2 and RAPF for all values of parameter
k. This time RAPF2 is up to one order of magnitude faster than CPM/w and up to
two orders of magnitude faster than SNN. SASF is again the slowest of all examined
algorithms. We do not show performance of PA since it generates a large error rate in
the case of this dataset.

The series of experiments shown in Figure (10) and Figure (11) first examine algo-
rithm performance for uniform, clustered, and randomized real datasets for different
values of parameter %, both with and without query indexing, and then algorithm per-
formance with query indexing while varying the following simulation parameters: data
dimensionality d, grid resolution p, number of queries m, recent buffer size b, RA prun-
ing coefficient y, and query window size n. The default data dimensionality is d = 4,
while all other parameters are set to their default values as listed in Table IX. We do
not examine CPM/w and SNN in these experiments because (1) they cannot be used
without query indexing, and (2) the goal is to examine all variations? of our algorithms
for specific simulation parameters.

Figures 10(a), 10(c), and 10(e) show there is almost no difference in algorithm
performance when various datasets are processed without query indexing. Further-
more, algorithms may be grouped according to processing performance as follows: SA,
SASF, and RASF form the the first group of algorithms and offer the worst processing

8A question arises whether it would be beneficial to completely drop candidate pruning to get better process-
ing performance when the memory is unconstrained. In this case, we would employ a no candidate pruning
algorithm (NA) instead of RA for the maintenance of query and/or filter data structure (and thus would have
NANF and NAPF as competitors to RAPF). However, the problem with this approach is the common time
tree, as each newly arrived object has to be stored in the query/filter data structure. When we analyze the
time complexity of a processing cycle per NA query, we get O(loga(n)? + loga(u - n)?) in the average case since
we have to add a newly appeared object to the query data structure and common time tree (as Lemma 4.8
cannot be applied to NA), and also remove the dropped object from both of these structures. This complexity
is higher than the time complexity of RA which is O(n') = O(k - In(%)), as explained in Section 7.2, and thus
it is better to prune dominated objects from the query data structure to efficiently manage the common time
tree.

9Note that we also analyze RARF (RA with RF), SARF (SA with RF), and RASF (RA with SF) to show
performance for all combinations of query k-skybands and filters
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Fig. 10. Processing cost for different datasets and query indexing methods.

performance, especially for a large k. The second group of algorithms consists of RA,
SARF, and RARF, and provides better processing performance than the first group
of algorithms, however, the third group of algorithms (PA, SAPF, and RAPF) outper-
forms the first two groups. Clearly, the processing performance of algorithms with
filters is largely influenced by the type of applied filter, as both SASF and RASF
perform similarly to SA, while SARF and RARF perform similarly to RA. How-
ever, this is not the case for the third group of algorithms since PA, being the only

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 1, Publication date: March 2015.



1:36 K. Pripuzi¢ et al.

10* ‘ ‘ ‘ 10*

—)— RAPF—4— SAPF—¢— PA
—— RARF—#&— SARF
—O— RASF—@— SASF

=
o

runtime (s)
-
(=)
runtime (s)

|[—O— RAPF—4— SAPF—4— PA
—— RARF—®— SARF
—O— RASF—@— SASF

4 6 8 10 8 9 10 11 12
d P
(a) dimensionality (b) grid resolution
10" 10*
—<— RAPF—4— SAPF —4— PA —— RAPF —4— SAPF
—— RARF—8&— SARF —— RARF — & SARF
3| L —O— RASF—@— SASF s|L—O0— RASF —@— SASF

runtime (s)
runtime (s)

100 200 400 800 1600 500 1000 2000 4000 8000
m b
(c) number of queries (d) recent buffer size
10" 10"
—O—— RAPF —_— RAPF—4— SAPF—4¢— PA
— O RARF —0— RARF—®— SARF
100t —o— RASF | == RASF —@— SASF
— & SARF

runtime (s)
-
ON
D)
)]
runtime (s)

—_
o
L

0
. . . 10 . . .
0 0.2 0.4 0.6 0.8 10000 20000 40000 80000 160000

10

Y n

(e) pruning coefficient (f) window size

Fig. 11. Processing cost for different values of various parameters in the case of uniform dataset.

approximate algorithm, outperforms all other (exact) algorithms. More importantly,
the performance of PA hardly changes when % increases, which is in accordance with
the complexity analysis. We also see that SASF only slightly improves the performance
of SA, while the probabilistic filter improves it almost by an order of magnitude. Note
that, for large values of the parameter k&, the best-performing exact algorithm is RAPF,
which also scales equally or better than the competing exact algorithms.

