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Current high-performance computer systems utilize a memory hierarchy of on-chip cache, main memory, and
secondary storage due to differences in device characteristics. Limiting the amount of main memory causes
page swap operations and duplicates data between the main memory and the storage device. The character-
istics of next-generation memory, such as nonvolatility, byte addressability, and scaling to greater capacity,
can be used to solve these problems. Simple replacement of secondary storage with new forms of nonvolatile
memory in a traditional memory hierarchy still causes typical problems, such as memory bottleneck, page
swaps, and write overhead. Thus, we suggest a single architecture that merges the main memory and sec-
ondary storage into a system called a Memory-Disk Integrated System (MDIS). The MDIS architecture is
composed of a virtually decoupled NVRAM and a nonvolatile memory performance optimizer combining
hardware and software to support this system. The virtually decoupled NVRAM module can support con-
ventional main memory and disk storage operations logically without data duplication and can reduce write
operations to the NVRAM. To increase the lifetime and optimize the performance of this NVRAM, another
hardware module called a Nonvolatile Performance Optimizer (NVPO) is used that is composed of four small
buffers. The NVPO exploits spatial and temporal characteristics of static/dynamic data based on program
execution characteristics. Enhanced virtual memory management and address translation modules in the
operating system can support these hardware components to achieve a seamless memory-storage environ-
ment. Our experimental results show that the proposed architecture can improve execution time by about
89% over a conventional DRAM main memory/HDD storage system, and 77% over a state-of-the-art PRAM
main memory/HDD disk system with DRAM buffer. Also, the lifetime of the virtually decoupled NVRAM is
estimated to be 40% longer than that of a traditional hierarchy based on the same device technology.
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1. INTRODUCTION

Traditional high-performance computer memory systems are hierarchically composed
of, for example, independent units of on-chip Static RAM (SRAM), Dynamic RAM
(DRAM) main memory, and secondary storage, such as a Hard Disk Drive (HDD)
and/or a NAND flash-based Solid State Drive (SSD). Conventional virtual memory
logically extends main memory to secondary storage in a manner that causes data
duplication and page swap operations. Power consumption and capacity demands on
conventional limited main memory are steadily increasing. Moreover, the volatility
of DRAM necessitates a boot-up process to restore its contents after various levels
of power-down. Conventional secondary storage devices are also too slow to act as a
virtual extension of DRAM main memory, given frequent accesses.

To overcome these drawbacks of the basic components of a conventional memory hi-
erarchy system, the next generation of nonvolatile memory, such as Phase-change RAM
(PRAM), Ferroelectric RAM (FeRAM), and Magnetic RAM (MRAM), have some bene-
ficial characteristics compared with DRAM, such as nonvolatility, byte-addressability,
and greater capacity for scaling. According to recent studies [Zhou et al. 2009; Lee
et al. 2009; Park et al. 2010; Yoon et al. 2014; Jang et al. 2014], PRAM is a good can-
didate for mass production and has the potential to at least partially replace DRAM
main memory and NAND flash SSD. Most next-generation nonvolatile memories also
consume less power than conventional volatile memories. For these reasons, this study
investigates a new architecture based on PRAM device technology.

However, because of the slow read/write latency of PRAM, it is not effective to use it
directly as main memory. Also, its limited write endurance can be quickly exhausted
at main memory access rates. Furthermore, using PRAM as a replacement for either
main memory or secondary storage does not solve the problems of data duplication and
swapping overhead. Thus, we present a new memory architecture to exploit the char-
acteristics of nonvolatile memory, particularly PRAM. Our study merges conventional
main memory and secondary storage layers into a single memory layer using PRAM
device technology.

The new memory hierarchy system is called a Memory-Disk Integrated System
(MDIS). In this approach, data are stored in the nonvolatile MDIS and accessed in
place as if they were in a conventional DRAM main memory without duplications oc-
curring between layers as before. Thus, conventional file access and memory access
mechanisms must be changed at the operating system (OS) layer to be transparent
to the new MDIS. The overall MDIS architecture is designed around a fetch-block-
based M-D Nonvolatile RAM performance optimizer (NVPO), a virtually decoupled
Nonvolatile RAM (NVRAM) module, and its associated virtual memory management
module in the OS. In this article, we discuss the two hardware components, the virtu-
ally decoupled NVRAM module, and the NVPO, along with the software mechanism
for seamless address translation. The proposed virtually decoupled NVRAM module is
designed as two virtual spaces, static and dynamic. Static space can be read directly,
whereas dynamic space operates like conventional main memory and contains, for ex-
ample, the heap segment and stack segment. To overcome the characteristic asymmetry
of read/write access latency and increase the NVRAM’s lifetime, the fetch-block-based
NVPO consists of four decoupled buffers located between the on-chip cache and the
virtually decoupled NVRAM module. These buffers are designed to aggressively utilize
spatial and temporal locality to support virtualization of the static and dynamic regions
by adapting to the characteristics of the executing code.

The proposed structure is evaluated by using a trace-based simulator with SPEC
2006 [Henning 2006; SPEC CPU 2006; Phansalkar et al. 2007], SPLASH-2 [Woo et al.
1995], grep [Singer et al. 2011], and PostMark [Katcher 1997] traces. According to
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our simulation results, execution time can be reduced by about 89% compared to a
conventional hierarchy of DRAM main memory and HDD secondary storage and 77%
over a set of DRAM buffers/PRAM main memory/HDD disk pair proposed as state-of-
the-art proposals [Qureshi et al. 2009]. Moreover, eliminating page swap operations can
increase the lifetime of the nonvolatile memory by about 40%. Overall, the execution
speed of our proposed system is 4.5x faster than that of a PRAM-based main memory
and storage system, and it is 1.1x faster than a DRAM-based main memory system
with PRAM secondary storage.

