
A Biased Random-key Genetic Algorithm for Placement of
Virtual Machines across Geo-Separated Data Centers

Fernando Stefanello
Instituto de Informática

Universidade Federal do Rio
Grande do Sul

Porto Alegre, Brazil

fstefanello@inf.ufrgs.br

Vaneet Aggarwal
School of Industrial

Engineering
Purdue University

West Lafayette, IN 47907 USA
vaneet@purdue.edu

Luciana S. Buriol
Instituto de Informática

Universidade Federal do Rio
Grande do Sul

Porto Alegre, Brazil

buriol@inf.ufrgs.br

José F. Gonçalves
Faculdade de Economia
Universidade do Porto

Porto, Portugal, 4200-464

jfgoncal@fep.up.pt

Mauricio G. C. Resende
Mathematical Optimization

and Planning (MOP)
Amazon.com

Seattle, WA 98109 USA
resendem@amazon.com

ABSTRACT

Cloud computing has recently emerged as a new technology
for hosting and supplying services over the Internet. This
technology has brought many benefits, such as eliminating
the need for maintaining expensive computing hardware and
allowing business owners to start from small and increase re-
sources only when there is a rise in service demand. With
an increasing demand for cloud computing, providing per-
formance guarantees for applications that run over cloud be-
come important. Applications can be abstracted into a set
of virtual machines with certain guarantees depicting the
quality of service of the application. In this paper, we con-
sider the placement of these virtual machines across multi-
ple data centers, meeting the quality of service requirements
while minimizing the bandwidth cost of the data centers.
This problem is a generalization of the NP-hard General-
ized Quadratic Assignment Problem (GQAP). We formalize
the problem and propose a novel algorithm based on a bi-
ased random-key genetic algorithm (BRKGA) to find near-
optimal solutions for the problem. The experimental results
show that the proposed algorithm is effective in quickly find-
ing feasible solutions and it produces better results than
a baseline aproach provided by a commercial solver and a
multi-start algorithm.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence] [Problem Solving, Control

Methods,and Search]: [Heuristic methods]

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO’15, July 11-15, 2015, Madrid, Spain.

Copyright 2015 ACM. ISBN 978-1-4503-2662-9/14/07 ...$15.00.

http://dx.doi.org/10.1145/2739480.2754768.

Keywords

Combinatorial optimization; Cloud computing; Biased
Random-Key Genetic Algorithm.

1. INTRODUCTION
Virtualization of physical servers have gained prominence

in enterprise data centers. This is because virtualization of-
fers virtually unlimited resources without any upfront capi-
tal investment and a simple pay-as-you-go charging model.
Long term viability of virtualization depends, among other
factors, on cost and performance. In order to attain perfor-
mance guarantees, application providers can offer require-
ments for a number of virtual machines, bandwidth/latency
requirements between virtual machines, and latency require-
ments between users of the service and virtual machines.
Having all these performance guarantees for the application
can help give an optimized service to the users. However, the
service provider has to match the requirements of different
applications to the placement of virtual machines with the
limited bandwidth links between geographically separated
data centers while minimizing its cost. This paper considers
this placement problem, and gives novel solutions using a
class of genetic algorithms.

Unfortunately, today’s public cloud platforms such as
Amazon EC2 [2] do not provide any performance guarantee,
which in turn affects tenant cost. Specifically, the resource
reservation model in today’s clouds only provisions CPU and
memory resources but ignores networking completely. Be-
cause of the largely oversubscribed nature of today’s data
center networks (e.g., [6]), network bandwidth is a scarce
resource shared across many tenants. In order to meet the
reliability and the demand requirements, the data centers
have to be placed all across the world. For instance, a tele-
conference call connects people from all over the world, and
a data center within a reasonable distance to the end users is
needed. For distributed data centers, networking cost is the
major cost, which has not been accounted in the prior works
on virtual machine placement to the best of our knowledge.
With the limited bandwidth links between the data centers,
networking intensive phases of applications collide and com-

919



pete for the scarce network resources, which leads to their
running times become unpredictable. The uncertainty in
execution time further translates into unpredictable cost as
tenants need to pay for the reserved virtual machines (VMs)
for the entire duration of their jobs.

Placement of virtual machines within a data center have
been widely explored [7, 3, 16]. These papers account for
the networking needs in addition to the CPU and mem-
ory needs within a data center. For example, [7] proposes
bandwidth reservation between every pair of VMs. [3] pro-
poses a simpler virtual cluster (VC) model where all vir-
tual machines are connected to a virtual switch with links
of bandwidth B. [16] extends these approaches to consider
time-varying network requirement. However, all these works
account for a single data center where the bandwidths are
much larger as compared to the bandwidths across data cen-
ters. Instead, this paper deals with the placement of virtual
machines across geo-separated data centers

In this paper, we consider multiple data centers that are
connected with limited bandwidth links. The latency be-
tween every pair of data centers is known. In order to meet
the application’s quality of service guarantees, there is a re-
quired minimum bandwidth and maximum latency between
each pair of virtual machines. We assume that there are
multiple users who would use these services, and users are
connected to some data center. In order to meet the overall
application performance, there is an additional requirement
of maximum latency between users and the virtual machines.
Intuitively, if there is a set of VMs needed by a user and the
set does not have any requirement with any other user or
VM, it can be placed in a single data center. However, a
VM interacts with multiple VMs which may be needed by
other users, thus increasing the set of options for placement.
There is a cost of transferring data between data-centers and
the placement minimizes this cost thus preferring placement
of all VMs in a single data center which may not be feasible
due to the quality of service requirements for the applica-
tion.

