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Dynamic Shared SPM Reuse for Real-Time Multicore
Embedded Systems

MORTEZA MOHAJJEL KAFSHDOOZ and ALIREZA EJLALI, Sharif University of Technology

Allocating the scratchpad memory (SPM) space to tasks is a challenging problem in real-time multicore
embedded systems that use shared SPM. Proper SPM space allocation is important, as it considerably
influences the application worst-case execution time (WCET), which is of great importance in real-time
applications. To address this problem, in this article we present a dynamic SPM reuse scheme, where SPM
space can be reused by other tasks during runtime without requiring any static SPM partitioning. Although
the proposed scheme is applied dynamically at runtime, the required decision making is fairly complex and
hence cannot be performed at runtime. We have developed techniques to perform the decision making offline
at design time in the form of optimization problems combined with task scheduling/mapping. The proposed
work is unlike previous works that either exploit static schemes for SPM space allocation or perform task
scheduling/mapping and SPM space allocation incoherently. The experimental results show that our dynamic
SPM reuse scheme can reduce WCET by up to 55% as compared to recent previous works on SPM allocation
in real-time multicore embedded systems.
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1. INTRODUCTION

Multicore processors are increasingly used in the design of real-time embedded systems
[Salamy and Ramanujam 2012; Guo et al. 2013]. Whereas some multicore processors
use cache memory to reduce average execution time, such as in real-time applications in
which the worst-case execution time (WCET) [Kopetz 2011] usually is more important,
many real-time embedded systems use scratchpad memory (SPM) [Banakar et al. 2002]
instead of cache [Guo et al. 2013]. Unlike cache, SPM is a software-controlled memory,
and its content is visible to software [Suhendra et al. 2010]. Therefore, in contrast to
cache, a software programmer (or compiler) can fully control the content of SPM to
achieve the predictability required for analyzing and reducing WCET [Suhendra et al.
2005]. However, the cost of this predictability is a burden on the software to manage
SPM. SPM management (allocating SPM space to system tasks) can be especially more
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complex when SPM is shared among the cores. Indeed, as resource sharing is one of
the remarkable features of multicore processors [Zhuravlev et al. 2012], all or part of
on-chip memory (cache or SPM) is usually shared among the cores.

Previous research works on shared SPM allocation in real-time multicore embed-
ded systems either (1) provide static SPM space allocation techniques where the SPM
space is statically partitioned among the tasks or cores, which means that SPM space
allocated to each task or core remains unchanged during runtime (e.g., Salamy and
Ramanujam [2012], Suhendra et al. [2006], and Chang et al. [2012]) or (2) perform
task scheduling/mapping and SPM space allocation incoherently (e.g., Kandemir et al.
[2004]; Suhendra et al. [2010]). Static allocation techniques can lead to waste of SPM
space, thereby increasing WCET. When a part of SPM space is statically allocated to
a task, it cannot be used by other tasks even when the task does not require its allo-
cated SPM (e.g., like the works in Chang et al. [2012, 2014]). In addition, when SPM is
statically partitioned among the cores, each task can only access to its host core SPM
even if other cores do not utilize their SPM (e.g., like the work in Salamy and Ramanu-
jam [2012]). With respect to the coherence between SPM space allocation and task
scheduling/mapping, it should be noted that for efficient SPM management, we need
to know which tasks are executed on different cores in parallel so that we can allocate
proper SPM space to the tasks. This implies that for proper SPM space allocation, we
need to have a task scheduling/mapping available—that is, we need to know when and
where (on each core) each task must be executed. On the other hand, the information
of task execution times, which is essential for scheduling/mapping, becomes available
after SPM space allocation. These issues imply that it is more efficient to conduct SPM
management and task scheduling/mapping coherently.

In this article, we propose a dynamic SPM reuse scheme for real-time embedded
multicore systems, where the SPM is not statically partitioned among the cores, and
whenever a task finishes, its allocated SPM space is reused by other SPM requiring
tasks. In addition, in our proposed scheme, SPM allocation is combined with task
scheduling/mapping to achieve higher efficiency of the system.

Although our proposed scheme is dynamic and applied at runtime,the required deci-
sion making is quite complex and consequently cannot be performed at runtime. Thus,
we have developed techniques to perform the decision making offline at design time in
the form of an optimization problem.

To address the optimization problem, we have developed two techniques: (1) an
integer linear programming (ILP)-based technique, which finds optimal solutions for
fairly small systems (small number of tasks and cores), and (2) a heuristic technique,
which finds near-optimal solutions in reasonable time for large systems (large number
of tasks and cores). To evaluate our techniques, we conducted several experiments
using various benchmarks from the Mälardalen [Gustafsson et al. 2010] and MiBench
[Guthaus et al. 2001] benchmark suites with different system configurations. The
results show that our proposed techniques can reduce total WCET by up to 54% as
compared to the recent previous techniques, which statically partition SPM among
the cores, and by up to 55% as compared to static SPM allocation (SSA) to the tasks.
Moreover, the results show that our proposed heuristic method is almost as effective
as the optimal method, and in the worst case its WCETs are only 8% higher than the
optimal WCET.

The rest of this article is organized as follows. In Section 2, we review related works.
In Section 3, we describe our assumed application and architectural model. In Section 4,
we present the proposed scheme. We describe our proposed techniques to solve the
optimization problem in Sections 5 and 6. We explain experimental setup and obtained
results in Section 7, and we conclude the article in Section 8.
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2. RELATED WORKS

SPM management has been considered as a hot topic in real-time embedded systems.
Although some research works have addressed the use of SPM in single-core real-time
systems, relatively fewer works have considered the use of SPM in multicore real-time
systems. Considering that in this article we aim to focus on real-time multicore embed-
ded systems, in this section we review related previous works on SPM management
for real-time multicore embedded systems (for more information about the use of SPM
in single-core systems, please refer to Suhendra et al. [2010]).

On-chip memory (cache or SPM) organization and partitioning for data-intensive
applications is studied in Kandemir et al. [2004] and Ozturk et al. [2005, 2006a].
Kandemir et al. [2004] proposed an approach to dynamically change the organization
of shared on-chip memory to adapt to runtime variations in memory requirements and
data sharing patterns. Ozturk et al. [2005] partitioned on-chip memory into several
private and shared blocks and assigned these blocks to processor cores by capturing
the private and the shared accesses of the cores to data. Moreover, they proposed an
integrated data allocation and on-chip memory partitioning based on ILP in Ozturk
et al. [2006a]. Although these works considered multicore processors with shared SPM,
they differ from our work in at least in two main aspects. First, whereas we focus on
on-chip memory (SPM) content management, they considered on-chip memory design
and configuration. Second, in contrast to our scheme, they assume that task (program
region) scheduling and mapping is known a priori.

