
ar
X

iv
:1

50
4.

06
26

0v
2

 [
cs

.N
E

]
 1

 O
ct

 2
01

5

First Steps Towards a Runtime Comparison of Natural and
Artificial Evolution

Tiago Paixão
IST Austria

Am Campus 1, 3400,
Klosterneuburg

Jorge Pérez Heredia
University of Sheffield

Sheffield, S1 4DP, United
Kingdom

Dirk Sudholt
University of Sheffield

Sheffield, S1 4DP, United
Kingdom

Barbora Trubenová
IST Austria

Am Campus 1, 3400,
Klosterneuburg

ABSTRACT
Evolutionary algorithms (EAs) form a popular optimisation
paradigm inspired by natural evolution. In recent years the
field of evolutionary computation has developed a rigorous
analytical theory to analyse their runtime on many illustra-
tive problems. Here we apply this theory to a simple model
of natural evolution. In the Strong Selection Weak Mutation
(SSWM) evolutionary regime the time between occurrence
of new mutations is much longer than the time it takes for a
new beneficial mutation to take over the population. In this
situation, the population only contains copies of one geno-
type and evolution can be modelled as a (1+1)-type process
where the probability of accepting a new genotype (improve-
ments or worsenings) depends on the change in fitness.

We present an initial runtime analysis of SSWM, quantify-
ing its performance for various parameters and investigating
differences to the (1+1) EA. We show that SSWM can have
a moderate advantage over the (1+1) EA at crossing fitness
valleys and study an example where SSWM outperforms the
(1+1) EA by taking advantage of information on the fitness
gradient.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

Keywords
Runtime analysis, natural evolution, population genetics,
theory, strong selection weak mutation regime

1. INTRODUCTION
In the last 20 years evolutionary computation has devel-

oped a number of algorithmic techniques for the analysis of
evolutionary and genetic algorithms. These methods typ-
ically focus on runtime, and allow for rigorous bounds on
the time required to reach a global optimum, or other well-
specified high-fitness solutions. The runtime analysis of evo-
lutionary algorithms has become one of the dominant con-
cepts in evolutionary computation, leading to a plethora of
results for evolutionary algorithms [1, 8, 14] as well as novel

optimisation paradigms such as swarm intelligence [14] and
artificial immune systems [9].

Interestingly, although evolutionary algorithms are heav-
ily inspired by natural evolution, these methods have seldom
been applied to natural evolution as studied in mathemat-
ical population genetics. This is a missed opportunity: the
time it takes for a natural population to reach a fitness peak
is an important question for the study of natural evolution.
The kinds of results obtained from runtime analysis, namely
how the runtime scales with genome size and mutation rate,
are of general interest to population genetics. Moreover,
recently there has been a renewed interest in applying com-
puter science methods to problems in evolutionary biology
with contributions from unlikely fields such as game the-
ory [2], machine learning [21] and Markov chain theory [3].
Here, we present a first attempt at applying runtime analy-
sis to the so-called Strong Selection Weak Mutation regime
of natural populations.

The Strong Selection Weak Mutation model applies when
the population size, mutation rate, and selection strength
are such that the time between occurrence of new mutations
is long compared to the time a new genotype takes to replace
the parent genotype [6]. Under these conditions, only one
genotype is present in the population most of the time, and
evolution occurs through “jumps” between different geno-
types, corresponding to a new mutation replacing the res-
ident genotype in the population. The relevant dynamics
can then be characterized by a (1+1)-type stochastic pro-
cess. This model is obtained as a limit of many other models,
such as the Wright-Fisher model. One important aspect of
this model is that new solutions are accepted with a proba-

bility 1−e−2β∆f

1−e−2Nβ∆f that depends on the fitness difference ∆f

between the new mutation and the resident genotype. Here
N reflects the size of the underlying population, and β rep-
resents the selection strength. One can think of f as defin-
ing a phenotype that is under selection to be maximized; β
quantifies how strongly a unit change in f is favoured. This
probability was first derived by Kimura [12] for a population
of N individuals that are sampled binomially in proportion
to their fitness.

This choice of acceptance function introduces two main
differences to the (1+1) EA: First, solutions of lower fit-

http://arxiv.org/abs/1504.06260v2

ness (worsenings) may be accepted with some positive prob-
ability. This is reminiscent of the Metropolis algorithm
(Simulated Annealing with constant temperature) which can
also accept worsenings (see, e. g. [10]). Second, solutions of
higher fitness can be rejected, since they are accepted with
a probability that is roughly proportional to the relative ad-
vantage they have over the current solution.

We cast this model of natural evolution in a (1+1)-type
algorithm referred to as SSWM, using common mutation
operators from evolutionary algorithms. We then present
first runtime analyses of this process. Our aims are manifold:

• to explore the performance of natural evolution in the
context of runtime, comparing it against simple evolu-
tionary algorithms like the (1+1) EA,

• to investigate the non-elitistic selection mechanism im-
plicit to SSWM and its usefulness in the context of
evolutionary algorithms, and

• to show that techniques for the analysis of evolutionary
algorithms can be applied to simple models of natural
evolution, aiming to open up a new research field at
the intersection of evolutionary computation and pop-
ulation genetics.

Our results are summarised as follows. For the simple
function OneMax we show in Section 3 that with suitably
large population sizes, when Nβ ≥ 1

2
ln(11n), SSWM is an

effective hill climber as it optimises OneMax in expected
time O((n log n)/β). However, when the population size is
by any constant factor smaller than this threshold, we en-
counter a phase transition and SSWM requires exponential
time even on OneMax.

We then illustrate the particular features of the selection
rule in more depth. In Section 4 we consider a function
Cliffd where a fitness valley of Hamming distance d needs
to be crossed. For d = ω(logn) the (1+1) EA needs time

Θ(nd), but SSWM is faster by a factor of eΩ(d) because of
its ability to accept worse solutions. Finally, in Section 5
we illustrate on the function Balance [18] that SSWM can
drastically outperform the (1+1) EA because the fitness-
dependent selection drives it to follow the steepest gradient.
While the (1+1) EA needs exponential time in expectation,
SSWM with overwhelming probability finds an optimum in
polynomial time.

The main technical difficulties are that in contrast to the
simple (1+1) EA, SSWM is a non-elitist algorithm, hence
fitness-level arguments based on elitism are not applicable.
Level-based theorems for non-elitist populations [4] are not
applicable either because they require population sizes larger
than 1. Moreover, while for the (1+1) EA transition proba-
bilities to better solutions are solely determined by probabil-
ities for flipping bits during mutation, for SSWM these addi-
tionally depend on the probability of fixation and hence the
absolute fitness difference. The analysis of SSWM is more
challenging than the analysis of the (1+1) EA, and requires
tailored proof techniques. We hope that these techniques
will be helpful for analysing other evolutionary algorithms
with fitness-based selection schemes.

2. PRELIMINARIES
We define the optimisation time of SSWM as the first

generation where the optimum is accepted as new individual.

As can be seen from the description above, the model
resembles the (1+1) EA in that it only maintains one geno-
type that may be replaced by mutated versions of it. The
candidate solutions are accepted with probability

pfix(∆f) =
1− e−2β∆f

1− e−2Nβ∆f
(1)

where ∆f 6= 0 is the fitness difference to the current solution
and N ≥ 1 is the size of the underlying population. For
∆f = 0 we define pfix(0) := lim∆f→0 pfix(∆f) = 1

N
, so that

pfix is continuous and well defined for all ∆f . If N = 1, this
probability will be pfix(s) = 1, meaning that any offspring
will be accepted, and if N →∞, it will only accept solution
for which ∆f > 0. This expression was first derived by
Kimura [12] and represents the probability of fixation, that
is, the probability that a gene that is initially present in one
copy in a population of N individuals is eventually present
in all individuals.

