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ABSTRACT
In this paper, we propose a formal approach for the design of
object-oriented component-based systems using behavioral
contracts. This formalism merges interface automata de-
scribing communication protocols of components with the
semantics of their operations. On grounds of consistency
with the object-oriented paradigms, we revisit the notions
of incremental design and independent implementability of
interface automata by novel definitions of components com-
patibility, composition, and refinement. Our work is illus-
trated by a design case study of CBTC railway systems.

Keywords
Object-oriented components, Behavioral contracts, Interface
automata, Method semantics, Refinement, Railway systems.

1. INTRODUCTION
Component-based development approaches aim to reduce

the cost of complex systems design by reusing prefabricated
components. A software component is a black box unit of a
third-party composition and deployment, with explicit de-
pendencies to its environment [28]. It is exclusively reusable
via its interface behavioral specification without disclosing
implementation details. However, the design by composition
often raises mismatches. A safe interoperability between
components should fulfill two main properties: (1) their in-
teractions do not lead to undesirable situations, and (2) the
substitution of a component with a new one does not alter
the compound system. Commonly, the functional interoper-
ability of components is usually checked at the levels of their
operations signatures (names and argument types), seman-
tics (pre/postconditions and invariants), and their commu-
nication protocols. A communication protocol regards the
temporal scheduling of assumptions on the environment in-
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puts to a component, its output behavior, and its local op-
erations. Component protocols can be modeled naturally by
interface automata [13] obedient to an optimistic approach
of composition closely related the the object-oriented con-
text: if they communicate within an environment allowing
them to avoid deadlocks, they can be used without changes.
In the industrial context, this approach allows errors detec-
tion during the design phase, and hence taking the appropri-
ate decision: either keeping components as they was received
from their manufacturer, or requesting their modification.

The first contribution of this paper is to demonstrate how
object-oriented component-based design (OOCBD) is more
rigorous by means of behavioral contracts merging interface
automata with the semantics of methods. The optimistic
approach of interface automata composition is accordingly
adapted to fulfill the interaction aspects of object-oriented
components. The composition of two interface automata
is computed by removing from their synchronized product
all states from which the environment cannot prevent dead-
lock states (arising from semantic and protocol mismatches)
by enabling controllable or autonomous actions [13, 5]. We
define the concept of autonomous actions differently by re-
classifying them into method, return, and exception actions.

The second is about the study of components refinement
using behavioral contracts, intended to ensure an indepen-
dent implementability of components. We present refine-
ment as an expanding simulation between interface automata
allowing (i) the introduction, in a component refinement,
more details about common provided services with the ab-
straction, and (ii) providing more services than the abstrac-
tion. These features lead to consider the refinement relation
as covariance on input and output events of a component:
refinement issues (resp. provides) more outputs (resp. in-
puts) than the abstraction. A concrete version C′ of a com-
ponent refines an abstract one C if each input, output, or
local event of C is simulated at least by the same event in C′.
The alternating simulation [7], originally proposed in [13],
to refine interface automata, requires contravariance on in-
put and output events. It is not quite consistent, from our
angle, with the object-oriented context.

All through the paper, we justify the relevance of our ap-
proach for checking design integrity of railway systems. We
propose a case study of trains protection functions in mod-
ern railway CBTC control systems to track the evolution of
safety standards such as the European Norm EN 50128 [1],



and to give a new industrial perspective for the design of
such critical systems using an object-oriented approach.

The paper results appeared partially in preliminary for-
mulations and other contexts in [12, 23]. In Section 2, we
start by introducing informally our case study to avoid clut-
tering the contribution sections. It is nevertheless recalled
gradually to validate the various introduced formal concepts.
In sections 3 and 4, we proceed with the study of behavioral
contracts, and our approach of components compatibility
and composition. Section 5 is devoted to the study of re-
finement of behavioral contracts. Discussions, perspectives,
and related works are presented in Section 6.

2. RAILWAY CASE STUDY
We introduce a simplified case study of trains protection

functions in CBTC (Communications-Based Train Control)
systems [2] (cf. Figure 1). These systems allow benefits such
as high traffic densities, automatic anti-collision processing,
adoption of automated trains, etc. A CBTC system is an au-
tomatic train controller independent of track circuits. It de-
termines continuously precise locations of trains, and sends
them back control signals by means of bidirectional train-to-
wayside data exchange. It has train-borne and wayside de-
vices instrumenting automatic train protection (ATP) func-
tions, as well as automatic train operation (ATO), and au-
tomatic train supervision (ATS) functions. ATP functions
ensure safety-critical requirements (speed control and brak-
ing). ATO functions cover non-safety-related requirements.
ATS functions cover traffic managements [2]. ATO and ATS
functions do not play a significant role on safety, and they
are not considered in this paper.

We consider trains control based on moving block regime.
The positions of a train and its velocity are continuously
computed, based on its kinetic and potential energy, and
communicated via wireless to wayside equipments. Thus,
a protected area of circulation is established for each train
up to the next nearest obstacle. The train is consequently
able to adapt its speed and braking curves in order to not
overcome the limit of this area, called the danger point [27].

The On-Board Device (OBD) of each train computes two
fictional locations: the tail and head external locations (TEL
and HEL). The track fragment between them covers the
whole train. Usually, this choice is caught on grounds of
safety to keep a safe distance between trains in case of sys-
tem malfunction. Locations are coordinates on the trains
path composed of segments and set in a given direction ac-
cording to the railroad switches positions. A segment is iden-
tified by a number, a length, and a beginning coordinate. In
Figure 1, the switch p1 is positioned on the segment s3, and
the train path is the sequence s1, s2, s3, s4, s5, s6, etc.

The OBDs of T1 and T2 initiate the protection process
by asking if they are visible to a Movement Control Unit
(MCU). There are several MCUs covering the entire line,
with overlapping coverage sections allowing safe informa-
tion handover between them. Only one is represented in our
case study. The trains locations are sent by wireless to the
nearest Base Transmission Station (BTS). The latter con-
verts radio signals to digital data and transmits them to the
Data Exchange Unit (DEU), which in turn transfers them to
MCU (event 1). MCU determines whether the zone between
TEL and HEL is completely or partially included within its
coverage area, and responds T1 and T2. In Figure 1, T1
and T2 are both visible to MCU (event 2).

T1

T2

Trains path

Coverage area of MCU

BTS

Wireless communication with T1

Event 1: sending coverage requests to MCU

Event 2: T1 and T2 are covered
Event 3: requesting VMAZs from MCU

Event 4: VMAZs of T1 and T2 from MCU
Event 5: computing VLMA

s1

s2

s3

s4 s5 s6

Velocity profile of T1

DEU
MCU

Wireless communication with T2

p1

TEL HEL s7

TEL HEL

VLMA of T1

Boundary between
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Figure 1: Simplified trains protection functions.

