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Abstract

We study truthful auctions for secondary spectrum usage in wireless networks. In this sce-
nario, n communication requests need to be allocated to k available channels that are subject
to interference and noise. We present the first truthful mechanisms for secondary spectrum
auctions with symmetric or submodular valuations. Our approach to model interference uses
an edge-weighted conflict graph, and our algorithms provide asymptotically almost optimal ap-
proximation bounds for conflict graphs with a small inductive independence number ρ ≪ n.
This approach covers a large variety of interference models such as, e.g., the protocol model or
the recently popular physical model of interference. For unweighted conflict graphs and sym-
metric valuations we use LP-rounding to obtain O(ρ)-approximate mechanisms; for weighted
conflict graphs we get a factor of O(ρ · (logn + log k)). For submodular users we combine the
convex rounding framework of [12] with randomized meta-rounding to obtain O(ρ)-approximate
mechanisms for matroid-rank-sum valuations; for weighted conflict graphs we can fully drop the
dependence on k to get O(ρ · logn). We conclude with promising initial results for determinis-
tically truthful mechanisms that allow approximation factors based on ρ.
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1 Introduction

The development of wireless networks crucially relies on successful management of the frequency
spectrum to provide reliable network access. Nowadays, spectrum allocation is static – service
providers (so-called primary users) can obtain nation-wide licenses for channels in governmental
spectrum auctions. This practice is inefficient and problematic: While primary users often use their
spectrum bands only in selected local areas, new and innovative applications suffer in their devel-
opment, because global licenses are difficult to obtain or generally unavailable. A major research
effort is currently underway in computer science and engineering to overcome this artificial scarcity
and let primary users open their bands in local areas for so-called secondary usage. Auctions are
attractive to coordinate secondary spectrum usage, as they allow implementing social or monetary
goals in a market with self-interested participants having private information. Interest in secondary
spectrum auctions has increased significantly in recent years (see [15, 16, 20, 35, 36], and [2] for a
general discussion), but the algorithmic and strategic problems are still poorly understood.

In secondary spectrum markets, a natural regulatory goal is to maximize social welfare, i.e., the
total valuation or benefit of the channel allocation to the secondary users. As constraint for the
allocation, the assigned channels must allow successful transmission in the presence of interference
and noise. Positioning and interference situation is often known or can sometimes even be observed
publicly, but valuations are private information of the users and have to be collected by the algo-
rithm. In this process, secondary users have an obvious incentive to manipulate the algorithm by
misreporting their valuation. In this paper, we therefore strive to design truthful mechanisms that
allocate channels and use payments to motivate users to reveal their values truthfully.

This scenario represents a novel and non-trivial extension of combinatorial auctions. In com-
binatorial auctions we have to allocate k indivisible items (channels) to n bidders (users). Each
bidder v has a valuation bv(S) for any subset S of items. The goal is to maximize social welfare, i.e.,
the sum of (reported) valuations for the assigned item sets. Secondary spectrum auctions extend
this model by allowing to give a single item/channel to multiple users if the set of users is feasible
in terms of interference. Interference can be modeled in various ways, and we follow the approach
of [20] where users are vertices in a publicly known edge-weighted conflict graph. A set of users is
feasible for a channel if they form an independent set in the graph, for a suitably defined notion
of independent set. This approach covers virtually all existing interference models in the litera-
ture [20,33]. For instance, if users are communication requests in the physical model of interference,
we can use edge weights corresponding to the affectance between requests, and feasibility due to
bounded signal-to-interference-plus-noise ratio (SINR) is then equivalent to having an independent
set (as defined below, see also [20]).

Interestingly, conflict graphs resulting from popular interference models (e.g., protocol model [32]
or physical model [20–22]) have a small inductive independence number ρ. The wide applicability
of this non-standard graph parameter for algorithm design is only recently starting to be ex-
plored [1,6,34]. For our secondary spectrum auctions it allows to bypass well-known lower bounds
of Ω(n1−ǫ) for approximating independent set and derive significantly improved guarantees based
on ρ [20]. However, even in ordinary combinatorial auctions with ρ = 1 any efficient algorithm can
only achieve a factor of essentially min{n,

√
k} unless we make additional assumptions on the user

valuations [25,26].
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1.1 Contribution

In this paper, we design randomized auctions for spectrum markets, where secondary users strive
to acquire one or more of a set of available channels. Marking additional assumptions on the user
valuations allows us to bypass the min{n,

√
k} lower bound and to significantly improve previous

results. We examine the two prominent classes of symmetric and submodular valuations. Both
classes occupy a central position in the literature on combination auctions, and they have very
natural and intuitive intepretations in the context of secondary spectrum auctions.

Symmetric valuations are the analog to multi-unit auctions, where each valuation only depends
on the number of channels rather than the exact subset. This is a natural assumption in a secondary
spectrum auction of equally sized channels which all offer very similar conditions. Submodularity is
economically interpreted as diminishing marginal returns. A common representative are coverage
valuations, where users pick elements each covering a certain range, and the value is the total
covered area. This is a natural assumption, e.g, when secondary users are transmitters that strive
to be received by as many mobile stations as possible, where each of the latter operates on a fixed
subset of channels.

For symmetric valuations (see Section 3) we use the intuition of multi-unit auctions and round
a suitably defined linear program yielding only an assignment of numbers of channels. Using these
numbers an independent set for each channel is then created by a greedy approach. This allows to
avoid dependence on k and obtain an approximation factor of O(ρ) for unweighted conflict graphs.
Note that this is asymptotically almost optimal under standard complexity assumptions. Theorem 5
in [20] shows that there is no ρ/2O(

√
log ρ)-approximation unless P = NP. Truthfulness is achieved

via combination of our approach with the celebrated randomized meta-rounding framework by Lavi
and Swamy [24]. For edge-weighted conflict graphs, the construction step of independent sets is
significantly more involved. The asymmetry of conflicts inherent in edge-weighted graphs require the
use of additional concurrent contention resolution methods to partition the rounded set of requests
into feasible independent sets. This approach allows to obtain a factor of O(ρ · (log n+log k)). Our
resulting mechanisms are randomized, run in polynomial time, and yield truthfulness in expectation.

For submodular valuations (see Section 4) we focus on matroid-rank-sum valuations, which en-
compass the most frequently studied submodular valuations. We design randomized mechanisms
that fall into the class of maximum-in-distributional range (MIDR) mechanisms. In particular,
our approach is along the lines of the convex rounding technique recently pioneered in [11,12] and
achieves an approximation factor of O(ρ) for unweighted conflict graphs. Again, this is asymptoti-
cally almost optimal under standard complexity assumptions. In contrast to the case of symmetric
valuations, we can fully omit the dependence on k and show factors of O(ρ · log n) even for weighted
conflict graphs. Our rounding scheme is similar to the Poisson rounding scheme from [12]. The
main difference and complication is again the need to round each channel to an independent set
of users. To achieve this, we round independently for each channel and build the required support
of independent sets using a randomized meta-rounding approach. Probably the most technical
contribution is showing that this rounding scheme preserves the favorable conditioning properties
that allow to apply convex optimization techniques to compute the underlying distribution with
sufficient precision in expected polynomial time, even for weighted conflict graphs. Our resulting
mechanisms are again randomized and provide truthfulness in expectation.

Finally, we also briefly discuss designing deterministic truthful mechanisms (see Section 5). We
present a promising initial result, a monotone greedy O(ρ · log n)-algorithm for a single channel
in unweighted conflict graphs. However, this area remains mostly as an interesting and important
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avenue for future work.