Since the acceptance function in this algorithm depends
on the absolute difference in fitness between genotypes, we
include a parameter β ∈ (0, 1] that effectively scales the fit-
ness function and that in population genetics models the
strength of selection on a phenotype. By incorporating β as
a parameter of this function (and hence of the algorithm)
we avoid having to explicitly rescale the fitness functions
we analyse, while allowing us to explore the performance of
this algorithm on a family of functions. This function has
a sigmoid shape (strictly increasing - see Lemma 15) with
limits lim∆f→−∞ pfix(∆f) = 0 and lim∆f→∞ pfix(∆f) = 1.
As such, for large |β∆f | this probability of acceptance is
close to the one in the (1+1) EA, as long as N > 1, de-
feating the purpose of the comparison. By bounding β to 1,
we avoid artefactual results obtained by inflating the fitness
differences between genotypes.

We can then cast the SSWM regime as Algorithm 1, where
the function mutate(x) can be either standard bit muta-
tion (all bits are mutated independently with probability
pm = 1/n, which we call global mutations) or flipping a
single bit chosen uniformly at random (which we call local
mutations). SSWM is valid when the expected number of
new mutants in the population is much less than one, which
implies that local mutations are a better approximation for
this regime. However, we also consider global mutations in
order to facilitate a comparison with evolutionary algorithms
such as the (1+1) EA (Algorithm 2), which uses global mu-
tations.

Algorithm 1 SSWM

Choose x ∈ {0, 1}n uniformly at random
repeat

y ← mutate(x)
∆f = f(y)− f(x)
Choose r ∈ [0, 1] uniformly at random
if r < pfix(∆f) then

x← y
end if

until stop

Next, we derive upper and lower bounds for pfix(∆f) that
will be useful throughout the manuscript.

Algorithm 2 (1+1) EA

Choose x ∈ {0, 1}n uniformly at random
repeat

y ← mutate(x)
if f(y) ≥ f(x) then

x← y
end if

until stop

Lemma 1. For every β ∈ R
+ and N ∈ N

+ the following
inequalities hold. If ∆f ≥ 0 then

2β∆f

1 + 2β∆f
≤ pfix(∆f) ≤ 2β∆f

1− e−2Nβ∆f
.

If ∆f ≤ 0 then

−2β∆f

e−2Nβ∆f
≤ pfix(∆f) ≤ e−2β∆f

e−2Nβ∆f − 1
.

Proof. In the following we frequently use 1 + x ≤ ex and
1− e−x ≤ 1 for all x ∈ R as well as ex ≤ 1

1−x
for x < 1.

If x ≥ 0,

pfix(∆f) =
1− e−2β∆f

1− e−2Nβ∆f
≥ 1− e−2β∆f

≥ 1− 1

1 + 2β∆f
=

2β∆f

1 + 2β∆f

as well as

pfix(∆f) =
1− e−2β∆f

1− e−2Nβ∆f
≤ 2β∆f

1− e−2Nβ∆f
.

If ∆f ≤ 0,

pfix(∆f) =
e−2β∆f − 1

e−2Nβ∆f − 1
≤ e−2β∆f

e−2Nβ∆f − 1
.

Using the fact that e−x − 1 ≤ e−x:

pfix(∆f) =
e−2β∆f − 1

e−2Nβ∆f − 1
≥ e−2β∆f − 1

e−2Nβ∆f
≥ −2β∆f

e−2Nβ∆f
.

The previous bounds for ∆f > 0 show that pfix is roughly
proportional to the fitness difference between solutions β∆f .

3. SSWM ON ONEMAX
The function OneMax(x) :=

∑n
i=1 xi has been studied

extensively in natural computation because of its simplic-
ity. It represents an easy hill climbing task, and it is the
easiest function with a unique optimum for all evolutionary
algorithms that only use standard bit mutation for varia-
tion [20]. Showing that SSWM can optimise OneMax effi-
ciently serves as proof of concept that SSWM is a reasonable
optimiser. It further sheds light on how to set algorithmic
parameters such as the selection strength β and the popula-
tion size N . To this effect, we first show a polynomial upper
bound for the runtime of SSWM on OneMax. We then
show that SSWM exhibits a phase transition on its runtime
as a function of Nβ; changing this parameter by a constant
factor leads to exponential runtimes on OneMax.

Another reason why studying OneMax for SSWM makes
sense is because not all evolutionary algorithms that use

a fitness-dependent selection perform well on OneMax.
Oliveto and Witt [17] showed that the Simple Genetic Algo-
rithm, which uses fitness-proportional selection, fails badly
on OneMax even within exponential time, with a very high
probability.

3.1 Upper Bound for SSWM on OneMax
We first show the following simple lemma, which gives an

upper bound on the probability of increasing or decreasing
the number of ones in a search point by k in one mutation.

Lemma 2. For any positive integer k > 0, let mut(i, i±k)
for 0 ≤ i ≤ n be the probability that a global mutation of a
search point with i ones creates an offspring with i±k ones.
Then

mut(i, i+ k) ≤
(

n− i

n

)k (

1− 1

n

)n−k

· 1.14
k!

mut(i, i− k) ≤
(

i

n

)k (

1− 1

n

)n−k

· 1.14
k!

.

The proof is omitted due to space restrictions; it uses ar-
guments from the proof of Lemma 2 in [20]. The second
inequality follows immediately from the first one due to the
symmetry mut(i, i− k) = mut(n− i, n− i+ k).

Now we introduce the concept of drift and find some
bounds for its forward and backward expression.

Definition 1. Let Xt be the number of ones in the cur-
rent search point, for all 1 ≤ i ≤ n the forward and backward
drifts are

∆+(i) = E[Xt+1 − i | Xt = i,Xt+1 > i] · P (Xt+1 > i | Xt = i)

∆−(i) = E[Xt+1 − i | Xt = i,Xt+1 < i] · P (Xt+1 < i | Xt = i)

and the net drift is the expected increase in the number of
ones

∆(i) = ∆+(i) + ∆−(i).

Lemma 3. Consider SSWM on OneMax and mutation
probability pm = 1

n
. Then for global mutations, the forward

and backward drifts can be bounded by

∆+(i) ≥ n− i

n

(

1− 1

n

)n−1

pfix(1)

|∆−(i)| ≤ 1.14

(

1− 1

n

)n−1

· (pfix(−1) + e · pfix(−2)) .

For local mutations the relations are as follows

∆+(i) =
n− i

n
· pfix(1)

|∆−(i)| ≤ pfix(−1).

Proof. For global mutations firstly we compute the lower
bound for the forward drift,

∆+(i) =

n−i
∑

j=1

mut(i, i+ j) · j · pfix(j)

where mut(i, i+ j) is the probability of mutation increasing
the OneMax value by j and i is the number of ones of the
current search point.

∆+(i) ≥ mut(i, i+ 1) · pfix(1)

≥ n− i

n

(

1− 1

n

)n−1

pfix(1).

Secondly we calculate the upper bound for the backward
drift

|∆−(i)| =
i
∑

j=1

mut(i, i− j) · j · pfix(−j)

where j is now the number of new zeros. We can upper
bound mut(i, i− j) for the probability of flipping any j bits,
which from Lemma 2 yields

≤
i
∑

j=1

1.14

j!
·
(

1− 1

n

)n−1

· j · pfix(−j).

Separating the case j = 1 and bounding the remaining fixa-
tion probabilities by pfix(−2)

≤ 1.14

(

1− 1

n

)n−1

pfix(−1)

+ 1.14

(

1− 1

n

)n−1

·
i
∑

j=2

1

(j − 1)!
· pfix(−2)

≤ 1.14

(

1− 1

n

)n−1

(pfix(−1) + e · pfix(−2)).

Finally, the case for local mutations is straightforward since
the probability of a local mutation increasing the number of
ones is n−i

n
and that of decreasing it is at most 1.

The following theorem shows that SSWM is efficient on
OneMax for Nβ ≥ 1

2
ln(11n), since then pfix(1) starts be-

ing greater than n ·pfix(−1) allowing for a positive drift even
on the hardest fitness level (n− 1 ones). The upper bound
increases with 1/β; this makes sense as for small values of β
we have pfix(1) ≈ 2β (cf. Lemma 1). In this regime abso-
lute fitness differences are small and improvements are only
accepted with a small probability.

