
Global Line Search Algorithm Hybridized with Quadratic
Interpolation and Its Extension to Separable Functions

Petr Baudiš
Czech Technical University in Prague

Fac. of Electrical Eng., Dept. of Cybernetics
Technická 2, 16627 Prague 6, Czech Republic

baudipet@fel.cvut.cz

Petr Pošík
∗

Czech Technical University in Prague
Fac. of Electrical Eng., Dept. of Cybernetics

Technická 2, 16627 Prague 6, Czech Republic

petr.posik@fel.cvut.cz

ABSTRACT

We propose a novel hybrid algorithm“Brent-STEP” for uni-
variate global function minimization, based on the global
line search method STEP and accelerated by Brent’s method,
a local optimizer that combines quadratic interpolation and
golden section steps. We analyze the performance of the hy-
brid algorithm on various one-dimensional functions and ex-
perimentally demonstrate a significant improvement relative
to its constituent algorithms in most cases. We then gener-
alize the algorithm to multivariate functions, adopting the
recently proposed [8] scheme to interleave evaluations across
dimensions to achieve smoother and more efficient conver-
gence. We experimentally demonstrate the highly competi-
tive performance of the proposed multivariate algorithm on
separable functions of the BBOB benchmark. The combina-
tion of good performance and smooth convergence on sepa-
rable functions makes the algorithm an interesting candidate
for inclusion in algorithmic portfolios or hybrid algorithms
that aim to provide good performance on a wide range of
problems.

CCS Concepts

•Mathematics of computing → Solvers; Nonconvex
optimization; •Computing methodologies → Contin-
uous space search;

Keywords

Black-box optimization, Line search, Separable functions,
Hybrid algorithm

1. INTRODUCTION
Continuous black-box optimization concerns finding a min-
imum of a function with no accessible analytical form. One

∗Contact author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain

© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is a minor revision of the work published in 2015 Annual Conference on Genetic
and Evolutionary Computation (GECCO ’15) Proceedings.
ISBN 978-1-4503-3472-3/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739480.2754717

class of multivariate functions investigated regarding black-
box optimization are separable functions — that is, functions
that can be decomposed such that f(x⃗) = ∑i fi(xi).

For some very hard separable functions, exploiting sepa-
rability is the only way to quickly find the minimum.1 A
natural idea to optimize such functions is to use univariate
optimization algorithms on individual dimensions. In [10],
Brent’s method (as implemented in MATLAB fminbnd func-
tion) and the STEP algorithm were used to separately opti-
mize the function along each dimension. Brent’s method was
shown to be fast in case of unimodal functions, but due to
its local nature it fails on multimodal functions. The global
STEP method was able to solve both the uni- and multi-
modal functions, but needed much larger number of function
evaluations. Moreover, their multidimensional variants were
constructed inefficiently: the dimensions were optimized se-
quentially, one by one. As a result, the optimization pro-
cess made hardly any significant progress until the algorithm
started to optimize the last dimension. Another disadvan-
tage of this solution is that the user must specify additional
parameter, the budget for individual line searches.

Although these algorithms rely on the function separa-
bility and despite the above disadvantages, both of these
methods proved to be useful in algorithmic portfolios [1]
and hybrid algorithms [8] that strive to be successful on a
broad range of functions, including the separable ones.

This paper builds on the above mentioned methods, and
provides the following contributions:

1. We combine Brent’s method and STEP into a single
algorithm which converges faster than STEP (in many
cases, it is almost as fast as Brent’s method), while
it preserves the global search ability of STEP (thus
solving a larger proportion of functions than Brent’s
method, and often doing it faster).

2. We suggest a better way of making a multidimensional
variant of this method. As opposed to solving the 1D
problem in all dimensions sequentially, we use the gen-
eral idea [8] to interleave the steps in individual dimen-
sions, but modify it by updating the full coordinates
of sampled points based on results obtained in other
dimensions so far.

The paper is organized as follows: In Sec. 2 we describe
our hybrid univariate optimization algorithm and its mul-
tivariate extension. In Sec. 3 we outline our experimental
1A good example is the Skew Rastrigin-Bueche (f4) in the
BBOB benchmark [3, 6].

257

setup for benchmarking both univariate and multivariate op-
timization performance, and in Sec. 4 we present and ana-
lyze the benchmark results. We conclude and outline future
work in Sec. 5.

2. ALGORITHM PRESENTATION
The algorithm proposed in this paper is a hybrid of two
techniques: Brent’s method and STEP. Algorithms based
on these two methods belong to the best performing BBOB-
2009 algorithms for the class of separable functions [5]. Let
us first shortly review the two methods. We will then out-
line the approach to combine them and consequent required
modifications to the individual methods. Finally, we will
consider extending them from univariate to multivariate op-
timization without optimizing dimensions one by one.