1.2 Related Work

Our paper is connected to recent approaches for designing truthful mechanisms in secondary spec-
trum markets without [35, 36] and with non-trivial worst-case approximation guarantees, e.g., for
social welfare and fairness [16] or revenue [15]. However, all these works are restricted to a single
channel and unweighted conflict graphs. To this date the only general (analytical) treatment of
approximation algorithms and truthful mechanisms for multi-channel secondary spectrum auctions
is [20] where truthful-in-expectation mechanisms for general user valuations are designed using the
inductive independence number in edge-weighted conflict graphs. For unweighted conflict graphs
the approximation guarantee is O(ρ ·

√
k), for edge-weighted conflict graphs O(ρ ·

√
k · log n). The

former result is asymptotically almost optimal in ρ if k = 1 [29] and in k if ρ = 1. The latter lower
bound is a well-known result in combinatorial auctions [25,26].

In ordinary combinatorial auctions, these strong lower bounds initiated the study of relevant
subclasses of valuations, for an overview see, e.g., [3]. Symmetric valuations essentially pose a
knapsack problem of assigning numbers of items to bidders, and a deterministic truthful greedy 2-
approximation [27] was the first benchmark solution. Since then there has been significant progress
including, e.g., approximation schemes for single-minded bidders [4], k-minded bidders [10], or
monotone valuations [8, 30]. In contrast to these works, we must additionally decompose assigned
numbers of channels into an independent set for each single channel. Here we rely on rounding
linear programs to ensure that such a decomposition exists and can be found in polynomial time.

For submodular valuations, social welfare maximization without truthfulness is essentially
solved. Optimal (1 − 1/e)-approximation algorithms exist even for value oracle access [31], where
each valuation bv is an oracle that we can query to obtain bv(S) for a single set S in each op-
eration. This factor cannot be improved assuming either polynomial communication [26] in the
value oracle model or polynomial-time complexity in general [23]. For the strategic setting and

general submodular valuations, the best factors are O
(

logm
log logm

)

for truthfulness in expectation [9],

and O(logm log logm) for universal truthfulness [7]. Dughmi et al [12] recently proposed a convex
rounding technique to build truthful-in-expectation mechanisms. Their approach yields an opti-
mal (1 − 1/e)-approximation for the class of matroid-rank-sum valuations. It follows the idea of
maximal-in-distributional range (MIDR) mechanisms by defining a range of distributions indepen-
dent of the valuations and a rounding procedure. Both are designed in a way that finding the
optimal distribution over the range for the reported valuations becomes a convex program with
favorable conditioning properties. Hence, the optimal distribution can be found using suitable
convex optimization methods in expected polynomial time. Truthfulness follows using the Vickrey-
Clarke-Groves (VCG) payment scheme. Very recently, Dughmi and Vondrak showed that a similar
result cannot be obtained for general submodular valutions in the oracle model [13].

Designing (non-truthful) algorithms for independent set problems in conflict graphs has received
significant attention recently, especially for graphs based on the physical model of interference with
SINR constraints. If each request has a value of 1 for being in the independent set, asymptotically
optimal performance bounds for specific transmission power assignments were obtained when re-
quests are located in various classes of metric spaces [14,17,19]. For the problem where powers can
be arbitrarily chosen, there is a constant-factor approximation algorithm [21].

The inductive independence number is a non-standard graph parameter that is only recently
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starting to receive increased attention. Up to our knowledge the parameter has first been used
in [1], and since then has been rediscovered independently a number of times (see, e.g., [32]). Ye
and Borodin [34] recently conducted the first study addressing general issues that arise when using
the measure for solving algorithmic problems in unweighted graphs. The eminent usefulness of the
parameter for analyzing interference models and spectrum markets was highlighted in [20].

2 Preliminaries

2.1 Channel Allocation in Spectrum Markets

In secondary spectrum markets there is a set [k] of k available channels and a set V of n users or
bidders. Each user v ∈ V has a valuation or benefit bv : 2[k] → R

+. A valuation function bv is called
symmetric if bv(T ) = bv(|T |) for all T ⊆ [k]. It is submodular if bv(T∪T ′)+bv(T∩T ′) ≤ bv(T )+bv(T

′)
for all T ⊆ T ′. For submodular valuations we also assume they are monotone with bv(T ) ≤ bv(T

′)
for T ⊆ T ′. A valuation bv is a matroid rank sum (MRS) function if there exists a family of matroid
rank functions u1, . . . , uκ : 2[k] → N, and associated non-negative weights w1, . . . , wκ ∈ R

+, such
that bv(T ) =

∑κ
ℓ=1wℓuℓ(T ) for all T ⊆ [k].

To model interference we represent users as vertices in a complete edge-weighted and directed
conflict graph G = (V,E,w). The weight w(u, v) of edge (u, v) represents the interference that user
u creates for user v if both are assigned to the same channel. Interference between users is similar
on each channel. A set of users U ⊆ V is feasible or an independent set if

∑

u∈U w(u, v) < 1 for all
v ∈ U . In unweighted conflict graphs all weights w(u, v) ∈ {0, 1} and our definition of independent
set is the same as in the classical sense. For many standard interference models, we can define
weighted conflict graphs such that independent sets are exactly the sets for which we can have
successful simultaneous transmission in the interference model. For instance, the protocol model
results in unweighted conflict graphs, or the physical model of interference yields weighted conflict
graphs where independent sets are feasible with respect to the SINR; for details see [20].

The algorithmic challenge in secondary spectrum markets is the channel allocation problem. In
an optimal solution S, each user v receives a subset of channels Sv ⊆ [k] such that each channel
is given to an independent set in the conflict graph and the social welfare b(S) =

∑

v∈V bv(Sv) is
maximized. In contrast to ordinary combinatorial auctions, an independent set can include more
than one user. Our mechanisms cope with this issue using a structural parameter called inductive
independence number. Let us define symmetric weights by w̄(u, v) = w(u, v) + w(v, u). Then the
inductive independence number is the smallest number ρ such that there is an ordering π of the
vertices satisfying the following condition: For all v ∈ V and all independent sets M ⊆ V , we let
Mv = M ∩ {u ∈ V | π(u) < π(v)} and have that

∑

u∈Mv
w̄(u, v) ≤ ρ. Hence, ρ is the smallest

number such that by picking the best ordering we can bound for any v ∈ V the incoming weight
from any independent set among previous vertices to at most ρ. We assume that ρ and the ordering
π of V are given. For many interference models and their resulting conflict graphs we can find in
polynomial time small upper bounds on ρ and a corresponding ordering witnessing ρ. For example,
in the protocol model ρ = O(1) [32] and in the physical model ρ = O(log n) [22] or ρ = O(1) [21],
depending on power control assumptions. In both cases, π orders users with decreasing or increasing
distance between sender and receiver.
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2.2 Mechanism Design Basics

To avoid that user v will strategically misreport his valuation, we charge payments pv and make
truthfulness a dominant strategy. For each user v ∈ V we ensure that his quasi-linear utility
satisfies bv(Sv) − pv(bv, b−v) ≥ bv(S

′(v)) − pv(b
′
v, b−v), where S and S′ are our solutions to the

channel allocation problem when v reports the true bv and a some possibly other b′v, respectively.
This can be achieved using classic Vickrey-Clarke-Groves (VCG) payments if the allocation problem
is always solved optimally.