The rest of this article is organized as follows. Section 2 presents other work related to
adapting nonvolatile memory for main memory using buffer structures to reduce access
latency and exploit NVRAM efficiently. Section 3 presents the proposed memory-disk
integrated system and its management algorithm. Section 4 analyzes the performance
of this system. Finally, we provide conclusions in Section 5.

2. RELATED WORK

Many studies have investigated the use of nonvolatile memory in an existing memory
hierarchy, including disk cache and write buffers over NAND flash memory, hybrid
main memory systems, and homogeneous nonvolatile memory structures. In addition,
several commercial storage models using nonvolatile memory also have been proposed
such as Memory Channel Storage (MCS) architecture placing nonvolatile memory on
memory bus directly [Diablo Technologies 2015]. In this section, a new memory and
storage architecture using PRAM will be reviewed briefly along with work on using
off-chip cache memory to reduce access and increase the performance and lifetime of
nonvolatile memories.

PRAM, which is commercially available, is being variously applied to existing mem-
ory systems ranging from embedded systems to high-end computing systems [Bedeschi
et al. 2008]. Ferreira et al. [2010] proposed a new memory system called PMMA to ef-
fectively use PRAM for main memory in next-generation embedded systems. In this
architecture, PRAM is used both as a storage medium and as a main memory compo-
nent. Because the density of PRAM is considerably higher than that of DRAM, it can
be used as a backing store in many embedded computing applications.

Qureshi et al. [2009] proposes a PRAM-based hybrid main memory system coupled
with a small DRAM buffer. In this architecture, the DRAM buffer acts as a cache with
respect to the PRAM to hide the read latency. A write buffer is used to hide the write
latency. In addition to the write buffer, fine-grained wear-leveling is proposed to extend
the endurance limits of PRAM, which employs a line-size write unit. The PRAM-based
hybrid main memory architecture is composed of a 32GB PRAM with a 1GB DRAM
buffer. The hybrid main memory shows results similar to those of a 32GB DRAM.

Jiang et al. [2012] presents architectural innovations to overcome long write latency
in MLC PRAM. MLC PRAM commonly uses an iterative program-and-verify (P&V)
write scheme for program multibits per cell, which causes large write latency. In this
system, the authors propose Write Truncation (WT) for identifying difficult-to-write
cells, which need more iterations to write, and truncating last iterations. Because
WT terminates the write operations of difficult-to-write cells, those cells remain in a
temporal error state. To correct this soft error, the authors also present an extra Error
Correction Code (ECC). This architecture reduces the read/write latencies by 57% and
28%, respectively, and improves the performance by 26%. Sun et al. [2011] propose
a frequent-value-based PRAM memory architecture to mitigate the write intensity
to PRAM main memory and improve the endurance and write energy. The authors
explore frequent-value locality in data written on PRAM main memory. In this system,
frequent-values are identified, and these data are stored in a compressed pattern with
an FV bit, indicating whether the data are compressed or original, in order to reduce the
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write intensity to PRAM. Original data are stored in data blocks in PRAM main memory
without any encoding. By using this scheme, PRAM endurance of the frequent-value
storage architecture is enhanced by 4x on average, and the write energy is improved
by 27%. Chang et al. [2014] improves the capability of PRAM for use as both main
memory and storage and enhances the performance of the whole system. The authors
propose a PRAM translation layer to jointly manage main memory space and storage
space in the PRAM device. Moreover, using three device commands, FREE, LINK,
and UNLINK, the proposed system reduces I/O operations between main memory and
storage. Additionally, the authors show the possibility of improving system performance
by eXecute-In-Place (XIP).

Beyond architectures using PRAM as the basic component of main memory, there is
relevant research to reduce the access latency of main memory with an off-chip cache
and to integrate the main memory and storage layers with nonvolatile memories. Zhang
et al. [2004] proposed a new memory hierarchy that uses cached DRAM to construct a
large, low-overhead, off-chip cache. The cached DRAM is composed of a large DRAM
space to hold large working sets and a small SRAM space to exploit the spatial locality
in L2 miss streams in order to reduce access latency. Their cached DRAM consisted of
64MB of DRAM with 128KB of on-chip cache, and their performance results indicate
better execution time than an 8MB off-chip cache alone.

Jung and Cho [2013] conceptually integrated main memory and storage with a
Single-Level Cell (SLC) and a Multilevel Cell (MLC) of nonvolatile memory. SLC non-
volatile memory can be utilized as a main memory, and MLC nonvolatile memory can
be used as secondary storage. They use a memory resource controller, located between
the OS virtual memory management layer and the physical nonvolatile memory, to dy-
namically adjust the space of the main memory and secondary storage. Memory can be
extended by the resource controller when a process requests a large memory allocation.
Their approach avoids many, but not all, of the page swap operations in the memory.

Other approches related to NVRAM application are to exploit various nonvolatile
memory technologies such as STT-RAM. Xue et al. [2011] introduces emerging NVRAM
technologies, their potential challenges, and their new opportunities. The authors
present PRAM as an attractive replacement of DRAM and STT-RAM as alternatives to
L2/L.3 cache in a chip multiprocessor. The much better scalability of PRAM can over-
come the scaling challenge DRAM is facing. Thus, several studies have been recently
under way to construct hybrid main memory systems using both PRAM and DRAM.
However, limited endurance and asymmetric read/write latencies of PRAM must still
be overcome. As another approach, the authors introduce a L2/L3 cache system us-
ing STT-RAM. By using the advantages of STT-RAM, such as low leakage and fast
read speed, it can replace the L2/L3 cache in a CMP. However, because STT-RAM also
has long write latency, the system must use a write buffer scheme to overcome this
drawback.