2.1 Brent’s Method
Brent’s method [2] is a classic local line search method en-
riching a golden section search with quadratic interpolation
(QI) to speed up its convergence on functions with continu-
ous second derivative. Detailed description of this standard
algorithm can be found in [13, Sec. 10.2]. Its implementation
is part of many scientific toolboxes (see e.g. function fminbnd

in MATLAB or minimize_scalar in scipy.optimize).
In each iteration of the Brent’s method, a parabola is

interpolated through the three best-so-far sampled points.
The point at the minimum of the parabola is considered
for the next sample, provided that it passes a convergence
criterion which (roughly speaking) ensures that the samples
converge to a single point by the virtue of each sample being
closer to the minimum best-so-far point than to the other
two.2 If the point is not accepted, a golden section step splits
the interval between the best-so-far point and the domain
bound which contained the proposed point.

2.2 STEP
STEP [7] is the acronym of “Select the Easiest Point”. It is a
global line search method which iteratively divides the initial
domain into increasing number of intervals by evaluating
a point in the middle of one of them. The interval to be
split into halves is chosen on the basis of its difficulty which
estimates how hard it will be to find an improvement by
sampling from that particular interval.
To estimate the difficulty of (finding an improvement in-

side) an interval, a quadratic model is used. Assume that
a particular interval is defined by 2 previously sampled and
evaluated boundary points, (x1, f1) and (x2, f2). A parabola
y(x) is estimated such that it intersects both boundary points
and improves the best solution so far (fBSF), such that
y(x) = ymin = fBSF − ǫ for some x ∈ [x1, x2]. The mini-
mal curvature required for such a quadratic function is used
as the interval difficulty.

2.3 Hybrid Brent-STEP Algorithm
The proposed hybrid combines Brent’s and STEP methods
in a divide and conquer manner. Both methods divide in-
tervals into smaller parts. If possible, a step of local Brent’s
method is applied in a chosen search space part. If Brent’s
method does not seem to be profitable, a step of the global
STEP method is applied.
2In fact, there are more sample acceptance tests and the
convergence criterion uses a heuristical time delay, but this
is not relevant in our application.

In any time instant, the division of the search space into
intervals is given by a sequence of points (x1, . . . , xN), x1 <

x2 < . . . < xN . All these points are evaluated, their function
values are (f1, . . . , fN), fi = f(xi). Each pair of successive
x-values defines an interval, each triple of successive x-values
defines a so-called neighboring intervals pair (NIP). There
are thus N − 1 intervals, and N − 2 NIPs.

Our hybrid algorithm repeatedly inspects the available in-
tervals bounded by points sampled so far, checks if Brent’s
iteration seems profitable (see below) in any NIP, and falls
back to the STEP method to perform a global optimization
step if that is not the case.

Brent’s branch: Since each NIP is defined by 3 evalu-
ated points, it is easy to check if these points bracket a min-
imum (that is, fi > fi+1 < fi+2). In that case it is possible to
use quadratic interpolation to find an estimate of the mini-
mum inside this NIP. Among all the NIPs which bracket a
minimum, we choose the NIP with the best estimated min-
imum.3 If the estimated minimum is nonnegligibly better
than the best solution so far (ymin ≤ fBSF − ǫ), we make an
iteration of Brent’s method. Whereas the original Brent’s
method used the three best-so-far points for QI, we use the
three NIP boundary points instead as we can apply Brent’s
step in a different NIP in each iteration.4

STEP branch: If there is no NIP promising to improve
the best solution, we perform an iteration of the STEP
method — i.e. the interval with the lowest difficulty is se-
lected and a point in the middle of the interval is sampled.

This process is repeated until a solution of sufficient qual-
ity is found, the function evaluation budget is exhausted, or
until there is no interval sufficiently large to be halved. A
high-level description of this process is presented as Alg. 1.

Let us reiterate that this algorithm uses two different
quadratic models for two different purposes:

1. In Brent’s method, to estimate the profitability of us-
ing a QI step inside a NIP, the quadratic model is fit to
three points (interval boundaries). The estimated min-
imum value of the parabola is used to judge whether it
will be profitable to sample in this NIP; if so, the co-
ordinate of the minimum is used as the next sampling
point.

2. In STEP, to estimate the suitability of an interval to be
split, the difficulty of an interval is computed by fitting
a parabola in such a way that it must pass through
both points defining that interval, and its minimum
must lie on the level fBSF−ǫ somewhere in that interval.
The coefficient of the quadratic term is then used as
a measure of interval difficulty; the coordinate of the
minimum is not used in any way.