This problem is a generalization of the NP-hard Gener-
alized Quadratic Placement Problem given in [11]. Solv-
ing this problem optimally is possible only in very small
instances, which may not represent the size found in real-
world applications. Thus, we propose a Biased Random-key
Genetic Algorithm (BRKGA) for solving the Virtual Ma-
chine Placement Problem. We test the performance of the
proposed algorithm in a dataset comprised of instances with
sizes ranging from small to large. We show that the algo-
rithm is able to quickly find feasible solutions, producing
better results than a classic multi-start algorithm and an
exact approach using CPLEX [10].

The paper brings several contributions: i) We model a
multi-data center virtual machine placement problem with
quality of service guarantees for the application; ii) The
quadratic problem with integer constraints is reduced to a
mixed integer linear program for placement of virtual ma-
chines; iii) Novel algorithms based on BRKGA are proposed
to place virtual machines across multiple data centers; iv)
A generator of instances which contain at least one feasible
solution is provided; v) We provide experimental results for
CPLEX and the BRKGA applied on the proposed instances.

The rest of the paper is organized as follows. In Section 2,
we present mathematical models for the Virtual Machine
Placement Problem in multiple data centers. The biased

DC 02DC 01

DC 03

(a) Data centers. (b) Virtual machines.

Figure 1: Input data representation.

random-key genetic algorithm with local search is presented
in Section 3. Computational results are presented in Sec-
tion 4. Finally, conclusions are drawn in Section 5.

2. VIRTUAL MACHINE PLACEMENT

PROBLEM
In the Virtual Machine Placement Problem (VMPlace-

ment), the objective is to place a set K of virtual machines
(VM) in a set N of data centers (DC) in order to minimize
the communication cost among virtual machines.

In this problem, each data center has a capacity ai, which
represents the number of virtual machines that can be placed
in DC i. Also, between two data centers i and j, there are
a bandwidth capacity (Bij), a latency (Lij), and a cost Cij

to transfer a data unit between the pair of data centers.
In order to meet the reliability and demand requirements

of the applications, certain bandwidth and latency require-
ments can be imposed on the different VMs that are placed
on the data centers. Each pair of virtual machines v and
w has a required bandwidth (bvw) whose sum overall VMs
placed between DCs i and j cannot exceed Bij . Further-
more, there is a required latency (lvw), such that VMs v and
w cannot be placed in data centers i and j if the required
latency is greater than the respective data center latency.

Finally, there is a set U of users who access the system.
Each user u is located at a data center d(u) and has a re-
quired latency tuv for each VM v.

Figure 1 shows a representation of the input data compo-
nents: the data centers (Figure 1a), and the virtual machines
(Figure 1b). The first component is composed by three data
centers (rounded rectangles). Each data center has a num-
ber of users and a capacity (represented as a number of spots
where VMs can be placed). The connection between each
pair of DCs represents the bandwidth capacity, latency, and
cost. The second component is composed by eight virtual
machines, where each link represents the bandwidth and re-
quired latency.

The performance of mixed integer linear programming
solvers has improved considerably over the last few years.
IBM ILOG CPLEX Optimizer [10] is a general-purposed
black-box solver based on the state-of-the-art exact algo-
rithms for integer programming and has been successfully
applied in many combinatorial optimization problems. In
order to investigate the CPLEX performance and provide
baseline results for comparison of heuristic methods, we
present a quadratic and a linear mathematical model for the
VMPlacement problem. Results are provided in Section 4.

Next we present the quadratic mathematical model for
the VMPlacement (QMMVMP).

920



Parameters:
N : set of data centers;
K : set of virtual machines;
U : set of users;
ai : capacity in number of VMs DC i can host;

Bij : bandwidth between DCs i and j;
Lij : latency between DCs i and j;
Cij : cost of transferring a data unit between DCs i

and j;
bvw : required bandwidth between VMs v and w;
lvw : required latency between VMs v and w;

d(u) : DC which hosts user u;
tvu : required latency between user u and VM v.

The binary decision variable xiv is set to one when VM v
is located into DC i, and zero otherwise.

min
∑

i∈N

∑

j∈N

∑

v∈K

∑

w∈K

Cijbvwxivxjw (1a)

subject to:
∑

v∈K

xiv ≤ ai ∀ i ∈ N, (1b)

∑

i∈N

xiv = 1 ∀ v ∈ K, (1c)

∑

v∈K

∑

w∈K

xivxjwbvw ≤ Bij ∀ i, j ∈ N, (1d)

∑

i∈N

∑

j∈N

xivxjwLij ≤ lvw ∀ v, w ∈ K, (1e)

∑

i∈N

xivLi,d(u) ≤ tvu ∀ u ∈ U, ∀ v ∈ K, (1f)

xiv ∈ {0, 1} ∀ i ∈ N, ∀ v ∈ K. (1g)

Objective function (1a) minimizes the cost of placing each
pair of virtual machines v and w to DCs i and j. Con-
straints (1b) require that the number of VMs in each DC
must not exceed the DC capacity. Constraints (1c) require
that each VM must be assigned to exactly one DC. Con-
straints (1d) require that the given bandwidth between each
pair i and j of DCs should not be surpassed by the total sum
of bandwidth required among the virtual machines placed
in these DCs. Constraints (1e) require that the latency re-
quired between each pair of VMs should be respected, i.e,
if VMs v and w are placed respectively to DCs i and j,
then the latency between DCs i and j should not exceed the
required latency between VMs v and w. Constraints (1f)
require that the latency between a VM v and the DC where
the user u is located be respected, i.e, a VM v can be only
placed on a DC i if the latency between i and d(u) is less
than or equal to a given latency between the VM v and the
user u. Finally, constraints (1g) define the variables domain.