Last, OS-level studies have been conducted to exploit NVRAM as both main mem-
ory and storage. Rudoff [2013] introduces four NVM programming models: NVM block
mode, NVM file mode, PM volume mode, and PM file mode. And Wu and Reddy [2011]
propose a Storage Class Memory (SCM) file system, called SCMFS, for storage class
memory. An SCM device is directly attached to the memory bus and shares criti-
cal system resources with the main memory, such as memory bus bandwidth, CPU
cache, and TLBs. SCMFS is built on top of the virtual memory space, and the Memory
Management Unit (MMU) is utilized for translating file system addresses to physical
addresses in the SCM. By reusing memory management infrastructure and simplifying
the complexity of the file system, SCMFS minimizes the CPU overhead with respect to
file system operation and improves overall system performance. Oikawa [2013] demon-
strated memory management for a file system with an integrated memory-disk system.
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He changed the entire file system by using the block size of the file system to exploit
secondary storage as an extended memory space that can be mapped into a virtual
address space. Also, when the OS terminates, all nonvolatile memory pages are re-
turned to the file system to keep the file system consistent for the subsequent OS boot.
In effect, the system converts all blocks in the secondary storage layer into memory
pages, and the virtual memory system is responsible for managing both main memory
space and nonvolatile space. Oikawa [2014] also presents another file system for a
byte-addressable memory storage system that could be used as both main memory and
storage. Through the library implementation of the file system, the user-level file sys-
tem can interact with memory storage directly without any intervention by the kernel.
This file system shows 1.9x and 6.5x faster read/write performance than current file
systems.

3. MAIN ARCHITECTURE
3.1. Overall Architecture

In this research, we introduce the MDIS approach, which integrates the conventional
main memory and disk storage layers into a single layer using nonvolatile memory.
MDIS storage is classified into two logical spaces, static and dynamic, from the per-
spective of the OS. The two spaces are mapped and manipulated over the nonvolatile
memory. Program files and static data are accessed directly in the static space via the
virtual memory management layer, taking advantage of the byte-addressable char-
acteristic of NVRAM. Thus, redundant data duplication between main memory and
secondary storage can be avoided. Conventional dynamic allocation and deallocation
operations are done in the dynamic space of the NVRAM.

To support this mechanism, virtual memory management and file management mod-
ules of the OS need to be modified as follows. First, virtual memory management should
allocate virtual addresses in the static space to support a RAM-based file system, such
as PRAMF'S [SourceForge 2013] or PMFS [GitHub 2013]. Thus, we can support XIP on
the static space. If we utilize such a file system, the program will be executed by linking
to its associated pages in the static space. Program execution using dynamic libraries
doesn’t need to move pages into the dynamic space since they are simply linked when
the program is executed.

Furthermore, when handling a data file, we can read its contents directly from the
static space instead of loading it into the dynamic space. Thus, we can remove data
duplication and improve performance on program execution and file accesses. Using a
RAM-based file system provides compatibility with conventional OSs by maintaining
the conventional file system interface.

Our MDIS approach can avoid the page swapping that occurs in a memory hierarchy
because of the elimination of data duplication between main memory and secondary
storage. The MDIS consists of two major parts connected by an NVRAM translation
layer, as shown in Figure 1. Those two parts are the virtually decoupled NVRAM mod-
ule and an NVRAM performance optimizer (NVPO). The latter effectively minimizes
the performance gap between the lowest cache level and the NVRAM. In this article,
we focus on designing these hardware modules and the corresponding virtual mem-
ory management module for the OS. The NVRAM translation layer is conceptually
described in this article in terms of the basic operational flow.

The NVPO module is composed of four decoupled DRAM buffers intended to hide
asymmetric read/write access latencies: an active fetch-block buffer, a dynamic data
centric buffer, a static data-centric buffer, and a dynamic data write buffer. The NVPO
enhances NVRAM read latency, which is about 5x slower than DRAM, and hides
NVRAM write latency that is about 10x slower than DRAM.
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Fig. 1. Overall architecture.

Additionally, extending the lifetime of the NVRAM module is addressed by the combi-
nation of a fetch-block-based performance optimizer with new virtual memory and file
management modules in the OS. The proposed architecture’s two major components
are described in the following subsections.

3.2. Virtually Decoupled NVRAM

Virtually decoupled NVRAM is divided into two spaces: dynamic space and static space.
Each space can be used like traditional main memory space and file system space. The
virtually decoupled NVRAM also supports an NVRAM translation layer to provide an
address translation mechanism and basic wear-leveling operations.

A conventional memory hierarchy is constructed of multiple levels of cache, main
memory, and secondary storage. Program and data files are typically kept in HDD or
SSD and copied to main memory for use by the processor, resulting in duplication.
The conventional Executable and Linkable Format (ELF)-based program structure is
composed of two major parts, readable static space, including text and data segments,
and dynamic space, including stack segments and heap segments.

Figure 2 shows the structure of our NVRAM composed of virtual dynamic and static
spaces. The static space keeps track of static data, such as executable and readable
data files, as conventional file storage, and it can be accessed as text segments and
data segments based on the ELF memory map structure. The dynamic space can be
accessed as a conventional main memory in which the OS allocates and deallocates
pages associated with heap and stack spaces in the virtual memory map.

The static space can be used to read executable files in place without duplicating
data, and the dynamic space can be used to access dynamic and temporal data via
conventional memory allocation. Conventional data migration between main memory
and storage can thus be avoided. Stack and heap are kept in dynamic space when the
process is running. The NVRAM translation layer manages mode bits that indicate
the status of each physical NVRAM block and can change the status from dynamic to
static. Write-back of dynamic data to the static space is thus handled by changing the
mode bit, without any physical migration (write and erase) operation. The translation
layer can also manage the capacities of the static and dynamic spaces by changing
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Fig. 2. Structure of virtually decoupled NVRAM.

mode bits. For example, file creation can be handled by changing the mode bit of a
given block in the virtually decoupled NVRAM.