Theorem 4. For Nβ ≥ 1
2
ln(11n) and β ∈ (0, 1], the ex-

pected optimisation time of SSWM on OneMax with local or

global mutations is O
(

n logn
β

)

for every initial search point.

Proof. The fixation probabilities can be bounded as follows

pfix(1) =
1− e−2β

1− e−2Nβ
≥ 1− e−2β

and for Nβ ≥ 1
2
ln(11n)

pfix(−1) =
e2β − 1

e2Nβ − 1
≤ e2β − 1

11n− 1
(2)

pfix(−2) =
e4β − 1

e4Nβ − 1
≤ e4β − 1

(11n)2 − 1
= O(n−2).

Using Lemma 3

∆(i) ≥ 1

e

[

n− i

n
· (1− e−2β)− 1.14

e2β − 1

11n − 1
−O(n−2)

]

We need a positive net drift even in the last step (n−i = 1)

∆(n− 1) ≥ 1

e

[

1

n
· (1− e−2β)− 1.14

e2β − 1

11n − 1
−O(n−2)

]

≥ 1

e

[

1

11n − 1

(

11n− 1

n
· (1− e−2β)− 1.14(e2β − 1)

)]

≥ 1

e

[

1− e−2β

11n− 1

(

11− 1

n
− 1.14 · e2β − 1

1− e−2β

)]

using the relation ex = ex−1
1−e−x

≥ 1

e

[

1− e−2β

11n− 1

(

11− 1

n
− 1.14 · e2β

)]

since β ∈ (0, 1] then e2β ≤ e2 < 7.5

≥ 1

e

[

1− e−2β

11n− 1

(

2.5− 1

n

)]

≥ 1.5

e
· 1− e−2β

11n− 1

also for β ∈ (0, 1] we have 1.5(1− e−2β) ≥ β

≥ β

e
· 1

11n − 1

which is positive for enough large n.
Therefore we can lower bound the drift in any point as

∆(i) = Ω

(

n− i

n
· β
)

(3)

Now we apply Johannsen’s variable drift theorem [11] to
the number of zeros. Using h(z) := E(Xt −Xt+1 | Xt = z)
then

E(T | X0) ≤ zmin

h(zmin)
+

∫ X0

zmin

1

h(z)
dz

where z is the number of zeros, Xt the current state and T
the optimisation time. Introducing zmin = 1, X0 = n and

∆(i) = Ω
(z

n
· β
)

= h(z)

we obtain an upper bound for the runtime

E(T | X0) ≤ 1

h(1)
+

∫ n

1

1

h(z)
dz = O

(

n

β

)

+O

(∫ n

1

n

βz
dz

)

= O

(

n

β
(1 + log n)

)

= O

(

n log n

β

)

.

3.2 A Critical Threshold for SSWM on One-
Max

The upper bound from Theorem 4 required Nβ ≥
1
2
ln(11n) = 1

2
ln(n) + O(1). This condition is vital since if

Nβ is chosen too small, the runtime of SSWM on OneMax
is exponential with very high probability, as we show next.

If Nβ is by a factor of 1 − ε, for some constant ε > 0,
smaller than 1

2
lnn, the optimisation time is exponential

in n, with overwhelming probability. SSWM therefore ex-
hibits a phase transition behaviour: changing Nβ by a con-
stant factor makes a difference between polynomial and ex-
ponential expected optimisation times on OneMax.

Theorem 5. If 1 ≤ Nβ ≤ 1−ε
2

lnn for some 0 < ε < 1,
then the optimisation time of SSWM with local or global

mutations on OneMax is at least 2cn
ε/2

with probability

1− 2−Ω(nε/2), for some constant c > 0.

The idea behind the proof of Theorem 5 is to show that
for all search points with at least n − nε/2 ones, there is a
negative drift for the number of ones. This is because for
small Nβ the selection pressure is too weak, and worsenings
in fitness are more likely than steps where mutation leads
the algorithm closer to the optimum.

We then use the negative drift theorem with self-loops
presented in Rowe and Sudholt [19] (an extension of the
negative drift theorem [16] to stochastic processes with large
self-loop probabilities). It is stated in the following for the
sake of completeness.

Theorem 6 (Negative drift with self-loops [19]).
Consider a Markov process X0, X1, . . . on {0, . . . ,m} and
suppose there exists integers a, b with 0 < a < b ≤ m and
ε > 0 such that for all a ≤ k ≤ b the expected drift towards 0
is

E(k −Xt+1 | Xt = k) < −ε · (1− pk,k)

where pk,k is the self-loop probability at state k. Further
assume there exists constants r, δ > 0 (i. e. they are inde-
pendent of m) such that for all k ≥ 1 and all d ≥ 1

pk,k−d, pk,k+d ≤
r(1− pk,k)

(1 + δ)d
.

Let T be the first hitting time of a state at most a, starting
from X1 ≥ b. Let ℓ = b− a. Then there is a constant c > 0
such that

Pr
(

T ≤ 2cℓ/r
)

= 2−Ω(ℓ/r).

The proof of Theorem 5 applies Theorem 6 with respect
to the number of zeros on an interval of [0, nε/2].

Proof of Theorem 5. We only give a proof for global muta-
tions; the same analysis goes through for local mutations
with similar, but simpler calculations.

Let pk,j be the probability that SSWM will make a tran-
sition from a search point with k ones to one with j ones.
We start by pessimistically estimating transition probabili-
ties and applying the negative drift theorem with regards to
pessimistic transition probabilities p′k,j defined later. The
drift theorem will be applied, taking the number of zeros as
distance function to the optimum. Our notation refers to
numbers of ones for simplicity. Throughout the remainder
of the proof we assume k ≥ n− nε/2.

From Lemma 2 and every 1 ≤ j ≤ n− k we have

pk,k+j ≤
1.14

j!
·
(

n− k

n

)j

·
(

1− 1

n

)n−j

· pfix(j)

≤ 1.14

j!
·
(

n− k

n

)j

· pfix(j) (4)

≤ 1.14 ·
(

nε/2−1
)j

· pfix(j).

Cf. Lemma 1 we estimate pfix(j) by pfix(j) ≤ 2βj

1−e−2Nβj .

This gives

pk,k+j ≤
(

nε/2−1
)j

· 3βj

1− e−2Nβj
:= p′k,k+j.

The expected drift towards the optimum, ∆+(k), is then
bounded as follows

∆+(k) ≤
n−k
∑

j=1

j · p′k,k+j

≤
n−k
∑

j=1

j ·
(

nε/2−1
)j

· 3βj

1− e−2Nβj

≤ 3β

1− e−2Nβ

∞
∑

j=1

j2 ·
(

nε/2−1
)j

.

Using
∑∞

j=1 j
2 · xj = x(1+x)

(1−x)3
≤ x(1 + 5x) for 0 ≤ x ≤ 0.09

(this holds for large enough n as x = nε/2−1 = o(1)) as well
as Nβ ≥ 1

≤ 3β

1− e−2
· nε/2−1 ·

(

1 + 5nε/2−1
)

.

On the other hand,

pk,k−1 ≥
k

n
·
(

1− 1

n

)n−1

· pfix(−1) ≥
n− nε/2

en
· pfix(−1)

=
pfix(−1)

e
·
(

1− nε/2−1
)

≥ 1

e
· 2β

e2Nβ
·
(

1− nε/2−1
)

using e2Nβ ≤ e(1−ε) lnn = n1−ε

≥ 2β · nε

en
·
(

1− nε/2−1
)

:= p′k,k−1.

We further define p′k,k−j := 0 for j ≥ 2. The expected
increase in the number of ones at state k, denoted ∆′(k),
with regards to the pessimistic Markov chain defined by p′k,j
is hence at most

∆′(k)

≤
n−k
∑

j=1

j · p′k,k+j − p′k,k−1

≤ 3β

1− e−2
· nε/2−1 ·

(

1 + 5nε/2−1
)

− 2β · nε

en
·
(

1− nε/2−1
)

= 2β · nε/2−1 ·
(

3

2
· 1 + 5nε/2−1

1− e−2
− nε/2

e
·
(

1− nε/2−1
)

)

= − Ω(β · nε−1).