SPM management for real-time multicore embedded systems with a priori known
scheduling or mapping of tasks is studied in some other previous works. Suhendra
et al. [2010] proposed an iterative SPM allocation algorithm to reduce the worst-case
response time (WCRT) of concurrent applications. In their approach, SPM space is
partitioned among concurrent tasks, and these tasks cannot exploit a common space of
SPM. However, nonconcurrent tasks can exploit the common spaces of SPM. Although
they considered a multicore system, in contrast to our scheme, they assume that SPM
space is not shared among the cores and task mapping is known priori. With respect to
the waiting time for accessing shared bus, Chattopadhyay and Roychoudhury [2011]
proposed a bus delay aware iterative SPM allocation scheme to reduce the WCRT of
an application running on a multicore processor with a virtually shared SPM (VS-
SPM) [Kandemir and Choudhary 2002]. However, like Suhendra et al. [2010], they
assume that task mapping to cores is known a priori. Guo et al. [2011, 2013] proposed
dynamic programming approaches to place data in VS-SPM to reduce the total time of
memory accesses and energy consumption. However, they assume that applications are
partitioned a priori into parallel regions and for each region the mapping of threads to
cores are known. Kandemir and Choudhary [2002] proposed an algorithm that targets
the reduction of off-chip memory accesses caused by interprocessor communication for
regular array-intensive applications. As in all of the previously mentioned works, they
also assumed that the mapping of computations to cores has been performed a priori.
Shared SPM management for concurrent array/loop-intensive applications is studied
by Ozturk et al. [2006b]. In their approach, shared SPM space is partitioned among
concurrent applications based on their SPM requirements. However, in contrast to our
scheme, they determine the amount of SPM space for each application at runtime,
which imposes timing overhead to the system. Moreover, in their scheme, application
scheduling is performed independently from SPM management.

Some other works have considered the coherency of task scheduling/mapping and
SPM management. For preemptive real-time systems, Wan et al. [2013] proposed a
method based on a novel data structure (preemption graph [Wan et al. 2013]). In
Ghattas et al. [2007] and Kang and Dean [2010], considering real-time constraints
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to be an iterative method is proposed to reduce stack memory requirements of tasks.
Although these works considered the coherency of SPM allocation and task scheduling,
in contrast to our proposed work, they have not considered multicore systems.

For implicit deadline sporadic tasks, Chang et al. [2012, 2013, 2014] proposed ap-
proximation algorithms to perform task mapping and SPM allocation coherently. Their
objective in Chang et al. [2013, 2014] is the reduction of the number of used islands
in a island-based multicore processor, and the objective in Chang et al. [2012] is the
reduction of processor core utilization in a multicore processor with a shared SPM.
However, in contrast to our scheme, they assume that each task gets a private SPM
space and that other tasks cannot use this space even when the task is not running.

Suhendra et al. [2006] proposed an optimal algorithm based on ILP to reduce the
WCRT or the initial interval of an application running on a multicore processor with
a VS-SPM. However, in contrast to our scheme, they do not reuse SPM space of com-
pleted tasks for other tasks. Zhang et al. [2010] proposed two heuristic algorithms to
jointly schedule/map tasks and to partition the variables of an application running on
a VS-SPM-based multicore processor. Gu et al. [2013, 2014] considered joint variable
partitioning and task scheduling for a multibank [Gu et al. 2013] and multiport [Gu
et al. 2014] VS-SPM-based multicore processor and proposed ILP and heuristic meth-
ods. Like [Suhendra et al. 2006], the last two mentioned works did not consider SPM
space reuse to further reduce execution time.

Salamy and Ramanujam [2012] proposed a heuristic algorithm to jointly partition
shared SPM between processors and task scheduling/mapping in MPSoCs to reduce
the total WCET of an application. Liu et al. [2011] considered cache instead of SPM.
However, their approach is applicable to multicore processors with shared SPM. They
proposed some heuristic to jointly assign tasks and cache partitioning with cache lock-
ing to reduce the total WCET of an application. However, in these works, shared on-chip
memory (SPM) space is statically partitioned among cores, and hence each task at most
can access to the space allocated to its host core even if other cores have unused spaces.

3. SYSTEM MODEL

The architectural model that we consider in this article is a homogeneous multicore
processor with three levels of memory hierarchy:

(1) Local private SPMs that are tightly coupled to cores and each core can only access
to its own local SPM

(2) A global shared SPM that can be accessed by each core via a separate port
(3) A main memory that can be accessed by all of the cores via a shared bus.

It should be noted that our proposed scheme in this article is also applicable to
a one-level shared SPM. However, for many applications where high performance is
required, a two-level SPM is preferable to a one-level SPM [Kandemir and Choudhary
2002; Liu and Zhang 2012]. Therefore, in this work, we consider a two-level SPM. It is
noteworthy that a two-level (multilevel) SPM is used in some commercial processors,
such as TMS320C6472 [Texas Instruments 2011]. Figure 1 depicts the considered
architecture for a quad-core processor.

To avoid consistency problems in SPMs, we assume that at most one copy of each
memory object (by memory object, we mean a program code or a data structure stored
in system memory) can exist in SPMs. Therefore, as we do not have multiple copies of
memory objects in SPMs, we do not have any consistency problem in the considered
architecture. To manage the content of SPMs by the programmer or compiler, we
assume that each SPM (shared or private) has its own separate nonoverlapping address
space and that these address spaces are known at design time. Therefore, the compiler
or programmer can directly determine the memory unit (SPM unit or main memory)
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Fig. 1. Multicore processor with a two-level SPM.

where each memory object must be located. This can easily be performed by mapping
each memory object to the address space of the desired memory unit. It should be
noted that in our proposed scheme, the contents of private and shared SPMs are
decided offline at design time, and during runtime no data interchange occurs between
the private and shared SPMs. Like all the other offline techniques, this technique does
not provide optimal performance, as offline techniques cannot provide best results if
unexpected runtime variations occur. Nevertheless, we believe that for SPM space
allocation, such an offline technique is preferable, as they do not impose time and
energy overhead, which are very important for real-time embedded systems that have
severe time and energy limitations.

In the considered architecture, it is assumed that each core incurs very low latency
access to its own local SPM [Marwedel 2006] and slightly higher latency access to the
global SPM. However, the access latency to the off-chip memory is high. It should be
noted that it is hard to estimate the time overhead caused by bus conflicts among
cores in access to off-chip memory. Therefore, in our analysis, we have assumed the
worst-case scenario—that is, to guarantee a safe upper bound for execution time, we
have assumed that each access to the off-chip memory incurs a constant (worst-case)
latency.