The VMPlacement is an generalization of the NP-hard
Generalized Quadratic Assignment Problem (GQAP), for-
mulated in [11]. Thus, based on model L3 from [11],
we present a mixed-integer linear model for the VMPlace-
ment. Let yivjw = xivxjw, ∀ i, j = {1, . . . , N} and v, w =
{1, . . . ,K}, the mixed-integer linear mathematical model for
VMPlacement named as LMMVMP, can be formulated as
the following:

min
∑

i∈N

∑

j∈N

∑

v∈K

∑

w∈K

Cijbvwyivjw (2a)

subject to:
∑

v∈K

xiv ≤ ai ∀ i ∈ N, (2b)

∑

i∈N

xiv = 1 ∀ v ∈ K, (2c)

∑

i∈N

yivjw = xjw ∀ v, w ∈ K, ∀ j ∈ N, (2d)

yivjw = yjwiv ∀ v, w ∈ K, ∀ i, j ∈ N, (2e)
∑

v∈K

∑

w∈K

yivjwbvw ≤ Bij ∀ i, j ∈ N, (2f)

∑

i∈N

∑

j∈N

yivjwLij ≤ lvw ∀ v, w ∈ K, (2g)

∑

i∈N

xivLi,d(u) ≤ tvu ∀ u ∈ U, ∀ v ∈ K, (2h)

xiv ∈ {0, 1} ∀ i ∈ N, ∀ v ∈ K, (2i)

0 ≤ yivjw ≤ 1 ∀ i, j ∈ N, ∀ v, w ∈ K. (2j)

The LMMVMP is obtained by replacing the product
xivxjw by yivjw from QMMVMP. In addition four sets of
constraints are added. Constraints (2d) and (2e) define the
relation between variables x and y. Constraints (2e) also
impose the symmetry relation to variables y. Finally, con-
straints (2j) define the domain of variables y.

We note that the model QMMVMP has quadratic con-
straints, while LMMVMP not. The objective function also
changes from a quadratic function in QMMVMP to a lin-
ear function in LMMVMP. However, the mixed-integer lin-
ear problem LMMVMP has a considerable higher number
of variables, having variables yivjw in addition to the pre-
vious variables xiv. Thus, the number of variables change
from O(NK) in QMMVMP to O(N2K2) in LMMVMP. We
note that if the optimal solution of LMMVMP is (x∗

iv, y
∗
ivjw),

then (x∗
iv) is the optimal solution for QMMVP. The proof

that both models are equivalent can be easily obtained by
extending the proof for QAP provided in [11].

3. A BIASED RANDOM-KEY GENETIC

ALGORITHM
A biased random-key genetic algorithm (BRKGA) is

a metaheuristic for finding optimal or near-optimal solu-
tions for hard combinatorial optimization problems [5]. A
BRKGA is a class of genetic algorithms based on random
keys, where solutions are encoded as a vectors of random
keys, i.e. randomly generated real numbers from uniform
distribution in the interval [0, 1). A vector of random keys
is translated into a solution of the optimization problem by
decoders. A decoder is a deterministic algorithm that takes
as input a vector of random keys and returns a solution of
the optimization problem as well as its cost (or fitness).

Figure 2 [5] shows a flowchart of a general scheme of a
BRKGA, that starts with a set of p random vectors of size
n (population). Parameter n depends on the encoding while
parameter p is user-defined. Starting from the initial popu-
lation, the algorithm generates a series of populations. Each

921



Figure 2: Flowchart of a BRKGA.

iteration of the algorithm is called a generation. The algo-
rithm evolves the population over the generations by com-
bining pairs of solutions from one generation to produce off-
spring solutions to the following generation.

At each generation g, the decoder is applied to all newly
created random keys, and the population is partitioned into
a smaller set of pe elite solutions, i.e., the best fittest pe solu-
tions in the population, and another larger set of p−pe > pe
non-elite solutions. Population g+1 is generated as follows.
All pe elite solutions of population g are copied without
changing to population g + 1. This elitist strategy main-
tains the best solutions on hand. To ensure that mutation
is present in the evolution, pm mutants are added to popu-
lation g + 1. A mutant is simply a vector of random keys,
generated in the same fashion than an initial solution.

With pe + pm solutions accounted for population g + 1,
p− pe − pm additional solutions must be generated to com-
plete the p solutions that make up population g + 1. This
is done through mating or crossover. A parent-A is selected
randomly from the elite solutions, and the parent-B parent is
selected randomly between the set of non-elite solutions. A
child C is produced by combining the parents using param-
eterized uniform crossover. Let ρA > 1/2 be the probability
that the offspring solution inherits the key of parent-A and
ρB = 1 − ρA be the probability that it inherits the key of
parent-B, i.e. ci = ai with probability ρA or ci = bi with
probability ρB = 1 − ρA, where ai and bi are, respectively,
the i-th key of parent-A and parent-B, for i = 1, . . . , n.

Figure 2 from [5] shows the problem-independent and
problem-dependent components of a BRKGA. The indepen-
dent components are applied without any acknowledgement
of the problem. The problem-dependent components are
the only connection with the problem. Thus, to describe a
BRKGA, one needs only to show how solutions are encoded
and decoded, what choice of parameters p, pe, pm, and ρA
were made, and how the algorithm stops. We next describe
the encoding and decoding procedures for the proposed algo-
rithm, and give values for parameters and stopping criterion
in Section 4.

3.1 Decoders
Solutions of the optimization problem are encoded as a

vector X with n = |K| random keys. To translate this vector
into the solution of the VMPlacement problem, we propose
two decoders, as described next.
Greedy Ordered Decoder - D1: In this decoder, the

keys provide the order of placement. Following this order, a
greedy strategy is used, placing each VM to the DC which
produces the least increase in the objective function.
The decoder starts with a list whose each element is com-

posed of the random key and the index of the virtual ma-

chine. The list is sorted by the keys. Now, the sorted list
of index of virtual machines is used as an order in which
virtual machines should be placed. Following this order, the
next step is to place each virtual machine v to a DC. This is
done by placing virtual machine v in DC i which produces
the least increase in the objective function. Note that the
cost to insert the VM v in each DC considers the previous
virtual machines placed. When all VMs are placed, the de-
coder returns the fitness value for the respective vector X of
random keys.

