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Abstract

Most research in the theory of evolutionary computation assumes that the problem at
hand has a fixed problem size. This assumption does not always apply to real-world opti-
mization challenges, where the length of an optimal solution may be unknown a priori.

Following up on previous work of Cathabard, Lehre, and Yao [FOGA 2011] we analyze
variants of the (1+1) evolutionary algorithm for problems with unknown solution length.
For their setting, in which the solution length is sampled from a geometric distribution, we
provide mutation rates that yield an expected optimization time that is of the same order
as that of the (1+1) EA knowing the solution length.

We then show that almost the same run times can be achieved even if no a priori
information on the solution length is available.

Finally, we provide mutation rates suitable for settings in which neither the solution
length nor the positions of the relevant bits are known. Again we obtain almost optimal run
times for the OneMax and LeadingOnes test functions, thus solving an open problem
from Cathabard et al.

1 Introduction

While the theory for evolutionary algorithms (EAs) in static problem settings is well devel-
oped [1,6,9], a topic that is not so well studied in the theory of EA literature is the performance
of EAs in uncertain environments. Uncertainty can have many faces, for example with respect
to function evaluations, the variation operators, or the dynamics of the fitness function. Un-
derstanding how evolutionary search algorithms can tackle such uncertain environments is an
emerging research topic; see [2] for a survey on examples in combinatorial optimization, but
also [7] for an excellent survey also discussing different sources of uncertainty.

In this work we study what evolutionary algorithms can achieve in the presence of un-
certainty with respect to the solution length. Quite surprisingly, we show that already some
variants of the simplest evolutionary algorithm, the (1 + 1) EA, can be very efficient for such
problems.

1.1 Previous Work

Our work builds on previous work of Cathabard, Lehre, and Yao [4], who were the first to con-
sider, from a theoretical point of view, evolutionary algorithms in environments with unknown
solution lengths. Cathabard et al. assume that the solution length is sampled from a fixed and
known distribution D with finite support. More precisely, they assume that the solution length
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n is sampled from a truncated version of the geometric distribution, in which the probability
mass for values greater than some threshold N is shifted to the event that n = N . In this
situation, the algorithm designer has access to both the upper bound N for the solution length
and the success probability q of the distribution.

Cathabard et al. analyze a variant of the (1 + 1) EA in which each bit is flipped with
probability 1/N and they also study a variant with non-uniform bit-flip probabilities. In the
latter, the i-th bit is flipped independently of all other bits with probability 1/(i + 1). They
show that these variants have polynomial expected run times on OneMax and LeadingOnes

function, where the expectation is taken with respect to the solution length and the random
decisions of the algorithm. An overview of the precise bounds obtained in [4] is given in Table 2.

1.2 Our Results

We extend the work of Cathabard et al. in several ways. In a first step (Section 3) we show
that the regarded mutation probabilities are sub-optimal. Making use of the concentration of
the (truncated) geometric distribution, we design bit flip probabilities that yield significantly
smaller expected run times (for both the OneMax and the LeadingOnes function). We
complement this finding by a lower bound that shows the optimality of our result. This proves
that no mutation probabilities can yield a performance that is better by more than a constant
factor than our suggested ones.

While in the setting of Cathabard et al. we are in the convenient situation that we have full
knowledge of the distribution D from which the solution length is sampled, one is sometimes
faced with problems for which this knowledge is not readily available. We therefore study in
Section 4 what can be done without any a priori knowledge about the solution length. In this
situation we require that the algorithm designer chooses bit flip probabilities (pi)i∈N such that,
regardless of the solution length n, the expected performance of the (1 + 1) EA with bit flip
probabilities (p1, . . . , pn) is as small as possible. It is not obvious that this can be done in
polynomial time. In fact, for both algorithms studied by Cathabard et al. as well as for any
uniform choice of the bit flip probabilities, the expected run time on this problem is exponential
in n (cf. Theorems 13 and 14).

We show (Theorems 15 and 16) that not only can we tackle this problem with non-uniform
bit flip probabilities, but, quite surprisingly, this can be even done in a way that yields almost
optimal run times. Indeed, our results are only a log1+ε n factor worse than the best possible
Θ(n log n) and Θ(n2) run time bounds for OneMax and LeadingOnes, respectively. This
factor can be made even smaller as we shall comment at the end of Section 4.2.

Finally, we provide in Section 4.3 a second way to deal with unknown solution lengths.
We provide an alternative variant of the (1 + 1) EA in which the bit flip probabilities are
chosen according to some (fixed) distribution at the beginning of each iteration. For suitably
chosen distributions Q, the expected run times of the respective (1 + 1) EAQ on OneMax and
LeadingOnes are of the same asymptotic order as those of the previously suggested solution
with non-uniform bit flip probabilities. In particular, they are, simultaneously for all possible
solution lengths n, almost of the same order as the expected run time of a best possible (1+1) EA
knowing the solution length.

This second approach has an advantage over the non-uniform bit flip probabilities in that it
effectively ignores bits that do not contribute anything to the fitness function (irrelevant bits).
Thus, even if only n bits at unknown positions have an influence on the fitness function, the
same run time bounds apply. In contrast, all previously suggested solutions require that the
n relevant bits are the leftmost ones. This also answers a question posed by Cathabard et
al. [4, Section 6].
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setting bit flip prob. OneMax LeadingOnes

Random Length
∼ Geo(q)

unif. and fixed O(q−1 log q−1) Thm. 7 O(q−2) Thm. 10

unif. and fixed 2Ω(n) Thm. 13 2Ω(n) Thm. 14

Adversarial
Length

fixed O(n log2+ε n) Cor. 17 O(n2 log1+ε n) Cor. 17

unif. and rand. O(n log2+ε n) Cor. 20 O(n2 log1+ε n) Cor. 20

Table 1: Overview of Results for 1/N < q < 1/2 and ε > 0.