The application model that we consider in this work is frame based, where the appli-
cation consists of a set of N independent tasks, T1, T2, . . . ,TN, with the same release
time and deadline [Li and Wu 2014]. One example of such an application is systems
that use timeline scheduling [Buttazzo 2011]. Timeline scheduling is used for hard
real-time systems where the time axis is divided into equal time slots (frames) that
are executed periodically and each time slot can contain several tasks based on the
tasks periods [Buttazzo 2011]. For example, the control system described in Kim et al.
[1996] uses a timeline scheduling scheme where up to seven tasks can be executed in
each frame. Another example of real-time systems with a frame-based model is those
real-time systems that use pipelined scheduling [Chatha and Vemuri 2002]. In these
systems, during each initiation interval [Suhendra et al. 2006] of the pipeline, a set of
independent stage tasks are executed (it is noteworthy that the concept of pipelining
is based on this fact, considering that as various pipelining stages are operating on dif-
ferent and independent data units, tasks are independent from each other during each
initiation stage). In each initiation interval, we have a set of stage tasks that must be
executed so that the beginning and end of the initiation interval can be considered as
the tasks’ common release time and common deadline, respectively. Therefore, when
we use pipelined scheduling, we indeed have a frame-based application where each
initiation interval comprises a frame. Pipelined scheduling is used in many real-time
systems, especially streaming applications [Suhendra et al. 2006]. In pipelined schedul-
ing, the number of tasks in each frame depends on how the designer has partitioned
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the application into pipelining stages. It is noteworthy that the number of tasks within
each frame is not necessarily equal to the number of processing cores. For example, in
Suhendra et al. [2006], a pipelined scheduling has been used for an image enhance-
ment application where six tasks are executed during each frame while there are four
processing cores. We have provided these examples (the use of timeline scheduling
and pipeline scheduling in real-world applications) to illustrate the prominence of the
frame-based model, and we believe that this is why many other researchers have also
considered similar frame-based application models (with common release time and
deadline for multiple tasks) in their research works (e.g., Gerards and Kuper [2013],
Li and Wu [2014], Rusu et al. [2003], and Devadas and Aydin [2012]).

In the considered application model, each task is executed nonpreemptively on one
of the processor cores. Each task can be allocated in some space of the SPM (global
or local) to speed up its execution. The achieved speedup for each task, and hence its
WCET, depends on the amount of SPM space allocated to it and the way in which it uses
this space. Therefore, SPM management can be divided into two phases: (1) intratask
SPM management, which determines how each task uses its allocated SPM space, and
(2) intertask SPM management, which determines the amount of allocated SPM space
for each task. It should be noted that considering our focus in this article is on intertask
SPM management, we assume that for different sizes of allocated SPM space, intratask
SPM management and WCET analysis are performed a priori.

One important point is that at first glance, it seems that since intratask SPM space
allocation is performed before the intertask one, intratask SPM space allocation may
have this negative influence that can freely consume a large amount of SPM, thereby
leaving less SPM space for the intertask one. However, such an unbalanced scenario
does not happen, because although the intratask SPM allocation is performed a priori,
during the intertask SPM allocation we do not use a fixed (and unchangeable) result
from intratask SPM allocation. Indeed, at first in intratask SPM allocation, we produce
a set of results (options) containing numerous intratask SPM allocations for various
sizes of allocated SPM space, then during the intertask SPM space allocation, we can
choose proper intratask SPM space allocation from the available set.

It should be noted that wherea in some literature the terms static and offline (and also
the terms dynamic and online) are used interchangeably, in this work these terms have
quite different meanings. Throughout this article, the term static refers to “static SPM
allocation,” which means that the SPM space allocated to tasks and cores remains
unchanged during runtime. In addition, the term dynamic refers to “dynamic SPM
allocation,” which means that the SPM space allocated to tasks and cores can vary
during runtime. On the other hand, the term offline refers to “offline decision making,”
which means that the decisions (with respect to task scheduling or SPM allocation)
are made offline at design time. Additionally, the term online refers to “online decision
making,” which means that such decisions are made online at runtime. Therefore, for
example, it is possible to have offline but dynamic SPM allocation, which means that
although the decisions about the SPM allocation are made offline at design time, they
are applied at runtime to dynamically vary the SPM space allocated to tasks and cores
[Udayakumaran et al. 2006; Zhuge et al. 2012; Falk and Kleinsorge 2009].

4. PROPOSED SCHEME

In this section, we explain our proposed dynamic SPM space reuse scheme, which is
used for real-time multicore embedded systems to reduce WCET. Indeed, the proposed
scheme can be defined by the following identifying features:

(1) Whenever a task starts running on the system, an amount of space from the shared
SPM is exclusively allocated to it. Once the task finishes, its SPM space is released
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so that it can be allocated to the other task. In Section 4.1, by means of a motivating
example, we explain how such a strategy is superior to strategies used in previous
related works.

(2) To determine the amount of SPM space that is allocated to each task, we use
offline optimization techniques. We adopt offline techniques, as they allow having
computationally expensive optimizations without incurring runtime overhead. It
is noteworthy that online techniques also have their advantages—for example,
they allow consideratio of runtime data, as there are data that are not available at
design time. Nevertheless, online techniques cannot perform complex computation,
as it incurs very high overhead. In our proposed scheme, as we want to exploit
sophisticated optimizations, we have adopted offline techniques.

(3) In our proposed scheme, SPM space allocation and task scheduling/mapping are
not separated and are performed jointly to achieve the required coherency between
SPM space allocation and task scheduling/mapping. Indeed, our approach is that
both the SPM space allocation problem and task scheduling/mapping problem are
formulated into one same optimization problem (discussed in Item (2)). Therefore,
once we solve the optimization problem, not only do we determine how SPM space
must be allocated to the tasks but also we achieve a task scheduling/mapping. It
should be noted that based on the discussions provided by previous works (e.g.,
Liu et al. [2011] and Salamy and Ramanujam [2012]), it can be concluded that this
optimization problem is NP-complete and hence cannot be solved in polynomial
time, at least with existing algorithms.

4.1. Motivating Example

In this section, we show by a simple motivating example that in our proposed scheme,
more efficient solutions than in similar previous schemes can be achieved. To this end,
we consider the following schemes:

—Static SPM allocation (SSA) scheme: This is based on the schemes presented in
Suhendra et al. [2006] and Chang et al. [2012]. In this scheme, SPM space is statically
partitioned among tasks.

—Static SPM partitioning among cores (SSP) scheme: This based on the schemes pre-
sented in Salamy and Ramanujam [2012] and Liu et al. [2011]. In this scheme, SPM
space is statically partitioned among cores instead of tasks, and allocated SPM space
to a task on a core can be reallocated only to other tasks on the same core.

—Proposed dynamic SPM reuse scheme: This is our proposed scheme in this article.
In our scheme, SPM space allocated to a task can freely be reallocated to next tasks
even on other cores.

