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ABSTRACT
Energy demand has increased considerably with the growth
of world population, increasing the interest in the hydro-
carbon reservoir management problem. Companies are con-
cerned with maximizing oil recovery while minimizing capi-
tal investment and operational costs. A first step in solving
this problem is to consider optimal well placement. In this
work, we investigate the Differential Evolution (DE) opti-
mization method, using distinct configurations with respect
to population size, mutation factor, crossover probability,
and mutation strategy, to solve the well placement problem.
By assuming a bare control procedure, one optimizes the pa-
rameters representing positions of injection and production
wells. The Tenth SPE Comparative Solution Project and
MATLAB Reservoir Simulation Toolbox (MRST) are the
benchmark dataset and simulator used, respectively. The
goal is to evaluate the performance of DE in solving this
important real-world problem. We show that DE can find
high-quality solutions, when compared with a reference from
the literature, and a preliminary analysis on the results of
multiple experiments gives useful information on how DE
configuration impacts its performance.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization, global opti-
mization, constrained optimization; G.1.10 [Applications]
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1. INTRODUCTION
Recently, energy demand has increased considerably with

the growth of world population, inducing even more interest
in the oil reservoir management problem. This involves effec-
tively utilizing existing hydrocarbon resources by maximiz-
ing recovery and minimizing capital investment and opera-
tional costs. One approach to address this is to find optimal
placement of wells. The parameters representing positions
and orientations of injection and production wells are opti-
mized, while a bare control procedure is assumed. In this
work, we consider only vertical wells with (x, y)-coordinates
representing a well’s position.

The performance indicator or objective function of this
optimization problem is usually either the Voidage Replace-
ment Ratio (VRR) [9, 2] or the Net Present Value (NPV) [3,
16]. The VRR function corresponds to the ratio of the total
volume of fluid injected (water injection) to the volume of
fluid produced (water, oil and gas production). In turn, the
NPV function involves the total amount of oil extracted, em-
phasizing an early oil production in the reservoir’s life-time
(due to the time value of money), and also typically includes
the costs of water injection and disposal of any water pro-
duced. Since NPV is the primary objective function used in
well placement optimization, we chose it for this study.

Since the reservoir model is represented as a discretized
grid, the positions of injection and production wells are typ-
ically specified by integer co-ordinates, meaning that exact
gradients of the objective function with respect to these pa-
rameters are not available. Thus, gradient-based methods
have been used only after conversion of the discrete opti-
mization problem into another optimization problem with
continuous variables [30, 37]. Due mostly to the hetero-

http://arxiv.org/abs/1504.06871v1


geneous permeability field, the objective function is non-
convex and may contain many local minima [28]. Moreover,
gradient-based methods are typically local solvers. Here a
global optimum is desired, hence the work presented herein
uses a derivative-free (non-invasive, black-box) optimization
method known as a meta-heuristic [32, 4].

Since gradients are not directly available, meta-heuristics
are usually quite inefficient requiring several thousands of
simulations and thus may have limited application to large-
scale simulation models with many wells. However, when-
ever they are computationally feasible, meta-heuristics tend
to provide high-quality solutions. Parallel programming can
be used to obtain multiple independent runs simultaneously,
or provide parallel function evaluations in a single run, thus
the computational time may be decreased and the overall
solution can be improved. Another important advantage
of applying meta-heuristics is that the number of function
evaluations is dependent on the size of the population and
not the problem dimensionality [33]. Meta-heuristics that
have been used to solve the well-placement problem include:
genetic algorithms (GA) [35, 24, 21], simulated annealing
(SA) [3], particle swarm optimization (PSO) [28, 17, 1, 16],
covariance matrix adaptation evolutionary strategies (CMA-
ES) [12, 5, 14], and differential evolution (DE) [27, 2].