In some cases (e.g. the f14 function shown below), Brent’s
method will zone in on the optimum, but eventually the
expected improvement (as estimated by the quadratic inter-
polation) will become insufficient, and Brent’s method is in-
terrupted (although it would still be profitable to continue

3Unimodal functions will typically have only a single NIP
bracketing a minimum.
4Considering the standard description of Brent’s method,
e.g. in [13], we use a modified variable assignment as follows:
variables a and b are set to the boundary points of a NIP, x
is set to the third point inside the NIP, w and v are set to
the better and worse of a and b, respectively, u is set to x,
and e is set to the size of the smaller interval in the pair.

258

Algorithm 1: Univariate Brent-STEP algorithm

Input: f – function to be optimized, X = (xi, fi)
3
i=1 –

three evaluated points, such that x1 and x3 are
lower and upper boundary, respectively, k – the
period of unconditionally triggering Brent’s
iteration.

Output: (xBSF, fBSF) - estimate of the minimum.
1 begin
2 t←Ð 0
3 (xBSF, fBSF)←Ð best of X.
4 while termination criteria are not met do
5 t←Ð t + 1
6 B ←Ð choose the NIPs bracketing a minimum.
7 i, ymin ←Ð find the most promising NIP in B.
8 if ymin ≤ fBSF − ǫ or mod(t, k) = 0 then
9 xs ←Ð sample from NIP i using Brent’s step.

10 else
11 i←Ð find interval with lowest difficulty.
12 xs ←Ð sample the middle point of interval i.

13 fs ←Ð f(xs)
14 (xBSF, fBSF)←Ð update BSF using (xs, fs).
15 Incorporate (xs, fs) into X such that

x1 < x2 < . . . < xN .

with the local search). The algorithm switches to STEP
which will never sample the interval again (never trigger-
ing a possible Brent’s method restart) because its difficulty
measure is too unfavorable. Therefore, as an important re-
laxation of the conditions above, every k iterations we allow
an iteration of Brent’s method even if it is not estimated as
a sufficient improvement to fBSF.

2.4 Multivariate Generalization
As we already mentioned, solving D-dimensional separable
problem as D independent 1D problems is a plausible idea,
but not very efficient. Rate of convergence and especially
its steadiness would be much improved if the solvers in in-
dividual dimensions could cooperate. Steady convergence
from the beginning is especially important for expensive op-
timization scenarios and in portfolios with online algorithm
selection based on performance within the same run.
The sequential multivariate versions of Brent’s method

and STEP (in [10] denoted as LSfminbnd and LSstep, re-
spectively) worked in the following way. A random point
was first chosen in the search space; we call this point a con-
text (and this is the only stochastic part of the algorithm).
The fitness function was then optimized along the first axis
taking all the other coordinate values from the context. Af-
ter the optimization in the first dimension was finished, the
first coordinate of the context was updated to the best solu-
tion found during the univariate search. The same process
was then repeated for all the remaining dimensions.
We modify this approach by interleaving the individual

univariate solvers. Such an approach is quite usual in lo-
cal search methods, e.g. Rosenbrock’s [12], but for global
line search methods in general, and for the STEP algorithm
in particular, it was first proposed recently as part of the
HCMA algorithm [8]. In our implementation, a single di-
mension is chosen in a round-robin fashion, and the algo-
rithm associated with that dimension performs a single iter-

ation. If an improvement ∆fBSF of the best-so-far solution
is found, the context is updated and propagated to all the
other univariate solvers immediately to update their states.
Each other solver also updates (by function separability) the
function values of all the points sampled so far by ∆fBSF.

In HCMA [8], the context was updated only after a com-
plete pass through all dimensions, which allowed the hybrid
algorithm to test the separability of the function.

It is worth noting that we also extensively experimented
with various dimension selection strategies [9]“smarter”than
round-robin, especially based on the minimal interval diffi-
culty, but the improvement compared to the round-robin
strategy was insignificant.

3. EXPERIMENTAL PROCEDURE
To study the behavior of the Brent-STEP (B-S) algorithm
in univariate search in contrast to its constituent meth-
ods5 (Brent and STEP), we evaluated the BBOB bench-
mark functions with scalar arguments, although they are
typically used for multivariate benchmarking; most of them
can be used this way. We do not consider functions 8, 9, 17,
18, 19, 20 and 24 since these cannot be evaluated with scalar
argument or yield a constant function. We also do not de-
tail results for 1D versions of functions 2, 3, 11, 12, and 13,
which are very similar in shape and results to some of the
other reference functions which are part of the comparison.