In contrast, efficient truthful mechanisms cannot compute optimal solutions to intractable prob-
lems. For some problems, deterministic mechanisms can achieve only trivial approximation guar-
antees [28]. The situation is much better if we resort to randomized mechanisms, which define a
distribution D over the set of solutions S for the channel allocation problem and output an allo-
cation S ∈ S according to D. In this case, we aim for truthfulness in expectation, i.e., for every
v ∈ V

ES∼D [bv(Sv)− pv(bv, b−v)] ≥ ES∼D′

[

bv(Sv)− pv(b
′
v , b−v)

]

,

where D′ is the distribution if v reports b′v instead of bv. A general technique to design such mech-
anisms is maximal-in-distributional range (MIDR). Here we fix a set (the range) of distributions D
over S, where D is independent of the valuations bv. The algorithm receives all reported valuations
bv and optimizes exactly over D to find D ∈ D with maximum expected social welfare. Due to
exact optimization over D, the mechanism can use VCG payments to guarantee truthfulness in ex-
pectation. The obvious problem in MIDR is designing the distributional range D (1) large enough
to contain a good approximation for every possible vector of user valuations, and (2) small enough
to allow for exact optimization over D in polynomial time. Our mechanisms in Sections 3 and 4
will all be MIDR mechanisms. In Section 5 we also briefly treat designing greedy mechanisms that
are truthful and deterministic.

3 Symmetric Valuations

In this section we consider spectrum auctions with symmetric valuations in which bv(T ) = bv(|T |)
for all v ∈ V . We concentrate on designing approximation algorithms that can be turned into
truthful MIDR mechanisms following the framework by Lavi and Swamy [24].

Our algorithms round the following LP relaxation based on k · |V | variables xv,i ∈ {0, 1} indi-
cating if v gets exactly i channels or not. The relaxation reads

Max.
∑

v∈V

k
∑

i=1

bv(i) · xv,i

s.t.
∑

u∈V
π(u)<π(v)

k
∑

i=1

i · w̄(u, v) · xu,i ≤ ρ · k for all v ∈ V

k
∑

i=1

xv,i ≤ 1 for all v ∈ V

xv,i ≥ 0 for all v ∈ V , i ∈ [k].

(1)

Note that this relaxation does not describe the problem exactly, as an integral solution to the
relaxation might not be feasible for the channel allocation problem. In particular, the relaxation
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Algorithm 1: LP-Rounding for Symmetric Valuations and Unweighted Conflict Graphs

1 Decompose an optimal solution x to LP (1) into two solutions x(1) and x(2) as follows:

Set x
(1)
v,i = xv,i if i ≤ k/2 and x

(1)
v,i = 0 otherwise; set x(2) = x− x(1).

2 for l ∈ {1, 2} do
3 for v ∈ V in increasing order of π values do

4 with probability
x
(l)
v,i

4ρ set d
(l)
v := i

5 Let F
(l)
v := {i ∈ [k] | there is no u ∈ Γπ(v) with i ∈ S

(l)
v }

6 S
(l)
v =

{

arbitrary M ⊆ F
(l)
v with |M | = d

(l)
v if |F (l)

v | ≥ d
(l)
v ,

∅ otherwise

7 Return the better one of the solutions S(1) and S(2)

does not specify which user receives which channel, but this information is critical for interference
and feasibility of the requests.

We solve the LP relaxation optimally. The computed fractional solution is then decomposed
into two solutions x(1) and x(2), that are rounded separately. Based on such a solution, for each user

v a preliminary number of channels d
(l)
v is determined at random. The probability is proportional

to the fractional variables x
(l)
v,i. Having assigned these numbers of channels, we still have to derive

a feasible allocation. In this allocation, each user v either gets d
(l)
v channels or none.

3.1 Unweighted Conflict Graphs

In the case of unweighted conflict graphs, we use a simple greedy approach to distribute available
channels to users, see Algorithm 1. The expected social welfare of the output will decrease only
by a factor of O(ρ) under the fractional optimum, which is asymptotically optimal.

Theorem 1. Algorithm 1 returns a feasible allocation of social welfare at least b∗/16ρ in expectation.

Proof. Solutions S(1), S(2) separate the problem into two subproblems, in which the maximum or
minimum non-zero number of channels allocated to a single player is k/2, respectively. We analyze
both of these cases separately in the key proposition.

Proposition 2. For l ∈ {1, 2} and the expected social welfare of S(l) we have

E
[

b(S(l))
]

≥ 1

8ρ
·
∑

v∈V

k
∑

i=1

bv(i) · x(l)v,i .

Proof. For all v ∈ V , i ∈ [k], l ∈ {0, 1} let X
(l)
v,i be a 0/1 random variable indicating if in the

rounding stage d
(l)
v is set to i. We know that Pr

[

X
(l)
v,i = 1

]

= x(l)

4ρ . Let Y
(l)
v,i be a 0/1 random variable

indicating if |S(l)
v | = i. To show the proposition it remains to bound Pr

[

Y
(l)
v,i = 0 | X(l)

v,i = 1
]

; that

is, the probability that a user v does not receive i channels although d
(l)
v was set to i.

6



Case l = 1: The event that Y
(1)
v,i = 0 but X

(1)
v,i = 1 can only occur if |F (1)

v | ≤ i. So in particular

|F (1)
v | ≤ k/2. We can express |F (1)

v | in terms of Y
(l)
v,i as

k − |F (1)
v | ≤

∑

u∈Γπ(v)

k
∑

i=1

i · Y (1)
u,i ≤

∑

u∈Γπ(v)

k
∑

i=1

i ·X(1)
u,i .

By linearity of expectation and the definition of ρ this yields

E
[

k − |F (1)
v |
]

≤
∑

u∈Γπ(v)

k
∑

i=1

i ·
x
(1)
u,i

4ρ
≤ k

4
.

So, we get by Markov inequality

Pr

[

|F (1)
v | ≤ k

2

]

= Pr

[

k − |F (1)
v | ≥ k

2

]

≤ 1

2
.

In total this yields

Pr
[

Y
(1)
v,i = 1

]

= Pr
[

X
(1)
v,i = 1

]

·Pr
[

|F (1)
v | ≥ i

]

≥ Pr
[

X
(1)
v,i = 1

]

·Pr

[

|F (1)
v | ≥ k

2

]

≥
x
(1)
v,i

8ρ
,

which proves the proposition in Case 1.

Case l = 2: The event that Y
(2)
v,i = 0 but X

(2)
v,i = 1 can only happen if there is some u ∈ Γπ(v)

with S
(2)
u 6= ∅, in which case

∑

u∈Γπ(v)

k
∑

i=k/2+1

Y
(2)
u,i ≥ 1. Furthermore, we have

∑

u∈Γπ(v)

k
∑

i=k/2+1

Y
(2)
u,i ≤

∑

u∈Γπ(v)

k
∑

i=k/2+1

X
(2)
u,i ≤ 2

k

∑

u∈Γπ(v)

k
∑

i=k/2+1

i ·X(2)
u,i

Using linearity of expectation and the definition of ρ this yields

E





∑

u∈Γπ(v)

k
∑

i=k/2+1

Y
(2)
u,i



 ≤ 2

k

∑

u∈Γπ(v)

k
∑

i=k/2+1

i ·
x
(2)
u,i

4ρ
≤ 2

k
· k
4
≤ 1

2
,

Markov inequality then implies that the probability that all of the u ∈ Γπ(v) have S
(2)
u = ∅

is at least 1/2. This means

Pr
[

Y
(2)
v,i = 1

]

= Pr
[

X
(2)
v,i = 1

]

·Pr
[

|F (1)
v | ≥ i

]

≥ Pr
[

X
(2)
v,i = 1

]

·Pr
[

∀u ∈ Γπ(v), S
(2) = ∅

]

≥
x
(1)
v,i

8ρ
,

which proves the Proposition for Case 2.