Our run time results are summarized in Tables 1 and 2.

2 Algorithms and Problems

In this section we define the algorithms and problems considered in this paper. For any problem
size n, fitness function f : {0, 1}n → R, and vector ~p = (p1, . . . , pn) of bit flip probabilities
0 ≤ pi ≤ 1, we consider the (1 + 1) EA~p, as given by Algorithm 1.

Algorithm 1: The (1+1) EA~p for ~p = (p1, . . . , pn) optimizing a pseudo-Boolean function
f : {0, 1}n → R.

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and query f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 for i = 1, . . . , n do
4 With probability pi set yi ← 1− xi and set yi ← xi otherwise;

5 Query f(y);
6 if f(y) ≥ f(x) then x← y;

The (1 + 1) EA~p samples an initial search point from {0, 1}n uniformly at random. It then
proceeds in rounds, each of which consists of a mutation and a selection step. Throughout the
whole optimization process the (1+1) EA~p maintains a population size of one, and the individual
in this population is always a best-so-far solution. In the mutation step of the (1 + 1) EA~p the
current-best solution x is mutated by flipping the bit in position i with probability pi, 1 ≤ i ≤ n.
The fitness of the resulting search point y is evaluated and in the selection step the parent x is
replaced by its offspring y if and only if the fitness of y is at least as good as the one of x. Since
we consider maximization problems here, this is the case if f(y) ≥ f(x). Since we are interested
in expected run times, i.e., the expected number of rounds it takes until the (1+1) EA~p evaluates
for the first time a solution of maximal fitness, we do not specify a termination criterion. It is
not difficult to see that the (1+ 1) EA~p indeed generalized the standard (1+ 1) EA. In fact, we
obtain the (1 + 1) EA from the (1 + 1) EA~p if we set pi = 1/n for all i ∈ [n] := {1, . . . , n}. We
call such mutation vectors with pi = pj for all i, j uniform mutation rates, while we speak of
non-uniform mutation rates if pi 6= pj for at least one pair (i, j).

The two test functions we consider in this work are OneMax and LeadingOnes. For a
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Results from [4] Thms. 7 (OM), 10 (LO)

problem Cor. 4 pi = 1/N pi = 1/(i + 1) pi = q/2 pi = q

OneMaxD Ω
(

1
q log

1
q

)

Θ
(

N log 1
q

)

O
(

1
q2 logN

)

Θ
(

1
q log

1
q

)

Θ(N logN)

LeadingOnesD Ω
(

1
q2

)

Θ
(

N
q

)

Θ
(

1
q3

)

Θ
(

1
q2

)

Θ
(

N
q

)

Table 2: Expected run times of the (1 + 1) EA~p with ~p = (pi)
N
i=1 for D = TrunkGeo(N, q) and

1/N ≤ q ≤ 1/2

given problem size n, they are defined as

Omn := OneMaxn(x) =
n
∑

i=1

xi, and

Lon := LeadingOnesn(x)

= max{i ∈ [0..n] | ∀j ≤ i : xj = 1},

where [0..n] := {0} ∪ [n]. That is, the OneMax function counts the number of ones in a
bit string, while the LeadingOnes function counts the number of initial ones. While these
two functions are certainly easy to optimize without evolutionary algorithms, the (1 + 1) EA~p

performs exactly the same on all generalized OneMax and LeadingOnes functions, which are
obtained from the functions above through an XOR of an arbitrary and unknown bit string
z ∈ {0, 1}n. Understanding how an evolutionary algorithm behaves on these two functions
is an important indicator for how it manages to cope with the easier parts of more complex
optimization problems. OneMax and LeadingOnes functions are for this reason the two
best-studied problems in the theory of evolutionary computation literature.

If a distribution D is known from which the solution length is sampled we consider the
expected run time of the (1 + 1) EA~p on OneMaxD and LeadingOnesD, respectively, which
are the problems Omn resp. Lon with random solution length n ∼ D. Note here that the
expectation is thus taken both with respect to the random solution length and with respect to
the random samples of the algorithm.

3 Random Solution Length

We first consider the setting that has been introduced by Cathabard, Lehre, and Yao [4].
After a short presentation of the model in Section 3.1, a general lower bound for this problem
(Section 3.2), and the results of [4] in Section 3.3, we show that the bounds in [4] can be
improved by using different (uniform) mutation rates (Section 3.4).

Table 2 summarizes the previously known bounds and our contributions for the setting
regarded in this section.

3.1 The Model

Cathabard et al. [4] consider the following model. The algorithm designer knows the distribution
D from which the unknown solution length is drawn; only distributions with finite support are
considered, so the algorithm designer knows an upper bound N on the actual solution length n.
He also knows the class of functions from which the optimization problem is taken (for example
OneMax or LeadingOnes).
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Based on this knowledge, the algorithm designer chooses a vector (p1, . . . , pN ) of bit flip
probabilities indicating with which probability a bit is flipped in each round. In this work we
also regard a slightly more general model in which the distributions over N may possibly have
infinite support; the algorithm designer then chooses an infinite sequence of bit flip probabilities
(p1, p2, . . .) = (pi)i∈N. After this choice of bit flip probabilities, the actual solution length n is
sampled from the given distributionD. Then the (1+1) EA~p (Algorithm 1) is run with mutation
probabilities ~p = (p1, . . . , pn) on the given problem with the given problem length.

Cathabard et al. [4] consider as distributionD the following truncated geometric distribution,
based on a geometric distribution where the probability mass for values greater than n are moved
to n.