To test multivariate performance, we compared the pro-
posed interleaved multivariate Brent-STEP method (ND-
sqistep) with

● the interleaved version of the STEP method (NDstep),
which should reveal the benefit of hybridizing STEP
with Brent’s method,

● the non-interleaved versions of Brent (LSfminbnd) and
STEP (LSstep) as submitted for BBOB-2009 [10], which
shall reveal the benefit of interleaving the interations
in individual dimensions, and

● HCMA [8] which is a competitive hybrid algorithm
combining NEWUOA, STEP and a CMA-ES variant
(and uses a variant of interleaved STEP on separable
functions until non-separability is detected).

These algorithms are compared on the whole testbed again.
We ran experiments according to [4] on the benchmark

functions given in [3, 6]. We used the BBOB2015 set of
instances for conducting benchmarks.

We follow the STEP algorithm settings as described in
[10], in particular we set ǫ = 10−8. To facilitate contin-
ued Brent runs on functions with poor STEP convergence
as described above, we unconditionally trigger the Brent’s
method every k = 10 iterations. The algorithms are wrapped
in a multistart strategy that performs a random restart if
the algorithm did not yield an improving result for 2000
iterations.

4. RESULTS AND DISCUSSION
First, we show results of the hybrid Brent-STEP algorithm
on various univariate functions and analyze its performance

5We used our own Python STEP implementation for bench-
marking STEP and the bounded scalar minimization method
of SciPy 0.14.0 for benchmarking Brent’s method.

259

B-S

Brent

STEP

Figure 1: Bootstrapped empirical cumulative distri-
bution of the number of objective function evalua-
tions (FEvals) for 50 targets in 10[−8..2] for all con-
sidered univariate functions.

relative to the constituent algorithms. Next, we turn to the
multivariate case and compare the performance of Brent-
STEP as we proposed it to other previously published algo-
rithms focused on separable functions.
The expected running time (ERT), used in the figures

and tables, depends on a given target function value, ft =
fopt + ∆f . It is computed over all relevant trials as the
number of function evaluations executed during each trial
while the best function value did not reach ft, summed over
all trials, and divided by the number of trials that actually
reached ft [4, 11]. Statistical significance is tested with
the rank-sum test for a given target ∆ft using, for each trial,
either the number of needed function evaluations to reach
∆ft (inverted and multiplied by −1), or, if the target was
not reached, the best ∆f -value achieved, measured only up
to the smallest number of overall function evaluations for
any unsuccessful trial under consideration.

4.1 Univariate Experiments
The empirical cumulative distribution function (ECDF) of
ERT across all considered functions is shown in Fig. 1; the
ECDF on individual functions is compared in Figure 2. We
can immediately observe that although there are many func-
tions for which STEP or Brent exhibit some pathological
behavior and have difficulty converging, the Brent-STEP al-
gorithm converges on all of the considered functions, and
is always better than the worse of the constituent methods.
The hybrid algorithm is therefore robust in this regard.
Looking at each of the detailed functions, we can no-

tice three modes of behavior — either the hybrid algorithm
closely matches the performance of the better of the meth-
ods (functions 1, 5, 7, 10, 14, 16, 21 and 22), it lags behind
the better of the methods (only function 6), or the two meth-
ods cooperate in harmony on speeding up the search (highly
multi-modal functions 4, 15, 23).
In case of function 6, we can observe that it is almost

flat on one side of the optimum but very steep on the other
side. Our modification of Brent does not perform well in
this case since instead of the three best-so-far points, we fit

Figure 3: Expected running time (ERT in number
of f-evaluations as log10 value), divided by dimen-
sion for target function value 10−8 versus dimension.
Slanted grid lines indicate quadratic scaling with the
dimension. Different symbols correspond to differ-
ent algorithms given in the legend of f1. Light sym-
bols give the maximum number of function evalu-
ations from the longest trial divided by dimension.
Black stars indicate a statistically better result com-
pared to all other algorithms with p < 0.01 and Bon-
ferroni correction number of dimensions (six). Leg-
end: ○:LSfminbnd, ▽:LSstep, ⋆:HCMA, ◻:NDstep,
△:NDsqistep

the parabola through the three bracketing NIP boundary
points. While the three best-so-far points would all lie on
the flat side of the optimum, the rightmost NIP boundary
remains at the steep side, causing repeated overshooting of
the fitted parabola minimum to the flat side. Brent-STEP
still converges and is faster than plain STEP, though.

The beneficial interplay of the two methods is most appar-
ent on function 23, which has many local optima. The Brent
algorithm, as a very local method, will always slide into the
local optimum near the middle of the domain, while the
STEP method will not explore the optima sufficiently. The
combination of both methods enables simultaneous explo-
ration of all local optima by Brent, with dynamic preference
to spending evaluations on the most promising one.