Location Decoder - D2: In this decoder, each key is
decoded as the data center in which the virtual machine
should be placed. Let ki be the key corresponding to the
VM of index i in X , then this decoder simply places the VM
of index i to DC ⌊ki ∗N⌋.

Place a virtual machine to a data center can violate some
of the constraints. In order to alleviate this problem, we use
a penalization strategy to minimize the number of violated
constraints. Thus, the cost of placing a VM v in DC i is
calculated by the regular placement cost added by a suffi-
ciently large number M for each violated constraint. This
penalization strategy is applied whenever a solution is eval-
uated, including in both decoders, and in both local search
strategy describe in the next subsection. In our experiments
we use M = 1010.

3.2 Local search
Local search is a general approach for finding and im-

proving solutions to hard combinatorial optimization prob-
lems. The most basic strategy of local search algorithms is
to start from an initial solution and iteratively try to re-
place the current solution by a better neighbor solution, un-
til no improvement can be reached. A neighbor solution can
be obtained by applying moves defined by a neighborhood
structure. Two classical neighborhood structures are used
to obtain neighbor solution, namely shift and swap.

A shift operation moves a virtual machine from the cur-
rent data center to a different data center. In a shift search,
we test all shift moves selecting virtual machines in a cir-
cular order of their indexes (starting from index zero), and
calculating the cost to remove and insert the virtual machine
in all others data centers, also chosen in a circular order of
index. Once an improvement is reached, the virtual machine
is shifted to the new data center and the search continues
considering the next data center. The procedure stops when
no shift move can improve the solution.

A swap operation interchanges the positions of two virtual
machines. In a swap search, we evaluate the cost of all swap
moves between two virtual machines i and j in a circular
order of their indexes (starting from index zero). When an
improvement is reached, the virtual machines positions are
interchanged and the search continues by selecting a next
virtual machine. Moves where j ≤ i and i and j are in the
same data center are not evaluated. The procedure ends
when no swap move can improve the solution.

The local search is applied after each decoder. In our ex-
periments, we evaluated the performance of two local search
strategies. The first, called LSS, considers only the shift
search. The second, called LSW, considers shift search
and swap search applied sequentially, until no improvement
is reached in both searches. Note that using a penaliza-
tion strategy described in the previous subsection, the local
search is also applied to infeasible solutions.

922



4. COMPUTATIONAL RESULTS
The experiments were conducted on a cluster with quad-

core Intel Xeon E5530 2.4 GHz CPUs, with at least 48 GB
of RAM running GNU/Linux. BRKGA was implemented
in C++, using the API described in [15] and a commercial
solver IBM ILOG CPLEX Optimizer version 12.6.0.0 (C++
API) was used to evaluate the mathematical model. All
experiments used a single thread but multiple experiments
were run in parallel.

Experiments were conducted with two main objectives.
The first was to investigate the CPLEX performance in or-
der to obtain a lower bound, analyze which size of instance
the solver can handle, and obtain baseline results for com-
parison of heuristic methods. The second was to evaluate
the performance of the proposed BRKGA, comparing two
decoders, the impact of the local improvement procedures
when embedded in the decoders, and comparing it with
a simple multi-start algorithm [13]. We next describe the
method to generate the dataset used in the experiments.

4.1 Data set
In this subsection we present an instance generator that

we proposed and implemented to generate the data set used
to evaluate CPLEX and BRKGA for VMPlacement. For
generating each instance the generator receives as input four
parameters: |N |, |K|, |U |, and P (the latter represents the
percentage of the overall data center occupation).

To ensure the generator creates instances that admit fea-
sible solutions, we generate the data for each instance based
on n sets of pre-placed virtual machines to data centers (by
default n = 3). Given a capacity of each data center, each
set of pre-placed s ∈ S is generated by randomly placing
each virtual machine to a data center, with probability pro-
portional to the data center capacity, ensuring the capacity
is not violated. Biased on these pre-placements, we generate
the remaining data respecting the constraints of the prob-
lem, ensuring at least n feasible solutions for each instance.

Let a random numbers generator by uniform distribution,
and M ′ be a sufficiently large number, we generate the pa-
rameter data for each instance using the following steps.

Data center capacity: The total number of available

virtual machines is given by n′ = max
(

|N |,
⌈

|K|
|P |

⌉)

. Thus,

to define the values of ai for each DC i, we start with all
ai = 0 and select n′ times a random data center i, and
increase ai by one. We also ensure that each data center
has a capacity ai greater or equal to one. At this step, the
n pre-placements described before are generated.

Required virtual machine bandwidth: For each pair
of virtual machine v ∈ K and w ∈ K the bandwidth bvw
is a random number in the interval [0 : 9]. This matrix is
symmetric, i.e, bvw = bwv, and bvv = 0.

Data center bandwidth: Having defined the band-
width between each pair of virtual machines in the previous
step, we generate the values of data center bandwidth based
in the pre-placements S. Let bsij be the sum of bandwidth
between all virtual machines pre-placed to i and j in s ∈ S.
For each pair of data centers ij, we associate a bandwidth
Bij = max{bsij}, ∀s ∈ S. This matrix also is symmetric, i.e
Bij = Bji, with Bii = M ′.

Data center latency: For each pair of data center ij, the
latency Lij is a random number selected the interval [5 : 20].
This matrix is symmetric, i.e, Lij = Lji, with Lii = 0.