Finally, to prove the theorem we note that by splitting the solution into two parts and returning
the better output, we lose only a factor of 2 in the approximation guarantee. For the expected

social welfare it holds maxl∈{1,2}
∑

v∈V
∑k

i=1 bv(i) · x
(l)
v,i ≥ b∗/2.
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3.2 Edge-Weighted Conflict Graphs

Allocating the channels is much more involved in the case of edge-weighted conflict graphs due
to the asymmetry of interference constraints. In the unweighted case the simple greedy allocation
only has to make sure there are no edges to vertices on the same channel. This is unsuitable now
since adding a user might violate constraints at previously added users – even though constraints
are satisfied for the currently added user.

Having obtained the d
(l)
v values in the described way, we first consider only the incoming weight

from users of smaller index like in the unweighted case. If the incoming weight from previous users is

too high, i.e.,
∑

u∈V,π(u)<π(v) d
(l)
u ·w̄(u, v) ≥ k/32, we remove all channels from the user and set d

(l)
v :=

0. However, unlike in the unweighted case, this does not yet guarantee the existence of an allocation.
The crucial difference occurs in the last step, where the allocation is derived. This step is performed
differently for the two solutions of the decomposition. For the case in which each user was assigned
at most k/8 channels, the allocation is made in a randomized fashion in Algorithm Allocate(1).
For the other case, the allocation is made deterministically in Algorithm Allocate(2). Unlike in
the unweighted case, in both cases the resulting allocation will not include all users at a time but
only allocate channels to a subset of the originally chosen users.

Algorithm 2: LP-Rounding for Symmetric Valuations and Weighted Conflict Graphs

1 Decompose an optimal solution x to LP (1) into two solutions x(1) and x(2) as follows:

Set x
(1)
v,i = xv,i if i ≤ k/8 and x

(1)
v,i = 0 otherwise; set x(2) = x− x(1).

2 for l ∈ {1, 2} do
3 for v ∈ V in increasing order of π values do

4 With probability
x
(l)
v,i

64ρ set d
(l)
v := i

5 Set d
(l)
v := 0 if

∑

u∈V,π(u)<π(v) d
(l)
u · w̄(u, v) ≥ k/32

6 Run Algorithm Allocate(l) on d(l), let S(l) be the result

7 Return the better one of the solutions S(1) and S(2)

Theorem 3. Algorithm 2 returns a feasible allocation of social welfare at least Ω(b∗/ρ·(logn+log k))
in expectation.

In order to show the bound, we will show that both LP solutions are rounded to feasible
allocations that are in expectation at most a O(ρ · (log n+ log k)) factor worse than the respective
LP solution.

As a first step, we analyze the input given in terms of the number of channels for each user.
In particular, we show that an allocation satisfying all of these demands simultaneously would in
expectation be at most a 1/128ρ factor worse than the fractional solution.

Proposition 4. For l ∈ {1, 2} and the expected social welfare of d(l) we have

E

[

∑

v∈V
bv(d

(l)
v )

]

≥ 1

128ρ
·
∑

v∈V

k
∑

i=1

bv(i) · x(l)v,i .

8



Proof. For all v ∈ V , i ∈ [k], l ∈ {0, 1} let X
(l)
v,i be a 0/1 random variable indicating if in the

rounding stage d
(l)
v is set to i. We know that Pr

[

X
(l)
v,i = 1

]

= x(l)

4ρ . Let Y
(l)
v,i be the respective 0/1

random variable at the time when the allocation algorithm is started.

We have to bound Pr
[

Y
(l)
v,i = 0 | X(l)

v,i = 1
]

. This is the probability that the weight bound in

line 5 is exceeded. By Markov inequality, we get

Pr
[

Y
(l)
v,i = 0 | X(l)

v,i = 1
]

≤ 32

k
· E





∑

u∈V,π(u)<π(v)

d(l)u w̄(u, v)X
(l)
v,i



 .

Applying linearity of expectation and the fact we have an LP solution this is

32

k
·

∑

u∈V
π(u)<π(v)

d(l)u · w̄(u, v) ·
x
(l)
v,i

64ρ
≤ 1

2
.

In total, we obtain

E

[

∑

v∈V
bv(d

(l)
v )

]

=
∑

v∈V

k
∑

i=1

bv(i) ·Pr
[

Y
(l)
v,i = 1

]

≥ 1

128ρ

∑

v∈V

k
∑

i=1

bv(i) · x(l)v,i .

In the two following subsections, we consider the two allocation algorithms and show that in

either case a feasible allocation of social welfare at least Ω(
∑

v∈V bv(d
(l)
v )/(log n+log k)) is computed.

3.2.1 Allocate(1): Allocation algorithm for “small” sets

From a preliminary selection of numbers of channels Algorithm Allocate(1) generates a feasible
allocation in which dv ≤ k/8 for each v ∈ V and

∑

u∈V,π(u)<π(v) duw̄(u, v) < k/32. The idea is that
a number of allocations are computed having the property that each user is considered in exactly
one of these allocations. Each allocation is computed by first selecting a subset of all users and
then performing k randomized contention resolution steps. We iterate over the k channels, and for
each channel we let each user v independently perform a random experiment. With probability
8dv/k it receives this channel tentatively. If the user received dv channel it keeps the respective
channels in this allocation is dropped from consideration. All other users are allocated in later
rounds. The main argument to show that this yields feasibility and provides the desired bound on
the approximation factor relies on a suitable tracking of the degrees during the contention resolution
process.

Lemma 5. The allocation has social welfare at least Ω(
∑

v∈V bv(dv)/(log n + log k)) with high
probability, i.e., with probability at least 1− (nk)−c for any constant c > 1.

Proof. In order to show this bound, it suffices to prove that

E





∑

v∈Vt+1

dv | Vt



 ≤ 3

4

∑

v∈Vt

dv .
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Algorithm Allocate(1): Channel allocation for users that require at most k/8 channels.

1 Set V0 := V and t := 0;
2 while Vt 6= ∅ do
3 for u ∈ Vt in decreasing order of π values do
4 if

∑

v∈Ht
dv · w̄(u, v) < k/32 then

5 Add u to Ht and for each j ∈ [k] set Xv,j independently to 1 with probability
8dv/k;

6 for v ∈ Ht do
7 For each j ∈ [k] set Yv,j = 1 if

∑

u 6=v w̄(u, v) ·Xu,j < 1;

8 if
∑

j∈[k] Yv,j ≥ dv then

9 set St
v to an arbitrary subset of dv channels j with Yv,j = 1;

10 Let Vt+1 be the set of users who have not been allocated anything and set t := t+ 1;

11 Return the best one of the allocations S1, S2, S3, . . .;

Using Markov inequality this implies that for each constant c > 1 the probability that the set Vt

with t = (c+ 1) log(nk)/ log(4/3) is not empty is at most

Pr

[

∑

v∈Vt

dv ≥ 1

]

≤ E

[

∑

v∈Vt

dv

]

≤
(

3

4

)t

nk = (nk)−c .

Thus with high probability at most O(log(
∑

v∈V dv)) = O(log n+ log k) allocations are computed.
We prove the bound in two steps. First, we show that the sum of demands in the set Ht is at

least half of the total demands in Vt. Afterwards, we observe that for a user in Ht, the probability
to be included is at least 1

2 .

Claim 6.
∑

v∈Ht

dv >
1

2

∑

v∈Vt

dv .

Proof. Each user u ∈ Vt \Ht was excluded from Ht because we have

∑

v∈Ht
π(u)<π(v)

dv · w̄(u, v) ≥
k

32
.