4.2 Multivariate Experiments
The multivariate results are presented in Fig. 3 (expected
running time— ERT scaling), Fig. 5 (convergence rate across
many instances — ECDF) and in Tables 1 and 2. To high-

260

Brent

B-S

STEP

B-S

STEP

Brent

STEP

B-S

Brent

Brent

B-S

STEP

B-S

STEP

Brent

Brent

B-S

STEP

B-S

Brent

STEP

B-S

STEP

Brent

STEP

B-S

Brent

STEP

B-S

Brent

STEP

B-S

Brent

B-S

Brent

STEP

Figure 2: Bootstrapped empirical cumulative distribution (ECDF) of the number of objective function eval-

uations (FEvals) for 50 targets in 10[−8..2] for each of the detailed univariate functions. The horizontal axis
shows log10 number of FEvals required to reach the proportion of targets marked on the vertical axis. Near
each ECDF graph is also shown a sketch (rotated sideways) of the corresponding univariate function in its
whole domain; the dashed line shows the function log-scaled.

261

Figure 4: Expected running time (ERT in num-
ber of f-evaluations as log10 value) divided by di-
mension versus dimension. The target function
value is chosen such that the bestGECCO2009 ar-
tificial algorithm just failed to achieve an ERT of
10 ×DIM. Different symbols correspond to different
algorithms given in the legend of f1. Light symbols
give the maximum number of function evaluations
from the longest trial divided by dimension. Black
stars indicate a statistically better result compared
to all other algorithms with p < 0.01 and Bonfer-
roni correction number of dimensions (six). Leg-
end: ○:LSfminbnd, ▽:LSstep, ⋆:HCMA, ◻:NDstep,
△:NDsqistep

light the effect of smooth convergence thanks to the inter-
leaved dimension evaluation, we also show ERT scaling plot-
ted for the “expensive” BBOB scenario in Figure 4, where
a substantial progress right from the beginning of the opti-
mization is highly important.
Let us shortly discuss the results of HCMA. Figure 5 shows

it has an advantage in the beginning of the search. The mar-
gin is caused by the use of NEWUOA method, which helps
HCMA to optimize f1 very quickly (see Figs. 3 and 4). It also
helps the method to quickly reach some less demanding tar-
gets on other functions. From this point of view, HCMA has
a considerable advantage. On the other hand, being a gen-
eral method aimed also at non-separable functions, HCMA
must carefully decide whether it will use STEP or other
constituent methods; this is not the case for the other meth-
ods with the assumption of independence hard-wired. From
this point of view, HCMA has a significant disadvantage for
comparison on separable functions.

The difference of NDstep (interleaved) to LSstep (non-
interleaved) is predictable — NDstep converges comparably
smoothly as apparent from the ECDF figure, and with lower
ERT as there is no need to preemptively spend the whole
alotted budget in each dimension.

Moving from STEP to Brent-STEP in multivariate case
(the NDsqistep algorithm) has effects consistent with the
univariate behavior — it always (except f5) improves the
STEP variant, and on f2, where Brent’s method dominated,
it performs comparably.

Thanks to smooth convergence, the ERT for expensive
scenario targets is also improved; on all non-trivial separable
functions, the Brent-STEP algorithm improves the BBOB-
2009 baseline.

5. CONCLUSION
We have reviewed two popular line search methods (Brent
and STEP) that represent the BBOB-2009 baseline for per-
formance on separable functions. We have introduced a new
hybrid algorithm “Brent-STEP” combining these two meth-
ods non-trivially and demonstrated that on univariate and
separable functions the hybrid algorithm in general outper-
forms both of them, in the univariate case often by a wide
margin, and that it is behaving robustly even when one of
the constituent methods is failing to converge.

Separable functions are not a very common class in prac-
tice, but we envision inclusion of the proposed algorithm
in other hybrid methods (akin to HCMA introduced above)
and in algorithm portfolios to efficiently handle the case of
separable or near-separable functions. Even on non-separable
functions, a short run of Brent-STEP might for example
serve to generate an initial population for a followup evolu-
tionary (or other optimization) algorithm run. To facilitate
this direction of research, we are making our implementation
of the algorithm available as open source.6

We consider efficient usage of Brent-STEP in larger al-
gorithm ensembles to be the main course of future work.
Brent-STEP also exhibits suboptimal performance in case
of some pathologically shaped functions (see f6 above), that
could be improved by some heuristic tweaks.

Acknowledgement

This work was supported by the Grant Agency of the Czech
Technical University in Prague, grant No. SGS14/194/OHK3
/3T/13.