Next, each train asks from its covering MCUs the Vital
Movement Authority Zone (VMAZ): the area (sequence of
segments) in which the train can safely circulate (event 3).
In Figure 1, MCU sends to T1 a VMAZ limited by the be-
ginning of s1 (containing its TEL and HEL) and the end of
s3, and sends to T2 a VMAZ limited by the beginning of
s4 (containing its TEL) and the end of s5, the last segment
covered by MCU (event 4). MCU ensures that VMAZs of
successive trains never overlap to avoid collisions. VMAZs
are computed by chaining segments according to the route
informations. Chaining may be interrupted up to the near-
est obstacle on the train trajectory: the end of MCU cov-
erage area, an uncontrolled switch, or the beginning of the
segment containing TEL of the next train, etc. This func-
tion is covered by a separate wayside component managing
persistent informations (segment and switch locations) and
variant ones (switch positions) of the route during the traffic.

Finally, the train computes the danger point, called Vital
Limit of Movement Authority (VLMA), within the bound-
aries of the received VMAZ. To locate VLMA, OBD takes a
fixed safety margin beforehand the limit of its VMAZ. The
train velocity is gradually reduced to reach zero when HEL
reaches VLMA (event 5).

3. BEHAVIORAL CONTRACTS
In this section, we present behavioral contracts of object-

oriented components combining interface automata with the
semantics of their methods. We start by interface automata.

3.1 Interface automata
Interface automata [13, 5] model the communication pro-

tocols of software components in terms of temporal schedul-
ing of their input, output, and hidden actions. In OOCBD,
input actions may represent the component public provided
methods, the assignment of return values of their calls, and
catching their exceptions. Output actions may represent
method calls, and return or exception events. Private meth-
ods are implicit and not specified by actions. However, their
calls, the assignment of their return values, and the catching
of their thrown exceptions are modeled by hidden actions.

Definition 1. A interface automaton A is a tuple (ΥA,
ıA, ΣI

A, ΣO
A, ΣH

A, δA) where: ΥA is a finite set of states; ıA ∈
ΥA is the initial state; ΣI

A, ΣO
A, and ΣH

A are resp. the sets
of input, output, and hidden actions; δA ⊆ ΥA × ΣA × ΥA

is the set of transitions. A is empty iff ΥA = ∅.



The alphabet of A consists of “a?” for a ∈ ΣI
A, “a!” for

a ∈ ΣO
A, and “a;” for a ∈ ΣH

A. The sets ΣIm
A ⊆ ΣI

A, ΣOm
A ⊆

ΣO
A, and ΣHm

A ⊆ ΣH
A, are resp. actions of public provided

methods, call of environment public methods, and calls of
private methods. The set Σm

A of method actions of A is
ΣIm

A ∪ ΣOm
A ∪ ΣHm

A . Given a set of variables V , we de-
fine by T[v] the type of v ∈ V i.e. v:T[v], and by TJV K =∏

v∈V T[v] the type of V (cartesian product of T[v] for all
v ∈ V ). The signature of a method action a ∈ Σm

A is
a(i1:T[i1], ..., ik:T[ik])→ o:T[o] ] e. The set of input parame-
ters of a is Ψi

A(a) = {i1, ..., ik}. The set of return parameters
Ψo

A(a) of a is the singleton {o}. We define RA(a) = o the
return action of a, and EA(a) = e the exception action of
a. The set of attributes used by a is denoted by ΛA(a) if
a ∈ ΣIm

A ∪ ΣHm
A . The absence of parameters, attributes, or

exceptions is represented by a void. If RA(a) and EA(a)
are defined, we set Σr

A and Σe
A resp. to {RA(a) | a ∈ Σm

A}
and {EA(a) | a ∈ Σm

A}. We denote, by Σ∗rA and Σ∗eA , resp.
the sets Σr

A ∩ Σ∗A and Σe
A ∩ Σ∗A where ∗ ∈ {I,O,H}. It is

worth to mention here that ΣA = Σm
A ∪ Σr

A ∪ Σe
A. We set

SuccA(s, a) = t such that (s, a, t) ∈ δA. A run σ of A is
a finite alternated sequence s0[a0]...[an−1]sn of states and
actions where (sk, ak, sk+1) ∈ δA for all k ∈ N<n. We set
ΣA〈σ〉 = {ak ∈ ΣA | k ∈ N<n} and ΥA〈σ〉 = {sk ∈ ΥA | k ∈
N≤n}. We denote, by ΘA(s), the set of runs reaching s ∈ ΥA

from ıA. A state s ∈ ΥA is reachable in A if ΘA(s) 6= ∅.
Assumptions: Interface automata are deterministic, i.e.

for all (s, a, s1), (s, a, s2) ∈ δA, s1 = s2. All states s ∈ ΥA

are reachable in A. Consider an action a ∈ Σm
A where RA(a)

and EA(a) are defined. If a ∈ ΣIm
A (resp. ΣOm

A and ΣHm
A ),

then EA(a) ∈ ΣO
A \ Σm

A (resp. ΣI
A \ Σm

A and ΣH
A \ Σm

A): a
component providing or requiring a knows its exception. If
a ∈ ΣIm

A , then RA(a) ∈ ΣO
A \Σm

A : the method a must output
its return value. If a ∈ ΣOm

A ∪ΣHm
A , then RA(a) may belong

or not to (ΣI
A ∪ ΣH

A) \ Σm
A : a component invoking a may

require or not the assignment of its return value.

Well-formedness
Object-oriented implementation rules should be covered by
the runs of interface automata. A provided public non-void
method should be specified at least by a sequence of events
starting and ending resp. by an input method action and
an output return one interposed, by calls of local private or
environment public methods and the assignment of their re-
turn values. They may be interleaved optionally by catching
or throwing exceptions events. A call of a non-void method,
made by a component requiring the assignment of its return
value, is followed necessarily by a return input action, and
optionally by an exception catch one. All the actions of a
component are autonomous (controllable), except method
or exception input actions. It’s up to the environment to
enable or not these actions. In [13, 5], only output and
hidden actions are required to be autonomous. From our
perspective, input return actions of non-void method calls,
made by a component, are also autonomous because the en-
vironment is expected to provide their return values and the
component has the option to assign them or not.

The set Σaut
A of autonomous actions is ΣA\(ΣIm

A ∪ΣIe
A). We

define by Σ∗A(s) where ∗ ∈ {I,O,H, Im,Om,Hm, Ir,Or,Hr,
Ie,Oe,He,m, r, e, aut} the set of actions in Σ∗A enabled from
s ∈ ΥA. ΣA(s) is the set of all enabled actions from s.
The run σ = s0[a0]...[an−1]sn is called autonomous in A if
ΣA〈σ〉 ⊆ Σaut

A for all k ∈ N<n. It is called exception-free

if ΣA〈σ〉 ⊆ ΣA \ Σe
A for all k ∈ N<n. A state s′ ∈ ΥA

is reachable autonomously (resp. without exceptions) from
s ∈ ΥA in A if there is an autonomous (resp. exception free)
run between s and s′.

Definition 2. An interface automaton A is well-formed
iff for all state s ∈ ΥA, and action a ∈ Σm

A(s) where RA(a) ∈
Σr

A, there is at least a state t ∈ ΥA, where RA(a) ∈ Σr
A(t),

reachable autonomously without exceptions from SuccA(s, a).

3.2 Method semantics
The semantics of a provided method consists of: (i) a

precondition representing the environment assumptions on
input parameters, (ii) an abstract specification of the re-
turn parameter computation using input parameters and
attributes, (iii) a termination postcondition on the return
parameter depending on input parameters and attributes,
and (iv) an extra postcondition describing exception condi-
tions on parameters and attributes. A method call semantics
is defined only by a precondition on input parameters and a
postcondition on input and return parameters.