DE is a meta-heuristic which has been successfully used
to solve many global optimization problems [7], for example,
problems in engineering design [11], electrical impedance to-
mography [19], the paper industry [34], and limited mem-
ory optimization [25]. Nevertheless, its application in well-
placement is not common. Some researchers [27] indicate
that DE is not appropriate for the well placement problem,
suggesting its use only when hybridized with other stochas-
tic methods. However, it is well-known that the choice of
algorithmic parameters may have great influence on its be-
haviour. Therefore, in this paper we investigate DE to solve
a well-placement problem on a widely studied real-world ex-
ample, and present a preliminary analysis on its parameters.
Our results may serve as reference for researchers intending
to use DE to solve this kind of problem; allowing a more fair
comparison by using a more appropriate DE configuration.
Moreover, this study suggests a particular configuration that
may make classical DE competitive with other methods to
solve the well placement problem.

This paper is organized as follows: Section 2 presents the
literature review; Section 3 presents the proposed methodol-
ogy; Section 4 presents the results and discussions; Section
5 presents the conclusions.

2. LITERATURE REVIEW
The well placement problem involves determining the op-

timal location of one or more wells in order to obtain, for
example, the maximum NPV of oil extracted with minimal
operating costs, subject to different geological and economic
constraints such as reservoir geology, well type, and physical
properties of the fluid and rock. We focus this short review
on DE, the optimization method investigated in this paper.

DE has been used in multi-objective approaches incorpo-
rating NPV and VRR to solve well placement optimization
problems [15, 2]. A Pareto-based multi-objective approach
to integrate NPV and VRR in a well placement optimization
was presented by [15], obtaining several optimal solutions
according to the Pareto front. The set of solutions in the

Pareto optimal front are those that cannot be improved in
any of the objectives without degrading at least one of the
other objectives.

A similar study was presented by [2] using CMA-ES and
DE to solve the multi-objective optimization problem by
manually weighting NPV and VRR, resulting in a single-
optimization problem. They concluded that CMA-ES out-
performed DE for the majority of experiments, but that DE
also obtained high-quality solutions.

A hybrid approach (HPSDE) was proposed by [27] com-
bining the DE and PSO algorithms. The hybrid algorithm
consistently outperformed both DE and PSO using NPV as
performance measure in the three proposed example prob-
lems. The placement of one, two, and nine vertical wells
were considered. They showed that the performance of DE
and PSO, to an extent, depends on the 1) the total number
of simulations, and 2) the population size, and that PSO
was generally better than DE. However, the conclusion of
that study was based on results obtained from a configu-
ration that makes DE’s convergence slow but able to avoid
local optima. Therefore, more iterations would be necessary
to show a competitive performance with that configuration.
Their conclusions were based only 5 trials of each algorithm.
We understand that an adequate statistical analysis of a
stochastic algorithm requires a larger number of indepen-
dent runs.

Given the above, our main contribution is to present a
preliminary analysis using various DE configurations, in-
cluding some suggested in the literature [31, 10], while solv-
ing a well placement problem. We show that DE can find
high-quality solutions, contradicting the conclusions pres-
ented by [27], and indeed our DE obtained several results
better than those from [16], which used a PSO with local-
search (memetic PSO).

3. METHODOLOGY
In this section we present the well placement problem used

as the case study, and introduce the Differential Evolution
algorithm used to solve it.

3.1 Case Study
As in [16], we consider a small section of the reservoir

block representing a subset of the Tenth SPE Compara-
tive Solution Project [8] to run several instances of each
DE configuration and to study the convergence behaviour.
We adopt a 2D reservoir model consisting of 60 × 50 grid
cells, each measuring 32 × 32 m2 with a total field size of
1, 600× 1, 920 m2. A uniform saturation of 80:20, oil to wa-
ter, is also assumed as in [16]. The physical parameters of
the problem are shown in Table 1. Figures 1 and 2 show
the porosity and permeability fields of the reservoir model,
which are generated from the third layer of the SPE10 base
case.