6. REFERENCES
[1] B. Bischl, O. Mersmann, H. Trautmann, and

M. Preuß. Algorithm selection based on exploratory
landscape analysis and cost-sensitive learning. In
Proceedings of the 14th annual conference on Genetic
and evolutionary computation, pages 313–320. ACM,
2012.

[2] R. Brent. Algorithms for minimization without
derivatives. Prentice-Hall series in automatic
computation, 1973.

[3] S. Finck, N. Hansen, R. Ros, and A. Auger.
Real-parameter black-box optimization benchmarking
2009: Presentation of the noiseless functions.
Technical Report 2009/20, Research Center PPE,
2009. Updated February 2010.

6https://github.com/pasky/step

262

separable fcts, 5D separable fcts, 20D

NDsqist

LSstep

NDstep

best 2009

HCMA

LSfminb

NDsqist

NDstep

HCMA

best 2009

LSstep

LSfminb

Figure 5: Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/DIM) for 50 targets in 10[−8..2] for all separable functions in 5-D and 20-D. The
“best 2009” line corresponds to the best ERT observed during BBOB 2009 for each single target.

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f1 11 12 12 12 12 12 12 15/15

LSfminb 6.0(2) 6.3(2) 6.7(3) 6.7(3) 6.8(2) 6.8(2) 6.8(2) 15/15
LSstep 92(46) 121(0.0) 129(17) 132(0.0) 132(0.1) 132(0.1) 132(0.1) 15/15

HCMA 1.1(0)
⋆2

0.98(0)
⋆4

0.98(0)
⋆4

0.98(0)
⋆4

0.98(0)
⋆4

0.98(0)
⋆4

0.98(0)
⋆4 15/15

NDstep 1.6(0.2) 2.1(0.1) 2.8(0.1) 3.5(0.1) 4.2(0.2) 5.6(0.1) 6.8(0.3) 15/15
NDsqist 1.6(0.1) 1.9(0.2) 2.1(0.3) 2.2(0.2) 2.2(0.1) 2.2(0.2) 2.2(0.2) 15/15

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f2 83 87 88 89 90 92 94 15/15

LSfminb 1(0.2) 1(0.1) 1(0.1) 1(0.1) 1(0.1) 1(0.1) 1(0.2) 15/15
LSstep 16(3) 16(0.9) 16(2) 15(2) 15(2) 15(2) 15(0.1) 15/15
HCMA 1.5(0.1) 1.6(0.2) 1.8(0.2) 2.0(0.2) 2.2(0.3) 2.5(0.3) 2.8(0.2) 15/15
NDstep 0.72(0.1)↓4 0.81(0.0)↓3 0.88(0.1) 0.97(0.1) 1.1(0.1) 1.2(0.1) 1.4(0.1) 15/15

NDsqist 0.56(0.1)
⋆
↓4 0.59(0.1)

⋆3
↓4 0.63(0.1)

⋆3
↓4 0.72(0.1)

⋆3
↓3 0.79(0.2)

⋆2
↓2 0.90(0.2) 1.0(0.2) 15/15

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f3 716 1622 1637 1642 1646 1650 1654 15/15

LSfminb1(1) 52(49) ∞ ∞ ∞ ∞ ∞ 2e4 0/15
LSstep 2.2(3e-3) 1(8e-3) 1(0.0) 1(0.0) 1(9e-3) 1(0.0) 1(8e-3) 15/15
HCMA 0.29(0.2) 3.0(2) 55(44) 54(43) 55(0.1) 55(320) 55(86) 15/15
NDstep 0.12(0.0) 0.12(0.0) 0.14(0.0) 0.15(0.0) 0.16(0.0) 0.17(0.0) 0.20(0.0) 15/15
NDsqist 0.09(0.0)↓ 0.13(0.0) 0.16(0.0) 0.17(0.0) 0.17(0.1) 0.18(0.0) 0.18(0.0) 15/15

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f4 809 1633 1688 1758 1817 1886 1903 15/15

LSfminb7.8(4) ∞ ∞ ∞ ∞ ∞ ∞ 2e4 0/15
LSstep 2.0(7e-3) 1(7e-3) 1(0.0) 1(0.0) 1(0.0) 1(0.1) 1(0.1) 15/15
HCMA 0.29(0.2)↓3 74(263) 457(1482) 439(2134) 425(688) 410(663) 406(0.2) 13/15
NDstep 0.14(0.0)↓4 0.24(0.1)↓4 0.40(0.1) 0.53(0.1) 0.61(0.1) 0.88(0.1) 0.94(0.1) 15/15