Given a set of variables V , a condition on v is a subtype
of T[v]. A condition Q on V is a subtype of TJV K. We
denote by Q[w1, ..., wn] (or QJW K), the projection of Q on
variables in W = {w1, ..., wn} ⊆ V . These conditions can be
concretely defined as predicates in a theory adapted to the
variable types. Consider the set Z ⊆W , and two conditions
P and Q subtypes of TJV K, we set the following equivalences
to define semantic formulas in the rest of the paper:

• ⊥JW K ≡ P JW K = ∅; >JW K ≡ P JW K = TJW K;

• ¬P JW K ≡ TJW K \ P JW K;

• P JZK ∧QJW K ≡ (P JZK×QJW \ ZK) ∩QJW K;

• P JZK ∨QJW K ≡ (P JZK×QJW \ ZK) ∪QJW K;

• P JW K⇒ QJW K ≡ P JW K ⊆ QJW K.

Definition 3. Given an interface automaton A, an in-
put semantics Ia = (Pa, Ba, Qa, Ea) of an action a ∈ ΣIm

A

is defined by: a precondition Pa ⊆ TJΨi
A(a)K, a specification

Sa ⊆ TJΨi
A(a) ∪ ΛA(a) ∪ Ψo

A(a)K, a termination postcon-
dition Qa ⊆ TJΨi

A(a) ∪ ΛA(a) ∪ Ψo
A(a)K, and an exception

postcondition Ea ⊆ TJΨi
A(a) ∪ ΛA(a) ∪Ψo

A(a)K.
An output semantics Ob = (Pb, Qb) of an action b ∈ ΣOm

A

is defined by: a precondition Pb ⊆ TJΨi
A(b)K and a postcon-

dition Qb ⊆ TJΨi
A(b)∪Ψo

A(b)K. These conditions are denoted
resp. by Ia.P , Ia.S, Ia.Q, Ia.E, Ob.P , and Ob.Q.

We consider only the semantics of observable method ac-
tions (a ∈ ΣIm

A ∪ ΣOm
A ). We omit the semantics of private

method actions (a ∈ ΣHm
A ) because they are not relevant for

interoperability. We define behavioral contracts as follows.

Definition 4. A behavioral contract B of a component
is a tuple (A, I,O) such that A is an interface automaton,
I is a map associating each a ∈ ΣIm

A to an input semantics
Ia, and O is a map associating each a ∈ ΣOm

A to an output
semantics Oa. We denote by, B.A, the interface automaton
of B, B.I, the map I of B, and B.O, the map O of B.

The following definition establishes the different relations
between the specification and the pre/postconditions of an
input method action a ∈ ΣIm

A .



Definition 5. Given a behavioral contract B and an ac-
tion a ∈ ΣIm

A where B.A = A and B.I(a) = (Pa, Ba, Qa, Ea),
for all (i, f, o) ∈ Ψi

A(a)× ΛA(a)×Ψo
A(a),

• a is correct with respect to B.I(a) iff
Pa[i] ∧ Sa[i, f, o]⇒ Qa[i, f, o];

• a terminates with respect to B.I(a) iff
Pa[i] ∧ Sa[i, f, o]⇒ Qa[i, f, o] ∧ ¬Ea[i, f, o];

• a throws exceptions with respect to B.I(a) iff
Pa[i] ∧ Sa[i, f, o]⇒ Ea[i, f, o];

The stated conditions are based on the Hoare triplet [15]:
a provided method is correct if its behavior under the pre-
condition ensures the postcondition; it terminates if it is
correct and the exception postcondition is not satisfied, and
throws exceptions if the exception postcondition is satisfied.

3.3 Design of the railway case study
The UML-like component architecture in Figure 2 presents

the different ATP equipments mentioned in Section 2. We
count four component classes: OnBoardDevice, DataEx-
changeUnit, MovementControlUnit, and SubRouteBuilder
instantiated resp. by the components OBD, DEU, MCU,
and SRB. The last three ones implement resp. the inter-
faces DataExchange, MovementControl, and RouteBuilder.

The component DEU implements the public (+) method
covReq (coverage request), whose arguments are: tel and ts,
resp. the coordinate of TEL, sent by OBD, and the identifier
of the segment containing TEL, hel and hs, resp. the coor-
dinate of HEL and the identifier of the segment containing
HEL, and t, the train identifier. According to the inter-
face automaton Ad of DEU (cf. Figure 3(b)), the method
covReq transfers the coverage request to MCU by invoking
the method isCovered . MCU responds OBD, via DEU, by
returning 2 (resp. 1) if it covers completely (resp. partially)
the train (signal covered), or by throwing uncovered if not.

Subsequently, if the train is covered by MCU, OBD re-
quests its VMAZ (vmazReq). DEU transfers the request by
calling computeVmaz implemented by MCU. In turn, MCU
calls the method chain of SRB to perform chaining on seg-
ments in order to compute the VMAZ bounds within the
sequence of segments from start to end , the arguments of
chain. If MCU covers only hel , the argument start is set to
the first segment in the trains path fully covered by MCU.
Otherwise, it is set to ts. The argument end is always set
to the last segment fully covered by MCU. According to Am

in Figure 3(c), if chaining is interrupted by an uncontrolled
switch, MCU handles the exception uncontSW expected to
be thrown by chain and in turn, throws default .

Based on the path database bdd , SRB returns VMAZ seg-
ments in the table segs of size max the maximum number
of segments covered by MCU. The field useful nb ≤ max
indicates the number of segments included in VMAZ. MCU
computes accordingly the VMAZ bounds coordinates on the
path frame based on informations of useful segments (identi-
fiers, beginning coordinates, and lengths saved in data struc-
tures of type Seg). In the case where MCU covers only a
part of the train VMAZ, it returns a pair vmaz of coordi-
nates where one of them is null and the other is a positive
real. Otherwise, the two coordinates are positive reals. The
map attribute cst (covered segments and trains) is finally up-
dated such that segments covered both by MCU and VMAZ
of the train are associated to its identifier.

OnBoardDevice

-deu:DataExchangeUnit

-computeVlma(vmaz bounds:realˆ2)
-ctrlVelocity(vlma:real,curr velocity:real)
-emgcyBrake()

Component
OBD

Component
DEU

DataExchangeUnit

-mcu:MovementControlUnit

+covReq(t:nat,tel:real,ts:nat,hel:real,hs:nat):nat
+vmazReq(t:nat):realˆ2

MovementControlUnit

-cst:{seg:int 7→ train:int}ˆmax

-srb:SubRouteRuilder

+isCovered(t:nat,tel:real,ts:nat,hel:real,hs:nat):nat
+computeVmaz(t:nat):realˆ2

Component
MCU

SubRouteBuilder

-bdd:{seg:Seg 7→ sw:Switch}ˆmaxs

+chain(start:nat,end:nat):{segs:Segˆmax,useful nb:nat}

Component
SRB

DataExchange

MovementControl

RouteBuilder

Figure 2: UML-like component architecture.
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(a) Ao (OBD)
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e

f
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isCovered?
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yes! computeVmaz? chain!

uncontSW?default!

vmazSegs?result!