The objective function adopted is the NPV over the entire
production period [0, T ]. The NPV is computed as in [3]:

NPV (x) =

∫ T

0

∑

n∈prod

coq
−

n,o(x, t)− cw,dispq
−

n,w(x, t)

−
∑

n∈inj

cw,injq
+
n,w(x, t)(1 + r)tdt,

(1)



Table 1: Physical parameters values as used in [16].
Parameter Value

Fluid viscosities µo and µw 2.4 and 1.0 cp

Fluid densities ρo and ρw 835 and 1, 000 kg/m3

Initial reservoir pressure 260 bars
Injector BHP range 275− 450 bars
Producer BHP range 100− 250 bars
Production period 10 years
Control interval 2 years

Figure 1: Porosity field.

where x is the solution vector encoding the spatial coor-
dinates of each well, for instance, x = [x1, x2, ..., xn], where
(x1, x2) is the coordinate pair of the first well, (x3, x4) repre-
sents the coordinate pair of the second well, and so on. The
parameters co, cw,disp, and cw,inj represent, respectively, the
value of each barrel of oil produced, the cost of disposing of
each barrel of produced water, and the cost of injecting a
barrel of water into the reservoir. The functions q−n,o(x, t)
and q−n,w(x, t) are the oil and water production rates (bar-
rels/day) at a producer, while q+n,w(x, t) is the daily water
injection rate at an injector. Note that these rates are deter-
mined from a reservoir simulation according to the value of
x. The yearly interest rate is specified by r. The economic
parameter values shown in Table 2 are the same as provided
in [16] for all experiments.

Table 2: Economic parameters values as in [16].
Parameter Value

co 80/bbl
cw,disp 12/bbl
cw,inj 8/bbl

r 10% or 0%
Threshold for water cut 78%

The experiments to calculate the NPV were completed
using the Matlab Reservoir Simulation Toolbox (MRST) [20]
which solves the flow and transport equations in alternating
steps, in order to determine the phase pressures, flow rates
and saturation at every time point. Modelling of simple
vertical wells is provided using the Peaceman model [29].

The optimization problem consisted of the placement of
two injectors and two producers in a reservoir model under
conditions according to Table 1, constrained to a minimum
distance between wells equal to 250m.

We considered three optimization subproblems as in [16]

Figure 2: Permeability (mD) in logarithmic color
scale.

in order to compare those results with the ones obtained in
this paper:

• Case 1: no constraints regarding injection and produc-
tion rates, and r = 10%;

• Case 2: no constraints regarding injection and produc-
tion rates, and r = 0%;

• Case 3: maximum flow constraints regarding to injec-
tion and production rates equal to 1, 000 m3/day, and
r = 10%.

The next section presents the meta-heuristic employed
here to solve the well-placement problem.

3.2 Differential Evolution
DE [31] is a floating-point encoding populational meta-

heuristic, working as an evolutionary algorithm, with only a
few control parameters [10, 4]. Several papers have shown
that the classical DE and its variants outperform many other
optimization methods, in terms of both convergence speed
and robustness, when applied to hard benchmark functions
and real-world problems. These problems include uncon-
strained global optimization [39], constrained optimization
[11], multi-objective optimization [23], large-scale optimiza-
tion [6, 38], and optimization in dynamic and uncertain en-
vironments [22, 13].

The DE algorithm proceeds by randomly initializing (com-
monly using a uniform distribution) a population of D-di-
mensional vectors inside the problem bounds, and evaluat-
ing the objective/fitness function for all the vectors in the
population. Then, until a stopping condition is satisfied,
the algorithm performs an iterative evolutionary process of
mutation, crossover, and selection operators.

For each vector xi in a population of size N , the muta-
tion operator uses the weighted difference of parent solu-
tions to generate mutation vectors vi. The two well-known
mutation strategies investigated in this work are rand/1
and current-to-best/1 [26], which are represented, respec-
tively, by Eqs. 2 and 3:

vi = xr1 + F.(xr2 − xr3), (2)

vi = xi + F.(xbest − xi) + F.(xr1 − xr2), (3)

where xr1, xr2 and xr3 are three distinct and randomly cho-
sen vectors from the population, xbest is the best vector from



the population, F ∈ [0, 2] is the mutation factor, and . de-
notes a scalar-vector product. In the rand/1 strategy, the
base vector to be perturbed is randomly selected from the
population, and will move in the direction of the other two
random vectors. Therefore, it is possible that only poor
solutions are chosen to generate offspring. Obviously, the
repetition of this could result in a poor search. Given that
the best solution of the population is eventually chosen, the
search tends to the best solution through the optimization
process [18]. However, it is also clear that the bigger the
population the lower the chance of selecting the current best
solution.