Taking the sum, weighted by the respective du value, we get

∑

u∈Vt\Ht

du ·
∑

v∈Ht
π(u)<π(v)

dv · w̄(u, v) ≥
∑

u∈Vt\Ht

du ·
k

32
.

On the other hand, we have

∑

u∈Vt\Ht

du ·
∑

v∈Ht
π(u)<π(v)

dv · w̄(u, v) =
∑

v∈Ht

dv ·
∑

u∈Vt\Ht

π(u)<π(v)

du · w̄(u, v) <
∑

v∈Ht

dv ·
k

32
.

Assembling the two bounds yields the claim.
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Claim 7. The probability for each user v ∈ Ht to be included in the allocation is at least 1
2 .

Proof. A user v ∈ V is not included in the allocation if there is a set M ⊆ [k] with |M | ≥ k − dv
such that Yv,j = 0 for all j ∈ M .

Let us first consider a single channel j. In order to have Yv,j = 1, two independent events have
to occur: First, we have to have Xv,j = 1 and second

∑

u 6=v w̄(u, v) ·Xu,j < 1. The probability for
the first one is defined in the algorithm, the second one can be bounded by the Markov inequality
to get

Pr [Yv,j = 1] ≥ Pr [Xv,j = 1]·



1−E





∑

u 6=v

w̄(u, v) ·Xu,j







 =
8dv
k

·



1−
∑

u 6=v

w̄(u, v) · 8du
k



 ≥ 4dv
k

.

Now consider a block B of ⌊ k
2dv

⌋ ≥ 3k
8dv

consecutive channels. Since the random experiments
are independent, for such a block B the probability of

∑

j∈B Yv,j = 0 is at most

(

1− 4dv
k

)
3k
8dv

≤ exp

(

−3

2

)

≤ 1

4
.

Since there are k channels in total, we have at least 2dv blocks in total. For each of these blocks,
the probability of v getting no channel in this block is at most 1

4 . This is, the expected number of

blocks B in which
∑

j∈B Yv,j = 0 is at most dv
2 . Using the Markov inequality, the probability that

there are more than dv blocks without a channel for v is less than 1
2 . Thus, with probability at

least 1
2 , v gets at least 1 channel in at least dv blocks. This yields the claim.

Combining these two insights, we get the desired bound which proves the lemma.

3.2.2 Allocate(2): Allocation algorithm for “large” sets

The allocation for the case that dv ≥ k/8 or dv = 0 for all v ∈ V is performed by Algo-
rithm Allocate(2). Here, we iterate starting with t = 1. In each iteration, a subset Ht of
all users is selected by going though the remaining users in decreasing order of π. If for a user
v we have

∑

v∈Ht
dv · w̄(u, v) < k/32, it is added to Ht. However, in this case the allocation is

immediately carried out in a direct way: Each user that is added to Ht is allocated an arbitrary
set of dv channels, e.g. the first ones. This iteration is repeated with the remaining users that did
not get allocated anything until every user v ∈ V has been allocated dv channels in one iteration t.
Finally, the algorithm picks the best of the allocations computed in any single iteration.

Proposition 8. The algorithm computes at most O(log n + log k) allocations and all of them are
feasible.

Proof. Using exactly the same arguments as in Claim 6 above, we observe
∑

v∈Ht

dv >
∑

u∈Vt\Ht

du ,

which shows that at most O(log n+ log k) allocations are computed.
The allocations are feasible since the sum of incoming weights on any channel is bounded by

∑

u∈Ht

w̄(u, v) ≤ 8

k

∑

u∈Ht

du · w̄(u, v) <
8

k
· k

32
=

1

4
.
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Algorithm Allocate(2): Channel allocation for users that require at least k/8 channels.

1 Set V0 := V and t := 0;
2 while Vt 6= ∅ do
3 for u ∈ Vt in decreasing order of π values do
4 if

∑

v∈Ht
dv · w̄(u, v) < k/32 then

5 Add u to Ht and set St
v = {1, . . . , dv} ;

6 Let Vt+1 be the set of users who have not been allocated anything and set t := t+ 1;

7 Return the best one of the allocations S1, S2, S3, . . .;

3.3 Truthfulness

To turn the approximation algorithms from the previous section into truthful mechanisms, we
follow the idea by Lavi and Swamy [24] using the randomized meta-rounding technique [5] to
obtain a MIDR mechanism. Our approach is similar to the one for general secondary spectrum
auctions [20]. Linear program (1) are standard packing LPs that allow to set up a separation LP to
decompose an optimal fractional solution scaled down by some approximation factor larger than the
integrality gap. Via this new LP we derive a decomposition into integral solutions that represent
feasible solutions for the channel allocation problem. An optimal solution to the decomposition
LP is a probability distribution, by which we can randomly pick a feasible solution in the resulting
mechanism. As usual, charging scaled VCG payments results in a mechanism that is truthful in
expectation.

The decomposition LP uses exponentially many variables (probabilities for every possible fea-
sible solution) but only polynomially many constraints (decomposition of each non-zero variable in
the fractional optimum of LP (1)). Thus, the dual of the LP can be solved using the ellipsoid method
with a suitable separation oracle. The latter can be constructed from our algorithms presented in
the last section, as they verify the correct approximation factor used for scaling in the decomposi-
tion LP. At this point it is important to remark that the algorithms were defined to be randomized.
Therefore, the running time of the ellipsoid method would only be polynomial in expectation.
However, all of our algorithms can be derandomized using standard techniques. The randomiza-
tion in Algorithms 1 and 2 only depends on pairwise independence. Algorithm Allocate(1) can be
made deterministic by using a combination of pairwise-independence and conditional-expectation
techniques. Under these conditions, the desired decomposition can be found in polynomial time.

A main drawback of this method is that the dual variables of the decomposition must be
interpreted as valuations of a new channel allocation problem. Here assumptions like symmetry
or submodularity cannot be made, and algorithms for such special classes of valuations might not
be applicable. However, in our case the symmetry assumption is encoded directly into LPs (1) by
setting up variables for each number and each not set of channels. This property carries over to
the decomposition dual and our algorithms can be applied.

4 Matroid-Rank-Sum Valuations

In this section, we treat the class of so-called matroid rank sum (MRS) valuations, in which bv
for each bidder is a weighted sum of matroid rank functions. This covers all frequently considered
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submodular valuation functions such as, e.g., coverage functions, matroid weighted-rank functions,
and any convex combinations of these.

For ordinary combinatorial auctions, Dughmi et al. [12] present an MIDR mechanism. The
range is given by all solutions to a linear relaxation of the item-allocation problem. Rounding is
done via a non-standard randomized rounding scheme called Poisson rounding in [12]. Finding the
optimal distribution implies finding the fractional allocation that will achieve best social welfare
in expectation in the rounding stage. The Poisson scheme is a convex rounding scheme, for which
finding the best fractional allocation becomes a convex program with objective function being
expected social welfare.

Unfortunately, the Poisson rounding scheme is tailored to fit to ordinary combinatorial auctions.
The rounding is performed item-wise – when xi,j is the fractional allocation of item j to bidder
i, then j is fully given to i with probability 1 − e−xv,j . With the remaining probability no bidder
receives j. Unlike items, the channels in our case can be given to multiple users, and it takes sig-
nificantly more effort to build a convex rounding scheme. In the following we present our approach
for this case. We follow the conventions in [12], in particular, with respect to representation of
MRS valuations using lottery-value oracles. In particular, we will show the following theorem.

Theorem 9. There is a truthful mechanism for MRS valuations that runs in expected polynomial
time and returns a feasible allocation representing a O(ρ)-approximation for unweighted and a
O(ρ · log n)-approximation for edge-weighted conflict graphs.