Now, the self-loop probability for the pessimistic Markov
chain is at least p′k,k ≥ 1 − ∑n−k

j=1 p′k,k+j − p′k,k−1 ≥ 1 −
∑n−k

j=1 j · p′k,k+j − p′k,k−1 = 1 − O(βnε−1), hence the first
condition of the drift theorem is satisfied.

The second condition on exponentially decreasing transi-
tion probabilities follows from p′k,k−1 ≤ 1− p′k,k, p

′
k,k−j = 0

for j ≥ 2 and, for all j ∈ N,

p′k,k+j =
(

nε/2−1
)j

· 3βj

1− e−2Nβj
≤
(

nε/2−1
)j

· 3βj

1− e−2

multiplying by p′k,k−1/p
′
k,k−1

= p′k,k−1 ·

(

nε/2−1
)j

· 3βj
1−e−2

2β·nε

en
· (1− nε/2−1)

= p′k,k−1 · n−ε/2 ·
(

nε/2−1
)j−1

· e

1− nε/2−1
· 3
2
· j

1− e−2

≤ p′k,k−1 · 2−j ≤ (1− p′k,k) · 2−j

where the penultimate inequality holds for large enough n.
This proves the second condition for δ := 1 and r := 2. Now
the negative drift theorem, applied to the number of zeros,
proves the claimed result.

4. ON TRAVERSING FITNESS VALLEYS
We have shown that with the right parameters, SSWM

is an efficient hill climber. On the other hand, in contrast
to the (1+1) EA, SSWM can accept worse solutions with
a probability that depends on the magnitude of the fitness
decrease. This is reminiscent of the Metropolis algorithm—
although the latter accepts every improvement with proba-
bility 1, whereas SSWM may reject improvements.

Jansen and Wegener [10] compared the ability of the
(1+1) EA and a Metropolis algorithm in crossing fitness
valleys and found that both showed similar performance on
smooth integer functions: functions where two Hamming
neighbours have a fitness difference of at most 1 [10, Sec-
tion 6].

We consider a similar function, generalising a construc-
tion by Jägersküpper and Storch [7]: the function Cliffd
is defined such that non-elitist algorithms have a chance to
jump down a “cliff” of height roughly d and to traverse a
fitness valley of Hamming distance d to the optimum (see
Figure 1).

|x|10

0

fitness

n− d n

Figure 1: Sketch of the function Cliffd.

Definition 2 (Cliff).

Cliffd(x) =

{

|x|1 if |x|1 ≤ n− d

|x|1 − d+ 1
2

otherwise

where |x|1 =
∑n

i=1 xi counts the number of ones.

The (1+1) EA typically optimises Cliffd through a direct
jump from the top of the cliff to the optimum, which takes
expected time Θ(nd).

Theorem 7. The expected optimisation time of the
(1+1) EA on Cliffd, for 2 ≤ d ≤ n/2, is Θ(nd).

In order to prove Theorem 7, the following lemma will
be useful for showing that the top of the cliff is reached
with good probability. More generally, it shows that the
conditional probability of increasing the number of ones in
a search point to j, given it is increased to some value of j
or higher, is at least 1/2.

Lemma 8. For all 0 ≤ i < j ≤ n,

mut(i, j)
∑n

k=j mut(i, k)
≥ 1

2
.

The proof of this lemma is presented in the appendix.

Proof of Theorem 7. From any search point with i < n − d
ones, the probability of reaching a search point with higher
fitness is at least n−i

en
. The expected time for accept-

ing a search point with at least n − d ones is at most
∑n−d−1

i=0
en
n−i

= O(n log n). Note that this is O(nd) since
d ≥ 2.

We claim that with probability Ω(1), the first such search
point has n−d ones: with probability at least 1/2 the initial
search point will have at most n−d ones. Invoking Lemma 8
with j := n− d, with probability at least 1/2 the top of the
cliff is reached before any other search point with at least
n− d ones.

Once on the top of the cliff the algorithm has to jump
directly to the optimum to overcome it. The probability of
such a jump is 1

nd (1− 1
n
)n−d and therefore the expected time

to make this jump is Θ(nd).

SSWM with global mutations also has an opportunity to
make a direct jump to the optimum. However, compared
to the (1+1) EA its performance slightly improves when
considering shorter jumps and accepting a search point of
inferior fitness. The following theorem shows that for large
enough cliffs, d = ω(logn), the expected optimisation time

is by a factor of eΩ(d) smaller than that of the (1+1) EA.
Although both algorithms need a long time for large d, the
speedup of SSWM is significant for large d.

Theorem 9. The expected optimisation time of SSWM
with global mutations and β = 1, N = 1

2
ln(11n) on Cliffd

with d = ω(logn) is at most nd/eΩ(d).

Proof. We define R as the expected time for reaching a
search point with either n − d or n ones, when starting
with a worst possible non-optimal search point. Let Tpeak

be the random optimisation time when starting with any
search point of n − d ones, hereinafter called a peak. Then
the expected optimisation time from any initial point is at
most R+E(Tpeak). Let psuccess be the probability of SSWM
starting in a peak will reach the optimum before reaching a
peak again. We call such a time period a trial. After the
end of a trial, taking at most R expected generations, with
probability 1− psuccess SSWM returns to a peak again, so

E (Tpeak) ≤ R + (1− psuccess) · E (Tpeak)

⇔ E (Tpeak) ≤
R

psuccess
. (5)

We first bound the worst-case time to return to a peak or a
global optimum as R = O(n log n). Let S1 be the set of all
search points with at most n−d ones and S2 := {0, 1}n \ S1.
As long as the current search point remains within S2,
SSWM essentially behaves like on OneMax. Repeating
arguments from the proof of Theorem 4, in expected time
O((n log n)/β) = O(n log n) (as here β = 1) SSWM either
finds a global optimum or a search point in S1. Likewise, as
long as the current search point remains within S1, SSWM
essentially behaves like on OneMax and within expected
time O(n log n) either a peak or a search point in S2 is found.

SSWM can switch indefinitely between S1 and S2 within
one trial, as long as no optimum or peak is reached. The con-
ditional probability of creating a peak—when from a search

point with i < n − d ones either a peak or a non-optimal
search point in S2 is reached—is

mut(i, n− d) · pfix(n− d− i)
∑n−1

k=n−d mut(i, k) · pfix(k − i− d+ 1/2)
≥ mut(i, j)
∑n

k=j mut(i, k)

as pfix(n−d−i) ≥ pfix(k−i−d+1/2) for all n−d < k < n. By
Lemma 8, the above fraction is at least 1/2. Hence SSWM
in expectation only makes O(1) transitions from S1 to S2,
and the overall expected time spent in S1 and S2 is at most
R = O(1) · O(n log n).

The remainder of the proof now shows a lower bound on
psuccess, the probability of a trial being successful. A suffi-
cient condition for a successful trial is that the next mutation
creates a search point with n− d+ k ones, for some integer
1 ≤ k ≤ d, that this point is accepted, and that from there
the global optimum is reached before returning to a peak.

We estimate the probabilities for these events separately
in order to get an overall lower bound on the probability of
a trial being successful.

From any peak there are
(

d
k

)

search points at Hamming
distance k that have n− d+ k ones. Considering only such
mutations, the probability of a mutation increasing the num-
ber of ones from n− d by k is at least

mut(n− d, n− d+ k) ≥ 1

nk
·
(

1− 1

n

)n−1

·
(

d

k

)

≥ 1

enk
·
(

d

k

)k

.

The probability of accepting such a move is

pfix(k − d+ 1/2) =
e2β(d−k−1/2) − 1

e2Nβ(d−k−1/2) − 1
≥ e2(d−k−1/2) − 1

(11n)(d−k−1/2)
.