On the other hand, the current-to-best/1 strategy uses
as a base vector each member of the population; thus all
best solutions will always be chosen. Moreover, the best
solution found so far is always used to calculate the difference
vector, not only guiding the search towards the current best
but also performing a localized search. In this case, smaller
populations give faster convergence with lower exploratory
capability and may result in the search getting trapped in
low-quality optima [18].

The crossover operator is applied on vi to generate the
final offspring vector ui whose j-th component is given as

ui,j =

{

vi,j if U(0, 1) ≤ CR or j = jrand,
xi,j otherwise,

(4)

where U(0, 1) is a random floating-point number from a
uniform distribution between 0 and 1 generated for each
j, CR ∈ [0, 1] is the crossover probability, and jrand is a
randomly chosen index from [1, D].

Finally, the selection operator selects the best evaluated
vector between xi and ui. The offspring replaces the par-
ent if its fitness value is better. Otherwise, the parent is
maintained in the population.

As one may notice, DE has four parameters: N , F , CR,
and the mutation strategy. Therefore, in this paper we ex-
periment with several configurations to show that, when
properly configured, DE can have a good performance in
a well placement problem.

4. EXPERIMENTAL ANALYSIS
In this paper we investigate the performance of DE using

eight distinct configurations to solve the three well-placement
problems described in Section 3.1. The distinct configura-
tions are specified in Table 3, and suggested by [36, 10].
The stopping criterion is 10,000 objective function evalua-
tions (simulations using MRST) as in [16].

Table 3: DE configurations.
Configuration N CR F Mutation

1 100 0.5 0.9 rand/1
2 100 0.9 0.5 rand/1
3 200 0.5 0.9 rand/1
4 200 0.9 0.5 rand/1
5 100 0.5 0.9 current-to-best/1
6 100 0.9 0.5 current-to-best/1
7 200 0.5 0.9 current-to-best/1
8 200 0.9 0.5 current-to-best/1

As can be observed in Table 3, four parameters were mod-
ified. More extensive tests, using a larger number of config-

urations, could not be performed because the simulation is
computationally expensive. Therefore, it is possible that
an untested configuration leads to even better results than
those in the current work. However, those eight configura-
tions allow the identification of interesting behaviours.

Since meta-heuristics have stochastic components, it is
necessary to perform multiple runs in order to assess the
average performance. Thus, each configuration was inde-
pendently run 30 times, with distinct seeds, to allow for a
more accurate comparison.

A death penalty approach was adopted for constraint han-
dling. That means 1) if DE generates a solution for well
placement in which the minimum distance between wells is
less than 250m, then the NPV for this solution is set to mi-
nus infinity; and 2) if the maximum flow of a well during the
production time is above 1, 000 m3/day, then the simulation
is interrupted and the NPV is also set to minus infinity (only
applied in Case 3).

4.1 Results
Tables 4-6 show the results for each DE configuration for

each case described in Section 3.1 with respect to fitness
value, i.e, NPV. The first column of the tables labels the
methods (DE configurations and memetic PSO [16]). The
second column gives the best NPV found during the opti-
mization process, while the third shows the worst NPV ob-
tained. The mean, standard deviation (SD), and median val-
ues of NPV are shown in the fourth, fifth, and sixth columns
respectively. The last line of the tables presents the results
from [16], which were obtained by decoupling the well place-
ment and control problems. That approach can be described
in three steps: 1) PSO was used to determine the optimal
well positions under a fixed control procedure; 2) once opti-
mal positions were found under the fixed control procedure,
the controls and positions were optimized locally using gen-
eral pattern search (GPS) with standard search directions.
To generate our results with DE we used the optimal con-
trol strategy found in [16] and then determined optimal well
placement.

Figures 3, 5, and 7 show bean plots of the NPV distribu-
tion (over 30 trials) for each DE configuration for Cases 1-3,
and for memetic PSO [16]. The short horizontal lines are
the NPVs for all trials. The median is represented by the
thick horizontal black line. The average of all observations
is presented as the dashed horizontal line.