We run SSA, SSP, and the proposed scheme on a system consisting of five tasks, two
cores, 4KB shared (L2) SPM, and 128B private (L1) SPM per core. The WCET of the
tasks per allocated L2 SPM size are depicted in Figure 2. The tasks are selected from
the benchmarks explained in Section 7.1.

The obtained results for SSA, SSP, and the proposed scheme are depicted in Figures 3,
4, and 5, respectively. It should be noted that these results are optimal, as they have
been obtained by an ILP approach (Section 5) with the objective of minimizing total
WCET, which is our main goal in this article. As shown in these figures, the total
WCETs of the example system using SSA, SSP, and the proposed scheme are 2.655,
1.888, and 1.738 million cycles, respectively. Therefore, in this example, the proposed
scheme results in about 35% less WCET than SSA and about 8% less WCET than SSP.
The reasons why the proposed scheme outperforms SSA and SSP are as follows.

In the SSA scheme, SPM space is wasted, since when a task is not running, its
allocated SPM space cannot be reused by other tasks. Therefore, in systems with
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Fig. 2. WCET of the tasks related to the allocated L2 SPM size.

Fig. 3. The result of applying an SSA scheme for the example system.

Fig. 4. The result of applying the SSP scheme for the example system.

Fig. 5. The result of applying our proposed dynamic SPM reuse scheme for the example system.
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numerous tasks or with a small SPM size related to application size, the use of an SSA
scheme leads to allocating very small SPM portions to tasks, which can considerably
increase the WCET. For the example system, as shown in Figure 3, when SSA is used,
tasks T2, T4, T5 are allocated 0.5KB of SPM, which is much less than the allocated
SPM to these tasks when SSP or the proposed scheme is used.

In the SSP scheme, when a task finishes, its SPM space can be released for the next
tasks, and therefore SPM space is used more efficiently as compared to when SSA is
used. For the example system, as shown in Figure 4, when SSP is used, 2KB of SPM
space is allocated to each task, which is more than the allocated SPM space when SSA
is used, and hence the WCET of the system is reduced. However, the proposed scheme
achieves even more WCET reduction, because it can use SPM space reuse even among
the tasks that run on different cores. For the example system, as shown in Figure 5,
when the proposed scheme is used, each of tasks T1, T2, and T4 is allocated2 KB of
SPM, which is equal to the allocated SPM space to these tasks when SSP is used.
However, as in our scheme, SPM space allocated to a task can be reused by next tasks
even on other cores, task T3 can be allocated 50% more SPM space than its allocated
SPM space in the SSP scheme, and hence the total WCET is further reduced. Note that
in the proposed scheme, the allocated SPM space of task T5 is less than its allocated
SPM space in the SSP scheme, and hence its WCET is increased. However, as in the
proposed scheme task T3 is allocated more SPM space than in the SSP scheme and this
task gets more benefit from increasing the amount of allocated SPM space for reducing
its WCET than task T5, in the proposed scheme the total WCET of the example system
is reduced.

This simple example shows that our proposed scheme can lead to the further reduc-
tion of total WCET. In the next section, we formally define the optimization problem,
which we solve to determine SPM allocation and task scheduling/mapping for imple-
menting the proposed scheme.

5. OPTIMAL METHOD

We now present the ILP formulation, which we use to optimally solve the joint SPM
allocation and task scheduling/mapping problem by an ILP solver such as CPLEX
[ILOG Cplex 2007]. Before presenting the ILP formulation, recall that we assume an
application consists of N independent tasks denoted as T1, T2, . . . ,TN. Moreover, we
assume the application is executed on a multicore processor, which contains M cores
denoted as P1, P2, . . . ,PM and a shared SPM consisting of S blocks denoted as B1,
B2, . . . ,BS.

It should be noted that in the following formulation, we represent variables with a
capital first letter and constants with all small letter words.

5.1. WCET of Tasks and Objective Function

The WCET of a task depends on the number of SPM blocks allocated to it. Therefore,
we define the binary variable Yi,k as follows:

Yi,k =
{

1, if k blocks of the SPM are allocated to the task Ti
0, otherwise. (1)

Since the number of SPM blocks allocated to a task dose not change through its runtime,
for each task Ti the following equation must be satisfied:

S∑
k=0

Yi,k = 1. (2)
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Considering Equation (2), the WCET of the task Ti denoted as Wi can be obtained by
Equation (3). The constant wi,k represents the WCET of the task Ti when the k blocks of
the SPM are allocated to it. Recall from Section 3 that the WCET of tasks per allocated
SPM size has been computed a priori.

Wi =
S∑

k=0

Yi,k × wi,k (3)

We represent the start time of the task Ti as Starti and its end time as Endi. Thus:

Endi = Wi + Starti. (4)

The objective function is to minimize the total WCET (T otal WCET ), which is the
longest time, required to complete all of the tasks. Then,

∀Ti : Total WCET ≥ Endi. (5)

5.2. Resource Usage Constraints

The tasks that use common resources (SPM blocks or processor cores) cannot be exe-
cuted in parallel. To check that this constraint is satisfied, we need to specify

—the resources used by each task and
—the tasks that use at least one common resource.

To specify the resources that are used by each task, we define two sets of decision
variables as follows:

Xi, j =
{

1, if the task Ti uses the core Pj
0, otherwise (6)

Qi,r =
{

1, if the task Ti uses the SPM block Br
0, otherwise. (7)

Each task can use (be mapped to) exactly one of the cores. This can be captured by
M∑

j=1

Xi, j = 1. (8)

As the binary variable Yi,k indicates if the task Ti uses exactly the k blocks of the SPM
space, for each task Ti the following equation must be satisfied:

S∑
r=1

Qi,r =
S∑

k=0

k × Yi,k. (9)

To specify the tasks that use common resources, we define the following sets of
variables:

Ui,i′, j =
{

1, if the two tasks Ti and Ti′ are mapped to the core Pj
0, otherwise (10)

Ui,i′ =
{

1, if the two tasks Ti and Ti′ are mapped to the same core
0, otherwise (11)
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Vi,i′,r =
{

1, if the two tasks Ti and Ti′ use the SPM block Br
0, otherwise. (12)

Vi,i′ = the number of common SPM blocks of the two tasks Ti and Ti′ . (13)
These variables can be obtained by the following equations:

Ui,i′ =
M∑

j=1

Ui,i′, j (14)

Vi,i′ =
S∑

r=1

Vi,i′,r (15)

Ui,i′, j = Xi, j × Xi′, j (16)

Vi,i′,r = Qi,r × Qi′,r . (17)

Note that as Equations (16) and (17) are not linear, they cannot be used in ILP for-
mulation. Therefore, we use a linear equivalent of Equation (16), which is represented
in Expressions (18) through (20), and a linear equivalent of Equation (17), which is
represented in Expressions (21) through (23). To show the equivalence of these linear
expressions with the original ones, consider for example the Equation (16) and its lin-
ear equivalent (Expressions (18) through (20)). Based on the values of Xi, j and Xi′, j ,
four cases are possible:

(1) (Xi, j = 0, Xi′, j = 0): Expression (18) turns to Ui,i′, j ≥ −1, and Expressions (19) and
(20) become Ui,i′, j ≤ 0, which finally results in Ui,i′, j = 0.