Required virtual machine latency: Let lsvm be the
latency Lij between the data centers ij where v is placed
in i and w is placed in j in the pre-placement s ∈ S. We
randomly select n = |K| ∗ 2 distinct pairs vw to associate a
required latency lvw = max{lsvm}, ∀s ∈ S. The remaining
latency lvw is defined as M ′, indicating that no latency is
required. We also ensure that lvw = lwv, and lvv = 0.

Users in data centers: Users are allocated at random
to data centers chosen with probability proportional to their
capacity. More than one user can be located at the same
data center.

Required user latency: For each user, we randomly
select a virtual machine v to define a required latency.
Let i(s) be the data center where v is placed in s ∈ S,
thus the required latency between u and v is given by
tvu = max{Ld(u),i(s)}, ∀s ∈ S. The remaining user required
latency t is set to M ′.
Transferring data center cost: For each pair of data

center ij, the cost Cij is a random number in the interval
[10.00 : 100.00]. This matrix is symmetric, i.e Cij = Cji,
and Cii = 0.
The parameters |N | and |K| can be used to define the

instances sizes, while parameters |U | and P can be used
to adjust how the problem should be restricted. Finally,
we generate 36 instances by combining values from N =
{10, 25}, K = {25, 50, 100, 150, 200}, U = {Ki ∗ 0.5,Ki,Ki ∗
1.5}, and P = {70, 90}. Table 2 contains all instances we
generated, and the values of |N |, |K|, |U | and P are encoded
in the name of instance in this respective order. All instances
and their best known solutions are available at www.inf.

ufsm.br/~stefanello/instances/.

4.2 CPLEX results
In the first experiment we evaluate the performance of

CPLEX with the mathematical models described in Sec-
tion 2. We used the standard CPLEX solvers for models
QMMVMP and LMMVMP. The running time limit was set
to one day (86,400 seconds) and the number of threads
was set to one. The remaining parameters were main-
tained on the default values. The CPLEX performance with
LMMVMP was considerably better than with QMMVMP
model, and for this reason we report only results for the
mixed-integer linear model.

Table 1 shows CPLEX results. The first column shows
the name of instances. The second column (BKS) shows
the objective function of best known solution value for each
instance. The next three columns show respectively the val-
ues of lower bound, best integer solution and the percentage
gap returned by CPLEX. Finally the last column shows the
percentage gap between the best integer solution and BKS.

We can draw three main observations from this experi-
ment. First, we omitted the results for instances with 25
data centers because CPLEX spent the whole time in the
presolve phase without solving the root relaxation node.
This shows that CPLEX cannot be applied with this math-
ematical model to large instances. Second, CPLEX gaps are
still high after 24h of computation. We think this is due to
the low relaxation quality of this model. Finally, for the set
of instances with 10 data centers, CPLEX was able to find
at least one feasible solution (column Integer Solution), in
many cases, even before starting a node exploration of the
branch-and-bound. However, the solver still has a high gap
from BKS.

923



Table 1: CPLEX detailed results.

Lower Integer CPLEX BKS

Instance BKS Bound Solution GAP GAP

10_025_012_70 114,582.50 67,006.63 116,264.44 42.37 1.47

10_025_012_90 84,461.30 40,592.25 88,087.12 53.92 4.29

10_025_025_70 90,997.90 65,997.32 93,729.48 29.59 3.00

10_025_025_90 124,763.66 86,281.96 125,365.26 31.18 0.48

10_025_037_70 100,801.80 79,139.70 104,350.38 24.16 3.52

10_025_037_90 106,617.94 81,678.77 107,558.00 24.06 0.88

10_050_025_70 414,689.30 74,248.43 442,548.40 83.22 6.72

10_050_025_90 460,414.96 117,147.62 480,146.00 75.60 4.29

10_050_050_70 360,102.12 116,523.45 374,071.02 68.85 3.88

10_050_050_90 403,272.24 113,953.64 420,173.88 72.88 4.19

10_050_075_70 349,135.78 166,802.77 362,853.92 54.03 3.93

10_050_075_90 500,668.88 233,743.38 513,161.02 54.45 2.50

10_100_050_70 1,677,015.90 159,285.07 1,884,262.62 91.55 12.36

10_100_050_90 1,804,385.34 200,022.30 1,916,126.76 89.56 6.19

10_100_100_70 1,465,034.60 213,163.82 1,546,897.78 86.22 5.59

10_100_100_90 2,145,917.62 389,652.74 2,256,408.46 82.73 5.15

10_100_150_70 1,572,976.60 367,091.18 1,702,573.74 78.44 8.24

10_100_150_90 1,858,242.74 575,983.27 1,968,341.96 70.74 5.92

Average 61.86 4.59

In summary, CPLEX was not able to prove the optimality
of any instance and presented on average a high percentage
gap of 4.59 %. Thus, these results motivated us to propose
heuristic solutions to solve the problem.

4.3 Multi-start and feasibility results
This section presents results and analysis of a greedy con-

structive heuristic combined with a local search in a multi-
start algorithm (MS). The main goals of the following exper-
iments are two-fold: to show the difficulty of finding feasible
solutions using a constructive heuristic, and to explore the
effect of embedding a local search procedure in order to ob-
tain a feasible solution.

In order to support our analysis, we evaluate the per-
formance of a greedy constructive heuristic embedded in
a multi-start algorithm. The greedy constructive heuristic
starts from a random order of virtual machines and uses the
same idea of decoder D1 to generate greedy solutions, i.e,
VMs are placed in the DC that produces the least increase
in the objective function. The multi-start algorithm repeats
the constructive heuristic until the stop criteria is reached.
Once a solution is obtained by the constructive algorithm,
the local search is applied until reaching a local minimum.