Figures 10(b), 10(d), and 10(f) show runtime performance of different algorithms
when queries are indexed in a regular grid. As expected, the regular grid offers the
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best performance for the uniform dataset, while for other datasets the processing
performance is only slightly improved compared to algorithms without query indexing.
The explanation for this behavior is that the regular grid is adjusted for uniformly
distributed data. To achieve a better processing performance in the case of nonuniform
data distributions, the grid should partition the Euclidean space according to the actual
data distribution. For the uniform dataset, query indexing is profitable in all situations,
while for the clustered and randomized real datasets it is only profitable when the
parameter £ is relatively small. Additionally, note that performance of different query
filters (i.e., SF, RF, and PF) is directly related to the maintenance cost of the filter
k-skyband, since the query indexing threshold is defined for all filters as the score of
the top-£ element in the query filter (see Section 6.1).

Since the performance of the regular grid hides the algorithm performance for clus-
tered and randomized real datasets, in Figure 11 we show the runtime only for the
uniform dataset.

Figure 11(a) shows our findings when p = 2 while data dimensionality varies from 2
to 10. The runtime of PA, SAPF, and RAPF increases sublinearly when data dimension-
ality increases, while it scales linearly for others. It is evident that PA and algorithms
with PF outperform other algorithms when processing high-dimensional data.

The results shown in Figure 11(b) analyze algorithm performance when different
grid resolution p is used for query indexing using a regular grid. These results reveal
that the minimal runtime of all algorithms is either for p = 9 or p = 10, and thus
we have selected the latter resolution for our default experiential setup. Please note
that, for a selected value of p, the grid partitions 4-dimensional Euclidean space to p*
equally-sized cells.

Figure 11(c) shows that all algorithms scale linearly with increasing number of static
queries u. Since grid resolution is quite high, (o = 10), the grid structure is capable of
handling the increasing number of queries. Moreover, PA shows the best performance.

As we can see in Figure 11(d), a larger buffer size b results in more efficient process-
ing, which comes at the cost of an increased memory consumption. We observe that the
gain in processing performance is smaller for b > 2000, and therefore we have selected
b = 2000 as the default value for buffer size in our experiments.

Smaller values of parameter y imply that pruning of dominated objects is performed
more often, while larger values of y imply rare pruning of such objects at the cost of
increased memory consumption. For y = 0, pruning becomes strict, as in the case of
SA. We have selected y = 0.2 as the default value in our experiments since, as we can
see in Figure 11(e), the gain in processing is small for larger values of y.

Figure 11(f) demonstrates that the performance of PA improves with larger values
of n, in contrast to the performance of all other algorithms that show slightly increased
runtime. The reason for such an unusual finding is the increased rate of object
processing for PA in case of smaller query window size because smaller n causes more
frequent dropping of referenced objects and thus processing of newly arriving objects
is performed more often. The runtime increases with query window size for all other
algorithms, since larger n implies larger k-skyband size and therefore less efficient
processing.

8.3. Space Consumption

In this simulation scenario we analyze the space consumption of the algorithms for dif-
ferent values of parameter % using the uniform dataset without query indexing. Similar
results obtained for other random-order datasets and also with query indexing!® are
omitted due to space limitations. We also do not show space consumption of RASF,

10Note that PA stores additional @ = 10 objects per top-k/w query when query indexing is employed.
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Fig. 12. Average number of data object references and stored data objects per query for the uniform dataset.

RARF, and SARF since the former two have almost identical consumptions as RAPF,
while SARF’s consumption is equal to SASF’s. Figures 12(b) and (a) show our results
expressed as the average number of data objects and data object references maintained
in memory. The former is expressed as the total number of objects stored in memory
divided by the number of queries u and assess to memory footprint of the algorithms,
while the latter is expressed as the total number of object references for all queries
divided by u, which relates to algorithm performance.