We now fix k := ⌊d/e⌋ and estimate the probability of mak-
ing and accepting a jump of length k:

mut(n− d, n− d+ k) · pfix(k − d+ 1/2)

≥ 1

enk
·
(

d

k

)k

· e
2(d−k−1/2) − 1

(11n)(d−k−1/2)

= Ω

(

n−d+1/2 ·
(

d

k

)k

·
(

e2

11

)d−k
)

= Ω



n−d+1/2 ·
(

e1/e ·
(

e2

11

)1−1/e
)d




= Ω

(

n−d+1/2 ·
(

10

9

)d
)

.

Finally, we show that, if SSWM does make this accepted
jump, with high probability it climbs up to the global opti-
mum before returning to a search point in S1. To this end
we work towards applying the negative drift theorem to the
number of ones in the interval [a := ⌈n − d + k/2⌉, b :=
n− d+ k] and show that, since we start in state b, a state a
or less is unlikely to be reached in polynomial time.

We first show that the drift is typically equal to that on
OneMax. For every search point with more than a ones,
in order to reach S1, at least k/2 bits have to flip. Until
this happens, SSWM behaves like on OneMax and hence
reaches either a global optimum or a point in S1 in expected
time O(n log n). The probability for a mutation flipping at

least k/2 bits is at most 1/((lnn)/(2e))! = n−Ω(log n), so the
probability that this happens in expected time O(n log n) is

still n−Ω(log n).
Assuming such jumps do not occur, we can then use drift

bounds from the analysis of OneMax for states with at least
a ones. From the proof of Theorem 4 and (3) we know that
the drift at i ones for β = 1 is at least

∆(i) ≥ Ω

(

n− i

n

)

.

Let pi,j denote the transition probability from a state with
i ones to one with j ones. The probability of decreasing the
current state is at most pfix(−1) = O(1/n) due to (2). The
probability of increasing the current state is at most (n−i)/n
as a necessary condition is that one out of n− i zeros needs
to flip. Hence for i ≤ b, which implies n − i = ω(1), the
self-loop probability is at least

pi,i ≥ 1−O

(

1

n

)

− n− i

n
= 1−O

(

n− i

n

)

.

Together, we get ∆(i) ≥ Ω(1 − pi,i), establishing the first
condition of Theorem 6.

Note that pfix(1) =
1−e−2

1−1/n
= Ω(1), hence

1− pi,i ≥ pi,i+1 ≥
n− i

en
· pfix(1) = Ω

(

n− i

n

)

. (6)

The second condition follows for improving jumps from i to
i+ j, j ≥ 1, from Lemma 2 and (6):

pi,i+j ≤
(

n− i

n

)j

· 1
j!
·pfix(j) ≤

n− i

n
· 1
j!
≤ (1−pi,i) ·

O(1)

2j
.

For backward jumps we get, for 1 ≤ j ≤ k/2, and n large
enough,

pi,i−j ≤ pfix(−j) ≤
e2j

e2Nj − 1
=

e2j

(11n)j − 1
≤ 2−j .

Now Theorem 6 can be applied with r = O(1) and δ = 1
and it yields that the probability of reaching a state of a or
less in nω(1) steps is n−ω(1).

This implies that following a length-k jump, a trial is
successful with probability 1 − n−ω(1). This establishes

psuccess := Ω
(

n−d+1/2 ·
(

10
9

)d
)

. Plugging this into (5),

adding time R for the time to reach the peak initially, and
using that O(n1/2 log n) · (9/10)d = e−Ω(d) for d = ω(logn)
yields the claimed bound.

5. SSWM OUTPERFORMS (1+1) EA ON
BALANCE

Finally, we investigate a feature that distinguishes SSWM
from the (1+1) EA as well as the Metropolis algorithm: the
fact that larger improvements are more likely to be accepted
than smaller improvements.

To this end, we consider the function Balance, originally
introduced by Rohlfshagen, Lehre, and Yao [18] as an exam-
ple where rapid dynamic changes in dynamic optimisation
can be beneficial. The function has also been studied in the
context of stochastic ageing by Oliveto and Sudholt [15].

In its static (non-dynamic) form, Balance can be illus-
trated by a two-dimensional plane, whose coordinates are
determined by the number of leading ones (LO) in the first

0

0

n3

n2 · LO(a)

n2 · LO(a)

n · LO(a) + |b|1

LO(a)

|b|1

Figure 2: Visualisation of Balance [18].

half of the bit string, and the number of ones in the second
half, respectively. The former has a steeper gradient than
the latter, as the leading ones part is weighted by a factor
of n in the fitness (see Figure 2).

Definition 3 (Balance [18]). Let a, b ∈ {0, 1}n/2

and x = ab ∈ {0, 1}n. Then, Balance(x) =


















n3 if LO(a) = n/2, else

|b|1 + n · LO(a) if n/16 < |b|1 < 7n/16, else

n2 · LO(a) if |a|0 >
√
n, else

0 otherwise.

where |x|1 =
∑n/2

i=1 xi, |x|0 is a number of zeros and

LO(x) :=
∑n/2

i=1

∏i
j=1 xj counts the number of leading ones.

The function is constructed in such a way that all points
with a maximum number of leading ones are global optima,
whereas increasing the number of ones in the second half
beyond a threshold of 7n/16 (or decreasing it below a sym-
metric threshold of n/16) leads to a trap, a region of local
optima that is hard to escape from.

Rohlfshagen, Lehre, and Yao [18, Theorem 3] showed the
following lower bound for the (1+1) EA, specialised to non-
dynamic optimisation:

Theorem 10 ([18]). The expected optimisation time of

the (1+1) EA on Balance is nΩ(n1/2).

We next show that SSWM with high probability finds an
optimum in polynomial time. For appropriately small β we
have sufficiently many successes on the LO-part such that we
find an optimum before theOneMax-part reaches the region
of local optima. This is because for small β the probability
of accepting small improvements is small. The fact that
SSWM is slower than the (1+1) EA on OneMax by a factor
of O(1/β) turns into an advantage over the (1+1) EA on
Balance.

The following lemma shows that SSWM effectively uses
elitist selection on the LO-part of the function in a sense that
every decrease is rejected, with overwhelming probability.

Lemma 11. For every x = ab with n/16 < |b|1 < 7n/16

and β = n−3/2 and Nβ = lnn, the probability of SSWM
with local or global mutations accepting a mutant x′ = a′b′

with LO(a′) < LO(a) and n/16 < |b′|1 < 7n/16 is O(n−n).

Proof. The loss in fitness is at least n− (|b′|1 − |b|1) ≥ n/2.
The probability of SSWM accepting such a loss is at most

pfix(−n/2) ≤
1− e−2β(−n/2)

1− e−2Nβ(−n/2)
≤ e2β(n/2)

e2Nβ(n/2) − 1
.

Assuming β = n−3/2 and Nβ = lnn, this is at most

e
√

n
n

nn − 1
≤ e

nn − 1
= O(n−n).

The following lemma establishes the optimisation time of
the SSWM algorithm on either the OneMax or the LO-part
of Balance.

For global mutations we restrict our considerations to rel-
evant steps, defined as steps where no leading ones in the
first half of the bit string is flipped. The probability of a
relevant step is always at least (1− 1/n)n/2 ≈ e−1/2. When
using local mutations, all steps are defined as relevant.

Lemma 12. Let β = n−3/2 and Nβ = lnn. With prob-

ability 1− e−Ω(n1/2), SSWM with either local or global mu-
tations either optimises the LO part or reaches the trap (all
search points with fitness n2 · LO(a)) within

T :=
n2

4
· 1

pfix(n−
√
n)
·
(

1 + n−1/4
)

relevant steps.