4.1 Defining the Range

We define the distributional range D in this section and discuss why it is sufficiently large to get
good approximations. Our starting point are all fractional solutions x fulfilling the following linear
constraints:

∑

u∈V
π(u)<π(v)

w̄(u, v) · xu,j ≤ ρ for all v ∈ V , j ∈ [k] (2a)

0 ≤ xv,j ≤ 1 for all v ∈ V , j ∈ [k] (2b)

Algorithm 3: Rounding scheme for a given solution x.

1 for j ∈ [k] do
2 Draw pj uniformly for [0, 1];
3 Decompose (xv,j)v∈V such that x = 1

α

∑

l λlgl and
∑

l λl = 1;
4 Let l′ be the minimal l for which

∑

l<l′ λl < pj;
5 Allocate gl′ tentitavely;

6 Remove each v ∈ V from solution with a further probability of pv,j =
1−e−xv,j/(2α)

xv,j
α

;

For each channel we pick a feasible independent set separately in our rounding scheme Algo-
rithm 3. For each channel j the corresponding fractional solution x·,j is decomposed into polyno-
mially many independent sets using parameter α discussed below. The algorithm selects one of
these at random. The decomposition can be computed in polynomial time using randomized meta-
rounding [5, 24] in combination with an appropriate rounding scheme. Afterwards, each user v is
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removed from the solution by an independent random experiment rendering the total probability
for v to receive channel j to be exactly 1 − e−xv,j/2α. Note that pv,j must be a valid probability
with pv,j ∈ [0, 1]. Here we observe that since numerator and denominator are both positive, pv,j
also is. pv,j ≤ 1 because 1 − exv,j/(2α) ≤ xv,j

2α , for any α ≥ 1. Consequently, the range D is given
by all probability distributions resulting from our rounding scheme applied to fractional solutions
of (2a) and (2b).

We have to specify the parameter α, which ensures that the decomposition of x·,j exists. We in-
terpret x·,j as solution to a linear program to maximize

∑

v∈V av ·xv,j subject to the constraints (2a)
and (2b) for channel j. This is essentially a linear relaxation for a single channel allocation prob-
lem with some valuations av. We denote by α the integrality gap of this program with respect to
feasible independent sets (Note that the constraints (2a) allow integer solutions x that represent
infeasible independent sets). For this program we can verify an integrality gap of α = O(ρ·log n) for
feasible independent sets using, e.g., the LP-rounding algorithm for edge-weighted conflict graphs
from [20]. For unweighted conflict graphs, the simpler LP-rounding algorithm from [20] yields
α = O(ρ). Here, the simple greedy algorithm of [1] (for details see Section 5 below) can even be
shown to yield α = ρ.

For application of the randomized metarounding framework, we need an algorithm verifying
an integrality gap α. This allows to construct a decomposition LP and its dual, which can be
solved in polynomial time using the ellipsoid method, where the algorithm acts as separation oracle
(for details on this method see [5, 24]). Note that α can merely be seen as a parameter that
serves to scale a fractional solution x into a region where a decomposition into (feasible) integral
solutions exists – independent of any objective function. The reason we interpret it as integrality
gap of an optimization problem is that the dual of the decomposition LP allows an approximation
algorithm verifying the gap to be used to separate the dual and derive the required decomposition
in polynomial time. The reason we do not simply radically overestimate α is that it does play a
central role when we discuss the approximation factor of our rounding scheme.

For a given distribution, the expected social welfare of the returned allocation is exactly

∑

v∈V

∑

T⊆[k]

bv(T )
∏

j∈T
(1− e−xv,j/(2α))

∏

j 6∈T
e−xv,j/(2α) . (3)

For the case of MRS functions, this function is concave, as we will observe in more detail below.
Therefore, the best distribution in the range can be arbitrarily approximated by solving a convex
program, maximizing the concave objective (3) subject to linear constraints (2a) and (2b).

As previously mentioned, the size of the range affects approximation factor and tractability.
Concerning the approximation factor, we can show that the social welfare of the optimal allocation
is at most an O(α)-factor above the expected social welfare of the best distribution in the range.

Lemma 10. The optimal distribution within the range is O(α)-approximate in expectation when
valuations are submodular. Hence, in expectation, the solution of our rouding scheme is a O(ρ)-
approximation for unweighted and a O(ρ · log n)-approximation for edge-weighted conflict graphs.

Proof. The optimal allocation S∗ corresponds to a feasible solution x∗ of the convex program.
However, x∗ is not always rounded to S∗ but also to worse allocations. We bound the expected
welfare of the received allocation in terms of that of S∗. This then yields the upper bound on
the approximation ratio. The probability of each user v of being allocated channel j in rounding
is exactly 1 − e−x∗

v,j/(2α). We denote b(S∗) =
∑

v∈V bv(S
∗(v)) and use Proposition C.4 in [12].
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This yields an expected social welfare of the rounded allocation of at least (1− e−1/(2α)) · b(S∗) ≥
(

1− e−1
)

· (2α)−1 · b(S∗) due to concavity. Thus, the result of rounding the best distribution is at
most a factor of O(α) worse.

4.2 Sampling the MIDR Distribution

The expected social welfare when rounding a fractional solution x is given by (3). Fortunately,
this function is concave in terms of x meaning an optimal fractional solution can be approximated
arbitrarily well in polynomial time. However, to make the mechanism truthful in expectation, we
are, in principle, required to solve the given convex program exactly.

Since this is not possible, Algorithm 4 devises a way to simulate an exact solution in expected
polynomial time. It returns an allocation in which each bidder has exactly the same probability as
in Algorithm 3 to get a channel. It requires us to compute δ-estimates – a solution x of the convex
program such that x∗v,j − δ ≤ xv,j ≤ x∗v,j + δ for all v, j. To simplify the presentation, we assume
that this can be computed in time poly(n, k, log(1/δ)). For details on this issue, see Section 4.3.

Algorithm 4: Simulating Algorithm 3 with estimates of the optimal convex-program solution.

1 for j ∈ [k] do
2 Draw pj uniformly from [0, 1) and let r be the minimal t for which pj ≥ 1− 2−t+1 ;
3 Set x0 = 0;
4 for t = 1, . . . , r do
5 Compute δt-estimate xt, where δt = 1/(n · 2t+1);
6 Let ytv = max{yt−1

v , xtv,j − δt};
7 Decompose yr − yr−1 such that yr = 1

2α

∑

l λ
r,lgr,l with

∑

l λ
r,l = 2−r;

8 Let l′ be the minimum l such that pj > 1− 2−r−1 +
∑

l<l′ λl ;

9 Tentatively allocate gr,l
′
;

10 Remove each v ∈ V from solution with further probability pv,j =
2α

(

e−yt−1
v /(2α)−e−ytv/(2α)

)

ytv−yt−1
v

Proposition 11. The desired decomposition (gr,l, λr,l)l exists and can be computed in polynomial
time.

Proof. We distinguish between the two cases r = 1 and r ≥ 2.
In the case of r = 1, yr fulfills equations (2a) and (2b). Here we can apply the decomposition

as described above. Using the algorithms from [20] verifying integrality gaps of α = O(ρ) or
α = O(ρ·log n), we can solve the decomposition LP of the meta-rounding framework and decompose
yb = 1

α λ̃
r,lgr,l with

∑

l λ̃
r,l = 1 where gr,l are integral solutions corresponding to independent

sets. The running time is polynomial in n and k. Setting λr,l = 1
2 λ̃

r,l for all l yields the desired
composition.