NDsqist 0.15(0.1)↓4 0.21(0.1)↓4 0.29(0.1)
⋆

0.29(0.1)
⋆3

0.30(0.1)
⋆4

0.32(0.1)
⋆4

0.40(0.1)
⋆4 15/15

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f5 10 10 10 10 10 10 10 15/15

LSfminb 13(3) 14(0) 14(0) 14(0) 14(0) 14(0) 14(0) 15/15
LSstep 141(40) 160(0.1) 160(0.1) 160(0.1) 160(0.1) 160(0.1) 160(0.1) 15/15

HCMA 1.3(0.1)
⋆2

1.4(0.2) 1.5(0.3) 1.5(0.2) 1.5(0.3) 1.5(0.2) 1.5(0.2) 15/15
NDstep 1.5(0.1) 1.5(0.1) 1.5(0.1) 1.5(0.1) 1.5(0.1) 1.5(0.1) 1.5(0.1) 15/15
NDsqist 1.5(0.1) 1.5(0.1) 1.5(0.1) 1.5(0.1) 1.5(0.1) 1.5(0.1) 1.5(0.1) 15/15

Table 1: Expected running time (ERT in number of function evaluations) divided by the respective best
ERT measured during BBOB-2009 in dimension 5. The ERT and in braces, as dispersion measure, the half
difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and target, the
corresponding best ERT in the first row. The different target ∆f-values are shown in the top row. #succ
is the number of trials that reached the (final) target fopt + 10

−8. The median number of conducted function
evaluations is additionally given in italics, if the target in the last column was never reached. Entries,
succeeded by a star, are statistically significantly better (according to the rank-sum test) when compared to
all other algorithms of the table, with p = 0.05 or p = 10−k when the number k following the star is larger than
1, with Bonferroni correction by the number of instances.

263

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f1 43 43 43 43 43 43 43 15/15

LSfminb 9.3(2) 10(1) 10(1) 10(1.0) 10(1) 10(1.0) 10(1) 15/15
LSstep 164(14) 175(2) 176(2) 177(0.0) 177(0.0) 177(0.0) 177(0.0) 15/15

HCMA 1.00(0.0)
⋆4

1.0(0.0)
⋆4

1.0(0.0)
⋆4

1.0(0.0)
⋆4

1.0(0.0)
⋆4

1.0(6e-3)
⋆4

1.0(6e-3)
⋆4 15/15

NDstep 2.1(0.1) 2.8(0.1) 3.6(0.1) 4.4(0.1) 5.1(0.0) 6.7(0.1) 8.3(0.1) 15/15
NDsqist 1.9(0.1) 2.3(0.1) 2.5(0.3) 2.5(0.3) 2.5(0.2) 2.5(0.3) 2.5(0.3) 15/15

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f2 385 386 387 388 390 391 393 15/15

LSfminb 1(0.1) 1(0.0) 1(0.1) 1(0.1) 1(0.1) 1(0.1) 1(0.0) 15/15
LSstep 17(0.7) 17(0.4) 17(0.4) 17(0.0) 17(0.2) 17(0.2) 17(0.2) 15/15
HCMA 1.3(0.0) 1.5(0.1) 1.7(0.1) 1.8(0.1) 2.1(0.2) 2.4(0.2) 2.8(0.3) 15/15
NDstep 0.69(0.0)↓4 0.78(0.0)↓4 0.88(0.2) 0.95(0.1) 1.1(0.1) 1.2(0.0) 1.4(0.1) 15/15

NDsqist 0.59(0.1)
⋆2
↓4 0.65(0.1)

⋆3
↓4 0.69(0.1)

⋆3
↓4 0.79(0.1)

⋆2
↓4 0.87(0.1)

⋆3
↓3 1.0(0.2) 1.1(0.1) 15/15

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f3 5066 7626 7635 7637 7643 7646 7651 15/15

LSfminb∞ ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/15
LSstep 1.5(0.1) 1(1e-3) 1(2e-3) 1(2e-3) 1(2e-3) 1(1e-3) 1(2e-3) 15/15
HCMA 0.26(0.0)↓4 0.37(0.1)↓4 0.46(0.1)↓4 0.47(0.1)↓4 0.49(0.1)↓4 0.51(0.1)↓4 0.53(0.1) 15/15
NDstep 0.12(0.0)↓4 0.15(0.0)↓4 0.19(0.0)↓4 0.20(0.0)↓4 0.21(0.0)↓4 0.22(0.0)↓4 0.23(0.0)↓4 15/15
NDsqist 0.14(0.0)↓4 0.16(0.0)↓4 0.19(0.1)↓4 0.19(0.0)↓4 0.20(0.0)↓4 0.20(0.0)↓4 0.21(0.1)↓4 15/15

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f4 4722 7628 7666 7686 7700 7758 1.4e5 9/15