Proof. Consider a relevant step, implying that global mu-
tations will leave all leading ones intact. With probability
1/n a local or global mutation will flip the first 0-bit. This
increases the fitness by k · n−∆OM, where ∆OM is the dif-
ference in the OneMax-value of b caused by this mutation
and k is the number of consecutive 1-bits following this bit
position after mutation. The latter bits are called free riders
and it is well known (see [13, Lemma 1 and proof of The-
orem 2]) that the number of free riders follows a geometric
distribution with parameter 1/2, only capped by the number
of bits to the end of the bit string a.

The probability of flipping at least
√
n bits in one global

mutation is at most 1/(
√
n)! = e−Ω(

√
n) and the proba-

bility that this happens at least once in T relevant steps
is still of the same order (using that T = poly (n) as
pfix(n −

√
n) ≥ 1/N ≥ 1/poly (n)). We assume in the fol-

lowing that this does not happen, which allows us to as-
sume ∆OM ≤

√
n. We also assume that the number of lead-

ing ones is never decreased during non-relevant steps as the
probability of accepting such a fitness decrease is O(n−n) by
Lemma 11 and the expected number of non-relevant steps
before T relevant steps have occurred is O(T).

We now have that the number of leading ones can never
decrease and any increase by mutation is accepted with
probability at least pfix(n −

√
n). In a relevant step, the

probability of increasing the number of leading ones is hence
at least 1/n · pfix(n−

√
n) and the expected number of such

improvements in

T :=
n2

4
· 1

pfix(n−
√
n)
· (1 + n−1/4)

relevant steps is at least n/4 + n3/4/4. By Chernoff

bounds [5], the probability that less than n/4 + n3/4/8 im-

provements happen is e−Ω(n1/2). Also the probability that
during this number of improvements less than n/4− n3/4/8

free riders occur is e−Ω(n1/2). If these two rare events do not
happen, a LO-value of n/2 is reached before time T . Taking
the union bound over all rare failure probabilities proves the
claim.

We now show that the OneMax part is not optimized
before the LO part.

Lemma 13. Let β = n−3/2, Nβ = lnn, and T be as in
Lemma 12. The probability that SSWM starting with a0b0
such that n/4 ≤ |b0|1 ≤ n/4 + n3/4 creates a search point
ab with |b|1 ≤ n/16 or |b|1 ≥ 7n/16 in T relevant steps is

e−Ω(n1/2).

It will become obvious that in T relevant steps SSWM typ-
ically makes a progress of O(n) on the OneMax part. The
proof of Lemma 13 requires a careful and delicate analysis
to show that the constant factors are small enough such that
the stated thresholds for |b|1 are not surpassed.

Proof of Lemma 13. We only prove that a search point with
|b|1 ≥ 7n/16 is unlikely to be reached with the claimed prob-
ability. The probability for reaching a search point with
|b|1 ≤ n/16 is clearly no larger, and a union bound for these
two events leads to a factor of 2 absorbed in the asymptotic
notation.

Note that for β = n−3/2 we have

pfix(n−
√
n) ≥ 2β(n−√n)

1 + 2β(n−√n) ≥ 2βn · (1−O(n−1/2)).

Hence

T ≤ n2

4
· 1

2βn
·
(

1 +O(n−1/2)
)

=
n

8β
·
(

1 +O(n−1/2)
)

.

We call a relevant step improving if the number of ones in b
increases and the step is accepted.

We first consider only steps where the number of leading
ones stays the same. Then the probability that theOneMax
value increases from k by j, adapting Lemma 2 to a string
of length n/2, is at most

pj ≤
(

n/2− k

n

)j

· 1.14
j!
· pfix(j)

using n/2− k ≤ n/4

≤ 1.14 · 4−j

j!
· pfix(j) ≤

1.14 · 4−j

j!
· 2βj

1− e−2Nβj

≤ 2.28β · 4−j · 1

1− e−2Nβj
=: pj .

In the following, we work with pessimistic transition proba-
bilities pj . Note that for all j ≥ 1

pj
p1

= 4−(j−1) · 1− e−2Nβ

1− e−2Nβj
≤ 4−(j−1).

Let p+ denote (a lower bound on) the probability of an im-
proving step, then

p+ ≤
∞
∑

j=1

pj ≤ p1 ·
∞
∑

j=1

4−(j−1) = p1 · 4
3
.

The conditional probability of advancing by j, given an im-
proving step, is then

pj
p+
≤ 4−(j−1) · p1

p+
=

(

1− 3

4

)j−1

· 3
4
,

which corresponds to a geometric distribution with param-
eter 3/4.

Now, by Chernoff bounds, the probability of having more
than S := (1 + n−1/4) · p+ · T improving steps in T rele-

vant steps is e−Ω(n1/2). Using a Chernoff bound for geo-
metric random variables [5, Theorem 1.14], the probability
of S improving steps yielding a total progress of at least

(1 + n−1/4) · 4/3 · S is e−Ω(n1/2).
If none of these rare events happen, the progress is at most

(1 +O(n−1/4)) · 4
3
· p+ · T

= (1 +O(n−1/4)) · 16
9
· p1 · T

≤ (1 +O(n−1/4)) · 1.14
9
· n.

We also have at most n/2 steps where the number of lead-
ing ones increases. If the number of leading ones increases
by δ ≥ 1, the fitness increase is δn+ |b′|1 − |b|1. Hence the
above estimations of jump lengths are not applicable. We
call these special steps; they are unorthodox as the large
fitness increase makes it likely that any mutation on the
OneMax part is accepted. We show that the progress on
the OneMax part across all special steps is O(n3/4) with
high probability.

We grant the algorithm an advantage if we assume that,
after initialising with |b|1 ≥ n/4, no search point with
|b|1 < n/4 is ever reached1. Under this assumption we al-
ways have at least as many 1-bits as 0-bits in b, and mutation
in expectation flips at least as many 1-bits to 0 as 0-bits to
1.

Then the progress in |b|1 in one special step increasing
the number of leading ones by d can be described as follows.
Imagine a matching (pairing) between all bits in b such that
each pair contains at least one 1-bit. Let Xi denote the ran-
dom change in |b|1 by the i-th pair. If the pair has two 1-bits,
Xi ≤ 0 with probability 1. Otherwise, we have Xi = 1 if
the 0-bit in the pair is flipped, the 1-bit in the pair is not
flipped, and the mutant is accepted (which depends on the
overall |b|1-value in the mutant). The potential fitness in-
crease is at most dn+n/2 as the range of |b|1-values is n/2.
Likewise, we have Xi = −1 if the 0-bit is not flipped, the
1-bit is flipped, and the mutant is accepted (which again de-
pends on the overall |b|1-value in the mutant). The fitness
increase is at least dn−n/2. With the remaining probability
we have Xi = 0. Hence for global mutations (for local mu-
tations simply drop the 1− 1/n term) the total progress in
a special step increasing LO(a) by d is stochastically domi-
nated by a sum of independent variables Y1, . . . , Yn/4 where
Pr (Yi = ±1) = 1/n · (1 − 1/n) · pfix(dn ± n/2) and Yi = 0
with the remaining probability.

There is a bias towards increasing the number of ones due
to differences in the arguments of pfix: E (Yi) = 1/n · (1 −
1/n) · (pfix(dn+ n/2)− pfix(dn−n/2)). Using the definition

of pfix and preconditions β = n−3/2, Nβ = lnn, the bracket

1Otherwise, we restart our considerations from the first
point in time where |b|1 ≥ n/4 again, replacing T with the
number of remaining steps. With overwhelming probability
we will then again have |b|1 ≤ n/4 + n3/4.

is bounded as

pfix(dn+ n/2) − pfix(dn− n/2)

=
1− e−2dn−1/2−n−1/2

1− n−2dn+n
− 1− e−2dn−1/2+n−1/2

1− n−2dn−n

= (1 + o(1))
((

1− e−2dn−1/2−n−1/2
)

−
(

1− e−2dn−1/2+n−1/2
))

= (1 + o(1)) · e−2dn−1/2
(

en
−1/2

− e−n−1/2
)

≤ (1 + o(1)) · e−2dn−1/2
(

(1 + 2n−1/2)− (1− n−1/2)
)

= (1 + o(1)) · e−2dn−1/2

· 3n−1/2

where in the last inequality we have used 1+x ≤ ex for all x
and ex ≤ 1 + 2x for 0 ≤ x ≤ 1.