As shown in Figure 2, our virtual space and mode bits represent various states of
the NVRAM blocks, such as dynamic (D), static (S), empty (E), or bad (B). The OS ex-
ploits this information for file and memory management. The file system manages only
blocks whose mode bit is marked with the static value. Dynamic space management is
performed on blocks with the dynamic value. In other words, the NVRAM translation
layer manages the dynamic and static space of the virtually decoupled NVRAM via
the mode bits of every block, and it expands and shrinks their capacities dynamically
without the need for page swap operations.

3.2.1. Improved Virtual Memory Management Module. The conventional memory hierarchy
supports a virtual memory environment that maps to a physical memory (e.g., about
4GB in a 32-bit system). It also can hide the limited capacity of the physical main
memory, but doing so may cause frequent page swap operations to storage swap space.
In the MDIS architecture, virtual memory mapping of each process can be managed
by static and dynamic page linking instead of using only main memory mapping to
provide an extended memory space. Thus, the program execution flow changes from a
main memory load and execute paradigm to linking up pages in the virtual static space
of the NVRAM and using XIP, as shown in Figure 3. Furthermore, the absence of swap
space increases the lifetime of the NVRAM.

3.2.2. NVRAM Translation Layer. We designed a memory address translation mechanism
for the MDIS translation layer. Figure 3 shows the NVRAM translation layer, consisting
of address mapping tables with conceptual relationships for virtual address mapping,
logical dynamic and static space mapping, a wear-leveling engine, and NVRAM map-
ping. The address table is used to manage the status and data types of each block
address and to process address translations before accessing the NVRAM. When the
program starts execution, a virtual memory map of the running process is created,
and the translation layer is updated by modifying the metadata for the virtually de-
coupled NVRAM. The virtual memory map of the running process can be transformed
and mapped into static or dynamic space. Thus, the translation layer guarantees fast
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Fig. 3. Memory address translation via improved virtual memory management.

address translation with the support of the address translation table, as it translates
the virtual address requested from the processor into the virtually decoupled NVRAM
physical address. The virtual memory management module references this information
to create a seamless virtual memory map of the processes.

3.3. NVRAM Performance Optimizer

As mentioned before, the NVRAM performance optimizer (NVPO) is composed of four
buffers to improve asymmetric read/write latencies, increase lifetime of the NVRAM,
and optimize the structure of our proposed system. To demonstrate the effectiveness of
the MDIS compared with the conventional memory and disk hierarchy, access latency
should be less than or equal to that of a conventional DRAM-disk pair, and long write
latency should be hidden or reduced through an effective buffer design. An Active Fetch-
Block Buffer (AFBB) is used to fetch blocks by fetch-block unit (8KB), where the fetch-
block unit has the size of two pages. The AFBB exploits spatial locality in the program
to increase data availability and minimizes the long access latency of the virtually
decoupled NVRAM by hiding and reducing relatively slow read/write operations. Also,
the Static Data Centric Buffer (SDCB) and Dynamic Data Centric Buffer (DDCB) are
used to store evicted fetch-blocks from the AFBB, thereby enhancing temporal locality.
Finally, to hide and delay write latency to the NVRAM, a Dynamic Data Write Buffer
(DDWB) is designed to store evicted reusable fetch-blocks from the DDCB and delay any
write operation to hide slow write latency and maximize the lifetime of the NVRAM.
As shown in Figure 4, we have designed an effective structure for the NVPO, composed
of 2MB of DRAM, to minimize cost and reduce power consumption.

3.3.1. Active Fetch-Block Buffer. The AFBB provides 1MB of space to hold the 8KB fetch-
blocks. It is designed to support high fetch accuracy and accessing performance. As
shown in Table I, the AFBB management table maintains the status information
required for each fetch-block and is used to select a victim fetch-block when loading
a new fetch-block by using a first-in, first-out (FIFO) algorithm. Each fetch-block is
divided into two reusable 4KB block units, corresponding to the unit of management
in the SDCB or DDCB. Depending on its status, a victim fetch-block is migrated into
SDCB or DDCB without verifying the dirty flag, to provide additional temporal locality.
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Table I. AFBB Management Table

Valid (1bit) | Tag (20/52bit) | Fetch-Block Type (1bit) | Timestamp (8bit)
1 0x1023a static 36
1 0x2e2a2 dynamic 40
0 0x20187 dynamic 120

Figure 5 shows the static and dynamic average access counts of benchmarks for
various potential fetch-block sizes ranging from a basic cache block size of 64Bytes to
one of 8KB. The x-axis shows the overall percentage of benchmark execution in a 10%
unit scale, and the y-axis shows the average access counts of benchmarks. Figure 5(a)
shows the number of static accesses by fetch-block sizes, and the 8KB size has the
highest reuse rate. For dynamic accessing, as shown in Figure 5(b), an 8KB fetch-block
size again shows an outstanding reuse rate compared with the other cases.

Figure 6(a) and 6(b) shows the performance impact on benchmarks of various fetch-
block sizes, ranging from 4KB to 64KB. In Figure 6(a), the x-axis shows the fetch-block
size at the granularities appropriate for managing the AFBB, and the y-axis shows the
hit rate. In Figure 6(b), the x-axis shows the fetch-block sizes, and the y-axis shows
the corresponding write-back traffic. Figure 6(a) shows that 16KB gives the best hit rate
for the AFBB. However, Figure 6(b) shows that an 8KB fetch-block case is preferable
because a bigger fetch-block size induces significantly higher write-back traffic from
AFBB to either DDCB or SDCB, causing performance degradation.