IN: isCovered, computeVmaz, vmazSegs, uncontSW
OUT: chain, yes, no, result, default

(c) Am (MCU)

Figure 3: Interface automata of OBD, DEU, and
MCU: method actions (double transitions); re-
turn actions (simple transitions); exception actions
(dashed transitions).

Finally, according to Ao in Figure 3(a), OBD fixes VLMA
by calling its private (−) method computeVlma before the
final bound of VMAZ. Consequently, it controls the train
speed if HEL is sufficiently far from VLMA (ctrlVelocity),
or performs an emergency brake (emgcyBrake) otherwise.

Let us consider three behavioral contracts Bo, Bd, and Bm

resp. for components OBD, DEU, and MCU where Bo.A is
Ao, Bd.A is Ad, and Bm.A is Am. Table 1 shows an ex-
ample of the method covReq semantics in Bo and Bd whose
signature is covReq (t , tel , ts, hel , hs)→ covered ] uncovered
(parameter types are given in Figure 2). The semantics of
covReq in Bo and Bd states that the minimal and maxi-
mal identifiers t of trains, are resp. 0 and 30, and those
of segment identifiers (ts and hs), are resp. 0 and 500.
The precondition of covReq in Bo states that the conditions
tel , hel ∈ [0, 5000] and tel < hel have to be satisfied by call-
ing the method, where 5000um (unit of measurement) is the
size of the longest trains path. In Bd, the precondition states
simply that tel , hel ∈ [0, 5000]. In Bo, the postcondition of
covReq states that the return parameter covered is a sig-



Table 1: Semantics of the method action covReq.
Output semantics Bo.O Input semantics Bd.I
Bo.O(covReq).P ≡ t ∈ {0, ..., 30} ∧ ts, hs ∈ {0, ..., 500}∧ Bd.I(covReq).P ≡ t ∈ {0, ..., 30} ∧ ts, hs ∈ {0, ..., 500}∧

tel , hel ∈ [0, 5000] ∧ tel < hel tel , hel ∈ [0, 5000]
Bd.I(covReq).S ≡ ⊥[t, tel , hel , ts, hs, covered ]

Bo.O(covReq).Q ≡ covered ∈ {0, 1, 2} Bd.I(covReq).Q ≡ covered ∈ {1, 2}
Bd.I(covReq).E ≡ covered = 0

nal in {0, 1, 2}. However, in Bd, it states only that covered
is a signal in {1, 2} because if it is equal to 0, the excep-
tion uncovered is thrown. The specification Bd.I(covReq).S
is not defined (⊥[t, tel , hel , ts, hs, covered ]): at the level of
Bd, there is no parameter or attribute (ΛAd(covReq) = ∅)
describing how the return parameter covered is computed.
MCU, after receiving the coverage request from OBD, is ex-
pected to ask SRB to check in bdd whether tel and hel are
really placed resp. on ts and hs, as claimed by OBD. This
functionality of SRB does not appear intentionally at this
stage. We expect using this detail to justify our refinement
approach presented in Section 5.

Finally, by considering that RAo(covReq) is covered ∈
Σr

Ao
, RAo(vmazReq) is vmaz ∈ Σr

Ao
, and EAo(covReq) is

uncovered ∈ Σe
Ao

, we can deduce that Ao is well-formed.
The reader can easily deduce the well-formedness of Ad and
Am by finding their method, return and exception actions.

4. COMPONENTS COMPOSITION
The composition of two behavioral contracts may induce

deadlock situations caused by potential semantic or protocol
incompatibilities. At the protocol level, the composition of
two interface automata may contain deadlock states. From
that states, one of the two interface automata requests an
input not accepted by the other. For example, a component
calls a method throwing exceptions without handling them.

At the semantic level, the synchronization of shared in-
put/output method actions with incompatible semantics,
leads to deadlock states. A component outputting a method
call have more informations about its arguments. Thus, the
call precondition is stronger than that of the method im-
plementation: the environment is expected to provide input
arguments included in the implementation precondition. In
return, the component providing the method communicates
to the environment a postcondition on its return parame-
ter: it vouches to provide only return values that satisfy the
postcondition. The calling component cannot have more de-
tailed informations about the return parameter than the im-
plementing one. That’s why the postcondition of a method
invocation is weaker than that provided by its implemen-
tation. Note that preconditions, like postconditions, of pro-
vided observable methods are required to be satisfiable. Not
all calling environments satisfy the precondition, or expect
return guarantees larger than the postcondition [5]. In this
case, synchronization disparities are detected.

4.1 Synchronization of interface automata
and semantic compatibility

The synchronization of two interface automata A1 and
A2 is possible only if they are mutually composable i.e.
ΣI

A1
∩ ΣI

A2
= ΣO

A1
∩ ΣO

A2
= ΣH

A1
∩ ΣA2 = ΣH

A2
∩ ΣA1 = ∅.

The set of shared input/output actions in A1 and A2 is
Shared(A1, A2) = (ΣI

A1
∩ΣO

A2
)∪(ΣI

A2
∩ΣO

A1
). For simplicity,

we denote the couple of states (s1, s2) by s1s2. By synchro-
nizing A1 and A2, transitions labeled by shared actions syn-
chronize and the others are interleaved. The synchronized
product A1 ⊗ A2 of A1 and A2 is an interface automaton
where ΥA1⊗A2 = ΥA1 × ΥA2 , ıA1⊗A2 = ıA1 ıA2 , ΣI

A1⊗A2
=

(ΣI
A1
∪ ΣI

A2
) \ Shared(A1, A2), ΣO

A1⊗A2
= (ΣO

A1
∪ ΣO

A2
) \

Shared(A1, A2), ΣH
A1⊗A2

= ΣH
A1
∪ΣH

A2
∪Shared(A1, A2), and

(s1s2, a, s
′
1s
′
2) ∈ δA1⊗A2 iff :

• a ∈ Shared(A1, A2)∧(s1, a, s
′
1) ∈ δA1∧(s2, a, s

′
2) ∈ δA2 ;

• a 6∈ Shared(A1, A2)∧
((s1, a, s

′
1) ∈ δA1 ∧s2 = s′2∨(s2, a, s

′
2) ∈ δA2 ∧s1 = s′1).

Given tow behavioral contracts B1 and B2 where B1.A =
A1 and B2.A = A2, B1 and B2 are composable if A1 and A2

are composable, and each a ∈ Shared(A1, A2)∩Σm
A1

has the
same signature in A1 and A2. We deduce, from the compos-
ability of B1 and B2, that for each a ∈ Σm

Ai
∩Shared(A1, A2)

for i ∈ {1, 2}, if RAi(a),EAi(a) ∈ ΣAi for all i ∈ {1, 2},
then RA1(a) = RA2(a) = ra, EA1(a) = EA2(a) = ea and
ra, ea ∈ Shared(A1, A2). In the following definition, we pro-
vide the semantic compatibility conditions of input/output
method actions shared between A1 and A2.