Definition 1 ([4]). The truncated geometric distribution TrunkGeo(N, q) with truncation pa-
rameter N and success probability q ∈ (0, 1/N ] satisfies, for all n ∈ N, that the probability of
TrunkGeo(N, q) = n is











q(1− q)n−1 if 1 ≤ n ≤ N − 1,

(1− q)n−1 if n = N,

0 otherwise.

Note that the truncated geometric distribution recovers the geometric distribution Geo(q)
for N =∞.

It is well known, respectively can be found in [4, Proposition 1], that for X = Geo(q) and
Y = TrunkGeo(N, q) with q ≥ 1/N

E[X] = q−1 and E[Y ] = Θ(q−1). (1)

Note that we trivially have E[Y ] ≤ E[X].

3.2 A General Lower Bound

What is a good lower bound for the expected run time of any (1 + 1) EA~p on OneMax

or LeadingOnes when the length is sampled from some given distribution D on N? If the
algorithm designer would know the true length n before he has to decide upon the mutation
probabilities (p1, . . . , pn), then the optimal bit flip probability for this solution length could be
chosen. For OneMax, the best choice is to set ~p = (1/n, . . . , 1/n) as has been proven in [10,11]
(note here that for fixed problem sizes, due to the symmetry of OneMax, non-uniform mutation
rates cannot be advantageous over uniform ones). This results in an expected run time of
Θ(n log n).

For LeadingOnes, if the true length n is known, any setting of the bit-flip probabilities
leads to an expected run time of Ω(n2) regardless of the choice of ~p, as the next lemma shows.

Lemma 2. For any fixed solution length n and any vector ~p = (p1, . . . , pn) of mutation proba-
bilities, the expected run time of the (1 + 1) EA~p on LeadingOnesn is Ω(n2).

Proof. It is easy to see by arguments that are mostly identical to the ones in [3, Section 3.3]
that the expected run time of the (1 + 1) EA~p on LeadingOnesn is

n
∑

i=1

1

2pi

1
∏i−1

j=1(1− pj)
.

Using this bound one can easily show that we can assume without loss of generality that the
mutation probabilities are monotonically increasing, i.e., pi ≤ pi+1 holds all i ∈ [n]. Indeed, if
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for some k ∈ [n] pk > pk+1 holds, then the expected run time of the (1 + 1) EA~p is larger than
that of the (1+1) EA~p with ~q = (q1, . . . , qn), qk = pk+1, qk+1 = pk, and qi = pi for i /∈ {k, k+1}.

We now regard the time it takes the (1+1) EA~p to produce for the first time a search point
of fitness at least k := ⌊n/3⌋. Following [3] this takes in expectation

k
∑

i=1

1

2pi

1
∏i−1

j=1(1− pj)
≥

k
∑

i=1

1

2pk
= Θ(n/pk). (2)

fitness evaluations.
Furthermore, we have

2k−1
∏

j=k

(1− pj) ≤ (1− pk)
k ≤ e−pkk,

which shows that the (1 + 1) EA~p spends in expectation

1

2p2k

1
∏2k−1

j=1 (1− pj)
≥ epkk (3)

iterations on fitness level 2k.
Equations (2) and (3) prove that the overall expected optimization time of the (1 + 1) EA~p

on LeadingOnesn is Ω(n/pk + exp(pkk/2)). For all possible choices of pk this expression is
Ω(n2) as can be easily seen using a case distinction (for pk = O(1/n) the first summand is
Ω(n2), while for pk = ω(1/n) the second one is growing at an exponential rate).

Using these lower bounds for fixed solution lengths, Jensen’s Inequality and the convexity
of n 7→ n log n and n 7→ n2, respectively, we get the following general lower bound.

Theorem 3. Let D be any distribution on N with a finite expectation of m. Then the expected
run time of any (1 + 1) EA~p on OneMaxD is Ω(m logm) and the expected run time of any
(1 + 1) EA~p on LeadingOnesD is Ω(m2). Both bounds apply also to the setting in which
the algorithm designer can choose the mutation probabilities ~p = (p1, . . . , pn) after the solution
length n ∼ D has been drawn.

Using Equation (1), we get the following corollary.

Corollary 4. Let N ∈ N and q ≥ 1/N . Let D = TrunkGeo(N, q) or D = Geo(q). The expected
run time of any (1 + 1) EA~p on OneMaxD is Ω(q−1 log q−1) and the expected run time of any
(1 + 1) EA~p on LeadingOnesD is Ω(q−2). Both bounds apply also to the setting in which
the algorithm designer can choose the mutation probabilities ~p = (p1, . . . , pn) after the solution
length n ∼ D has been drawn.

3.3 Known Upper Bounds

Cathabard et al. [4] analyze the run time of the (1+1) EA~p with uniform mutation probabilities
p1 = . . . = pN = 1/N and of the (1 + 1) EAi with pi = 1/(i+ 1), 1 ≤ i ≤ N .

For OneMax they obtain the following results.

Theorem 5 (Results for OneMax from [4]). Let N ∈ N, ε ∈ (0, 1), and q = N−ε. For
D = TrunkGeo(N, q) the expected run time of the (1 + 1) EA~p with ~p = (1/N, . . . , 1/N) on
OneMaxD is Θ(N log q−1), while the expected run time of the (1 + 1) EAi on OneMaxD is
O(q−2 logN).
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This result shows that the (1+1) EA~p with ~p = (1/N, . . . , 1/N) outperforms the (1+1) EAi

for q < 1/
√
N , while the latter algorithm is preferable for larger q. As we shall see in the

following section one should not conclude from this result that non-uniform bit flip probabilities
are the better choice for this problem.