3.3.2. Static Data Centric Buffer and Dynamic Data Centric Buffer. The SDCB and DDCB are
managed in units of 4KB to exploit both spatial and temporal locality. Basically, the two
buffers are designed to have the same structure but different sizes: the SDCB consists
of a 512KB space and the DDCB consists of a 256KB space, resulting in a total capacity
of 768KB. As shown in Table II, each buffer has an associated management table that
stores dirty status and access counts for each reusable-block. If any particular block in
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Fig. 5(b). Average access count of dynamic data by fetch-block sizes.

the 4KB reusable-block is accessed by a request, it renews the threshold value of the
reusable-block. Victim blocks for each buffer are selected based on a minimum threshold
value to maximize temporal locality. The SDCB management table has a 64KB space,
and the DDCB management table has a 37KB space for buffer management, thus the
total space is less than 128KB.

We simulated only two cases, which are 4KB and 8KB managing granularity, and
determined to use 4KB based on write-back traffic and hit rate. We don’t consider
sizes greater than 8KB because one fetch-block from the AFBB can be divided into a
set, of sub-blocks to check reusability. Thus, only recently accessed sub-blocks can be
collected to move into the next level DDCB buffer. This is because the DDCB buffer
can only receive evicted data from the AFBB, and only reusable sub-blocks need to be
maintained for optimal reusability.
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Fig. 6(a). Hit ratio of AFBB by fetch-block size. Fig. 6(b). Write-back traffic of AFBB by fetch-block
size.

Table Il. Static and Dynamic Data Centric Buffer Management Table

Block 1 (1+8bit) | Block 2 (1+8bit) | Block n (1+8bit)
Valid (1 bit) | Tag (20/52 bit) | D H D H D H Threshold
1 0x1023a 0 3 1 11 0 2 5
1 0x29129 1 15 1 94 0 53 54
0 0x81f1d 0 68 0 21 0 2 30
1 0x18acc 1 5 0 85 0 1 31

Likewise, we determined that SDCB managing granularity should be 4KB for rea-
sons similar to those for the DDCB. Note that it has only static data types and thus
there is no write-back traffic from the SDCB to the MDIS.

3.3.3. Dynamic Data Write Buffer. The DDWB consists of a 256KB space used to hide the
write latency to the NVRAM. The DDWB stores only the dirty cache blocks among the
reusable-blocks evicted from the DDCB, and so the data can be selectively written in
cache block size units (64Bytes). The DDWB is managed according to FIFO protocol.
Thus, dirty cache blocks are only written back to the NVRAM when they are evicted
from the DDWB. Because of the DDWB, dynamic data can pass through up to three
levels of buffer hierarchy, allowing greater delays for write operations. The DDWB
includes a write queue and so can provide requested data concurrently.

3.3.4. Operation Flow of Nonvolatile RAM Performance Optimizer. Data requests occurring
from the last-level cache are translated into a physical address for the virtually decou-
pled NVRAM through the NV translation layer, as shown in Figure 7:

—Step 1: Any request from the last-level cache is started in the virtually decoupled
NVRAM layer.

—Step 2: The NVPO translates the virtual address into the relevant physical address.
If a hit occurs in the AFBB, then the process goes to step 6; otherwise, it goes to the
next step.

—Step 3: If the data type is static, the SDCB is accessed. If a hit occurs in the SDCB,
the process goes to step 6. Otherwise, it goes to step 7.

—Step 4: If the data type is dynamic, the DDCB is accessed for a match. If a hit occurs
in the DDCB, the process goes to step 6. Otherwise, it goes to the next step, when a
miss occurs in the DDCB.
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Fig. 7. Operation flow of nonvolatile RAM performance optimizer.

—Step 5: If the data matches in the DDWB, the process goes to step 6; otherwise, it
goes to step 7.

—Step 6: The matched data are provided to the last-level cache, and the buffer man-
agement table is updated to maintain buffer status. The process then waits for the
next request.

—Step 7: Arriving at this step means that the NVPO could not find any matched data;
thus, the virtually decoupled NVRAM layer is accessed, the requested fetch-block
is transmitted to the NVPO, and its associated cache block is transferred to the
last-level cache, simultaneously.

3.3.5. Handling Misses of the NVPO. When a miss occurs in the NVPO, we determine a
fetch-block to be evicted from the AFBB and then replace it. The evicted fetch-block
from the AFBB is migrated to the DDCB or SDCB, depending on its type. In this
process, as shown in Figure 8, threshold-based FIFO algorithms have been designed
for the AFBB, SDCB, and DDCB to determine which fetch-block or reusable-block to
evict. To enhance temporal locality, evicted fetch-blocks or reusable-blocks are migrated
into the lower level buffers, as shown in Figure 9.

Finally, only dirty cache blocks are written to the virtually decoupled NVRAM layer.

The details of the miss handling operations are as follows:

—Step 1: The AFBB selects a FIFO fetch-block to evict.

—Step 2: The evicted fetch-block is migrated to the DDCB or SDCB based on its data
type. If the data type is static, the process goes to step 3; otherwise, to step 5.

—Step 3: If the SDCB has no space for the evicted fetch-block, the reusable-block with
the lowest threshold value is selected by checking the threshold management table.

—Step 4: The evicted reusable-block from the SDCB does not need to be written to the
NVRAM, and the NVPO discards the evicted reusable-block. The process then goes
to step 9.

—Step 5: If the DDCB has no space for the evicted fetch-block, the two reusable-blocks
are selected for replacement based on the lowest threshold values by checking the
threshold management table.
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—Step 6: When evicted from the DDCB, dirty cache blocks and those clean cache blocks
that have higher access counts than the threshold of the evicted reusable-block are
migrated to the DDWB.