In Figure 12(a) we see that the average number of stored objects per query is
similar for SA, RA, SASF, SAPF, and RAPF. PA references more objects for small
values of parameter % because of the probabilistic criterion, which in this case requires
the maintenance of more candidate objects than exact algorithms. Please note that
CPM/w and SNN store all n objects in memory and thus always maintain n/u = 100
data objects in memory per query. When £ increases, all algorithms asymptotically
approach n/u = 100.

Figure 12(b) clearly shows that the exact algorithms SA and RA require a small num-
ber of object references only when parameter % is rather small, while this number grows
significantly for large values of parameter % and largely impacts their runtime perfor-
mance. In comparison, PA references a smaller number of objects for larger values of
k (4x smaller for £ = 81 than SA), which is beneficial for its runtime performance. In
comparison to SA, RA references ~ 10% more data objects when the pruning coefficient
y = 0.2. Additionally, SA and RA reference more objects compared to their extended
versions which apply query filters, while there is no significant difference in space con-
sumption between SASF, SAPF, and SNN. As expected, RAPF references slightly more
objects than SAPF or SASF. Finally, CPM/w always references only % objects per query.

9. RELATED WORK

Let us briefly discuss and compare our algorithms to related work. We classify existing
approaches as either exact or approximate, and characterize them according to the
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type of supported query scoring functions, assumed data stream models, and applied
indexing techniques. Furthermore, we identify a set of related top-k/w problems with
specific types of data streams and queries. As the algorithms introduced in Béhm et al.
[2007], Mouratidis and Papadias [2007], and Mouratidis et al. [2006] are discussed in
detail in Section 2, they are excluded from the discussion in this section.

Das et al. [2007] present an exact algorithm for ad-hoc top-k/w queries referencing
both past and future data objects, and introduce a geometrical representation of data
objects using arrangements. In contrast to our algorithms designed for ad-hoc queries
referencing future data objects, this article addresses a specific problem with queries
supporting linear additive aggregation scoring functions. As our solutions are generic,
they could be adapted to such specific object representations and scoring functions.

A technique for the processing of e-approximate sliding window k-NN queries is
presented in Koudas et al. [2004]. It partitions the attribute space with a regular grid
such that the maximum distance between any pair of points in a cell is at most e,
and keeps at most K > k points per cell. Koudas et al. introduce a strategy which
achieves the best accuracy with a fixed amount of memory, and the minimum memory
consumption with a fixed error bound. While this approach considers the distribution
of data objects in the attribute space, our PA also takes into account their distribution
in time.

The first distributed solution for k-NN sliding window computation is presented in
Pripuzié et al. [2011]. The authors use a regular grid as a distributed indexing struc-
ture, and present specific protocols for updating query indexing thresholds between the
processing nodes during real-time system operation: query activation and cancellation,
and publishing of new data objects as well as node joins, departures, and failures. They
assume different algorithms for k-NN sliding window processing are applied at each
processing node, and evaluate the performance of such different algorithms in a dis-
tributed setting in terms of messaging overhead and system scalability. The algorithms
defined and evaluated in this article which define a query indexing threshold can be
used as algorithms on those processing nodes comprising the proposed distributed
k-NN sliding window solution.

A technique for top-k/w processing in the case of low sliding frequencies has been
recently presented in Yang et al. [2011]. The main idea behind this approach is to pre-
compute top-k sets for future window positions, and then to update them with objects
arriving in the meantime. However, this approach is very inefficient in the case of
high sliding frequencies, such as when the query window slides upon each new object
arrival, and thus is not comparable to our approach.

The idea of approximate processing of top-k/w queries in the context of pub-
lish/subscribe systems is introduced in our previous paper Pripuzic et al. [2008], where
we define a probabilistic criterion for identifying top-k and candidate objects, and use
it as a useful primitive to investigate the number of objects delivered per subscription
over time. Compared to the criterion defined in this article, the criterion presented in
Pripuzi¢ et al. [2008] is an approximation of the probability that an object is a top-k
candidate object at the time of its arrival into the processing system since it neither
provides an upper bound on this probability nor provides any error guarantees.