(2) (Xi, j = 0, Xi′, j = 1): Expression (18) turns to Ui,i′, j ≥ 0, Expression (19) becomes
Ui,i′, j ≤ 0, and Expression (20) turns to Ui,i′, j ≤ 1, which finally results in Ui,i′, j = 0.

(3) (Xi, j = 1, Xi′, j = 0): Expression (18) turns to Ui,i′, j ≥ 0, Expression (19) becomes
Ui,i′, j ≤ 1, and Expression (20) turns to Ui,i′, j ≤ 0, which finally results in Ui,i′, j = 0.

(4) (Xi, j = 1, Xi′, j = 1): Expression (18) turns to Ui,i′, j ≥ 1, Expression (19) becomes
Ui,i′, j ≤ 1, and Expression (20) turns to Ui,i′, j ≤ 0, which finally results in Ui,i′, j = 1.

Therefore, in all cases, the value of Ui,i′, j obtained from Expressions (18) through (20)
is the same as the values obtained from Equation (16). A similar description can be
provided for Equation (17).

Ui,i′, j ≥ Xi, j + Xi′, j − 1 (18)

Ui,i′, j ≤ Xi, j (19)

Ui,i′, j ≤ Xi′, j (20)

Vi,i′,r ≥ Qi,r + Qi′,r − 1 (21)

Vi,i′,r ≤ Qi,r (22)

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 2, Article 12, Publication date: May 2015.



12:12 M. M. Kafshdooz and E. Ejlali

Vi,i′,r ≤ Qi′,r (23)

To check that the two tasks Ti and Ti′ use at least one common resource, it is sufficient
to check that the following expression is true:

Ui,i′ + Vi,i′ > 0. (24)

Based on the preceding expression, we define a binary variable Li,i′ to indicate whether
or not the tasks Ti and Ti′ use at least one common resource. Li,i′ can be formally
defined as follows:

Li,i′ =
{

1, if Ui,i′ + Vi,i′ > 0
0, otherwise. (25)

As the preceding definition is also not linear, we use its linear equivalent, which is as
follows:

Li,i′ ≤ Ui,i′ + Vi,i′ (26)

∞ × Li,i′ ≥ Ui,i′ + Vi,i′ . (27)

We need to indicate the execution order of the two tasks Ti and Ti′ , which use at least
one common resource. Hence, we define the binary variable Zi,i′ as follows:

Zi,i′ =
{

1, if the task Ti finishes before the start time of the task Ti′

0, otherwise. (28)

Based on the preceding definition, whenever Zi,i′ = 1, the inequality Endi < Starti′

must be satisfied, and whenever Zi,i′ = 0, this inequality must be relaxed. Thus,

Endi < Starti′ + ∞ × (1 − Zi,i′ ). (29)

It should be noted that if the two tasks Ti and Ti′ use at least one common resource
(Li,i′ = 1), then exactly one of the Zi,i′ or Zi′,i must be set to one. Otherwise, since there
is no common resource between the two tasks Ti and Ti′ (Li,i′ = 0), both Zi,i′ and Zi′,i
must be set to zero. This can be captured by

Zi,i′ + Zi′,i = Li,i′ . (30)

6. HEURISTIC METHOD

In the previous section, we proposed an ILP-based technique to find an optimal solution
for the joint SPM allocation and task scheduling/mapping problem. However, since
this problem is NP-complete (Section 4.1), it is not possible (at least with existing
algorithms) to find an optimal solution to this problem in polynomial time. Whereas
this is of little importance for designing of systems consisting of a small number of tasks
and cores, it can be a serious problem when designing systems with a large number of
tasks and cores. Therefore, in addition to the optimal method, we proposed a heuristic
method to find a near-optimal solution in a reasonable time for large systems.

Our proposed heuristic method is a genetic algorithm (GA) [Haupt and Haupt 2004].
GAs are metaheuristic search algorithms, which are successfully utilized in several
optimization problems, such as task scheduling and mappings [Omara and Arafa 2010;
Grajcar 1999; Kwok and Ahmad 1997]. In these nature-inspired algorithms, solutions
(phenotypes) are encoded as strings or other data structures (genotypes). A GA starts
with an initial pool (population) of genotypes, which is generated either randomly or
by a heuristic method, and this population is evolved iteratively to find optimal or
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Fig. 6. A genotype and the generated phenotype by applying Algorithm 1.

near-optimal phenotypes. For this purpose, three operations, which are mimicked from
nature, are performed: selection, crossover, and mutation. In the selection operation,
some of the genotypes (usually the fittest) are chosen to be alive in the next generation
and to produce new genotypes. In the crossover operation, two or more genotypes
are taken from the selected genotypes to produce new genotypes, and finally in the
mutation operation, one or more data of the selected genotypes are altered to maintain
the diversity of the genotypes. A GA finishes when a certain stop condition is satisfied,
such as when the maximum number of iterations has been exceeded. More information
is provided on GAs in Haupt and Haupt [2004].

To design a GA that solves the joint SPM allocation and task scheduling/mapping
problem, we should specify a way to encode each phenotype as a genotype. Since a
phenotype for this problem is specified by two types of information (SPM allocation
and task scheduling/mapping information), we use a two-part string to represent each
genotype. In the first part of the string, the number of SPM blocks allocated to each
task is specified; in the second part, similar to Ahmad and Dhodhi [1996], the priority
of each task in scheduling/mapping is specified.