—Step 7: The process checks for any space available in the DDWB. If there is space
available, the evicted cache blocks are migrated to the DDWB, and the process goes
to step 9. If there is no space available, it goes to step 8.

—Step 8: The DDWB evicts the oldest cache block. If the oldest cache block in DDWB
is dirty, it can be written back to the NVRAM; otherwise, it is discarded.

—Step 9: The evicted fetch-block of the AFBB is replaced with a new one.

—J_J

e

.........

U

4. EXPERIMENTAL RESULTS

In this section, we describe the simulation environment used to evaluate the impact of
the proposed MDIS. We use eight benchmarks from the SPEC 2006 suite widely used
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Table Ill. Simulation Configurations

Trace extractor ‘ Pintool
SPEC 2006 (astar, bzip2, calculix, gcc, h264ref, namd, sjeng,
soplex)
Benchmark suites SPLASH-2 (lu)
grep
PostMark
L1 Instruction, Data Cache | 32KB, 8-way set associativity, 64Byte block size
L2 Unified Cache 256KB, 8-way set associativity, 64Byte block size
L3 Unified Cache 8MB, 16-way set associativity, 64Byte block size

AFBB 1MB, 8KB fetch-block size
DDCB 256KB, 4KB reusable-block size
NVPO DDWB | 256KB, 64Byte cache block size
SDCB 512KB, 4KB reusable-block size
Buffer 1 | 1MB, 4KB page size

Dual Buffer Buffer 2 | 1MB, 128Byte block size

in both industry and academia, the lu benchmark belonging to the SPLASH-2 suite,
and the grep [Singer et al. 2011] and PostMark [Katcher 1997] benchmarks. Only six
out of the eight benchmarks from SPEC 2006, plus lu, grep, and PostMark, are used
to evaluate the performance and hit-ratio to cover different computing characteristics
in a normal computing environment. The other two SPEC benchmarks, bzip2 and
soplex, are used in other experiments such as power consumption. From the SPEC
2006 suite, we use four integer benchmarks (astar, gcc, h264ref, and sjeng) and two
floating point (calculix and namd). The SPLASH-2 suite consists of benchmarks for
science, engineering, and graphics. We only use lu because it is widely used to represent
dense linear algebra computations and reflects the distinct communication patterns
among multiprocessors via shared memory. Grep is a read-intensive application over
string-based data that has output relatively much smaller than its input data, and
it also leads to much higher miss rates compared with other benchmarks. PostMark
is for simulating heavy small-file system loads with a minimal amount of software to
measure the transaction rates for a workload approximating a large internet electronic
mail server.

For experiments related to power consumption, we exploit eight benchmarks from
SPEC 2006, which are astar, bzip2, calculix, gcc, h264ref, namd, sjeng, and soplex.
These help evaluate the work done by only the CPU and memory subsystem.

As summarized in Table III, we used the pin tool [Intel 2012] as a program instru-
mentation tool and a subset of the SPEC 2006 (astar, bzip2, calculix, gce, h264ref, namd,
sjeng, and soplex) benchmark suite [Henning 2006; SPEC CPU 2006; Phansalkar et
al. 2007], SPLASH-2 (1u) [Woo et al. 1995], grep, and PostMark [Katcher 1997]. Ta-
ble III also shows that the system configuration used in the our simulator is a 32KB
L1 instruction cache and a 32KB L1 data cache, formed as an 8-way set associative
with a 64 byte block size. The L2 unified cache is 256KB configured as an 8-way set
associative with a 64 byte block size. The L3 unified cache is 8MB in size, a 16-way set
associative with a 64 byte block size, and it also operates as a last-level cache. These
parameters are based on recent processor configurations. Execution traces including
the memory footprints of the benchmarks are obtained from the processor requests,
memory management routines (e.g., allocation and deallocation), and read and write
requests using the Pin tool while workloads are executed. The trace files are used as the
input to our simulator for the proposed architecture. Detailed simulation parameters
are listed in Table IV [Shin et al. 2012; Dhiman et al. 2009; Jung et al. 2012; Chung
et al. 2011].
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Table IV. Simulation Parameters

Parameter DRAM | SLC PRAM
Read Latency 10ns 20ns
Write Latency 10ns 100ns

Endurance 1016 108

Row Read Power | 210mW 78mW
Row Write Power | 195mW 773mW
Active Power 75mW 25mW
Standby Power 90mW 45mW

Refresh Power 4mW OmW
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Fig. 10. Load latency and traffic.

Our trace-driven simulator assumes two ports (one read port and one write port)
and is composed of processor cache memory, the NVPO buffer modules, and a memory-
disk integrated module. For the experiment, the simulator for a conventional memory
hierarchy is composed of a processor cache, main memory, disk buffer, and disk module.
Extracted trace information for the benchmark suites is based on the processor requests
that reach each level of the hierarchy. All benchmark suites are compiled as a single
threading static binary for in-order execution. In each model configuration, we show
the performance results in terms of hit rate, read/write traffic, access latency cycles,
and power consumption. The configuration of our proposed architecture is composed of
1MB for AFBB, 256KB for DDCB, 256KB for DDWB, 512KB for SDCB, and 1GB for
the nonvolatile memory device. We also implemented a simple dual-buffer simulator
with the same buffer space as the proposed architecture to obtain spatial and temporal
locality characteristics as a baseline to compare against the proposed system. The
dual-buffer simulator fetches 4KB pages, which are the same size as those in the
conventional memory and includes data threshold management [Choi et al. 2013].