Definition 6. Given an action a ∈ Shared(A1, A2) ∩
Σm

A1
, for all (i, o) ∈ Ψi

A1
(a) × Ψo

A1
(a), if one of the follow-

ing conditions holds, then the action a in B1 is semantically
compatible with a in B2 i.e. SemCompa(B1, B2):

• B1.O(a).P [i]⇒ B2.I(a).P [i]∧
B1.O(a).Q[i, o]⇐ B2.I(a).Q[i, o], if a ∈ ΣOm

A1
;

• B1.I(a).P [i]⇐ B2.O(a).P [i]∧
B1.I(a).Q[i, o]⇒ B2.O(a).Q[i, o], if a ∈ ΣIm

A1
.

Example 1. According to our case study (cf. Section 3.3),
Bo.A and Bd.A are composable. The set Shared(Ao, Ad)
is defined by {covReq , vmazReq , covered , uncovered , vmaz}.
Based on Table 1, SemCompa(Bo, Bd) is true for a = covReq .

Assume that B1 and B2 are composable, we define by
B1|B2, the synchronized behavioral contract of B1 and B2

where (B1|B2).A is A1⊗A2 restricted to the set of reachable
states, (B1|B2).I = Bi.I(a) for all a ∈ ΣIm

Ai
\Shared(A1, A2),

and (B1|B2).O = Bi.O(a) for all a ∈ ΣOm
Ai
\ Shared(A1, A2)

with i ∈ {1, 2}. We set (B1|B2).A = A12 for simplicity.
Deadlock states in A12 represent possible deadlocks during

the communication between the components specified by B1

and B2 at the protocol and semantic levels. They are states
s1s2 such that (i) there exists at least a ∈ Shared(A1, A2)
enabled from s1 and not from s2 or inversely, or (ii) a is a
method action enabled from s1 and s2 but, the condition
SemCompa(B1, B2) is falsified.



a1 b1 c2 d3

e1

f3 g3 h4 h5

h6

h7h1

covReq? isCovered; yes;

no;uncovered!

covered! vmazReq? computeVmaz; chain!

uncontSW?

vmazSegs?result;vmaz!

IN: covReq, vmazReq, vmazSegs,uncontSW
OUT: covered, uncovered, vmaz, chain
HID: isCovered, yes, no, result, default

Figure 4: Interface automaton (Bd|Bm).A.

Definition 7. The set of deadlock states Dead(A1, A2)
in A12 is {s1s2 ∈ ΥA12 | (∃ a ∈ Shared(A1, A2). D1(s1s2) ∨
D2(s1s2))} where

• D1(s1s2) ≡ (a ∈ ΣO
A1

(s1) ∧ a /∈ ΣI
A2

(s2))∨
(a ∈ ΣOm

A1
(s1) ∧ a ∈ ΣIm

A2
(s2) ∧ ¬SemCompa(B1, B2));

• D2(s1s2) ≡ (a ∈ ΣO
A2

(s2) ∧ a /∈ ΣI
A1

(s1))∨
(a ∈ ΣOm

A2
(s2) ∧ a ∈ ΣIm

A1
(s1) ∧ ¬SemCompa(B1, B2)).

Example 2. According to Figure 3, the interface automata
Ad and Am are composable. Let us consider two compos-
able behavioral contracts Bd and Bm where Bd.A = Ad

and Bm.A = Am. By supposing that actions isCovered and
computeVmaz are semantically compatible between Bd and
Bm, the state h6 is the only deadlock state in (Bd|Bm).A:
the exception action default ∈ Σe

Am
(6) ∩ Shared(Ad, Am) is

not enabled from the state h in Ad (cf. Figure 4).

4.2 Optimistic approach of composition
The incremental bottom-up design means that the com-

patibility checking between components can be performed
for partial descriptions of the system. The optimistic ap-
proach of interface automata composition is closely consis-
tent with the incremental design oncoming.

In this approach, the presence of deadlock states in A12

doesn’t imply necessarily the incompatibility of B1 and B2:
the existence of a suitable environment E where E.A pro-
vides good input steps and semantics for A12 and prevents
reaching deadlock states, implies that they are compatible.
E must satisfy the following conditions: (1) E and B1|B2

are composable, (2) E.A is non-empty interface automa-
ton, (3) Dead(A12, E.A) = ∅, and (4) no state in the set
Dead(A1, A2)×ΥE.A is reachable in ((B1|B2)|E).A [13].

1 2

chain?

vmazSegs!

IN: chain
OUT: vmazSegs, uncontSW

Figure 5: Interface automaton As of SRB.

Example 3. We assume that SRB does not throw the ex-
ception uncontSW if an uncontrolled switch is detected dur-
ing chaining. The train VAMZ is limited by the switch posi-
tion: for example, in Fig 1, if p1 is uncontrolled, VMAZ of T1
is bounded by the end of segment s2. Let us consider a be-
havioral contract Bs for SRB composable with Bd|Bm where
Bs.A = As (cf. Figure 5) and SemCompa(Bd|Bm, Bs) is
valid for a = chain. Bs is a suitable environment for Bd|Bm.

In ((Bd|Bm)|Bs).A, the states h61 and h62 are not reach-
able because from the state 2 in As the action uncontSW
is not enabled. Consequently, Bd and Bm are compatible
behavioral contracts.

In the product A12, all states s1s2 from which deadlock
states are autonomously reachable, are considered as incom-
patible and must be removed from A12. No environment can
prevent reaching deadlocks from those states as explained
in Section 3.1. A state s1s2 ∈ ΥA12 is compatible in A12 if
there is no state s′1s

′
2 ∈ Dead(A1, A2) autonomously reach-

able from s1s2. We denote, by Cmp(A1 ,A2 ), the set of
compatible states in A12. B1 and B2 are compatible iff they
are composable and ıA12 ∈ Cmp(A1 ,A2 ). The interface au-
tomaton of the composition of two behavioral contracts is
restricted to the set of compatible states of their synchro-
nized product.

a1 b1 c2 d3

e1

f3 g3 h4 h5

h7h1

covReq? isCovered; yes;

no;uncovered!

covered! vmazReq? computeVmaz; chain!

vmazSegs?result;vmaz!

IN: covReq, vmazReq, vmazSegs,uncontSW
OUT: covered, uncovered, vmaz, chain
HID: isCovered, yes, no, result, default

Figure 6: Interface automaton (Bd‖Bm).A.

Definition 8. The composition B1‖B2 of B1 and B2

is a behavioral contract such that (B1‖B2).I = (B1|B2).I,
(B1‖B2).O = (B1|B2).O, and (B1‖B2).A is an interface
automaton where Υ(B1‖B2).A is restricted to Cmp(A1 ,A2 ),
ı(B1‖B2).A = ıA12 , Σ∗(B1‖B2).A = Σ∗A12

for ∗ ∈ {I,O,H}, and

δ(B1‖B2).A = {(s, a, s′) ∈ δA12 | s, s′ ∈ Cmp(A1 ,A2 )}.

Example 4. The interface automaton (Bd‖Bm).A (cf. Fig-
ure 6) is the restriction of (Bd|Bm).A to the set of com-
patible states Υ(Bd|Bm).A \ {h6}. Assume that Ad is not
well-formed and do not expect to assign the return value of
computeVmaz , h7 is a deadlock state in (Bd|Bm).A. In this
case, states h5, h4, and g3 are incompatible (the path be-
tween g3 and h7 is autonomous). The call of vmazReq leads
inevitably to a deadlock for all possible environments.