To generate a phenotype (SPM allocation and task scheduling/mapping) from a geno-
type (the number of SPM blocks allocated to each task and the priority of each task),
we use a list-scheduling algorithm [Pinedo 2012], which is shown in Algorithm 1. The
algorithm gets a string Str, which represents a genotype, the set T of tasks, and the
system specifications (the number of processor cores and the number of SPM blocks) as
input. Then, for each task t, its priority (Prit) and the number of SPM blocks allocated
to it (SPMt) are extracted from Str; after that, the WCET of the task t (Wt), which
depends on SPMt, is obtained (lines 1 through 5). Then, the tasks are sorted based
on their priority and are stored in the sorted list ST (line 6). After that, the following
works are performed iteratively. First, idle processor cores and unused SPM blocks in
the current iteration are specified (lines 9 and 10). Then, each time a task is selected
from the sorted list ST, if at least one idle core and the required SPM space of the
task are available, then the task is scheduled/mapped and its required SPM blocks are
allocated (lines 12 through 18). If all tasks have been examined or there is no idle core
in the current value of discrete time, then discrete time gets a new value for the next it-
eration (line 23). These steps are repeated until all tasks are scheduled. The algorithm
finishes by returning the SPM allocation and tasks scheduling/mapping (phenotype),
as well as the total WCET of the system (fitness function). Indeed, since our goal is to
reduce the total WCET, we also use this algorithm as the fitness function and define
the inverse of the total WCET as the fitness value. Figure 6 shows a genotype for a
system consisting of three tasks and the phenotype that is generated by Algorithm 1
from the genotype.
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ALGORITHM 1: Phenotype generation and fitness function
// A list-scheduling algorithm to generate phenotype (SPM allocation and task

scheduling/mapping) from genotype (the priority and the number of SPM blocks
allocated to each task)

Input:
—String Str // genotype
—Set T of tasks
—System specifications // # of processor cores and # of SPM blocks

Output: Phenotype and total WCET
1 foreach t ∈ T do
2 Prit ← Extract priority(Str,t);
3 SPMt ← Extract SPM(Str,t) ;
4 Wt ← Get WCET(SPMt,t);
5 end
6 ST ← Sort(T , Pri);
7 discrete time ← 0 ;
8 while Is not empty(ST ) do
9 AP ← Find available procs(discrete time);

10 ASPM ← Find available SPM(discrete time);
11 foreach t ∈ ST do
12 if Is not empty(AP) then
13 if SPMt ≤ ASPM then
14 Schedule Map(t, Wt, discrete time);
15 Allocate(t, SPMt, Wt, discrete time);
16 Update(AP, ASPM);
17 Delete(t, ST );
18 end
19 else
20 break;
21 end
22 end
23 discrete time ← Update time();
24 end
25 T otal WCET ← Compute Total WCET();

Our proposed GA to solve the joint SPM allocation and task scheduling/mapping
problem is shown in Algorithm 2. The algorithm gets the system specifications (the
number of processor cores and the number of SPM blocks) as input and produces the
best-found genotype (a genotype with maximum fitness among all visited genotypes).
The algorithm starts by creating a random population of genotypes and computing
their fitness values by Algorithm 1 (lines 1 and 2). Then, the following works are
performed iteratively. First, the genotypes are ordered nonincreasingly based on their
fitness value, and a genotype with maximum fitness (current best) is selected (lines 6
and 7) and checked to see if it is better than the best genotype found so far (best)
(line 8). If so, it becomes the new best-found genotype, and n becomes zero to show
that a better genotype is found in the current iteration (lines 9 and 10). Otherwise,
n is incremented by one to show the number of the consecutive iterations has been
elapsed and the best-found genotype is not changed (line 12). After that, a proportion
(α) of the best genotypes are selected to be alive in the next iteration and the others die
out (line 14). Indeed, we use elitist selection, which means that the best genotypes in
the current generation are retained in the next generation [Chambers 1995]. After the
selection process, crossover operations are performed on the live genotypes to produce
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Fig. 7. Crossover and mutation operations.

ALGORITHM 2: Genetic algorithm to solve the joint SPM allocation and task scheduling/
mapping problem

Input: System specifications // # of processor cores and # of SPM blocks
Output: A genotype leading to minimum WCET among all visited genotypes

1 Initialize(population);
2 Compute Fitness(population);
3 iter ← 0;
4 n ← 0;
5 while iter < Max iter and n < N do
6 Sort(population);
7 current best ← Get Best(population);
8 if current best. f itness > best. f itness then
9 best ← current best;

10 n ← 0;
11 else
12 n ← n + 1;
13 end
14 Selection(population, α);
15 Crossover(population);
16 Mutate(population,β);
17 Compute Fitness(population);
18 iter ← iter + 1;
19 end
20 return best;

new genotypes for the next iteration instead of dead genotypes. Then, genotypes in
the new population are occasionally mutated by probability of β to avoid rapid con-
vergence of the algorithm in a local maximum. These works are repeated until the
maximum number of iterations (Max iter) is reached or in N consecutive iterations no
improvement is achieved (line 5). The algorithm finishes by returning the best-found
genotype.

Figure 7(a) shows an example of the crossover operation used in our GA. As shown in
this figure, we use two-parent one-point crossover, which means that for each crossover
operation two genotypes (parents) are selected, and one point in them is chosen ran-
domly and all information on one side of that point in either genotypes is swapped.
Consequently, two new genotypes (offspring) are produced, and these offspring are
inserted to the next population. Figure 7(b) shows an example of the mutation oper-
ation used in our GA. In the mutation operation, one data of a genotype is selected
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randomly and its value is changed to a new valid random value, which is less than or
equal to the total available SPM size. It should be noted that as we use mutation and
crossover, the sum of allocated SPM space to the tasks in a genotype can be greater
than the available SPM size. However, this does not mean that more SPM space than
the available SPM size is required. Indeed, whenever the sum of allocated SPM size
to a set of tasks is greater than the available SPM size, this means that those tasks
cannot be scheduled to be executed in parallel. Therefore, when the sum of allocated
SPM space to the tasks in a genotype is greater than the available SPM size, during
the scheduling phase (phenotype generation) the sum of allocated SPM space to the
tasks that are executed in parallel is always less than the available SPM size. Hence,
it is not required to check the sum of allocated SPM space in initial genotypes or in
new genotypes that are produced by the crossover and the mutation operations.

7. EXPERIMENTAL EVALUATION

7.1. Experimental Setup

To evaluate our proposed methods, we used several benchmarks from the MiBench
[Guthaus et al. 2001] and Mälardalen [Gustafsson et al. 2010] benchmark suites,
which have been used for embedded and real-time systems studies by several previous
works (e.g., [Ding et al. 2012; Plazar et al. 2012; Whitham et al. 2014]). Moreover,
to increase the diversity of benchmarks, we not only conducted experiments with the
original MiBench and Mälardalen benchmarks but also used additional benchmarks
that are obtained by modifying the inputs of these benchmarks. Table I depicts the
descriptions and the size (code + data) of the benchmarks.

To compile the benchmarks, we used the SimpleScalar GCC PISA cross-compiler
[Burger and Austin 1997], and to evaluate the WCET of the benchmarks, we used the
Chronos timing analyzer [Li et al. 2007]. For considering SPM in the experiments,
we did not modify the cross-compiler. Rather, we modeled SPM in the Chronos timing
analyzer. In Chronos, we specify which memory space is mapped to SPM and which
one is mapped to main memory; based on this data, Chronos can conduct timing anal-
ysis considering the impact of SPM use. As described in Section 3, in the considered
architecture we have a two-level SPM; hence, a two-level SPM model is included in the
Chronos processor model to consider the effects of SPMs on WCET.