4.1. Memory Load Traffic

In this section, we measure total traffic between the main memory and storage. The
conventional memory hierarchy system loads data into the main memory by page size.
In contrast, our proposed system does not load any static data from the text-segment
or read-only data segment of the process. Figure 10 shows the average time to access
instructions or data during program execution for the conventional hierarchy and the
MDIS, as well as their read/write traffic results. The x-axis indicates the benchmark
programs and the average value, and the y-axis on the left side shows the relative
access latency normalized to that of direct execution by the proposed MDIS structure.
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Figure 10 also shows the average length of the main memory response, including
associated disk access. The right side of the y-axis shows the total traffic between the
processor and the main memory, where direct execution by the MDIS requires a total
transfer of about 300KB to the processor, and the conventional main memory loads
transfer about 1,300KB. According to our results, direct execution via our proposed
architecture is about 33% faster on average than the conventional method after the
main memory pages are loaded.

4.2. Impact of NVPO Buffer Size

The NVPO buffer is meant to minimize the access time for the NVRAM MDIS while
guaranteeing cost-effectiveness and simple management. Thus, our experiment tries
to limit the amount of buffer space used in our proposal to a maximum of 2MB, with
acceptable latency. Based on this condition, the space range in the experiment varies
from 64KB to 2MB. In Figures 11 to 14, the x-axis indicates the size of each buffer, and
the y-axis shows the hit rate depending on those sizes.

As shown in Figure 11, for the hit rate by AFBB size, it shows the best result with
the 1MB (1,024KB) space. Thus, we determined that a 1MB space for the AFBB is most
suitable.

After the 1MB space was fixed for the AFBB, we tried to find best combination of
SDCB, DDCB, and DDWB with the remaining 1MB. Both the DDCB and DDWB are for
dynamic data, whereas the SDCB is to handle the evicted blocks of static data from the
AFBB. Thus, the optimal SDCB space was determined first, to minimize the NVRAM
access latency. Figure 12 shows a significant increase in hit rate going from 256KB to
512KB space.

The DDCB provides a second chance for reusing the evicted dynamic blocks from
AFBB, so we next experimented with the DDCB space ranging from 64KB to 512KB.
Although its best result is at 512KB, we must reserve some space for the DDWB, which
serves as a write buffer for dynamic data. Thus, we provide 256KB for the DDCB, and
the remaining space is assigned to the DDWB. Even though a miss occurs in the DDCB,
the possibility of a hit in the DDWB still exists.

Last, in adjusting the size of the DDWB, we found that 256KB not only provides the
highest increase in hit rate, but also keeps the total size within the limitation imposed
to maintain cost-effectiveness, as shown in Figure 14.

Based on this experimentation, we conclude that 1MB for AFBB, 512KB for SDCB,
256KB for DDCB, and 256KB for DDWB are the best balance between cost- effective-
ness and performance.
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4.3. The Fetch-block Sizes

As explained in Section 3, our proposed system fetches a fetch-block unit from the
virtually decoupled NVRAM, but the number of pages to be fetched as a unit cannot
be determined by theoretical calculation, and the overall performance of our proposed
system is significantly influenced by the fetch-block size of the AFBB. In this section,
we measure the impact on overall performance by AFBB fetch-block size, proceeding
with experiments step by step. The fetch-block can maximize the spatial locality of
the AFBB in the NVPO, so we tried candidate sizes ranging from 4KB to 64KB. As
shown in Figure 15, we measured the hit rate of the buffer, normalized to that of a 4KB
fetch-block. The x-axis shows the fetch-block sizes from 4KB to 64KB, and the y-axis
shows relative normalized hit rates. The results demonstrate that increasing the size
of a fetch-block increases the spatial locality of the NVPO, but tradeoffs exist due to
the limited NVPO capacity.

The fetch-block results in a long fetch-latency between the NVPO and the NVRAM.
Figure 16 shows the total loaded data traffic for the benchmarks, and the y-axis shows
data traffic normalized to a 4KB fetch-block size. Here, we see that the amount of fetch
traffic tends to increase exponentially with fetch-block size.

The number of write-backs to the virtually decoupled NVRAM, based on evictions
from the DDWB in the NVPO, was also measured. We analyzed how many write
backs occur to the NVRAM, normalized to a 4KB fetch-block size. Except for the bzip2
benchmark, the write-back traffic makes no difference, but 32KB and 64KB fetch-block
sizes tend to increase the write back traffic, as shown in Figure 17. The y-axis indicates
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the relative traffic normalized to 4KB, showing that the write traffic is similar across
fetch-block sizes.

To identify exactly how effective each fetch-block size is, we experimented to deter-
mine the total execution cycles required for write-back operations for the bench-marks.
Figure 18 shows the execution clock cycles across the benchmarks. The x-axis indicates
the benchmarks, with the size of the fetch-block ranging from 4KB to 64KB, and the
y-axis is the relative value normalized to the 4KB fetch-block. The 8KB fetch-block size
is the most effective, and the overhead of write-back latency is an influence in the case
of the 64KB fetch-block size for the soplex benchmark. We determined that the 8KB
fetch-block size maximizes the spatial locality of the NVPO.

4.4. Effect of Memory-Disk Integration

An NVRAM write operation can be initiated by a write operation from the processor, an
NVPO eviction operation, and memory allocation. Of course, the conventional hierarchy
system has no buffer to reduce write operations and has page swap operations. We
measured synthetic write operations to the main memory for the conventional system,
and we also checked our proposed system’s operations between the NVPO and the
NVRAM, as shown in Figure 19. The model is a PRAM main memory and a main
memory with a dual buffer that allows page swap operations. We constrained the
model to 1GB of main memory, and the y-axis shows the amount of data written for each
benchmark, ranging from 0MB to 60MB, where about 40MB of data are written back
to storage in the conventional main memory system. The dual-buffer model reduces
write operations considerably, to about an eighth that of the conventional system. Our
proposed system is able to remove page swap operations and memory allocation for the
static data, thereby reducing write traffic to half that of the dual-buffer system.