Figures 4, 6, and 8 show the NPVs with respect to the
number of function evaluations for each DE configuration
for Cases 1-3. Each curve represents the mean performance
of the 30 trials for each configuration.

Table 4: Results for Case 1 described in Section 3.1.
NPV ($× 108)

Method Best Worst Mean SD Median
Config. 1 5.99 5.50 5.67 0.13 5.63
Config. 2 6.21 5.56 5.83 0.18 5.82
Config. 3 5.82 5.33 5.57 0.12 5.56
Config. 4 5.88 5.36 5.64 0.16 5.60
Config. 5 6.24 5.61 5.95 0.16 5.96
Config. 6 6.51 5.34 5.98 0.29 6.03
Config. 7 6.06 5.43 5.79 0.15 5.77
Config. 8 6.49 5.40 6.11 0.27 6.18

memetic PSO [16] 6.30 5.97 6.15 - -



Figure 3: Bean plots of the NPV distribution for
Case 1. The short horizontal lines are the NPVs for
all trials. The median is represented by the thick
horizontal black line. The average of all observations
is presented as the dashed horizontal line.

Figure 4: Convergence plots of the NPV versus the
number of function evaluations for Case 1. Each
curve represents the mean performance of the 30
trials for each DE configuration.

Table 5: Results for Case 2 described in Section 3.1.
NPV ($× 108)

Method Best Worst Mean SD Median
Config. 1 8.19 7.39 7.73 0.18 7.69
Config. 2 8.29 7.48 7.83 0.19 7.79
Config. 3 7.96 7.24 7.63 0.18 7.62
Config. 4 8.07 7.40 7.64 0.18 7.59
Config. 5 8.40 7.56 8.04 0.20 8.02
Config. 6 8.64 7.29 8.26 0.29 8.22
Config. 7 8.28 7.59 7.88 0.19 7.89
Config. 8 8.66 7.14 8.22 0.27 8.18

memetic PSO [16] 8.64 8.04 8.35 - -

4.2 Discussions
Considering the experiments in this paper for Case 1, the

best NPV, according to Table 4, was found by Config. 6,
while the worst one was obtained by Config. 3. Configura-
tion 8 presented the highest median NPV. In turn, Config. 6
showed the highest SD. DE was able to find better solutions
than those found in [16] by the decoupled method, but the
mean NPV was a little lower, and the worst solutions were
lower than those from [16] because of the outliers. Given
that we did not employ any local search method, the results

Figure 5: Bean plots of the NPV distribution for
Case 2. The short horizontal lines are the NPVs for
all trials. The median is represented by the thick
horizontal black line. The average of all observations
is presented as the dashed horizontal line.

Figure 6: Convergence plots of the NPV versus the
number of function evaluations for Case 2. Each
curve represents the mean performance of the 30
trials for each DE configuration.

of DE are very satisfactory. Moreover, one usually selects
the best solution to solve a problem, not the mean solution.

As one can notice in Fig. 3, the distributions of the final
NPVs for each DE configuration are clearly not Gaussian;
thus the mean and SD are not adequate measures to de-
scribe the distributions. The average of all observations is
presented as the dashed horizontal line right above 5.8×108.

Configs. 2, 4, 6, and 8, that used CR = 0.9 and F = 0.5,
presented more variance in the distribution than the other
configurations. However, the best results were obtained by
Config. 6 and Config. 8. We noticed that Config. 8 gave the
highest median, represented by the thick horizontal black
line. Configuration 6 obtained the second best result, fol-
lowed by Config. 5. The worst performance was presented by
Config. 3. This information is also shown in Table 4, but the
bean plot allows for the visualization of the concentration of
solutions with similar values and the identification of out-
liers. For instance, Config. 6 and Config. 8 found the best
solutions, but also some very poor ones. Configuration 8
had a high concentration of solutions close to 6.3× 108 and
6.0 × 108. On the other hand, based on the plot one may
say that the best solution found by Config. 6 was an outlier,
since the high concentration was around 6.0 × 108.