Remark: By using a slightly more careful analysis than presented in [4], the bound for the
(1 + 1) EAi on OneMaxD can be improved to O(q−2 log q−1). In fact, an analysis similar to
the one in Section 3.4, that is disregarding outcomes that are much larger than the expectation,
will give that result. It can also be shown that the requirement q = N−ε is not needed as the
O(q−2 log q−1) holds for all q > 1/N . It also holds for the (non-truncated) geometric distribution
D = Geo(q).

For LeadingOnes, Cathabard et al. show the following results.

Theorem 6 (Results for LeadingOnes from [4]). For N , ε, q, and D as in Theorem 5, the
expected run time of the (1+ 1) EA~p with ~p = (1/N, . . . , 1/N) on LeadingOnesD is Θ(Nq−1),
while the expected run time of the (1 + 1) EAi on LeadingOnesD is Θ(q−3).

Thus also for LeadingOnes the (1 + 1) EAi performs better than the (1 + 1) EA~p with

~p = (1/N, . . . , 1/N) when q > 1/
√
N while the uniform (1 + 1) EA~p should be preferred for

smaller q.
Remark: As in the OneMax case the Θ(q−3) bound for the (1 + 1) EAi holds more

generally for all geometric distributions Geo(q) with parameter q > 1/N .
From Theorems 5 and 6 we can see that for both OneMaxD and LeadingOnesD the

(1 + 1) EAi looses a factor of 1/q with respect to the lower bound given by Corollary 4. This
will be improved in the following section.

3.4 Optimal Upper Bounds With Uniform Mutation Probabilities

We show that for D being the (truncated or non-truncated) geometric distribution there exist
bit flip probabilities ~p = (p1, . . . , pN ) and ~p = (pi)i∈N, respectively, such that the expected run
time of the (1+ 1) EA~p on OneMaxD and LeadingOnesD is significantly lower than those of
the two algorithms studied by Cathabard et al. The expected run times of our algorithm match
the lower bounds given in Corollary 4 and are thus optimal in asymptotic terms.

In both cases, i.e., both for OneMaxD and for LeadingOnesD, the mutation rates yielding
the improvement over the results in [4] are uniform. Our results therefore imply that for these
two problems, unlike conjectured in [4], one cannot gain more than constant factors from using
non-uniform mutation probabilities.

The key observation determining our choice of the mutation probability is the fact that the
(truncated) geometric distribution is highly concentrated. Hence, if we know the parameters
of the distribution, we can choose the mutation probability such that it is (almost) reciprocal
in each position to the expected length of the solution. Thus, in the setting of [4], i.e., for the
truncated geometric distribution with parameters N and q, we set pi := q/2 for all i ∈ [N ]
(recall equation (1)). Our approach naturally also works for the (non-truncated) geometric
distribution Geo(q), which is also highly concentrated around its mean 1/q.

We remark without proof that similar results hold for other distributions that are highly
concentrated around the mean, e.g., binomial distributions, and also highly concentrated un-
bounded distributions, such as Poisson distributions.

Theorem 7. For N ∈ N let 1/N ≤ q = q(N) < 1/2. For D = Geo(q) and D = TrunkGeo(N, q)
the expected run time of the (1+1) EA~p with ~p = (q/2, . . . , q/2) on OneMaxD is Θ(q−1 log q−1).

For the proof we will use the following upper bound for the expected run time of the
(1 + 1) EA on OneMax. A similar upper bound can be found in [11, Theorem 4.1].
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Lemma 8 ([10, Theorem 8]). For a fixed length n and a uniform mutation vector ~p = (p, . . . , p)
with 0 < p < 1, the expected run time of the (1 + 1) EA~p on OneMaxn is at most (ln(n) +
1)/(p(1 − p)n).

Proof of Theorem 7. We first consider D = TrunkGeo(N, q). We do not worry about constant
factors in this analysis and thus bound some expressions generously.

Using Lemma 8 we can bound the expected run time of the (1+1) EA~p on OneMaxD from
above by

N−1
∑

n=1

q(1− q)n−1(ln(n) + 1)

q/2(1 − q/2)n
+

(1− q)N−1(ln(N) + 1)

q/2(1 − q/2)N
. (4)

To bound the last summand in this expression, we first observe that, for all positive n,

(1− q
2)

n = (1− q + q2

4 )
n/2 > (1− q)n/2. (5)

This shows that the last summand in (4) is at most

2(1 − q)N/2−1(ln(N) + 1)/q,

which is O(q−1 log q−1). This can be seen as follows. For q ≥ 2 ln ln(N)/N it holds (us-
ing the inequality 1 − q ≤ exp(−q)) that (1 − q)N/2−1 ≤ exp(−qN/2) ≤ 1/ ln(N) and thus
2(1 − q)N/2−1(ln(N) + 1)/q = O(1/q), while for 1/N ≤ q ≤ 2 ln ln(N)/N we have (for some
suitably chosen constant C) (1−q)N/2 ln(N) ≤ (1−1/N)N/2 ln(N) ≤ C(ln(N)− ln(2 ln lnN)) =
C ln(N/(2 ln lnN)) ≤ C ln(1/q).

Using again (5) we bound the first part of the sum (4) by

2

1− q

N−1
∑

n=1

(1− q)n(ln(n) + 1)

(1− q/2)n

≤ 2

1− q

N−1
∑

n=1

(ln(n) + 1)(1 − q)n/2

= 2

N−1
∑

n=1

(ln(n) + 1)(1 − q)n/2−1.