We analyzed memory writes in detail, finding that, on average, the PRAM main
memory writes about 80MB to the memory side, but half of the write operations are
memory allocation operations, as shown in Figure 20. The dual-buffer model reduces
write operations of dynamic data to the main memory. Our proposed model not only
reduced write counts of dynamic data, but also changed the method of execution of
static data, thus resulting in decreased write operations to the main memory.

4.5. Lifetime and Performance Evaluation

The lifetime of the NVRAM is compared for three possible cases: the conventional main
memory with and without the buffer system and our proposed system. Most NVRAM
has a limited lifetime, which is a significant problem. Figure 21 shows the relative
lifetime normalized to the conventional main memory system without a buffer, where it
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is clear that the dual-buffer model and our proposed system are able to eliminate many
write operations to the NVRAM storage layer, thus enhancing lifetime. The DDWB in
our proposed system is able to impede write operations significantly, and so it hides
considerable numbers of write operations. Thus, our architecture is able to increase
the lifetime by about 15x compared with the conventional memory hierarchy system
without a buffer.

In the experiment related to overall performance, the size of all main memory designs
is fixed at 1GB. The work in Qureshi et al. [2009] uses the total size of both buffers
as 1GB to secure comparable performance with a conventional system and the size
of PRAM main memory as 32GB. To compare fairly, we conducted an experiment
with the buffer size reduced to match the work in Qureshi et al. [2009] using a 2MB
buffer and 1GB main memory. The overall performance was compared for possible
configurations, such as PRAM main memory with a set of DRAM buffers and HDD
disk pair by Qureshi et al. [2009], the conventional system with DRAM main memory
and HDD storage, the conventional system with PRAM (PRAM secondary storage,
and conventional PRAM main memory), and the PRAM storage hierarchy system with
buffers. These four systems are compared by counting execution clock cycles occurring
between the last-level cache memory and the MDIS via the NVPO (1MB for AFBB,
512KB for SDCB, 256KB for DDCB, and 256KB for DDWB), as shown in Figure 22.
Generally, the results show that the execution clock cycles of our proposed structure
are much less than those of other systems. The conventional system with DRAM main
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memory and a disk pair shows the slowest performance, which is about 9.6 x slower
than our proposed system. The PRAM main memory with HDD storage by Qureshi
et al. [2009] shows comparable performance with the combination model of PRAM
main memory and PRAM storage, but our proposed system provides a speedup of 4.5x
compared with them.

The PRAM main memory and PRAM secondary storage with a dual-buffer system
consisting of a total of 2MB of space improves the performance compared to the conven-
tional system with PRAM main memory and PRAM storage, but our proposed system
provides 3.4x faster performance. Moreover, our system is able to increase lifetime
and reduce power consumption more than the other cases. For cost effectiveness, an
optimal combination of several nonvolatile memory components can be chosen.

4.6. Power Consumption

Figure 23 shows total power consumption of each benchmark workload from SPEC
2006, normalized to a 1GB DRAM main memory. On average, the 1GB PRAM main
memory consumes 68% more power than the 1GB DRAM main memory. From Table
IV, the read power consumption of PRAM is about 2.7 x lower than that of the DRAM,;
on the other hand the write power consumption is significantly greater. Although
PRAM has advantages of low standby/read power consumption and no refresh power
compared with DRAM, because PRAM write power consumption is much greater than
that of DRAM, PRAM can consume more energy. Specifically, h264ref and sjeng have
higher levels of write requests, including write-back counts evicted from last-level
cache, than any other benchmark in our sample workload. Soplex has fewer write
requests, and thus power consumption for the 1GB PRAM main memory is similar
to the 1GB DRAM main memory. Overall, however, compared to the DRAM-based
main memory, our proposed system can save 35% of power consumption on average.
The reason is that our proposed model reduces standby/refresh of DRAM and a large
fraction of the write power consumption of the PRAM by using PRAM with a small
amount DRAM.

To clarify the impact on power consumption of our proposed architecture, we show
a power consumption break-down for each different model in Figure 24. For this, we
assumed 1GB DDR3 SDRAM running at 800MHz and used the Micron system power
calculator [Micron 2011]. The background power, including refresh/standby power, con-
sumed about 25% of the total of the 1GB DRAM main memory power. Our proposed
architecture reduces both the background power of the DRAM and the write power
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consumption of the PRAM by using smaller amount of DRAM as a buffer and avoiding
many unnecessary writes.

5. CONCLUSION

In this article, we proposed a memory-disk integrated system consisting of two hard-
ware components: a virtually decoupled NVRAM module and a fetch-block-based non-
volatile performance optimizer. The virtually decoupled NVRAM consists of two virtual
spaces: a static space and a dynamic space. The dynamic space can be accessed as a
conventional main memory and can expand the capacity dynamically. The virtually
decoupled NVRAM module can eliminate memory page swap operations that occur
between the conventional main memory and the storage layer, thereby increasing the
lifetime of the nonvolatile memory. The fetch-block-based nonvolatile performance op-
timizer consists of four decoupled buffers and is located between the lowest level of the
cache and the virtually decoupled NVRAM module. The dynamic data-write buffer can
hide and reduce write operations to the virtually decoupled NVRAM module, increase
write endurance, and improve performance. The experimental results show that the
proposed MDIS is able to increase the lifetime of the nonvolatile memory to about
15x that of a conventional main memory and storage system. Moreover, the power
consumption is reduced by about 35% compared with a DRAM-based main memory
system having the same capacity. Furthermore, our proposed architecture can operate
4.5x faster than a PRAM-based main memory system with DRAM buffer proposed
by Qureshi et al. [2009] that is comparable to conventional DRAM-based memory
architectures. Based on these findings, our proposed memory system offers the possi-
bility of replacing systems using DRAM and HDD disk with a memory-disk integrated
NVRAM-based system.
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