Recently, several papers have appeared considering top-k/w queries with relevance
scoring functions [Mouratidis and Pang 2009, 2011; Haghani et al. 2010; Rao et al.
2014]. While in this article we primarily focus on reducing the time complexity of top-
k/w processing, these papers focus on efficient indexing of top-k/w queries in the vector
space. Mouratidis and Pang [2009, 2011] propose indexing of streamed documents
based on the traditional inverted file principle where, for each dictionary term, there
exists an inverted list of documents from the current window and special book-keeping
structure which stores current query thresholds. As shown in Haghani et al. [2010],
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this approach is inefficient due to the complex query indexing and result maintenance
procedures. Therefore, Haghani et al. [2010] propose storing of queries in inverted
lists which group queries according to their similarity. This approach enables early
stopping during the processing of incoming documents and thus significantly improves
the performance. Rao et al. [2014] index queries in a covering graph instead of an
inverted index, and also share evaluation results among queries to additionally improve
the performance of streaming document processing.

Hereafter, we list other related top-k/w processing problems in specific application
scenarios. Jin et al. [2010] design algorithms for sliding window queries over uncertain
streams, where the probability of existence is assigned to each incoming data object.
This is an especially challenging processing problem due to the exponential blowup
in the number of possible worlds introduced by the uncertain data model. The au-
thors propose a series of different synopses based on data compression, buffering, and
exponential histograms to improve the time and space complexity of their approach.
Haghani et al. [2009] deal with a problem of continuous top-k/w processing over incom-
plete streams where attribute values for the same data object are reported in separate
nonsynchronized data streams. Their approximate algorithm is based on the corre-
lation statistics between pairs of streams, which prunes more data objects than the
exact algorithm while keeping the necessary accuracy. Nutanong et al. [2010] present
an algorithm for efficient processing of moving k-NN queries which uses an incremen-
tal technique based on safe regions called the V" diagram. This article also surveys
different approaches to the problem of static top-k/w queries over moving data objects.

10. CONCLUSIONS

We study the problem of processing continuous queries that monitor top-k data objects
over sliding windows (top-k/w queries). This problem is not trivial because data objects
which are not top-k/w at the moment of their appearance in the system can later on
become top-k/w objects, and thus a set of potential top-k/w objects within the query
window has to be stored in memory. Existing approaches to top-k/w processing exhibit
one or more of the following drawbacks: they support only a single type of scoring
functions, and have either a high space or high time complexity.

In this article we define PA, the first approximate top-k/w algorithm in literature for
processing random-order data streams, whose main building block is the probabilistic
k-skyband, a novel data structure which maintains only those data stream objects from
a sliding window that have high probability to become top-k/w objects in the future.
We also introduce a novel exact top-k/w processing algorithm RAPF which uses the
probabilistic k-skyband for filtering of less relevant recent data objects.

We present a comprehensive experimental evaluation which systematically compares
PA and RAPF with existing algorithms in literature and reveals their characteristic
properties. In all experiments, PA significantly outperforms all exact algorithms for
large values of parameter k, both in terms of memory consumption and runtime per-
formance. In particular, it has improved the simulation runtime in our experiments
up to two orders of magnitude compared to the best-performing algorithms in litera-
ture (SASF, CPM/w, and SNN). It also scales better when increasing the parameter %,
window size, and data dimensionality, while the observed error rate is controllable and
quite low. PA also shows excellent processing performance without query indexing.

In applications when an input is not a random-order stream, it is necessary to apply
exact top-k/w processing algorithms. When comparing the best-performing compet-
ing algorithms to our exact algorithms (SAPF, RA, and RAPF), one can observe the
following: The best-performing algorithm is by far RAPF, which offers improved run-
time performance up to one order of magnitude while requiring slightly more memory
than SAPF and SNN, but less than SA or RA. Moreover, RAPF offers extremely good

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 1, Publication date: March 2015.