We run three algorithms on each instance. The stopping
criteria of each run was a time limit of |K| ∗ |N | ∗ θ seconds,
where θ = 0.8. The algorithms are the multi-start algorithm
without applying local search (NoLS), by applying the local
search with only shift moves (LSS), and by applying both
moves (LSW). The values in Table 2 refer to the percentage
of solutions evaluated that were feasible. Results represent
an average over 10 runs.

The first observation is that the probability of finding a
feasible solution using only a greedy constructive heuristic
without local search is low. In most instances, the percent-
age of feasible solutions was less than 0.2%, and the average
over all instances was slightly more than 1%. In five cases,
no feasible solution was found, as for example in instance
25_200_300_90, even haven evaluated 529,769 solutions.

With LSS the percentage of feasible solutions increased
considerable in comparison with NoLS. The number of eval-
uated solutions decreased around 42%, but the percentage
of feasible solutions increased to more than 21%. When
applying the local search LSW, the percentage of feasible
solutions increased even more, and on average, more than
three in four evaluated solutions are feasible. However, the
number of solution evaluated decreased to around 2% of the
number of solutions evaluated by LSS. This results show

Table 2: Percentage of feasible solutions found by the multi-
start algorithm with the greedy constructive heuristic.

Instance NoLS LSS LSW Instance NoLS LSS LSW

10_025_012_70 7.95 54.26 91.99 25_100_050_70 3.70 58.54 95.41

10_025_012_90 1.49 22.43 93.03 25_100_050_90 0.00 8.49 79.85

10_025_025_70 14.88 84.55 99.65 25_100_100_70 0.24 25.29 83.61

10_025_025_90 0.03 4.13 51.59 25_100_100_90 0.00 1.37 61.83

10_025_037_70 3.23 57.01 78.97 25_100_150_70 0.41 27.45 90.82

10_025_037_90 0.02 3.64 47.14 25_100_150_90 0.00 0.98 60.82

10_050_025_70 1.48 33.85 95.35 25_150_075_70 0.90 40.04 91.46

10_050_025_90 0.05 15.32 90.57 25_150_075_90 0.00 3.25 84.98

10_050_050_70 0.03 15.62 63.60 25_150_150_70 0.08 17.25 78.37

10_050_050_90 0.02 10.55 60.16 25_150_150_90 0.00 2.10 58.95

10_050_075_70 0.41 53.26 77.68 25_150_225_70 0.12 20.19 80.31

10_050_075_90 0.01 6.15 66.07 25_150_225_90 0.00 0.67 47.80

10_100_050_70 0.17 40.90 98.71 25_200_100_70 0.01 11.69 80.63

10_100_050_90 0.00 4.09 82.51 25_200_100_90 0.00 15.82 95.59

10_100_100_70 1.40 58.51 90.48 25_200_200_70 0.02 12.90 76.35

10_100_100_90 0.00 5.46 87.55 25_200_200_90 0.00 8.73 92.86

10_100_150_70 0.07 34.88 83.72 25_200_300_70 0.00 7.81 61.87

10_100_150_90 0.00 0.43 64.05 25_200_300_90 0.00 1.72 85.64

Average 1.74 28.06 79.05 0.30 14.68 78.18

that a large neighborhood helps to improve the feasibility,
even if the local search procedure is applied few times.

Even with a large increase in the percentage of feasible
solutions found when the local search is applied, some in-
stances still have a low percentage of feasible solutions. This
shows that the instance generator produces instances not
trivial to solve.

4.4 BRKGA results
This subsection presents results for the biased random-key

genetic algorithm. First we describe experiments for tuning
the parameters, and finally we present the main results ob-
tained by the proposed BRKGA. We also compare results
with the multi-start algorithm described in the previous sub-
section.

We used the iterated racing procedure [4] to tune the
BRKGA parameters. This method consists of sampling con-
figurations from a particular distribution, evaluating them
using either the Friedman test or the t-test, and refining the
sampling distribution with repeated applications of F-Race.
We uses the irace package [12], implemented in R [14].

For each heuristic, we used a budget of 2,000 experiments
in the tuning procedure, and two digits for real number pa-
rameters. Twelve instances were selected from the original
set in order to include the most different values. The stop-
ping criteria for all runs was a time set to |K|∗|N |∗θ seconds
(where θ = 0.8). The following ranges are used in the tun-
ing: p - population size ∈ {25, 50, 75}; pe - elite percentage
∈ [0.10, 0.30]; pm - percentage of mutants introduced at each
generation ∈ [0.05, 0.30]; and ρA - probability of inheriting
each key from elite parent ∈ [0.5, 0.8]. Finally, a restart
parameter r ∈ [50, 800] was used to restart the population
after r generations without improvement in the incumbent
solution.

The tuning was applied to four algorithm configurations,
that include both decoders and both local search strategies.
In all results returned by irace, values pe, pm, and ρA were
similar and we adopted the elite size pe = 0.24p, the set
of mutants pm = 0.12p, and the probability of inheriting
ρA = 0.6. For the restart parameter, we decided to disable
it when the local search LSW is used. This choice is sup-
ported by the fact that most of the processing time is spent
in the local search procedure and the total number of gen-
erations tends to be small. For the case of LSS, the restart
parameter was set to r = 350 for D1, and r = 650 for D2.
Finally, for the population size parameter, irace suggested
four sets of parameter setting, and the three populations