Another pattern identified in Fig. 3 is that for rand/1,
the bigger N , the worse the result (see Config. 1-4). For
the current-to-best/1 strategy, the increase in N consider-
ably improved the solutions for Config. 8, but worsened the



Table 6: Results for Case 3 described in Section 3.1.
NPV ($× 108)

Method Best Worst Mean SD Median
Config. 1 5.60 5.02 5.35 0.14 5.35
Config. 2 5.78 5.07 5.46 0.18 5.42
Config. 3 5.56 4.98 5.22 0.15 5.20
Config. 4 5.73 5.11 5.34 0.16 5.31
Config. 5 5.94 5.31 5.59 0.16 5.58
Config. 6 6.18 5.19 5.81 0.28 5.87
Config. 7 5.75 5.26 5.46 0.12 5.45
Config. 8 6.17 5.25 5.81 0.24 5.82

memetic PSO [16] 6.05 5.63 5.89 - -

Figure 7: Bean plots of the NPV distribution for
Case 3. The short horizontal lines are the NPVs for
all trials. The median is represented by the thick
horizontal black line. The average of all observations
is presented as the dashed horizontal line.

solutions for Config. 7. We believe that Config. 7 was worse
than Config. 5 because when CR = 0.5, only 50% of the
mutated vector will be incorporated into the trial solution.
As N for Config. 7 is twice as in Config. 5, it is performing
half the number of iterations. Therefore, it would need much
more function evaluations to transfer useful information to
the offspring.

Regarding the results from [16] shown in Fig. 3, one can
notice that the distributions of the final NPVs seems Gaus-
sian, and presents a high concentration of solutions around
6.17 × 108. In turn, Config. 8 obtained the highest median
NPV and a greater concentration of solutions above the me-
dian compared to that from [16], even presenting more vari-
ance in the distribution. As shown in Table 4 and Fig. 3,
Configs. 6 and 8 gave higher NPVs than the highest NPV
found in [16]. Memetic PSO was more stable than DE for
this case, giving smaller variance in the results. On the other
hand, DE found several solutions considerably better than
those of memetic PSO. Therefore, for Case 1 we conclude
that even though the memetic PSO presents a higher mean
NPV than DE, DE has a higher probability of finding better
solutions than the memetic PSO.

In the convergence plots of Fig. 4, one may observe that
Config. 6 was the fastest method to find high quality so-
lutions; it presented the highest NPV using 6, 000 function
evaluations, but then stagnated. After 6, 000 function eval-
uations, Config. 8 obtained the highest NPV. A possible
explanation is that these configurations have 90% chance
of considering the parent’s information (CR = 0.9). Con-
figuration 6 lost diversity faster than Config. 8, which kept
improving because of a bigger N . Config. 5 shows a NPV
close to Config. 6 in the end, and would probably outperform

Figure 8: Convergence plots of the NPV versus the
number of function evaluations for Case 3. Each
curve represents the mean performance of the 30
trials for each DE configuration.

it if more iterations were allowed. The worst mean perfor-
mance was presented by Config. 3. The other configurations
showed an intermediate performance.

Regarding Case 2, one can see in Table 5 that the best
solution was found by Config. 8, whereas both Config. 6
and memetic PSO [16] found the second-best solution. On
the other hand, the mean value of the simulations in [16] is
higher, as is the worst solution found. This means that DE
got stuck in local optima more often than the memetic PSO
in [16], or that DE could not properly refine the solutions.
Nevertheless, it is reasonable to think that a DE with local
search could be more competitive.

When evaluating the bean plots shown in Fig. 5, we can
see that the worst values for Configs. 6 and 8 were outliers.
Thus, the worst, mean, and SD from Table 5 must be care-
fully evaluated; they are descriptive statistics of the data,
but do not tell the whole story.

Patterns observed in Case 1 bean plots for DE are also
valid in Case 2. For instance, current-to-best/1 was notice-
ably the best mutation strategy, even though it gave a higher
variance. Choosing CR to be larger than F results in better
median solutions, except for Config. 4. Also, for rand/1 a
larger N showed worse results than a smaller N . The main
difference here is that Config. 6 was better than Config. 8,
with more solutions near the best ones, i.e, with a high con-
centration of solutions close to 8.6 × 108, possibly due to a
smaller N leading to faster convergence.