To show that this expression is O(q−1 log q−1) we split the sum into blocks of length k := ⌈1/q⌉
and use again the inequality 1− q ≤ exp(−q). This shows that the last expression is at most

2

⌈N/k⌉−1
∑

j=0

k
∑

ℓ=1

exp(−q( jk+ℓ
2 − 1))(ln(jk + ℓ) + 1)

≤ 2k

⌈N/k⌉−1
∑

j=0

exp(− 1
k (

jk
2 − 1))(ln(j + 1) + ln(k) + 1)

= O(k ln k),

where the last equality can be best seen by first consider-

ing that
∑⌈N/k⌉−1

j=0 exp(− 1
k (

jk
2 − 1))(ln(k) + 1) = Θ(log k), while

∑⌈N/k⌉−1
j=0 exp(− 1

k (
jk
2 − 1))(ln(j + 1)) = O(1). Summarizing the computations above we

see that (4) is of order at most q−1 log q−1.
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For D = Geo(q) the computations are almost identical. By Lemma 8 and (5) the expected
run time of the (1 + 1) EA~p on OneMaxD is at most

2

1− q

∞
∑

n=1

(1− q)n(ln(n) + 1)

(1− q/2)n

≤ 2

∞
∑

n=1

(1− q)n/2−1(ln(n) + 1) = O(q−1 log q−1),

which can be seen in a similar way as above by splitting the sum into blocks of size k := ⌈1/q⌉
and using 1− q ≤ exp(−q).

It is interesting to note that the expected run time increases to between Ω(N) and
O(N logN) when the mutation probability is chosen to be ~p = (q, . . . , q). This can easily
be seen as follows. For the upper bound we use Lemma 8 (ignoring the “+1” terms which are
easily seen to play an insignificant role) to obtain that the expected run time of the (1+1) EA~p

with ~p = (q, . . . , q) on OneMaxTrunkGeo(N,q) is at most
∑N−1

n=1
q(1−q)n−1 lnn

q(1−q)n + (1−q)N−1 lnN
q(1−q)N

=
∑N−1

n=1
lnn
1−q +O(log(N)/q) = ln((N−1)!)

1−q +O(N logN) = O(N logN).

We can derive a strong lower bound of Ω(N logN) in the case of 2−N/3 ≤ q ≤ 1/N from the
following one for static solution lengths.

Lemma 9 ([10, Theorem 9], [11, Theorem 4.1]). For a fixed length n and a uniform mutation
vector ~p = (p, . . . , p), the expected run time of the (1+1) EA~p on OneMaxn is at least (ln(n)−
ln lnn− 3)/(p(1 − p)n) for 2−n/3 ≤ p ≤ 1/n and at least (ln(1/(p2n))− ln lnn− 3)/(p(1 − p)n)
for 1/n ≤ p ≤ 1/(

√
n log n).

Thus, the expected run time of the (1+1) EA~p with ~p = (q, . . . , q) and 2−N/3 ≤ q ≤ 1/N on

OneMaxTrunkGeo(N,q) is at least
∑N−1

n=1 q(1−q)n−1 (ln(n)−ln lnn−3)
q(1−q)n ≥∑N−1

n=1
1
2
lnn
1−q = 1

2
ln((N−1)!)

1−q =

Ω(N logN). Similarly we can get a lower bound of Ω(N) in case of 1/N ≤ q ≤ 1/(
√
N logN)

by using the lower bound of 1/(q(1 − q)n) for any fixed solution length n.
We now turn our attention to the LeadingOnes problems, where a similar approach as

above yields the following result.

Theorem 10. Let N ∈ N and 1/N ≤ q ≤ 1/2. For D = TrunkGeo(N, q) and D = Geo(q) the
expected run time of the (1 + 1) EA~p with ~p = (q/2, . . . , q/2) on LeadingOnesD is Θ(q−2).

We will derive this result from the following lemma, which was independently proven in
[3, Theorem 3], [10, Corollary 2], and in a slightly weaker form in [8, Theorem 1.2].

Lemma 11 ([3], [10], and [8]). For a fixed length n and a mutation vector ~p = (p, . . . , p)
with 0 < p < 1/2, the expected run time of the (1 + 1) EA~p on LeadingOnesn is exactly
1/(2p2)

(

(1− p)−n+1 − (1− p)
)

.

Proof of Theorem 10. We first consider the case that the solution length is sampled from the
truncated geometric distribution TrunkGeo(N, q). Using Lemma 11 and (5) (in the third and
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in the last step) the expected run time of the (1 + 1) EA~p on LeadingOnesD is

N−1
∑

n=1

q(1− q)n−1 2

q2
(

(1− q/2)−n+1 − (1− q/2)
)

+A

≤ 2

q

N−1
∑

n=1

(

(1− q)n−1

(1− q/2)n−1

)

+A

≤ 2

q

∞
∑

n=0

(1− q)n/2 +A

=
2

q

1

1− (1− q)1/2
+A = O(q−2) +A,

where A is the summand that accounts for the event that the solution length is N , i.e.,

A = (1− q)N−1 1

2q2
(

(1− q)−N+1 − (1− q)
)

= O
(

q−2
)

.

Similarly for D = Geo(q) the expected run time of the (1 + 1) EA~p on LeadingOnesD is
bounded from above by

2

q

∞
∑

n=1

(1− q)n−1

(1− q/2)n−1
≤ 2

q

∞
∑

n=0

(1− q)n/2

=
2

q

1

1− (1− q)1/2
≤ 4

q2
,

where we recall that the last step follows from (5) for n = 1, which provides (1 − q)1/2 ≤
1− q/2.