924



●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●●●
●
●
●
●●
●

●

●

●

●●●●
●
●
●
●●●

●

●

●●

●

●
●

●

●

●

●●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●
●
●
●
●

●

●

●

●

●

●

●●●●●●●
●●●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●

●●

●

●●
●
●

●
●

●

●

●
●

●●

●●

●

●●

●

●●

●
●

●●
●

●
●●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●●

●
●
●
●
●

●
●
●

●
●

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

S
c
a
le

d
 c

o
s
t

M
S_LSS

D
1_25_LSS

D
1_50_LSS

D
1_75_LSS

D
2_25_LSS

D
2_50_LSS

D
2_75_LSS

M
S_LSW

D
1_25_LSW

D
1_50_LSW

D
1_75_LSW

D
2_25_LSW

D
2_50_LSW

D
2_75_LSW

Figure 3: Dispersion of scaled cost for each algorithm.

sizes appear in the suggested values. For this reason, we
decided to run a large experiment to analyse the best pop-
ulation size, comparing both local searches procedures and
both decoders, and also to provide a comparison between
the results of BRKGA and the results of MS obtained in
the previous subsection. The experiment consists in evalu-
ating the BRKGA in all instances running all combinations
of decoders, local searches and population size. We made
ten independent runs for each instance with the time limit
set to |K| ∗ |N | ∗ θ seconds, where θ = 0.8.

To compare the results with respect the cost, we first scale
the results to the range [0, 1] since each instance can have
very different values. The scale is a simple transformation
where for each instance, the largest cost over all analysed
algorithms is scaled to 1 and the lowest is scaled to 0. Fig-
ure 3 shows the distribution of the scaled cost for each al-
gorithm. The box plots show the location of the minimum
value, lower quartile, median, upper quartile, and maximum
value of each algorithm. The dots are the outliers. Al-
gorithms are represented on the horizontal axis. BRKGA
algorithms are encoded by the decoder, population size, and
local search. Multi-start algorithms are encoded by MS plus
type of local search.

Figure 3 shows that the results with local search LSW
clearly overcome the results obtained with LSS. The results
with p = 75 and decoder D1 tend to be better than the
other approaches. Regarding the comparison of algorithms,
BRKGA produces better results than MS.

To confirm the results presented in Figure 3, we use the R
package to test the normality of these distributions using the
Shapiro-Wilk test and apply the Mann-Whitney-Wilcoxon U
test. For all tests, we assume a confidence interval of 99%.
Shapiro-Wilk tests indicate that no cost distribution fits a
normal distribution since the p-values for all tests are less
than 0.01. Therefore, we applied the U test which assumes as
null hypothesis that the location statistics are equal in both
distributions. We also use a p-value correction procedure
based on false discovery rate (FDR) to minimize the number
of false positives.

Table 3 shows U test results for each pair of algorithms.
The structure of this table is as follows: Each row and col-
umn is indexed by one algorithm. Each element in the diago-
nal (bold) is the median of the scaled cost of the correspond-
ing algorithm. The upper-right diagonal elements are the
differences in location statistics for each pair of algorithms.
A negative difference indicates that the “row algorithm” has
its location statistics lower (better) than the “column al-
gorithm”, and the positive difference is the opposite. The
bottom-left diagonal elements are the p-values of each test.

Math signals indicate when p<0.01 for a U test between
“row algorithm” and “column algorithm” for the respective
signal alternative hypothesis. The case “less” indicates that
the “row algorithm” overcome the “column algorithm”, or
the opposite in the case “greater”.

Table 3 shows tests only with local search LSW since all
test between LSS and LSW indicate that both strategies are
statistically significant. This corroborate the analysis from
Figure 3 showing that use LSW produce better results than
use LSS.

Table 3: Values of medians, p-values, and difference in me-
dian location for cost distributions using a confidence inter-
val of 99%.

MS D1 25 D1 50 D1 75 D2 25 D2 50 D2 75

MS 0.112 0.013 0.016 0.023 0.008 0.016 0.021

D1 25 < 0.092 0.003 0.006 -0.003 0.005 0.009

D1 50 < 0.427 0.089 0.006 -0.007 0.002 0.006

D1 75 < 0.087 0.065 0.084 -0.013 -0.003 0.001

D2 25 0.025 0.486 0.036 > 0.098 0.010 0.012

D2 50 < 0.181 0.484 0.366 < 0.091 0.003

D2 75 < 0.034 0.120 0.727 < 0.424 0.088

Table 3 shows that the difference between BRKGA and
MS is statistically significant and BRKGA produces bet-
ter results than MS, except for D2 25 where the test is in-
conclusive for a confidence interval of 99%. Tests between
BRKGA algorithms indicate that the differences are not sta-
tistically significant, except in some cases where D2 25 per-
formed worst. However, the medians and the difference in
median location indicate that the best results are obtained
with D1 75.

A set of statistical tests was also performed with results
for instances with 10 data centers, considering the BRKGA
with the default stopping criteria (maximum 800 seconds
for the larger instance) and CPLEX running per 24h (Sub-
section 4.2). The tests confirm that any BRKGA approach
produces better results than CPLEX.

In summary, BRKGA with the parameters p = 75, pe =
0.24p, pm = 0.12p, ρA = 0.6, using local search LSW, and
decoder D1 produced the better results for the instances
evaluated in comparison with MS and CPLEX.

Finally, the last experiment uses the Time-To-Target
(TTT) plots to display the running time distribution for
the algorithm to find a solution at least as good as a given
target value. TTT plots were used by [1] and have been ad-
vocated by Hoos and Stützle [9, 8] as a way to characterize
the running times of stochastic algorithms for combinatorial
optimization. The experiment consists in performing 200
runs of BRKGA and MS algorithm for two instances until a
timelimit is reached. The instances chosen was one at ran-
dom from each group of data centers, and the target value
was set as the higher result from all runs and both algo-
rithms. Defined the target, we extract on each run the time
to rearch a solution at least as good as the target, i.e 467,305
for 010_050_025_090 and 4,426,014 for 025_150_225_070.
Figures 4a and 4b illustrate the cumulative probability

plot obtained by using BRKGA and MS for two instances.
For the instance 010_050_025_090, we observe that the
probability that the BRKGA finds a solution that is at least
as good as the target value in less than 20 seconds is 50%,
in less than 60 seconds is 80%, and in less than 120 seconds
in 95%. For the instance 025_150_225_070, the probability
that the BRKGA finds a solution that is at least as good
as the target value in less than 230 seconds in 50%, in less

925



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time (s)

BRKGA
MS

(a) TTT plot for the

instance 010_050_025_090.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time (s)

BRKGA
MS

(b) TTT plot for the

instance 025_150_225_070.