Time- and Space-Efficient Sliding Window Top-k Query Processing 1:41

runtime performance even without query indexing. Therefore one can conclude that,
for top-k/w processing of random-order streams, PA is the best choice when controllable
error rate is tolerable, while for processing real and correlated data streams RAPF is
by far the best-performing algorithm.

APPENDIX

We define pioprstep(!, £, 1, s) as the probability that an object with an initial rank / is a
top-k/w object at step s. In this appendix, we show for which ranks / is psoprstep(l, &, 12, 5)
increasing and convex as a discrete function of step s.

From Lemma 4.3 we know that p..:(,l',n,s) = Zi;;é [Paropl, 0, 5,0 =1 + ) -
DParrivail, 1, 8, ¥)] is the probability that an object with initial rank [ will have rank
I’ at step s. Figure 13 shows pyou(l,1’, n, s) for I = 35 and n = 1000, and similar figures
can be drawn for any combination of [ and n. In Figure 13(a) we see that as s increases
the curve becomes flatter and wider. This is expected as at step s = 0 each object is
always at its initial rank /, but later on as time passes it has higher probability to
acquire other ranks. Additionally, Figure 13(a) also shows that the probability of initial
rank [’ = 35 is continuously decreasing in time, while for ranks which are close to the
initial rank but higher than it (e.g., [’ = 34), these probabilities are first increasing,
and then decreasing in time. Furthermore, for ranks which are even higher than the
former (e.g., rank I’ = 27), these probabilities are continuously increasing in time. In
Figure 13(b) we observe that the increase rate of these probabilities for rank I’ = 27
is higher for earlier steps s than for later steps. Finally, for the highest ranks (e.g.,
rank [’ = 16 shown in Figure 13(c)) the increase rate of these probabilities is rising
continuously. We are interested in these ranks since their probabilities (of becoming a
top-k/w object at step s) are increasing and convex as a discrete function of step s.

The first of the following lemmas proves the criterion which is valid for initial ranks
with increasing probabilities, while the second lemma introduces an additional crite-
rion which is valid only for initial ranks whose probabilities are both increasing and
convex.

LemMma A1, For an object with initial rank [, its probabilities pioprstep(l, k, 1, 8) of
being a top-k/w object at step s increase with the value of step s if the following holds.

n—2-k+2-k-n+1
2-n
V-8R - n+td B2+8 k- n2+4-kn—4-k—7-n+2-n+1
+ 2-n
Proor. From the preceding discussion we have to find ranks [ for which holds
it Dprophstep, kyn,n — 1) > ptopkstep(l k,n,n — 2), where from Lemma 4.3 we have

that ptopkstep(l k,n,s) = er 1prank(l U',ns) = Zl’ 12 pdrop(l n,s,l -1 + y)

Parrival, n, s, y)l. Moreover, as higher top-k ranks (I’ < k) are more to the left than

rank I’ = k, it is obvious that the previous inequality holds if p.ou(l, &k, n,n — 1) >

Prank(l, kB, n,n — 2) is true. Therefore we have to prove that pyriwul,n,n— 1,k — 1) -

pdrop(ly n,n—1,01-1) > pdrop(ly n,n—2,1- 1)‘parrival(lv nn—2k— 1)+pdrop(l n,n—2,1-
1+k—2\ (2-n— l k

2) Parival.n.n— 2,k — 2). From Eqs. (5) and (6) we then have g2 - Uolpad .1 >

@6 | a GEICSED | @6 | 2 GRS

>

(12)

) . By simplifying this inequal-

(27%) 2n-2’ ) (”f 2” O
ity we get ﬁ > ﬁ Jn=1)- k +1I-1)- l+k 2] By solving the quadratic
inequality we get two roots: r; = n— 2k+2kn+1+ —8-k2-n+4- kzzl-;Bkn2+4-k-n—4-k—7-n2+2 ‘nt1 and

ACM Transactions on Database Systems, Vol. 40, No. 1, Article 1, Publication date: March 2015.