For the case r ≥ 2, we use the fact that xr−1 is already a 1/(n2r)-estimate. This yields that
0 ≤ yrv − yr−1

v ≤ 1/(n2r−1). Therefore, it is possible to decompose yr − yr−1 to the trivial single-
vertex independent sets. Formally, we consider an arbitrary ordering of the users v1, . . . , vn, e.g. the
one given by π. We set gr,lvl = 1 and gr,lv = 0 if vl 6= v. The weights are set to λr,l = 1

2α(y
r
vl
− yr−1

vl
).

This yields that
∑n

l=1 λ
r,l ≤∑n

l=1
1
2α · 1

n2r−1 ≤ 2−r. The remaining weight is assigned to the all-zero
fractional solution.
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Proposition 12. For the probability of being removed we have pv,j ∈ [0, 1].

Proof. Since yt−1
v ≤ ytv for all v ∈ V , the probability is at least 0. Furthermore, we have

2α
(

e−yt−1
v /(2α) − e−ytv/(2α)

)

ytv − yt−1
v

=
2αe−yt−1

v /(2α)
(

1− e−(ytv−yt−1
v )/(2α)

)

ytv − yt−1
v

≤
2α
(

1− e−(ytv−yt−1
v )/(2α)

)

ytv − yt−1
v

≤ 1 .

Proposition 13. For each user v ∈ V and each channel j ∈ [k] the probability to receive j is

exactly 1− e−x∗
v,j/(2α).

Proof. Let r be defined as in the algorithm. Let us first consider the conditional probability of
getting the channel given that r = t for some t.

Pr [v gets j | r = t] = Pr
[

gr,l
′

v = 1 | r = t
]

·
2α
(

e−yt−1
v /(2α) − e−ytv/(2α)

)

ytv − yt−1
v

=
2t
(

yt−1
v − ytv

)

2α
·
2α
(

e−yt−1
v /(2α) − e−ytv/(2α)

)

ytv − yt−1
v

= 2t
(

e−yt−1
v /(2α) − e−ytv/(2α)

)

We get

Pr [v gets j] =

∞
∑

t=1

Pr [r = t]·Pr [v gets j | r = t] =

∞
∑

t=1

2−t·2t
(

e−yt−1
v /(2α) − e−ytv/(2α)

)

= 1−e−x∗
v,j ,

where the last step is due to the fact that ytv converges to x∗v,j as t → ∞.

Proposition 14. Assuming that the δ-estimates can be computed in time poly(n, k, log(1/δ)), the
expected running time of Algorithm 4 is polynomial in n and k.

Proof. Let us first consider the running time for the case that r = t for some fixed t. If this case
the δ-estimates in lines 5–7 can be computed in time

∑t
i=1 poly(n, k, log(2

i+1n)) = poly(n, k, t).
The remaining computations take time poly(n, k). As a consequence, the expected running time
of the algorithm is

∑∞
t=1 Pr [r = t] · poly(n, k, t) = ∑∞

t=1 2
−t · poly(n, k, t) = poly(n, k), where the

last step is due to a geometric series.

4.3 Computing δ-Estimates

Algorithm 4 only runs in expected polynomial time when assuming that a δ-estimate of the convex
program can be computed in time poly(n, k, log(1/δ)). The reasoning why we assume this is
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essentially the same as in [12]. However, for the sake of completeness, we present the most important
steps in this section.

First of all, we have to observe that the objective function is concave when all player valuations
are MRS.

Lemma 15. Our rounding scheme is convex when player valuations are MRS.

Proof. Due to E
[
∑

v∈V bv(Sv)
]

=
∑

v∈V E [bv(Sv)], the result follows when E [bv(Sv)] is concave for

all v. By construction the probability for each user to be allocated channel j is exactly 1−e−xv,j/(2α).
Therefore each E [bv(Sv)] can be written as

∑

T⊆[k]

bv(T )
∏

j∈T
(1− e−xv,j/(2α))

∏

j 6∈T
e−xv,j/(2α) .

We only have to prove that this function is concave over (0, 1)k .
Dughmi et al. [12] show that the function G : Rk → R with

G(x1, . . . , xk) =
∑

T⊆[k]

b(T )
∏

j∈T
(1− e−xj)

∏

j 6∈T
e−xj

is concave over x ∈ (0, 1)k when b is MRS.
For E [bv(Sv)] = G(x/(2α)) this also yields concavity since for any ξ ∈ [0, 1]

G

(

ξx+ (1− ξ)y

(2α)

)

= G

(

ξ
x

(2α)
+ (1− ξ)

y

(2α)

)

≥ ξG

(

x

(2α)

)

+ (1− ξ)G

(

y

(2α)

)

.

This immediately yields the following claim when taking into consideration that the constraints
are linear.

Claim 16. There is an algorithm in the lottery-value oracle model that, given an instance of spec-
trum auctions with edge-weighted conflict graphs on n bidders and k channels and an approximiation
parameter ǫ > 0, runs in poly(n, k, log(1/ǫ)) time and returns a (1− ǫ)-approximate solution to the
convex program.

This yields the following result for δ-estimates. Suppose we are in the well-conditioned case,
i.e., on any line in the feasible set the second derivative of the objective function is at least λ =
∑

v∈V bv([k])

2poly(n,k) . Then a δ-estimate can be computed by computing an (1−ǫ)-approximate solution of the

convex program with ǫ = δ2

2
∑

v∈V bv([k])
. This solution can be computed in time poly(n, k, log(1/δ)).

4.3.1 Guaranteeing Good Conditioning

In general, the bound on the second derivative does not necessarily have to hold. Therefore, the
algorithm is modified as given in Algorithm 5.

After having run Algorithm 4, the resulting allocation is discarded with probability µ = 2−nk.
Instead a trivial allocation is returned, in which either only a single user gets allocated all channels
or even no channels are allocated at all, as determined by another random experiment. However,
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Algorithm 5: Modified MIDR Algorithm.

1 Run Algorithm 4, let S be the resulting allocation;
2 Let β be 1

nk

∑

v∈V |S(v)|;
3 Draw q1 uniformly at random from [0, 1];
4 if q1 ≤ µ then
5 Set S(v) := ∅ for all v ∈ V ;
6 Draw q2 uniformly at random from [0, 1];
7 if q2 ≤ β then
8 Choose some user v∗ ∈ V uniformly at random;
9 Set S(v∗) = [k] and S(v) = ∅ for all v 6= v∗;

since this action is only taken with probability 1 − µ = 1 − o(1), the approximation factor is not
affected.

On the contrary, we can show that the expected social welfare changes, now having a curvature
of at least λ. This is the missing piece to build the δ-estimates necessary to run the algorithm.

In order to determine the precise expected social welfare of the modified algorithm, we have to
first quantify the probability that the initially computed solution is discarded. This is done with
probability β, which depends on the previous outcome. For the expectation, we know

E [β] = E

[

1

nk

∑

v∈V
|S(v)|

]

=
1

nk

k
∑

j=1

∑

v∈V
Pr [j ∈ S(v)] =

1

nk

k
∑

j=1

∑

v∈V

(

1− exv,j/(2α)
)

.

Therefore the expected social welfare is

(1− µ) ·E [b(S)] + µ · E [β]
1

n

∑

v∈V
bv([k])

= (1− µ) ·E [b(S)] +
µ

n2k
·





k
∑

j=1

∑

v∈V

(

1− exv,j/(2α)
)



 ·
(

∑

v∈V
bv([k])

)

.

Since both parts of the outer sum are non-negative, it suffices to bound the curvature of the second

one. The curvature of
(

∑k
j=1

∑

v∈V
(

1− exv,j/(2α)
)

)

is at least (e(2α)2)−1. Therefore, the curvature

of the second part is at least

µ

n2k
· 1

e(2α)2
·
(

∑

v∈V
bv([k])

)

= λ .