Just as for OneMaxD (with D = TrunkGeo(N, q)) we see that also on
LeadingOnesD the expected run time increases (in this case to Θ(N/q)) when the
mutation probability is chosen to be ~p = (q, . . . , q). By Lemma 11 this run time
equals

∑N−1
n=1 q(1− q)n−1 1

2q2

(

(1− q)−n+1 − (1− q)
)

+ A = 1
2q

∑N−1
n=1 (1− (1− q)n) +A =

1
2q

(

N − 1− 1−(1−q)N

q + 1
)

+ A = Θ(N/q) + A, where A is the summand that accounts for

the event that the solution length is N , i.e.,

A = (1− q)N−1 1

2q2
(

(1− q)−N+1 − (1− q)
)

= Θ
(

q−2
)

.

4 Arbitrary Solution Lengths

In the setting described in Section 3 it is assumed that the algorithm designer has quite a
good knowledge about the solution length. Not only does he know an upper bound N on the
solution length, but he may also crucially exploit its distribution. Indeed, we make quite heavy
use in Theorems 7 and 10 of the fact that the (truncated) geometric distribution is highly
concentrated around its expected value. That so much information is available to the algorithm
designer can be a questionable assumption in certain applications. We therefore regard in this
section a more general setting in which no a priori information is given about the possible
solution length n. That is, we regard a setting in which the solution length can be an arbitrary
positive integer. In this setting neither do we have any upper bounds on n nor any information
about its distribution.

10



As before, our task is to decide upon on a sequence (pi)i∈N of mutation probabilities 0 ≤
pi ≤ 1. An adversary may then choose the solution length n and we run the (1 + 1) EA~p with
~p = (p1, . . . , pn). In practical applications, this can be implemented with a (possibly generous)
upper bound on the problem size.

We first show that uniform fixed bit flip probabilities necessarily lead to exponential run
times (see Section 4.1). We then show two ways out of this problem. In Section 4.2 we consider
non-uniform bit flip probabilities and in Section 4.3 we show that we can have an efficient
algorithm with uniform bit flip probabilities if we choose the bit flip probability randomly in
each iteration.

4.1 Uniform Bit Flip Probabilities

It seems quite intuitive that if nothing is known about the solution length there is not much
we can achieve with uniform bit flip probabilities. In fact, for any fixed mutation probability
p ∈ [0, 1], we just need to choose a large enough solution length n to see that the (1 + 1) EA~p

with uniform mutation probability p is very inefficient.
More precisely, using the following statement (which is a simplified version of [11, Theorem

6.5]) we get the lower bound regarding optimizing OneMax with uniform bit flip probabilities
stated in Theorem 13.

Theorem 12 (from [11]). Let 0 < ε < 1 be a constant. On any linear function, the expected
optimization time of the (1 + 1) EA~p with ~p = (p, . . . , p) and p = O(n−2/3−ε) is bounded from
below by

(1− o(1))
1

p(1− p)n
min

{

ln(n), ln

(

1

p3n2

)}

.

Theorem 13. Let p ∈ [0, 1] be a constant. Then there exists a positive integer n0 ∈ N such
that for all n ≥ n0 the expected run time of the (1 + 1) EA~p with ~p = (p, . . . , p) on OneMaxn

is 2Ω(n).

It is quite intuitive that for large p the expected optimization time of the (1 + 1) EA~p with
~p = (p, . . . , p) is very large also for small problem sizes, as in this case typically too many bits
are flipped in each iteration. This has been made precise by Witt, who showed that for p, n
with p = Ω(nε−1), the expected run time of the (1 + 1) EA~p is 2Ω(nε) with probability at least
1− 2−Ω(nε) [11, Theorem 6.3].

For LeadingOnes we get a similar lower bound from Lemma 11.

Theorem 14. Let p ∈ (0, 1/2). Then the expected run time of the (1+1) EA~p with ~p = (p, . . . , p)
on LeadingOnesn is 2Ω(n).

Proof. From Lemma 11 we have that the expected run time of the (1 + 1) EA~p is, for n large
enough,

1

2p2
(

(1− p)−n+1 − (1− p)
)

≥ 1

2

(

epn−p − 1
)

= 2Ω(n).

4.2 Non-Uniform Bit Flip Probabilities

One way to achieve efficient optimization with unknown solution length is by using non-uniform
mutation rates, that is, different bit positions have different probabilities associated for being
flipped during a mutation operation.

11



To state our results we need the concept of summable sequences. Such sequences will be
the basis for the sequence of bit flip probabilities. A brief discussion of summable sequences
can be found in Section A in the appendix. In short, a sequence (pi)i∈N is summable if its
series (

∑n
k=1 pk)n∈N converges (that is, if it is bounded). The advantage of using summable

sequences is that the probability of flipping only one single bit is always constant, regardless
of the total number of bits considered, i.e., regardless of the problem length n. This is in
contrast to the sequence (1/(i + 1))i∈N considered in [4], which is not summable, and which
has a chance of (1/2)

∏n
i=2(1 − 1/(i + 1)) = 1/n of flipping only the first bit and a chance of

(1/n)
∏n−1

i=1 (1 − 1/(i + 1)) = 1/n2 of flipping only the nth bit. For this reason the (1 + 1) EAi

is very inefficient for the setting in which the solution length can be arbitrary.
Theorems 15 and 16 show that not knowing the solution length n does not harm the run time

more than by a factor of order log1+ε n with respect to the optimal bound when the problem
length is known a priori, cf. also Corollary 17 for an explicit sequence yielding this bound. In
fact, we prove that the additional cost caused by not knowing the solution length in advance is
even a bit smaller, cf. the comments after Corollary 17.

We start with the theorem regarding OneMax.

Theorem 15. Let (pi)i∈N be a monotonically decreasing summable sequence with Σ :=
∑∞

i=1 pi < 1. Then, for any n ∈ N, the expected run time of the (1+1) EA~p with ~p = (p1, . . . , pn)
on OneMaxn is at most log n/(pn(1− Σ)) = O(log n/pn).