The proofs of the claimed theorems in the rest of the pa-
per are detailed in [22]. The following theorem states the
preservation of interface automata well-formedness by com-
position of behavioral contracts.

Theorem 1. If A1 and A2 are well-formed and B1 is
compatible with B2, then (B1‖B2).A is well-formed.

The following theorem is in the heart of incremental de-
sign of component-based systems. It is a straightforward
generalization of interface automata associativity [13] to be-
havioral contracts.

Theorem 2. The composition operation ‖ between com-
patible behavioral contracts is commutative and associative.

The compatibility check procedure of two behavioral con-
tracts is similar to that described in [13] for interface au-
tomata, by considering the semantic layer of actions and the
new definition of autonomous runs. The linear complexity
of the proposed algorithm is extended by the satisfiability
decision problems of the semantic compatibility conditions
of shared method actions [5].



5. REFINEMENT
Refinement embodies with more details an abstract spec-

ification of a component in a more concrete one. It guaran-
tees a safe substitutability of an abstract version of a com-
ponent by a refined one. We propose a refinement approach
for behavioral contracts at the protocol and semantic levels
suitable to the object-oriented context. We start by intro-
ducing refinement at the level of interface automata.

5.1 Expanding simulation
The original refinement approach of interface automata is

contravariant [13]: a refined version of a component must
accept the same or more inputs and provide the same or
fewer outputs, than the abstraction. It is based on an al-
ternating simulation relation [7]: an interface automaton A′

refines an interface automaton A if each input event of A can
be simulated by A′, and each output event of A′ can be sim-
ulated by A. At the protocol level in OOCBD, refinement
ensures that a refined specification of component (i) may
contain more details about the common provided methods
with the abstract one, which are output and hidden method
calls encapsulated in their implementations, and (ii) may
provide more methods than the abstract one. In order to
satisfy the previous requirements, we define refinement as
a covariant expanding simulation relation between interface
automata: A′ refines A if A′ accepts (resp. issues) more
inputs (resp. outputs) than A, and each input, output, or
local event of A is simulated in A′ by the same one followed
or preceded by other events. To formalize this relation, we
define the closure set ClosA(s,Σ) of s ∈ ΥA under actions
in Σ ⊆ ΣA by the largest set Υ ⊆ ΥA such that s ∈ Υ
and if t ∈ Υ, t′ = SuccA(t, a), and a ∈ Σ, then t′ ∈ Υ i.e.
ClosA(s,Σ) contains states reachable from the state s by
enabling actions of Σ.

Definition 9. Given two interface automata A and A′,
a binary relation & ⊆ ΥA×ΥA′ is an expanding simulation
from A to A′ iff for all states s ∈ ΥA and s′ ∈ ΥA′ such that
s & s′, for all a ∈ ΣA(s) and t = SuccA(s, a), the following
conditions hold:

(1) if a ∈ ΣOm
A (s) ∪ ΣIr

A(s) ∪ ΣIe
A(s), then a ∈ ΣA′(s′) and

t & t′ for t′ = SuccA′(s′, a);

(2) if a ∈ ΣIm
A (s) ∪ ΣHm

A (s), then a ∈ ΣA′(s′), and there
is a subset Σ ⊆ ((Σaut

A′ \ ΣOr
A′ ) \ Σe

A′) \ ΣA and a state
t′ ∈ ClosA′(SuccA(s′, a),Σ) such that t & t′;

(3) if a ∈ ΣOr
A (s)∪ΣHr

A (s), then there is v′ ∈ ClosA′(s′,Σ)
such that Σ = ((Σaut

A′ \ ΣOr
A′ ) \ Σe

A′) \ ΣA, a ∈ ΣA′(v′),
and t & t′ for t′ = SuccA′(v′, a);

(4) if a ∈ ΣOe
A (s)∪ΣHe

A (s), then there is v′ ∈ ClosA′(s′,Σ)
where Σ = ((Σaut

A′ \ (ΣOe
A′ ∪ ΣOr

A′ )) ∪ ΣIe
A′) \ ΣA, a ∈

ΣA′(v′), and t & t′ for t′ = SuccA′(v′, a).

Our expanding simulation relation pinpoints where refine-
ment details are added in the abstract version of an interface
automaton. Condition (1) of Definition 9 states that every
transition labeled by an output method action, or an input
return or exception action must be matched by a transi-
tion labeled by the same action in A′. Method calls sent to
the environment, the reception of their return values, and
catching their thrown exceptions, cannot be refined.

Condition (2) states that every transition labeled by an
input or hidden method action in A is matched in A′ by
a transition labeled by the same action followed by zero or
more transitions labeled by a “subset” of new autonomous
non-exception actions in ((Σaut

A′ \ΣOr
A′ )\Σe

A′)\ΣA. A provided
public method in the abstraction of a component can be
refined by adding to its body new private or public method
calls. In addition, since providing private methods is not
specified by actions in interface automata (cf. Section 3), our
simulation relation allows adding refinement details about
private methods after their calls.

Condition (3) states that every transition labeled by an
output or hidden return action a in A is matched in A′ by
zero or more transitions labeled by new autonomous non-
exception actions in ((Σaut

A′ \ ΣOr
A′ ) \ Σe

A′) \ ΣA followed by
a transition labeled by a. The return event of a private
or public provided method in the abstraction is computed
based on the return values of new calls of private or public
methods added as refinement details.

Condition (4) states that every transition labeled by an
output or hidden exception action a in A is matched in A′ by
zero or more transitions labeled either by new autonomous
and hidden exception actions in (Σaut

A′ \ (ΣOe
A′ ∪ ΣOr

A′ )) \ ΣA,
or by new input exception actions in ΣIe

A′ \ΣA, followed by a
transition labeled by a. The exception events of a provided
private or public method in the abstraction is the propa-
gation of catching exception events of new calls of private
or public methods added as refinement details. From the
previous definition, we establish refinement as follows.

Definition 10. A′ refines A (A � A′) iff (1) ΣI
A ⊆ ΣI

A′ ,
ΣO

A ⊆ ΣO
A′ , ΣH

A ⊆ ΣH
A′ , and (2) there is an expanding simu-

lation & from A to A′ such that ıA & ıA′ .

A trivial consequence of condition (1) of Definition 10 is
covariance from A to A′ on method, return, and exception
actions: Σm

A ⊆ Σm
A′ , Σr

A ⊆ Σr
A′ , and Σe

A ⊆ Σe
A′ . Condition

(2) requires the existence of an expanding simulation from A
to A′ relating their initial states ıA and ıA′ and recursively
propagated to their successor states.

We infer from conditions of Definition 9 that extra new
input method actions are not considered as refinement de-
tails by the expanding simulation relation, which obviously
makes sense. By cons, it allows the extension of interface
automata by adding protocols related to additional meth-
ods provided by a component extended interface. They can
be enabled for example separately from the initial state.