LSfminb∞ ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/15
LSstep 1.6(8e-4) 1(4e-3) 1(5e-3) 1(7e-3) 1(9e-3) 1(0.0) 1(1) 9/15
HCMA 0.42(0.1)↓4 0.67(0.0) 0.90(0.1) 1.1(0.1) 1.5(0.1) 1.8(0.2) 0.11(0.0) 15/15
NDstep 0.19(0.0)↓4 0.30(0.1)↓4 0.46(0.1)↓4 0.60(0.1) 0.72(0.1) 0.86(0.1) 0.05(8e-3) 15/15

NDsqist 0.18(0.1)↓4 0.29(0.1)↓4 0.31(0.0)
⋆3
↓4 0.32(0.0)

⋆4
↓4 0.33(0.0)

⋆4
↓4 0.36(0.1)

⋆4
↓4 0.02(3e-3)

⋆4
↓4 15/15

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f5 41 41 41 41 41 41 41 15/15

LSfminb 16(0.4) 16(6e-3) 16(0) 16(0) 16(0) 16(0) 16(0) 15/15
LSstep 185(5) 187(2) 187(0.0) 187(0.0) 187(0.0) 187(0.0) 187(0.0) 15/15

HCMA 1.2(0.1)
⋆4

1.4(0.4) 1.4(0.4) 1.4(0.3) 1.4(0.4) 1.4(0.4) 1.4(0.2) 15/15
NDstep 1.5(0.0) 1.5(0.0) 1.5(0.0) 1.5(0.0) 1.5(0.0) 1.5(0.0) 1.5(0.0) 15/15
NDsqist 1.5(0.0) 1.5(0.0) 1.5(0.0) 1.5(0.0) 1.5(0.0) 1.5(0.0) 1.5(0.0) 15/15

Table 2: Expected running time (ERT in number of function evaluations) divided by the respective best
ERT measured during BBOB-2009 in dimension 20. The ERT and in braces, as dispersion measure, the
half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and target,
the corresponding best ERT in the first row. The different target ∆f-values are shown in the top row.
#succ is the number of trials that reached the (final) target fopt + 10

−8. The median number of conducted
function evaluations is additionally given in italics, if the target in the last column was never reached. Entries,
succeeded by a star, are statistically significantly better (according to the rank-sum test) when compared to
all other algorithms of the table, with p = 0.05 or p = 10−k when the number k following the star is larger than
1, with Bonferroni correction by the number of instances.

[4] N. Hansen, A. Auger, S. Finck, and R. Ros.
Real-parameter black-box optimization benchmarking
2012: Experimental setup. Technical report, INRIA,
2012.

[5] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Poš́ık.
Comparing results of 31 algorithms from the black-box
optimization benchmarking BBOB-2009. In Workshop
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2010). ACM Press,
2010.

[6] N. Hansen, S. Finck, R. Ros, and A. Auger.
Real-parameter black-box optimization benchmarking
2009: Noiseless functions definitions. Technical Report
RR-6829, INRIA, 2009. Updated February 2010.

[7] S. Langerman, G. Seront, and H. Bersini. S.T.E.P.:
The Easiest Way to Optimize a Function. In IEEE
World Congress on Computational Intelligence.,
Proceedings of the First IEEE Conference on
Evolutionary Computation, pages 519–524 vol.1, 1994.

[8] I. Loshchilov, M. Schoenauer, and M. Sebag.
Bi-population cma-es agorithms with surrogate models
and line searches. In Proceedings of the 15th annual

conference companion on Genetic and evolutionary
computation, pages 1177–1184. ACM, 2013.

[9] P. Poš́ık and P. Baudǐs. Dimension selection in
axis-parallel Brent-STEP method for black-box
optimization of separable continuous functions. In
Proceedings of the 2015 Conference on Genetic and
Evolutionary Computation Companion, New York,
NY, USA, 2015. ACM.

[10] P. Poš́ık. BBOB-benchmarking two variants of the
line-search algorithm. In GECCO ’09: Proceedings of
the 11th annual conference companion on Genetic and
evolutionary computation conference, pages
2329–2336, New York, NY, USA, 2009. ACM.

[11] K. Price. Differential evolution vs. the functions of the
second ICEO. In Proceedings of the IEEE
International Congress on Evolutionary Computation,
pages 153–157, 1997.

[12] H. H. Rosenbrock. An automatic method for finding
the greatest or least value of a function. The
Computer Journal, 3(3):175–184, March 1960.

[13] W. T. Vetterling, S. A. Teukolsky, and W. H. Press.
Numerical recipes in C (2nd edition). Press Syndicate
of the University of Cambridge, 1992.

264