Proof. We make use of the multiplicative drift theorem [5, Theorem 3] and show that for every
n and every search point x with n − k ones, the probability to create in one iteration of the
(1 + 1) EA~p with ~p = (p1, . . . , pn) a search point y with OneMaxn(y) > OneMaxn(x) is at
least of order k/pn. This can in fact be seen quite easily by observing that the probability to
increase the OneMax-value of x by exactly one is at least

kpn

n
∏

j=1

(1− pj) ≥ kpn(1−
n
∑

j=1

pj) ≥ kpn(1−
∞
∑

j=1

pj)

= kpn(1− Σ).

From this an upper bound of log n/(pn(1 − Σ)) for the run time of the (1 + 1) EA~p follows
immediately from the multiplicative drift theorem.

Next we consider LeadingOnes. The proof follows along similar lines as the one for One-

Max and uses a fitness level argument instead of multiplicative drift (using additive drift would
also be possible).

Theorem 16. Let (pi)i∈N be a monotonically decreasing summable sequence with Σ :=
∑∞

i=1 pi < 1. Then, for any n ∈ N, the expected run time of the (1+1) EA~p with ~p = (p1, . . . , pn)
on LeadingOnesn is at most n/(pn(1− Σ)) = O(n/pn).

Proof. Let n, k ∈ N with k < n and let x ∈ {0, 1}n with Lo(x) = k − 1. The probability to get
in one iteration of the (1 + 1) EA~p with ~p = (p1, . . . , pn) a search point y with Lo(y) > Lo(x)
is at least

pk

k−1
∏

j=1

(1− pj) ≥ pk(1−
k−1
∑

j=1

pj) ≥ pk(1− Σ) ≥ pn(1− Σ).

By a simple fitness level argument (see, e.g., the work by Sudholt [10] for background and
examples of this method), the expected run time of the (1+ 1) EA~p on LeadingOnesn is thus
at most n/(pn(1− Σ)).
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It is well known that for every constant ε > 0 the sequence (1/(i log1+ε i))i∈N is summable
(this can be proven via Cauchy’s condensation test). It is obviously also monotonically decreas-
ing in i. Theorems 15 and 16, together with the sequence (pi)i∈N := (1/(2Si log1+ε i))i∈N for
S :=

∑∞
i=1 1/(i log

1+ε i), therefore imply the following corollary.

Corollary 17. For every positive constant ε there exists a sequence of mutation probabilities
(pi)i∈N such that for any n the expected run time of the (1 + 1) EA~p with ~p = (p1, . . . , pn) on
OneMaxn is O(n log2+ε n) and is of order n2 log1+ε n for LeadingOnesn.

The bound from Corollary 17 can be improved by regarding the following summable se-
quences.

For any r ∈ R and any i ∈ N≥2 let

log(i) r :=

{

log2(log
(i−1) r), if log(i−1)(r) ≥ 2;

1, otherwise;

where log(1) r := log2 r if r ≥ 2 and log(1) r := 1 otherwise. For every constant ε > 0 and all
positive integers s, i let

ps,εi := 1/



i(log(s)(i))1+ε
s−1
∏

j=1

log(j)(i)



 . (6)

For every ε > 0 and every s ≥ 1 the sequence (ps,εi )i∈N is summable. Furthermore, this sequence
clearly is monotonically decreasing. Choosing larger and larger s therefore gives better and
better asymptotic run time bounds in Theorems 15 and 16.

4.3 Randomized Bit Flip Probability

In the conclusions of [4] the authors ask the following: how can we optimize efficiently when
an upper bound N on the problem length is known, but only n bits at unknown positions
are relevant for the fitness? It is not difficult to see that our previous solutions with non-
uniform bit flip probabilities will not be able to assign appropriate bit flip probabilities to
the relevant bit positions. However, any uniform choice of bit flip probabilities will effectively
ignore irrelevant bit positions. In this section we consider a variation of the (1 + 1) EA where
the bit flip probability p is chosen randomly from a distribution Q on (0, 1) in each iteration
(the distribution Q does not change over time). This mutation probability is then applied
independently to each bit, i.e., each bit of the current best solution is independently flipped
with probability p. See Algorithm 2 for the detailed description of the (1 + 1) EAQ.

Algorithm 2: The (1+1) EAQ for a distribution Q on (0, 1) optimizing a pseudo-Boolean
function f : {0, 1}n → R.

1 Initialization: Sample x ∈ {0, 1}n uniformly at random and query f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 Sample bit flip probability pt from Q;
4 for i = 1, . . . , n do
5 With probability pt set yi ← 1− xi and set yi ← xi otherwise;

6 Query f(y);
7 if f(y) ≥ f(x) then x← y;

13



To make the problem more explicit, we are asked to find a distribution Q on [0, 1] such that
the (1 + 1) EAQ efficiently optimizes for any n ∈ N and any pairwise different b1, . . . , bn ∈ N

the functions

OneMaxb1,...,bn(x) :=

n
∑

i=1

xbi , respectively

LeadingOnesb1,...,bn(x) := max{i ∈ [0..n] | ∀j ≤ i : xbj = 1}.

In Theorems 18 and 19 we show that such a distribution Q exist. That is, there is a distribution
Q such that the corresponding (1 + 1) EAQ efficiently optimizes any OneMaxb1,...,bn and any
LeadingOnesb1,...,bn function, regardless of the number of relevant bits and regardless of their
positions.

We start with our main result regarding OneMax.