As a consequence, the modified algorithm can be run with δ-approximates as described above with
a resulting running time that is poly(n, k) in expectation.

5 Discussion and Open Problems

While the mechanisms presented in previous sections obtain near-optimal guarantees on social
welfare, they have some drawbacks for application in practice. A serious problem are running times
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Figure 1: Example for non-monotonicity of the greedy algorithm. In part (a), the number inside
the circle denotes the vertex’s index in the π-ordering, the one outside its reported valuation. If
bidder7 reports x = 3, he is included in the solution; if he bids up to x = 4, he is dropped by the
algorithm. Parts (b) and (c) depict the resulting values and the independent sets at the end of the
execution of the algorithm for each case, respectively.

– for MRS valuations our mechanism obtains polynomial running time only in expectation. For
symmetric valuations, we obtain polynomial worst-case running times, but the convex optimization
techniques needed to apply randomized meta-rounding often have prohibitive running times for
large practical problem instances. Thus, let us briefly discuss designing fast and simple mechanisms.
How can we design a good and simple deterministic mechanism to incentivize truth-telling among
bidders?

To our knowledge, there are only two algorithmic approaches to the channel assignment problem
that yield approximation guarantees in the order of O(ρ). One approach is rounding of suitably
relaxed packing LPs, which turned out to be very successful in this and our previous work [20].
While pairwise independence can be used to make these algorithms deterministic, they require
randomization to guarantee truthfulness and fail for deterministic truthfulness. The other approach
was proposed for the simplest case of a single channel and unweighted conflict graphs, i.e., the
maximum weighted independent set problem. It is a simple greedy algorithm due to Akcoglu et
al [1] which first considers vertices one by one in reverse of the ordering of π. If vertex v is under
consideration, its current value is subtracted from the value of each backward neighbor. If the
value of a vertex drops to 0 or below before it is under consideration in the ordering, this vertex
is removed. Finally, the algorithm makes a second pass over the surviving vertices, this time in
forward ordering of π, and greedily adds each vertex to the independent set if possible. It can be
shown using a local ratio argument that it provides a ρ-approximation [34].

It is tempting to believe that this algorithm is monotone and delivers a deterministically truthful
mechanism. Unfortunately, this is not the case, see our example in Figure 1. The problem is that the
algorithm makes a second pass over the vertices which introduces non-trivial dependencies among
bids and acceptance decisions. Nevertheless, we show how to turn it into a monotone algorithm
by spending a log n factor in the approximation guarantee. This is a promising first step towards
designing simple truthful deterministic mechanisms with non-trivial approximation guarantees. In
contrast to algorithms using the time-intensive solution of convex optimization problems, such quick
and simple greedy rules are much more suitable for application in practice. Providing good and
simple mechanisms is a major open direction for future work.

Theorem 17. Algorithm 6 is deterministic and monotone. The computed solution is a O(ρ · log n)-
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Algorithm 6: Monotone O(ρ · log n)-algorithm for Maximum Weighted Independent Set.

1 Sort the set of bids B = {bv | v ∈ V } in decreasing order, let bi be the i-th highest bid;
2 for i = 1 to n do
3 Let Vi = {v ∈ V | bv ≥ bi} and Si = ∅;
4 for v ∈ Vi in increasing order of π values do
5 If N(v) ∩ Si = ∅, add v to Si

6 Output S = Si∗ with i∗ = argmaxi
∑

v∈Si
bv;

approximation for the maximum weight independent set problem.

Proof. We first prove that the algorithm is monotone. We show that if v 6∈ S and lies a value
b′v < bv, then v will never be able to become part of S. Suppose v is currently first considered in
iteration i. Submitting a smaller bid causes v to be considered at a later point j > i. In the sets
Vi, . . . , Vj−1 player v is replaced by a different player, sets V1, . . . , Vi−1 and Vj , . . . , Vn remain as
before, and so do S1, . . . , Si−1 and Sj , . . . , Sn. If one of these sets was chosen as the best set before,
then v will again not be part of S if he lies. The only sets that can be different now are Si, . . . , Sj−1,
in which v cannot be present. If previously set Sk with k ∈ {i, . . . , j − 1} was chosen as the best
set, it did not include v. Thus, in the run v was blocked by some other vertex. Removing v does
not change the execution of the algorithm, thus the same set will be computed again – however,
due to the change in the ordering it will now appear as Sk−1. The only sets Sk that can change
are the ones with k ∈ {i, . . . , j − 1} where v was included before. However, if a new optimal set
appears here, it does not include v as well. In conclusion, if v 6∈ S, he cannot become included into
S by reducing his bid.

To bound the approximation factor, we use an argument similar to [18]. Let us consider the
problem on the subset Vi and assume all vertices have value bi. For this problem, our algorithm
is equivalent to the greedy ρ-approximation algorithm for unweighted vertices. Hence, for this
subproblem we obtain a ρ-approximation. With S′

i being the optimum for this subproblem, then
we have

∑

v∈S
bv =

n
max
i=1

∑

v∈Si

bv ≥ n
max
i=1

{|Si| · bi} ≥ 1

ρ
· n
max
i=1

{|S′
i| · bi} .

Now consider intervals Ij = (b1/2
j , b1/2

j−1], for j = 1, . . . , log n. The last interval we set I(logn)+1 =
[0, b1/n]. For each such interval we consider the subgraph of vertices v with value bv ∈ Ij and the
optimum solution Sj w.r.t. to this subinstance. Consider all i such that bi ∈ Ij . It is easy to see
that for all j = 1, . . . , log n

1

ρ
· max
i:bi∈Ij

{|S′
i| · bi} ≥ 1

2 · ρ
∑

v∈Sj

bv .

For j = (log n) + 1 we obviously have |S′
1| · b1 ≥

∑

v∈Sj bv. Thus, in total we have

1

ρ
· n
max
i=1

{|S′
i| · bi} ≥ 1

2 · ρ · log n+ ρ
·
logn
∑

j=1

∑

v∈Sj

bv ≥ 1

2 · ρ · log n+ ρ
·
∑

v∈S∗

bv ,

since the sum of values for the optimal solutions in the intervals is bigger than the global optimum
S∗. This proves the approximation factor.
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This represents a promising first step towards designing simple truthful deterministic mecha-
nisms with non-trivial approximation guarantees. In contrast to algorithms using the time-intensive
solution of convex optimization problems, such quick and simple greedy rules are much more suit-
able for application in practice. In addition, the concept of truthfulness in expectation used in
the previous sections has drawbacks, e.g., it is not enough to motivate risk-aware bidders to reveal
their valuations truthfully. While there are many open problems stemming from our work (e.g.,
improving the approximation bounds for specific interference models), providing good and simple
mechanisms for stronger notions of truthfulness is a challenging and arguably the most interesting
avenue for future work.
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ity maximization in wireless networks. In Proc. 22nd Symp. Parallelism in Algorithms and
Architectures (SPAA), pages 92–99, 2010.

[15] Ajay Gopinathan and Zongpeng Li. A prior-free revenue maximizing auction for secondary
spectrum access. In Proc. 30th IEEE Conf. Computer Communications (INFOCOM), pages
86–90, 2011.

[16] Ajay Gopinathan, Zongpeng Li, and Chuan Wu. Strategyproof auctions for balancing social
welfare and fairness in secondary spectrum markets. In Proc. 30th IEEE Conf. Computer
Communications (INFOCOM), pages 3020–3028, 2011.
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