Figure 4: Cumulative probability distribution.

than 500 second in 80%, and in less than 1020 seconds is
95%. In both instances, BRKGA overcomes MS obtaining
higher probability in the same running time.

A final observation about running times of BRKGA is that
results are reported using single-thread in order to provide a
fair comparison with the MS and CPLEX results. However,
the BRKGA API provides an efficient multi-thread decoding
[15], that could be used to reduce substantially the running
time when multiple processors are available.

5. CONCLUDING REMARKS
In this paper we presented the problem of minimizing the

cost of virtual machines placement across geo-separated data
centers. A quadratic and a linear mathematical formulation
were presented. Moreover, a biased random-key genetic al-
gorithm was proposed in order to find near-optimal solu-
tions for the problem. Computational tests were conducted
in a set of synthetic instances to evaluate the performance
of CPLEX using the proposed mathematical formulations.
Furthermore, the BRKGA was applied on the same set of
instances. A set of experiments shows that BRKGA out-
performs CPLEX significantly in terms of running times,
achieving significantly better solutions in less time, and also
produces better results than a simple multi-start algorithm.
Thus, the proposed algorithm is a competitive algorithm
which reduces costs while maintaining the reliability and
the demand requirements of data centers.

6. ACKNOWLEDGMENTS
The authors would like to thank Kaustubh Joshi, Moo-
Ryong Ra, and Alexander Varshavsky from AT&T Labs-
Research, Bedminster NJ for helpful discussions.
This work has been partially supported by CAPES,
CNPq project 462425/2014-2, PRH PB-217 Petrobras
S.A. from Brazil; AT&T Labs Research from USA; and
projects PTDC/EGE-GES/117692/2010 and NORTE-07-
0124-FEDER-000057 funded by NPROP (ON.2 - O Novo
Norte), under NSRF Framework, through ERDF and the
Programme COMPETE, and by national funds through
FCT from Portugal. The research of Mauricio G. C. Resende
and Vaneet Aggarwal was done while they were employed at
AT&T Labs Research.

7. REFERENCES
[1] R. M. Aiex, M. G. C. Resende, and C. C. Ribeiro.

TTT plots: A perl program to create time-to-target
plots. Optimization Letters, 1(4):355–366, 2007.

[2] Amazon Elastic Compute Cloud.
http://aws.amazon.com/ec2/. Last accessed:
February, 2015.

[3] H. Ballani, P. Costa, T. Karagiannis, and
A. Rowstron. Towards predictable datacenter
networks. In ACM SIGCOMM Computer

Communication Review, volume 41, pages 242–253,
New York, NY, USA, 2011. ACM Press.

[4] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle.
F-race and iterated F-race: An overview. In
T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and
M. Preuss, editors, Experimental Methods for the

Analysis of Optimization Algorithms, pages 311–336.
Springer Berlin Heidelberg, 2010.

[5] J. F. Gonçalves and M. G. C. Resende. Biased
random-key genetic algorithms for combinatorial
optimization. J. of Heuristics, 17(5):487–525, 2011.

[6] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. a. Maltz, P. Patel, and
S. Sengupta. VL2: A Scalable and Flexible Data
Center Network. ACM SIGCOMM Computer

Communication Review, 39(4):51, 2009.

[7] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun,
W. Wu, and Y. Zhang. SecondNet: A Data Center
Network Virtualization Architecture with Bandwidth
Guarantees. In Proceedings of the 6th International

COnference on - Co-NEXT ’10, Co-NEXT ’10,
page 1, New York, NY, USA, 2010. ACM.

[8] H. H. Hoos and T. Stützle. Evaluating Las Vegas
Algorithms: Pitfalls and Remedies. In Proceedings of

the Fourteenth Conference on Uncertainty in Artificial

Intelligence, UAI’98, pages 238–245, San Francisco,
CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[9] H. H. Hoos and T. Stutzle. On the empirical
evaluation of Las Vegas algorithms. Technical report,
CS Department, University of British Columbia, 1998.

[10] IBM ILOG CPLEX Optimizer. www.cplex.com. Last
accessed: February, 2015.

[11] C. G. Lee and Z. Ma. The generalized quadratic
assignment problem. Technical report, Department of
Mechanical and Industrial Engineering at the
University of Toronto, Toronto, Canada, 2004.

[12] M. Loopez-Ibanez, J. Dubois-Lacoste, T. Stützle, and
M. Birattari. The irace Package: Iterated Race for
Automatic Algorithm Configuration. Technical report,
IRIDIA, Université Libre de Bruxelles, Belgium, 2011.

[13] R. Mart́ı, M. G. C. Resende, and C. C. Ribeiro.
Multi-start methods for combinatorial optimization.
European J. of Operational Research, 226(1):1–8, 2013.

[14] R Core Team. R: A Language and Environment for

Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2013.

[15] R. Toso and M. Resende. A C++ application
programming interface for biased random-key genetic
algorithms. Optimization Methods and Software,
30(1):1–15, 2014.

[16] D. Xie and Y. C. Hu. The Only Constant is Change:
Incorporating Time-Varying Network Reservations in
Data Centers. In Sigcomm, SIGCOMM ’12, pages
199–210, New York, NY, USA, 2012. ACM.

926