Theorem 18. Let (pi)i∈N ∈ (0, 1)N be a monotonically decreasing summable sequence. Set
Σ :=

∑∞
j=1 pj. Let Q be the distribution which assigns the mutation probability 1/i a probability

of pi/Σ.
For any n ∈ N and any pairwise different positive integers b1, . . . , bn the expected run time

of the (1 + 1) EAQ on OneMaxb1,...,bn is O (log(n)/p2n).

Proof. The probability to sample a mutation probability between 1/(2n) and 1/n is

2n
∑

j=n

pj ≥ np2n.

We disregard all iterations in which we do not sample a mutation probability between 1/(2n)
and n (they can only be beneficial). Thus, on average, we consider at least one iteration out of
1/(np2n).

Assuming that x is a search point with n − ℓ ones (in the relevant positions) and that the
sampled bit flip probability p satisfies 1/(2n) ≤ p ≤ 1/n, the probability to make a progress of
exactly one is at least

ℓp(1− p)n−1 ≥ ℓ/(2n)(1 − 1/n)n−1 ≥ ℓ/(2en).

Thus, we have an expected progress in each iteration of at least

ℓ

2en
np2n = O (ℓp2n) .

Therefore, by the multiplicative drift theorem [5, Theorem 3], we need in expectation
O(log(n)/p2n) iterations to optimize function OneMaxb1,...,bn .

For LeadingOnes we obtain the following.

Theorem 19. Let (pi)i∈N and Q as in Theorem 18.
For any n ∈ N and any pairwise different b1, . . . , bn ∈ N the expected run time of the

(1 + 1) EAQ on LeadingOnesb1,...,bn is O (n/p2n).

Proof. This proof follows along similar lines as the one for OneMax. We have again that the
probability to have a bit flip probability between 1/(2n) and 1/n in an iteration is at least np2n.

Let x be a search point with LeadingOnesb1,...,bn(x) = ℓ. Given a mutation probability p
between 1/(2n) and 1/n, the probability to create in one iteration of the (1 + 1) EAQ a search
point y of fitness greater than ℓ is at least

p(1− p)ℓ−1 ≥ 1/(2n)(1 − 1/n)n−1 ≥ 1/(2en).
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Thus, we have an expected progress in each iteration of at least

1

2en
np2n = O(p2n).

Therefore, by the fitness level method (see again [10] for a discussion of this method), we need
in expectation O(n/p2n) iterations to optimize LeadingOnesb1,...,bn .

By choosing the summable sequence with entries as in (6) and s = 1, the two theorems
above immediately yield the following result.

Corollary 20. The expected run time of the described (1+ 1) EAQ with Q using the summable
sequence (6) with s = 1 on OneMaxb1,...,bn is O

(

n log2+ε n
)

and on LeadingOnesb1,...,bn it is
O(n2 log1+ε n).

Note that, just as discussed after Corollary 17, choosing larger and larger s gives asymptot-
ically better and better bounds.

5 Summary and Outlook

We have analyzed the performance of variants of the (1 + 1) EA in the presence of unknown
solution lengths. While for highly concentrated solution length non-uniform mutation prob-
abilities are not advantageous (or at least not to a significant degree), they are crucial in a
setting in which we do not have any knowledge about the solution length. Surprisingly, even
in the latter situation, a sequence of (non-uniform) mutation probabilities exists such that the
corresponding (1 + 1) EA is almost optimal, simultaneously for all possible solution lengths.

We have also investigated a setting in which the relevant bit positions can be arbitrary in
number and position. Possibly even more surprisingly, even this can be handled quite efficiently
by a (1 + 1) EA variant for the two test functions OneMax and LeadingOnes.

We believe the setting of unknown solution length to be relevant for numerous real-world
applications. As a next step toward a better understanding of how this uncertainty can be
tackled efficiently with evolutionary algorithms, we suggest to investigate more challenging
function classes, e.g., starting with the class of all linear functions. It is not clear a priori if
bounds similar to the ones presented in Section 4 can be achieved for such problems.

From a mathematical point of view it would also interesting to investigate the tightness of
our bounds in Section 4. We do not know whether some choice of mutation probabilities gives
an upper bound of O(n log n) for OneMax or O(n2) for LeadingOnes. We recall that the
sequences (1/(n log(n)))n∈N as well as (1/p∞,ε

i )i∈N with p∞,ε
i := lims→∞ ps,εi are not summable.

Removing the gap entirely is therefore likely to require a substantially different approach.
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A Summable Sequences

For a sequence ~p = (pi)i∈N the k-th term of its associated series is the partial sum Σk(~p) =
∑k

i=1 pi. The sequence ~p is said to be summable if its associated series converges, i.e., if
limk→∞Σk exists. For ~p ∈ R≥0 this is the case if and only if the sequence (Σk)k∈N (note
that the series forms a sequence itself) is bounded. The limit limk→∞Σk is often abbreviated
by

∑∞
i=1 pi, a notation that we adopt here as well.

It is well known that the sequence (1/n2)n∈N is summable. Similarly, for all ε > 0 the
sequence (1/n1+ε)n∈N is summable, while the harmonic sequence (1/n)n∈N is not. Note that
the latter is the sequence of non-uniform bit flip probabilities used in the work of Cathabard et
al. [4].

For our purposes in Section 4 we need summable sequences that are as large as possible (with
respect to O-notation). As the examples above show, these sequences have to be in between
(1/n1+ε)n∈N and (1/n)n∈N. The sequences defined after Corollary 17 are already pretty large.
Note that for s→∞ these sequences converge to the sequence with entries

pn := 1/



n

∞
∏

j=1

log(j)(n)




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This sequence is well-defined (since, for each n, almost all terms in the product are 1), but it
is not summable. For the sake of completeness we note that there are summable sequences
which are larger than any sequence (ps,εn )n∈N, but a further discussion is beyond the scope of
this paper.
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