As mentioned in Section 3, in our proposed technique we have two levels of SPM space
allocation: intertask SPM allocation and intratask SPM allocation (and for intertask
SPM allocation, we do not propose any technique and exploit existing techniques).
The intratask SPM allocation method that we considered in the experiments is an
ILP method proposed in Suhendra et al. [2005]. In this method, for each memory
object (code+data) a flag is defined to indicate that it must be placed in SPMs or
not. Considering the limited size of SPMs, the values of these flags are selected to
minimize WCET. It is noteworthy that in our proposed technique, we do not directly
involve WCET analysis in intertask SPM space allocation; rather, WCET analysis is
performed in the intratask allocation, and the intertask allocation uses the results
obtained from the intratask allocation.

For a comprehensive evaluation of the proposed methods, we repeated the experi-
ments for 80 sets of tasks, which were randomly selected from the Mälardalen bench-
mark suite. The task sets consisted of different number of tasks (5, 10, 15, and 20) (20
sets for each number of tasks). We also repeated the experiments for 10-task sets, which
were randomly selected from the Mibench benchmark suite. Moreover, the experiments
were performed for dual- and quad-core processors with different SPM sizes.

With respect to the SPM size, it should be noted that the designers of embedded
systems usually avoid using large SPMs, as large SPMs can increase the cost, energy
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Table I. Benchmarks

consumption, and SPM delay [Marwedel 2006]. On the other hand, if excessively small
SPMs are used, one will not have enough space to keep highly accessed data, which
has a considerable negative influence on the system performance (and WCET). Indeed,
the suitable size of SPM varies based on the system application.

Analyzing the impact of SPM size variation on the performance of embedded systems
is indeed an important research area, and some works (e.g., Nguyen et al. [2005] and
Che and Chatha [2011]) have considered this issue. However, in this article, we do
not intend to analyze the impact of SPM size variation; rather, we want to provide
a technique for task scheduling/mapping and SPM space allocation to reduce WCET.
Nevertheless, in the experiments, we considered a range of SPM size.

We assumed 64 and 256 Bytes for local SPM size and 1KB, 2KB, 4KB, 8KB, 16KB,
32KB, and 64KB for global SPM size. It should be noted that these values have been
used as case studies, and evidently our proposed technique can be used for other sizes,
considering that during the development of the techniques we never have any assump-
tion with respect to the SPM size. Furthermore, it should be noted that as the size of
the benchmarks varies from 0.3KB to 3MB, the range of SPM size that we assumed
in the experiments (from 1KB to 64KB) is quite reasonable, because if we considered
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bigger values in the experiments, it would not have any influence on the experiment
results, as the execution time of the tasks does not change considerably by allocat-
ing bigger SPM space. Moreover, some commercial microprocessors (microcontrollers)
have similar SPM (internal SRAM) size (e.g., XMOSs XS1-L4A-64-TQ48 multicore
microcontroller [XMOS 2013] with 64KB internal SRAM and Atmels AT32UC3L016
microcontroller [Atmel 2012] with 8KB internal SRAM). Finally, we assume that the
off-chip memory is large enough to hold all memory objects of the tasks and assume a
latency of 1, 4, and 100 cycles for a single access to local SPM, global SPM, and off-chip
memory, respectively. These assumptions are in line with the realistic data provided in
Suhendra et al. [2010] and Salamy and Ramanujam [2012].

With respect to the 100 clock cycle latency of off-chip memory access, it should be
noted that if only one core accessed the off-chip memory at a time (i.e., assuming that
other cores do not access the off-chip memory simultaneously), the latency would be
much lower (e.g., about 20 cycles). However, as in this article we consider real-time
systems, we need to consider a guaranteed upper bound for this latency, which is the
worst-case latency that occurs when all cores access the off-chip memory simultane-
ously. For the worst case, we have considered the latency to be 100 cycles, and as
mentioned previously, this assumption is in line with the data provided by previous
works (e.g., Suhendra et al. [2010]). To compare to methods provided in previous related
works, we implemented three other methods in addition to our proposed methods. The
evaluated methods are as follows:

(1) Our optimal method for the dynamic SPM space reuse scheme (Section 5)
(2) Our heuristic method for the dynamic SPM space reuse scheme (Section 6)
(3) An optimal method based on the method presented in Suhendra et al. [2006] for

the SSA scheme (Section 4.1),
(4) The heuristic method presented in Salamy and Ramanujam [2012] for the SSP

scheme (Section 4.1), HSSP1
(5) The heuristic method presented in Liu et al. [2011] for the SSP scheme, HSSP2.

To find a proper value for each parameter of the proposed GA, we examined different
values for each parameter by running several experiments. The obtained results are
as follows:

—Selection rate (α): The results showed that setting α = 0.5 leads to better results
than the other examined cases. Note that for very high selection rates (e.g., 0.9),
very few offspring are generated and hence lower solution space is explored. On the
other hand, for lower selection rates (e.g., 0.1), it is possible to miss many of the good
solutions, which can be used to produce better offspring.

—Mutation rate (β): The results of the experiments showed that setting β = 0.1 is
better than the other examined cases. Note that for very high mutation rates (e.g.,
0.9), the proposed algorithm becomes a random search algorithm, and for very low
mutation rates (e.g., 0.001), the algorithm rapidly converges in a local maximum.

—Population size: Setting the population size to 200 makes a better trade-off between
the execution time of the algorithm and the quality of solutions than in other cases.
Note that for very low population sizes (e.g., 10), the diversity of genotypes in the
population decreases and hence lower solution space is explored. On the other hand,
for higher population sizes, the algorithm slows down.

—Maximum allowable iterations (Max iter) and maximum allowable consecutive it-
erations without any improvement in the result (N): Considering the results of the
experiments, we set N = 100 and Max iter = 1,000. Note that for very low values
for N (e.g., 5) and for Max iter (e.g., 50), the quality of solutions considerably de-
creases. On the other hand, for very high values for N (e.g., 500) and for Max iter
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Fig. 8. The results of experiments for 5-task applications selected from the Mälardalen benchmark suite.

Fig. 9. The results of experiments for 10-task applications selected from the Mälardalen benchmark suite.

(e.g., 10,000), the execution time of the algorithm significantly increases without any
noticeable improvement in solutions.

It should be noted that all of the experiments were run on a system with an Intel�
CoreTM i7-2630QM processor, and to optimally solve the joint SPM allocation and task
scheduling/mapping problem (the proposed optimal method), we used the GAMS/Cplex
solver [Brooke et al. 2003].