Example 5. After receiving a train coverage request, MCU
asks SRB to check if tel and hel are really on segments
ts and hs respectively by calling the method checkLocs,
presented in Figure 7(left), as a new service of the class
SubRouteBuilder and the interface RouteBuilder. If true,
SRB responds by sending the status (localized), and MCU
in turn, responds OBD, via DEU, by returning yes if the
train is completely (or partially) included in its coverage
area. Otherwise, SRB throws the exception unlocalized to
MCU, which in turn, propagates it to DEU by throwing the
exception no. In A′m shown in Figure 7(a), the method call
checkLocs! is encapsulated in the runs describing the body
of the method isCovered provided by MCU. Providing the
public method checkLocs is equally depicted in the inter-
face automaton A′s shown in Figure 7(b) by a new input
method action enabled separately from ıA′

s
= 1′. A′m and



SubRouteBuilder

-bdd:{seg:Seg 7→ sw:Switch}ˆmaxs

+chain(start:nat,end:nat):{segs:Segˆmax,useful nb:nat}
+checkLocs(tel:real,ts:nat,hel:real,hs:nat):nat

Component
SRB

RouteBuilder
1’ 2’ 3’ 5’

4’

6’ 7’ 8’

10’

9’

isCovered? checkLocs! localized?

unlocalized?
no!

yes! computeVmaz? chain!

uncontSW?default!

vmazSegs?result!

IN: isCovered, computeVmaz, vmazSegs, uncontSW, localized, unlocalized
OUT: checkLocs, chain, yes, no, result, default

1’ 2’3’

chain?

vmazSegs!

localized!

unlocalized!

checkLocs?

IN: chain, checkLocs
OUT: vmazSegs, uncontSW, localized, unlocalized

(a) A′m (MCU) (b) A′s (SRB)

Figure 7: Extended class SubRouteBuilder (left); refined interface automata of MCU and SRB (right).

A′s resp. refine Am and As (shown resp. in Figure 3(c) and
Figure 5): condition (1) of Definition 10 is met by A′m and
Am, as well by A′s and As, and there are two expanding sim-
ulations &m= {11′, 23′, 36′, 47′, 58′, 69′, 7(10′)} from Am to
A′m with ıAm &m ıA′

m
and &s= {11′, 22′} from As to A′s

with ıAs &s ıA′
s
.

5.2 Semantic substitutability
The semantic substitutability of method actions between

an abstract and a concrete versions of a component behav-
ioral contract is based on behavioral sub-typing principles
introduced in [8, 20]: in the refined specification, a com-
mon provided method must have a weaker precondition, a
stronger termination postcondition, and does not introduce
exceptions by supplying a stronger exception condition, than
the abstraction. Inversely, a common method call must have
a stronger precondition and a weaker postcondition than the
abstraction. Given tow behavioral contracts B and B′, we
denote B.A by A and B′.A by A′.

Definition 11. Given an action a ∈ ΣIm
A , B′.I(a) =

(P ′a, B
′
a, Q

′
a, E

′
a) substitutes B.I(a) = (Pa, Ba, Qa, Ea) i.e.

SemSuba(B,B′), iff for all (i, f, o) ∈ Ψi
A(a)×ΛA(a)×Ψo

A(a),
the following conditions hold:

(1) Pa[i]⇒ P ′a[i], R[i, f, o]⇐ R′[i, f, o] for R ∈ {Qa, Ea};

(2) Pa[i] ∧ S′a[i, f, o]⇒ Sa[i, f, o].

Given an action b ∈ ΣOm
A , B′.O(b) = (P ′b, Q

′
b) substitutes

B.O(b) = (Pb, Qb) i.e. SemSubb(B,B
′), iff for all (i, o) ∈

Ψi
A(b)×Ψo

A(b), the following condition holds:

(3) Pb[i]⇐ P ′b[i] and Qb[i, o]⇒ Q′b[i, o].

Property 1. Given a ∈ ΣIm
A where SemSuba(B,B′), for

all (i, f, o) ∈ Ψi
A(a)× ΛA(a)×Ψo

A(a),

• Pa[i] ∧ S′a[i, f, o]⇒ Qa[i, f, o],

• Pa[i] ∧ S′a[i, f, o]⇒ Qa[i, f, o] ∧ ¬Ea[i, f, o], or

• Pa[i] ∧ S′a[i, f, o]⇒ Ea[i, f, o]

resp. iff the action a is correct, terminates, or throws excep-
tions with respect to B.I(a).

The previous property is evident based on definitions 5
and 11. The correctness, termination and exception preser-
vation is what we expect for a correct refinement at the level
of provided methods semantics: if a refined semantics of a
provided method satisfies the condition (2) of Definition 11,
then any property holding for a specification S under the
precondition in the abstract method semantics, holds also
for the refined specification S′ under the same precondition,
and thus S′ may be used instead of S [21, 3].

Property 2 says that the semantic compatibility validity
of shared observable method actions, between a component
behavioral contracts and its environment, is preserved by
the semantic substitutability. The property is obvious based
on Definition 6 and conditions (1) and (3) of Definition 11.
Given a behavioral contract E, we set E.A = AE .

Property 2. Given an action a ∈ Shared(A,AE) ∩ Σm
A ,

for all (i, o) ∈ Ψi
A(a) × Ψo

A(a), if SemSuba(B,B′), then
SemCompa(B,E) = SemCompa(B′, E) .

Finally, we can define refinement of behavioral contracts
based on refinement of interface automata and the semantic
substitutability of observable method actions.

Definition 12. B′ refines B (B w B′) iff A � A′ and
for all a ∈ ΣIm

A ∪ ΣOm
A , SemSuba(B,B′).

5.3 Refinement properties
In this subsection, we present the properties and require-

ments under which our refinement approach allows indepen-
dent implementability of components using their behavioral
contracts. We recall that these results are proved in [22].

Reflexivity and transitivity
Theorem 3. Refinement w between behavioral contracts

is a preorder i.e. reflexive and transitive.

The previous theorem states that a behavioral contract
can be gradually refined in several steps while remaining con-
sistent with its abstract specification. It is provable based
on the transitivity of the expanding simulation relation i.e.
given three interface automata A, A′, and A′′, and two ex-
panding simulations &′ ⊆ ΥA ×ΥA′ and &′′ ⊆ ΥA′ ×ΥA′′ ,
then the composite relation &′′ ◦ &′ ⊆ ΥA × ΥA′′ is an
expanding simulation.

Independent implementability
Refinement is expected to allow independent implementabil-
ity of components: compatible behavioral contracts can be
refined separately, while still maintaining compatibility. It
lets industrials unrestricted to outsource the implementation
of the different components by different suppliers, after the
refinement process, even if they do not communicate [5].

Our refinement approach guarantees the consistency be-
tween two behavioral contracts B and B′ where B w B′ if
they are considered “isolated” from their use context. How-
ever, it does not prevent the introduction of poorly designed
behaviors in their interface automata. Since refinement may
issues new outputs, the designer should “safely” define it to
preserve compatibility with the environment within the ab-
straction is incorporated without altering their communica-
tion scenarios. For example, according to Definition 2 and



conditions (2) and (3) of Definition 9, the proposed expand-
ing simulation relation preserves well-formedness in refine-
ment only for method actions events common with the ab-
straction. By cons, it does not guarantee that new method
actions events are followed necessarily by their return events.
In general, the higher the refinement design respects the en-
vironment requirements and well-formedness, the safer the
refinement is considered to be.