1:42

K. Pripuzi¢ et al.

T T T T T
s=0
s=150
0.8} $=300 g
— = s=450
~ $=600
= 06r $=750 1
=3 $=900
v.&
[={
g 04 ]
ay
02} _
0 ! ‘
0 10 60 70
(a) positions from 0 to 70
x107
0.035 15
T s=0
0.03 et s=150
) - =300
g Piie — - 5=450
0o P — $=600
s - a $=750
= 002 e $=900
vx: ) vx:
£ 0015 $=0 g
o s=150 &
0.01 =300 05
' — =~ 5=450
$=600
0.005 <2750 s
$=900 . o
0 ol==s e -
26 27 28 15 16 17

I I

(b) zoomed ranks from 26 to 28 (¢) zoomed ranks from 15 to 17
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LEmMMAa A.2. For an object with initial rank I, its probabilities pioprstep(!, R, 11, 8) Of
being a top-k/w object at step s are both increasing and convex with the value of step s
if the following holds.

3-n—4-k+2-k-n+3

g 2 n+2
V3. (-8 K2 n+4-k2+8 k- n2+4-k-n—4-k—5-n2—2-n+3)

+ 2-n+2

Proor. From the earlier discussion we have to find ranks ! for which it holds
that proprsten(, B, .0 — 1) — Proprstepl, B, n,n — 2) > ﬁ - Prophstep(!, B, n,n — 1), where
again from Lemma 4.3 we have that piprsiep(, k. n,s) = Zf/:l Pranxl, 1, n,s)
Zf,:l Zg;é [Parop, 0, 5,0 — 1" + ¥) - Parrivat(l, 0, s, y)l. Moreover, as higher top-k ranks
(" < k) are more to the left than rank /' k, it is obvious that the previous

[

(13)
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Table X. Highest Rank [ for which Probabilities pyopkstep(!, &, 1, s) of
Being a Top-k/w Object at Step s Increase with the Value of Step s

In\kE][1]2] 5[10]20]50]100 [ 200 | 500 |
103 [ 4 [ 7]12] 193369125 | 232 | 539
10% 12 | 19 | 33 | 69 | 126 | 236 | 555

4 |7
10° || 4| 7] 12| 19| 33 | 69 | 126 | 237 | 557
10 || 4 | 7|12 | 19 | 33 | 69 | 126 | 237 | 557

inequality holds if peu(, k. n,n — 1) — prawp, ko n,n — 2) > %1 - Prankl, B, n,n — 1)

is true. Therefore we have to prove that pyrival,n.n — 1,k — 1) - pgopl,n,n —
1, — 1) — pdrop(lyn’n -21-1- parrival(l, nn— 2,k —1) — pdrop(l,n,n - 2,1 —
2) - parrival(ly nn—2k—2) > nTll . parrival(L n,n— 1,k — 1). From EqS- (5) and
n (@en G 1 - ) - a GRS (@ )(”Z )

(6) we then have ;

n—1 ' (2 -1 5n_2 3 1
(l+k 3)(2n 1k 1 " (l+k—2)(2-n—l—k) "

n n k-1 n—k 1 1 1 1
Tg 3 > —12” T @ . By s1mphfy1ng this inequality we get

1 1 n—k 1
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. . 3n—4-k+2kn+3++/3(—8k2-ntd-k2+8kn2+4kn—4k—5n2—2n+3
inequality we get two roots: ry = SR EAE /34 LA R s A B e ) and

34kt 2hn+3— /38R A48 kn?+ 4k n—dh—bnP—2n+3
rg = 2R titeRnt /88 nt L o 2n o +3) Finally, since it is straightfor-

on
ward to prove that ro < k, we conclude r1 is the only valid solution. O

In Table X we use Lemma A.1 (and Lemma A.2) to show, for typical values of pa-
rameters k£ and window sizes n, those ranks for which probabilities pioprstep(l. &, 12, 5)
are increasing in time. If we compare Table X with Table V, we see that probabilities
Dropkstep!, B, n, s) increase in time and are convex for the last candidate in each of proba-
bilistic k-skyband, which demonstrates the correctness of our approach in Section 4.1.1.
Note that values in Table X stop rising with increasing value of window size n, and
very slowly rise with increasing value of parameter k.
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