Note that the expectation, and hence the bias, is largest

for d = 1, in which case we get, using e−2dn−1/2 ≤
e−2n−1/2 ≤ 1,

E (Yi) ≤ (1 + o(1)) · 1/n · (1− 1/n) · 3n−1/2 ≤ 4n−3/2

for n large enough.
The total progress in all m special steps is hence stochasti-

cally dominated by a sequence of m·n/4 random variables Yi

as defined above, with d := 1. Invoking Lemma 16, stated in
the appendix, with δ := n3/4, the total progress in all special
steps is at most δ+m ·n/4 ·E (Yi) = δ+O(n1/2) = O(n3/4)

with probability 1− e−Ω(n1/2).
Hence the net gain in the number of ones in all special

steps is at most n3/4 + O(mn/4 · n−3/2) = O(n3/4) with

probability 1− e−Ω(n1/2).
Together with all regular steps, the progress on the

OneMax part is at most 1.14n/9+O(n3/4), which for large

enough n is less than the distance 7n/16 − (n/4 + n3/4) to
reach a point with |b|1 ≥ 7n/16 from initialisation. This
proves the claim.

Finally, we put the previous lemmas together into our
main theorem that establishes that SSWM can optimise
Balance in polynomial time.

Theorem 14. With probability 1−e−Ω(n1/2) SSWM with
β = n−3/2 and Nβ = lnn optimises Balance in time
O(n/β) = O(n5/2).

Proof. By Chernoff bounds, the probability that for the
initial solution x0 = a0b0 we have n/4 − n3/4 ≤ |b0|1 ≤
n/4 + n3/4 is 1− e−Ω(n1/2). We assume pessimistically that

n/4 ≤ |b0|1 ≤ n/4 + n3/4. Then Lemma 13 is in force, and

with probability 1 − e−Ω(n1/2) within T relevant steps, T
as defined in Lemma 12, SSWM does not reach a trap or
a search point with fitness 0. Lemma 12 then implies that

with probability 1− e−Ω(n1/2) an optimal solution with n/2
leading ones is found.

The time bound follows from the fact that T = O(n/β)
and that, again by Chernoff bounds, we have at least T
relevant steps in 3T iterations of SSWM, with probability

1− e−Ω(n1/2).

6. CONCLUSIONS
The field of evolutionary computation has matured to the

point where techniques can be applied to models of natural

evolution. Our analyses have demonstrated that runtime
analysis of evolutionary algorithms can be used to analyse a
simple model of natural evolution, opening new opportuni-
ties for interdisciplinary research with population geneticists
and biologists.

Our conclusions are highly relevant for biology, and open
the door to the analysis of more complex fitness landscapes
in this field and to quantifying the efficiency of evolutionary
processes in more realistic scenarios of evolution. One inter-
esting aspect of our results is that they impose conditions
on population size (N) and strength of selection (β) which
represent fundamental limits to what is possible by natural
selection. We hope that these results may inspire further
research on the similarities and differences between natural
and artificial evolution.

From a computational perspective, we have shown that
SSWM can overcome obstacles such as posed by Cliffd and
Balance in different ways to the (1+1) EA, due to its non-
elitistic selection mechanism. We have seen how the prob-
ability of accepting a mutant can be tuned to enable hill
climbing, where fitness-proportional selection fails, as well
as tunnelling through fitness valleys, where elitist selection
fails. For Balance we showed that SSWM can take advan-
tage of information about the steepest gradient. The selec-
tion rule in SSWM hence seems to be a versatile and useful
mechanism. Future work could investigate its usefulness in
the context of population-based evolutionary algorithms.

Acknowledgments: The research leading to these re-
sults has received funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ment no 618091 (SAGE). The authors thank the anonymous
GECCO reviewers for their many constructive comments.

7. REFERENCES
[1] A. Auger and B. Doerr, editors. Theory of

Randomized Search Heuristics – Foundations and
Recent Developments. Number 1 in Series on
Theoretical Computer Science. World Scientific, 2011.

[2] E. Chastain, A. Livnat, C. Papadimitriou, and
U. Vazirani. Algorithms, games, and evolution.
Proceedings of the National Academy of Sciences,
111(29):10620–10623, July 2014.

[3] K. Chatterjee, A. Pavlogiannis, B. Adlam, and M. A.
Nowak. The time scale of evolutionary innovation.
PLoS Computational Biology, 10(9), Sept. 2014.

[4] D. Corus, D.-C. Dang, A. V. Eremeev, and P. K.
Lehre. Level-based analysis of genetic algorithms and
other search processes. In PPSN 2014, pages 912–921.
Springer, 2014.

[5] B. Doerr. Analyzing randomized search heuristics:
Tools from probability theory. In [1], pages 1–20.
World Scientific, 2011.

[6] J. H. Gillespie. Molecular evolution over the
mutational landscape. Evolution, 38(5):1116–1129,
1984.

[7] J. Jägersküpper and T. Storch. When the plus strategy
outperforms the comma strategy and when not. In
Proc. of IEEE FOCI 2007, pages 25–32. IEEE, 2007.

[8] T. Jansen. Analyzing Evolutionary Algorithms. The
Computer Science Perspective. Springer, 2013.

[9] T. Jansen, P. S. Oliveto, and C. Zarges. On the
analysis of the immune-inspired B-Cell algorithm for
the Vertex Cover problem. In Proc. of ICARIS 2011,
pages 117–131. Springer, 2011.

[10] T. Jansen and I. Wegener. A comparison of simulated
annealing with a simple evolutionary algorithm on
pseudo-Boolean functions of unitation. Theoretical
Computer Science, 386(1-2):73–93, 2007.

[11] D. Johannsen. Random Combinatorial Structures and
Randomized Search Heuristics. PhD thesis, Universität
des Saarlandes, Saarbrücken, Germany and the
Max-Planck-Institut für Informatik, 2010.

[12] M. Kimura. On the probability of fixation of mutant
genes in a population. Genetics, 47(6):713–719, 1962.

[13] P. K. Lehre and C. Witt. Black-box search by
unbiased variation. Algorithmica, 64(4):623–642, 2012.

[14] F. Neumann and C. Witt. Bioinspired Computation in
Combinatorial Optimization – Algorithms and Their
Computational Complexity. Springer, 2010.

[15] P. S. Oliveto and D. Sudholt. On the runtime analysis
of stochastic ageing mechanisms. In Proc. of GECCO
2014, pages 113–120. ACM Press, 2014.

[16] P. S. Oliveto and C. Witt. Simplified drift analysis for
proving lower bounds in evolutionary computation.
Algorithmica, 59(3):369–386, 2011.

[17] P. S. Oliveto and C. Witt. On the runtime analysis of
the simple genetic algorithm. Theoretical Computer
Science, 545:2–19, 2014.

[18] P. Rohlfshagen, P. K. Lehre, and X. Yao. Dynamic
evolutionary optimisation: an analysis of frequency
and magnitude of change. In Proc. of GECCO ’09,
pages 1713–1720. ACM Press, 2009.

[19] J. E. Rowe and D. Sudholt. The choice of the offspring
population size in the (1,λ) evolutionary algorithm.
Theoretical Computer Science, 545:20–38, 2014.

[20] D. Sudholt. A new method for lower bounds on the
running time of evolutionary algorithms. IEEE
Transactions on Evolutionary Computation,
17(3):418–435, 2013.

[21] L. G. Valiant. Evolvability. J. ACM, 56(1):3:1–3:21,
2009.

APPENDIX
This appendix contains proofs that were omitted from the main part.

Lemma 15. pfix is monotonic for all N ≥ 1 and strictly increasing for N > 1

Proof. If N = 1, pfix(β∆f) = 1. In order to show that pfix(∆f) is monotonically increasing we show that dpfix(∆f)
d∆f

=

2e−2β∆f

1−e−2Nβ∆f −N e−2Nβ∆f (1−e−2β∆f)

(1−e−2Nβ∆f)2
> 0 for all ∆f . For β∆f > 0 and N > 1, we have e−2β∆f < 1, and e−2β∆f > e−2Nβ∆f .