In the rest of the section, we consider three behavioral con-
tracts B1, B′1 and B2 such that B1 and B2 are composable
and compatible, B′1 and B2 are composable, and B1 w B′1.
Let B1.A = A1, B′1.A = A′1, B2.A = A2, (B1|B2).A = A12,
and (B′1|B2).A = A′12, we set EnabRiseDead(A1, A2) =
{a ∈ (ΣIm

A12
∪ ΣIe

A12
) ∩ ΣA12〈σ〉 | σ ∈ ΘA12(d1d2), d1d2 ∈

Dead(A1, A2)}: the set of non-autonomous actions enabled
by runs σ ∈ ΘA12(d1d2) for all d1d2 ∈ Dead(A1, A2). Since
B1 and B2 are compatible, EnabRiseDead(A1, A2) 6= ∅ if
Dead(A1, A2) 6= ∅.

Given & an expanding simulation from A1 to A′1 such that
ıA1 & ıA′

1
, B′1 is a safe refinement of B1 compared to B2,

denoted B1 ws
B2

B′1 if the following conditions hold for the
interface automata A1, A′1, and A2:

(1) for all deadlock state d′1d2 ∈ Dead(A′1, A2), there is a
deadlock state d1d2 ∈ Dead(A1, A2) such that d1 & d′1
or d′1 ∈ ClosA′

1
(c′1,ΣA′

1
\ ΣA1) and d1 & c′1, and

(2) Shared(A′1, A2) ∩ EnabRiseDead(A1, A2) = ∅.

The previous conditions establish requirements whereby
B′1 is considered to be a safe refinement of B1 compared to
B2. Condition (1) says that A′12 does not introduce new
deadlocks compared to A12 by guaranteeing that all states
in Dead(A′1, A2) are simulated by states in Dead(A1, A2).
Condition (2) says that A′1 does not share non-autonomous
actions in EnabledRiseDead(A1, A2) with A2 if they are en-
abled by the environment in A12 may lead inevitably to
deadlock states. We claim the following theorem.

Theorem 4. If B1 ws
B2

B′1, then B′1 is compatible with
B2 and B1‖B2 w B′1‖B2.

Given a fourth behavioral contract B′2 such that B′2 is
composable with B′1 and B2 w B′2, the independent imple-
mentability property of behavioral contracts is established
by the following corollary, which is obviously deductible from
theorems 3 and 4.

Corollary 5. If B1 ws
B2

B′1 and B2 ws
B′

1
B′2, then B′1

is compatible with B′2 and B1‖B2 w B′1‖B′2.

Refinement� of two interface automata A and A′ is check-
able in time O((|δA|+ |δA′ |).(|ΥA|+ |ΥA′ |)) [7, 5], where |S|
is the cardinality of a set S. The algorithm of checking re-
finement between interface automata, in our approach, can
be deduced naturally form that proposed in [13]. Safe re-
finement can be checked in linear time by forward or back-
ward traversals, that is B1 ws

B2
B′1 can be checked in time

O(|δ(B1|B2).A|.|δ(B′
1|B2).A|). The previous complexity is ex-

tended by the satisfiability decision problems related to the
semantic substitutability conditions of common observable
method actions between the refinement of a behavioral con-
tract and its abstraction.

6. DISCUSSIONS AND RELATED WORKS
This work is the result of a critical feedback after a con-

siderable experience in the railway industry. Its main mo-
tivation is to provide innovative solutions for the develop-
ment of correct-by-design critical component-based systems
by checking rigorously the functional interoperability be-
tween software components. Many industrial actors still
checking integrity and safety after the development phase
by using the V-Model or formal methods. The V-Model and
classic testing techniques are out of phase compared to the
complexity of contemporary critical systems. Besides, the
use of formal methods only for verification, after the design
phase, is heavy in general, and model-checkers or proof assis-
tants are not scalable to support large industrial applications
in this case. The last European Norm EN 50128:2011 [1]
of railway applications, recommends using formal methods,
from design to code generation, to distribute the verification
complexity throughout the whole development cycle.

Our work is considered as part of this changing context.
It is illustrated by a design case study of ATP functions
in railway CBTC systems. We introduced behavioral con-
tracts combining protocol and semantic levels of component
interface specifications. Our choice of interface automata,
to model component protocols, is motivated by their sim-
plicity, and their optimistic approach of composition, which
is less restrictive for components manufacturers. The pro-
posed refinement approach is defined from the perspective
of OOCBD. It is based on a simulation relation allowing
the addition of details about behaviors of common provided
services between an abstract and a concrete versions of a
component. Our refinement approach gives solutions for
substitutability problems which remain almost without ac-
complished concrete processes in the industry.

We see three main directions for future work. First, scal-
ability of behavioral contracts is possible since their transla-
tion to object-oriented languages such as ADA or Java and
specification languages such as SPARK [4] or JML [18] is
feasible. Second, the formalism can be extended to support
non-functional properties such as real-time aspects by using
formalisms like timed interfaces [6]. Third, the proposed
approach can be strengthened by studying the preservation
and deduction of safety and liveness properties by compo-
nent composition and refinement.

In the rest of the paper, we quote some related indus-
trial and academic works. We start by the B Method [3]
and its industrial impact. This formal method is among the
few ones used to build correct-by-design critical systems by
many industrial major actors like RATP, Alstom, Siemens,
etc [19]. Its design approach, based on gradual refinements
of abstract specifications of system parts until reaching their
implementations, responds pertinently to many issues ad-
dressed in this paper. Besides, it is worthy to mention also
Lurette [17] and its innovative design method closely aligned
with the paper targets. It is a design testing tool for syn-
chronous controllable systems. Its principle is to refine an
abstract specification of a system by modeling its environ-
ment. The tool performs gradually guided random tests of
the system reaction under the environment constraints. By
observing the relation between the system inputs and out-
puts, one can decide whether a test succeeds or fails depend-
ing on these constraints. This design procedure was among
the encouraging reasons for launching ARGOSIM around
the tool Stimulus [9] based in part on the Lurette idea.



In [29], the authors produce a formal description of safety
communication protocols in train control systems TCS us-
ing interface automata and UML sequence diagrams. Dead-
locks, live-locks, and some mandatory consistency proper-
ties of the proposed case study were checked by SPIN [16].
The presented experimental results show both potential ef-
ficiency and practical usefulness of the approach. In [26],
the authors propose a controller for the cooperation pro-
tocol of the European Train Control System (ETCS) [14].
The informal system specification of ETCS is generic, requir-
ing parameter settings depending on the deployment plat-
form. They identify constraints on these free parameters
to ensure collision freedom. They model these constraints
in terms of reachability properties of the system hybrid dy-
namics. Controllability, safety, liveness, and reactivity prop-
erties were checked by the deductive theorem prover KeY-
maera [25]. The work presented in [11] is an incremental
methodology to specify and verify component-based systems
using SysML [24] requirement diagrams, and verify their ar-
chitectural consistency and safety requirements. At each
step of the incremental design, they translate an atomic re-
quirement to an LTL property, and check it on a component
(specified by a SysML sequence diagram) using SPIN. Next,
they check the component compatibility with its environ-
ment in the system architecture using interface automata.
The work was illustrated on airbag and seat-belts protecting
devices in automotive systems. In [10], the authors provide
a V&V alignment approach of SysML using a subset of the B
Method semantically compatible with block definitions and
state machine diagrams. This transformation was applied
to verify safety properties of a railway industrial case study.
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