7.2. Results and Discussion

Figures 8 and 9 show the average normalized total WCETs of 5-task and 10-task sets
that were selected from Mälardalen benchmark suite. The first column in these figures
shows the results obtained by applying HSSP1, and the next four columns show the
results obtained by applying HSSP2, OSSA, the proposed heuristic method (HDSR),
and the proposed optimal method (ODSR), respectively. All of the results are normalized
with respect to the results of HSSP1. Similar to Figures 8 and 9, the obtained results
for 10-task sets that were selected from the MiBench benchmark suite are depicted
later in Figure 12.

The results of HSSP1, HSSP2, and the proposed heuristic method (HDSR) for 15-task
and 20-task sets (which were selected from the Mälardalen benchmarks) are shown in
Figure 10 and Figure 11, respectively. For 15-task and 20-task sets, we do not report
the results of OSSA and the proposed optimal method, as their execution did not finish
within the time limit (3 hours).

In addition to comparing the WCET of the solutions, we also compare the execution
time of the methods. Table II shows the execution time of each method for a system,
which consists of two processor cores and 1KB of shared SPM. It should be noted that
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Fig. 10. The results of experiments for 15-task applications selected from the Mälardalen benchmark suite.

Fig. 11. The results of experiments for 20-task applications selected from the Mälardalen benchmark suite.

Fig. 12. The results of experiments for 10-task applications selected from the MiBench benchmark suite.

Table II. Execution Time of HSSP1, HSSP2, OSSA,
ODSR, and HDSR
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as for other system configurations, similar results to the ones in Table II were obtained,
but we do not report them.

The important results of the experiments and related discussions are as follows:

—As shown in Figures 8, 9, and 12, in all cases the solutions of the proposed optimal
method (ODSR) are better than the solutions of the other methods. This result was
expected, as the proposed optimal method finds optimal solutions in the proposed
dynamic SPM space reuse scheme. Note that as we discussed in Section 4, in this
scheme, the SPM space is used more efficiently than in the SSA and SSP schemes,
and hence better solutions can be achieved when this scheme is used.

—The solutions of the proposed heuristic method (HDSR) in the worst case are only
8% and 3% worse than the solutions of the proposed optimal method for task sets
selected from the Mälardalen and MiBench benchmarks, respectively. This shows
the proposed heuristic method efficiency.

—In the best case, the solutions of the proposed heuristic method for the task sets
selected from the Mälardalen benchmark suite are about 55%, 54%, and 30% better
than the solutions of OSSA, HSSP1, and HSSP2, respectively. Similarly, for the
task sets selected from the MiBench benchmark suite, the solutions of the proposed
heuristic method are about 13%, 33%, and 3% better than the solutions of OSSA,
HSSP1, and HSSP2, respectively. Moreover, in the worst case, the results obtained
for the proposed heuristic method is about 6% better than the results of HSSP1 and
is almost equal to the results of HSSP2 and OSSA. Therefore, the proposed heuristic
method in almost all cases produces better results than HSSP1, HSSP2, and OSSA.
These results were also expected, as the proposed heuristic method similar to the
proposed optimal method uses the proposed dynamic SPM space reuse scheme.

—The solutions of HSSP2, in most cases, are better than the solutions of HSSP1. This
is because in HSSP1, after finding an initial solution, only the size of the SPM space
allocated to each core can be adjusted. However, in HSSP2, in addition to the size of
the allocated SPM spaces, task scheduling/mapping can also be adjusted [Liu et al.
2011], and hence HSSP2 usually can find better solutions than HSSP1.

—As it can be seen from Table II, the execution time of the proposed heuristic method
(HDSR) for 20-task applications (the largest examined applications in the experi-
ments) on average is 6.25 seconds. Evidently, this execution time is quite suitable, as
we use this method at design time. Indeed, the results generated by this GA-based
method are exploited at runtime. Nevertheless, we do not propose to adopt a GA-
based technique to be used at runtime. This is because, as mentioned in Section 4,
online techniques cannot be computationally expensive, and GA-based methods ba-
sically require a lot of computation [Haupt and Haupt 2004]. For example, in our
proposed scheme, although the 6.25-second overhead is quite acceptable at design
time, it is not feasible to have such overheads at runtime, especially considering
that this 6.25-second execution time is obtained by an Intel core i7 system, and the
overhead on an embedded processor (which is usually much simpler) must be much
higher.

—As shown in Table II, the execution time of the proposed optimal method (ODSR) is
reasonable for the small number of tasks. Hence, as it finds the best solution, it can
be recommended for fairly small systems. However, its execution time grows rapidly
by increasing the number of tasks. Therefore, for the systems with large number of
tasks, it is not applicable.

—The timing overheads of HSSP1 and HSSP2 in all cases are less than 1ms, which is
much lower than the execution time of the proposed methods. However, the solutions
that HSSP1 and HSSP2 find are usually worse than the solutions of the proposed
methods.
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8. CONCLUSIONS AND FUTURE WORKS

In this work, we studied shared SPM management for real-time multicore embedded
systems and proposed a dynamic SPM space reuse scheme to manage SPM efficiently.
Moreover, in our proposed scheme, we considered the coherency of SPM management
and task scheduling/mapping. To apply our scheme, we proposed two methods: (1) an
ILP based method, which finds optimal solutions for fairly small systems, and (2) a
heuristic method based on GA, which finds near-optimal solutions in reasonable time
for large systems. We evaluated the proposed methods by performing several exper-
iments on different benchmarks and different system configurations. The important
results of the experiments can be summarized as follows:

(1) As expected, in all cases the proposed optimal method outperforms the other meth-
ods provided in previous related works.

(2) The solutions of the proposed heuristic method in the worst case are only 8% worse
than the solutions of the proposed optimal method.

(3) The proposed heuristic method has much lower execution time than the optimal
method for large systems.

(4) The execution time of the proposed heuristic method is slightly higher than HSSP1
and HSSP2. However, its solutions are up to 54% and 30% better than the solutions
of HSSP1 and HSSP2, respectively.

To extend the proposed scheme, the following future works are suggested:

(1) The proposed scheme is only applicable to a frame-based application model running
on a nonpreemptive system. One possible future work is to extend the proposed
scheme to other application and system models, such as periodic and sporadic.
This requires developing new analytical models and new algorithms, and new
experiments must be conducted to validate the models and algorithms.

(2) Many embedded real-time systems have limited energy resources. Therefore, con-
sidering energy consumption in the proposed scheme is an interesting extension.

(3) Considering tasks execution time variations can help to utilize available SPM space
more efficiently. Therefore, one possible extension is to consider these variations in
SPM allocation.

(4) Analyzing the impact of malicious code and reliability issues on SPM manage-
ment in multicore system is another important issue that can be considered in
future works. This requires developing reliability models and providing techniques
to resist against malicious codes and tolerate faults. Furthermore, experimental
analysis (e.g., fault injection experiments) must be conducted to analyze the sys-
tem reliability against malicious codes and faults.
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