For β∆f < 0, the inequalities are reversed. If β∆f > 0:

2e−2β∆f

1− e−2Nβ∆f
−N

e−2Nβ∆f (1− e−2β∆f)

(1− e−2Nβ∆f)2
> 0

⇔e−2β∆f
(

1− e−2Nβ∆f
)

−Ne−2Nβ∆f
(

1− e−2β∆f
)

> 0

⇔ e−2β∆f

e−2Nβ∆f
>

1− e−2Nβ∆f

1− e−2β∆f
.

Since e−2β∆f

e−2Nβ∆f > 1 and 1−e−2Nβ∆f

1−e−2β∆f < 1 this proves the claim for β∆f > 0. For β∆f < 0 all the inequalities are reversed and

e−2β∆f

e−2Nβ∆f < 1 and 1−e−2Nβ∆f

1−e−2β∆f > 1.

Proof of Lemma 2. We follow the proof of Lemma 2 in [20]. An offspring with i+ k 1-bits is created if and only if there is an
integer j ∈ N0 such that j 1-bits flip and k + j 0-bits flip.

mut(i, i+ k)

=
n
∑

j=0

(

i

j

)(

n− i

k + j

)

(

1

n

)k+2j (

1− 1

n

)n−k−2j

=

(

1

n

)k (

1− 1

n

)n−k

·
n
∑

j=0

(

i

j

)(

n− i

k + j

)

(

1

n− 1

)2j

.

Using
(

n−i
k+j

)

= 1
(k+j)!

· (n− i) · (n− i− 1) · . . . · (n− i− k − j + 1) ≤ 1
(k+j)!

· (n− i)k · (n− i− 1)j , this is at most

≤
(

1

n

)k (

1− 1

n

)n−k

·
n
∑

j=0

(n− i)k

j!(k + j)!
·
(

i(n− i− 1)

(n− 1)2

)j

.

It is easy to see that i(n−i−1)

(n−1)2
≤ 1

4
for all i, as the maximum is attained for i = n

2
− 1

2
. Hence we get an upper bound of

≤
(

n− i

n

)k (

1− 1

n

)n−k

·
n
∑

j=0

4−j

j!(k + j)!

Using (k + j)! ≥ k!(j + 1)! for all k ∈ N, j ∈ N0,

≤
(

n− i

n

)k (

1− 1

n

)n−k

· 1
k!

∞
∑

j=0

4−j

j!(j + 1)!

≤
(

n− i

n

)k (

1− 1

n

)n−k

· 1.14
k!

.

The proof for mutations decreasing the number of ones follows immediately due to the symmetry mut(i, i− k) = mut(n−
i, n− i+ k).

Proof of Lemma 8. The proof consists of two parts:
1) The probability of improving by j − i = k bits is at least twice as large as the probability of improving by k + 1 bits, i.e.
mut(i, i+ k) ≥ 2mut(i, i+ k + 1) for any 0 ≤ i < j ≤ n.

2) We use 1) to prove that mut(i,j)
∑n

m=j
mut(i,m)

≥ 1

2
.

Part 1) The probability to improve by k bits is

mut(i, i+ k) =
n
∑

l=0

(

i

l

)(

n− i

k + l

)

(

1

n

)k+2l (

1− 1

n

)n−k−2l

while the probability to improve by k + 1 bits is

mut(i, i+ k + 1) =
n
∑

l=0

(

i

l

)(

n− i

k + l + 1

)

(

1

n

)k+2l+1(

1− 1

n

)n−k−2l−1

.

We want to show that the following is true

mut(i, i+ k) ≥ 2mut(i, i+ k + 1)⇔
n
∑

l=0

(

i

l

)(

n− i

k + l

)

(

1

n

)k+2l (

1− 1

n

)n−k−2l

≥ 2
n
∑

l=0

(

i

l

)(

n− i

k + l + 1

)

(

1

n

)k+2l+1(

1− 1

n

)n−k−2l−1

⇔

n
∑

l=0

(

i

l

)(

n− i

k + l

)

(n− 1)n−k−2l ≥ 2
n
∑

l=0

(

i

l

)(

n− i

k + l + 1

)

(n− 1)n−k−2l−1 ⇔

n
∑

l=0

i!(n− i)!

l!(i− l)!

(n− 1)n−k−2l

(n− i− k − l − 1)!(k + l)!

[

1

(n− i− k − l)
− 2

(n− 1)(k + l + 1)

]

≥ 0.

This holds if following holds for any 0 ≤ l ≤ n
[

1

(n− i− k − l)
− 2

(n− 1)(k + l + 1)

]

≥ 0

(n− 1)(k + l + 1) ≥ 2(n− i− k − l).

Which is true for any k ≥ 1 (thus for any 0 ≤ i < j ≤ n).

Part 2) Using the above inequality mut(i, i + k) ≥ 2mut(i, i + k + 1) we can bound every possible improvement better
than k from above by

mut(i, i+ k + l) ≤
(

1

2

)l

mut(i, i+ k)

for any 0 ≤ l ≤ n− i− k. This can also be written as

mut(i, j + l) ≤
(

1

2

)l

mut(i, j)

for any 0 ≤ l ≤ n− j. This leads to

mut(i, j)
∑n

m=j mut(i,m)
=

mut(i, j)
∑n−j

l=0 mut(i, j + l)

≥ mut(i, j)
∑n−j

l=0

(

1
2

)l
mut(i, j)

=
1

∑n−j
l=0

(

1
2

)l
=

1

2− 1
2n−j

≥ 1

2

which proves Lemma 8.

Lemma 16. Consider independent random variables Y1, . . . , Yt where

Yi =











1 with probability p

0 with probability 1− p− r

−1 with probability r

then for Y =
∑t

i=1 Yi we have E (Y) = t(p− r) and for every 0 ≤ δ ≤ t(p+ r)

P (Y ≥ E(Y) + δ) ≤ e−Ω(t(p+r)) + e
−Ω

(

δ2

t(p+r)

)

.

Proof. We imagine Yi to be drawn in a two-step process: in a first draw with probability 1−p−r we set Yi = 0. Otherwise, we
have Yi 6= 0 and a second random experiment determines whether Yi = 1 or Yi = −1. Define indicator variables Xi ∈ {0, 1}
for the first experiment: Xi = 1 if Yi 6= 0. Then X =

∑t
i=1 Xi gives the number of events where Yi 6= 0. Furthermore, let

Zj ∈ {−1,+1} be the outcome of the j-th instance of the second-type experiment (such an experiment only happens when

the first draw determined Yi 6= 0), and Z =
∑X

j=1 Zj be the sum of these variables. Since Z, in comparison to Y , excludes all

summands of value 0, we have Z = Y and hence E (Z) = E (Y) = t(p− r).
Is easy to see that (X < 2E (X)) ∧ (Z < E (Z) + δ | X < 2E (X))⇒ (Y < E (Y) + δ) therefore

P (Y ≥ E (Y) + δ) ≤ P (X ≥ 2E (X)) + P (Z ≥ E (Z) + δ | X < 2E (X))

Now we apply a Chernoff bound to X and a Hoeffding bound to Z for X ≤ 2E (X) variables:

≤ e−
4
3
E(X) + e

− δ2

4E(X)

= e−Ω(E(X)) + e
−Ω

(

δ2

E(X)

)

= e−Ω(t(p+r)) + e
−Ω

(

δ2

t(p+r)

)

.

	1 Introduction
	2 Preliminaries
	3 SSWM on OneMax
	3.1 Upper Bound for SSWM on OneMax
	3.2 A Critical Threshold for SSWM on OneMax

	4 On Traversing Fitness Valleys
	5 SSWM Outperforms (1+1) EA on Balance
	6 Conclusions
	7 References