Another interesting fact is that the bean plot shapes of
Config. 6 and [16] are similar, except for the tail of the bean
plot for Config. 6 which is caused by the 4 poor solutions
found. As in Case 1, memetic PSO presented a smaller vari-
ance in the results than DE. On the other hand, DE Con-
fig. 6 gave more solutions near the best overall even though
it obtained a median NPV lower than that from [16].

In the convergence plots for Case 2 in Fig. 6, one can no-
tice that, once again, Config. 6 gave a faster approximation
to the best solution, followed by Config. 8. High-quality
solutions were found by Config. 6 requiring less than 6, 000
function evaluations, and the remaining function evaluations
gave small adjustments in the solution. However, as the DE
used in this work does not have a local-search mechanism,
the refinement was insufficient to give dramatically better
results in most runs.

For Case 3, one can observe in Table 6 that the best NPV
was found by Config. 6, and Config. 8 found the second-best



NPV. Thus, two DE configurations were able to find better
solutions than those found in [16]. However, as in Case 1, the
mean performance of DE was a little lower and the worse
solutions were lower than obtained in [16]. This confirms
that a memetic DE could be more competitive, since DE
got stuck in local optima more often than the memetic PSO
used in [16].

Considering the bean plots of DE shown in Fig. 7 for
Case 3, Config. 6 presented the highest median, followed
by Config. 8. Analogous to Case 1, the worst performance
was presented by Config. 3. This information can be seen in
Table 6 and Fig. 8 as well. As in Cases 1 and 2, the patterns
observed in Figs. 3 and 5 are also valid for Fig. 7 of Case 3.
For example, worse NPVs are obtained with a large N . Bet-
ter median NPVs are achieved when CR is larger than F .
Even though presenting a higher variance, current-to-best/1
was clearly the best mutation strategy. As in Case 2, Con-
fig. 6 presented more solutions near to the best ones, i.e,
close to 6.18× 108.

Analogous to Fig. 3, we can also see in Fig. 7 that Config. 6
and Config. 8 presented higher NPVs than the best NPV
found by [16]. Although Config. 6 gave a higher variance in
the results it obtained a median NPV close to that from [16].

According to Fig. 8, once again, Config. 6 presented the
faster convergence, followed by Config. 8. As mentioned in
Section 3.2, for the configurations that use current-to-best/1
strategy, smaller N values give faster convergence. Also,
Config. 3 showed the worst mean performance. As men-
tioned for Cases 1 and 2, we believe that all solutions could
be better if a local-search was employed since the results
from basic DE configurations were competitive with those
from memetic PSO [16].

5. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a study of the performance of

eight DE configurations in solving a well placement prob-
lem. DE was tested with different values for N , CR, and F ,
and also two well-known distinct mutation strategies. The
SPE10 base case was the benchmark dataset, and the sim-
ulator used was MRST. We solved three optimization prob-
lems with or without constraints, and with or without dis-
counting rate. For each one, a bare control procedure was
assumed with a control interval of 2 years, and the param-
eters representing spatial coordinates of vertical wells, in-
jectors and producers, were optimized. Performance of DE
in solving that problem was compared with results of the
memetic PSO from [16].

According to the preliminary analysis performed in this
paper, current-to-best/1 was visibly the best mutation strat-
egy, in spite of a higher variance in the NPV results. Choos-
ing CR = 0.9 resulted in better median solutions than with
CR = 0.5. Moreover, a larger N showed worse results.
Thus, for the cases tested in this paper one should not ex-
pect good results using rand/1 as mutation strategy or using
CR = 0.5.

For all three optimization problems considered, DE found
better NPVs than those found in [16]. On the other hand,
the memetic PSO used in [16] was more stable with the high-
est mean NPV, and the poorest results found by memetic
PSO were higher than the poorest results found by DE.

As future work we intend to use a DE algorithm capable of
automatically adapting its parameters, and also add a local-

search mechanism. Such a DE variant may not only be as
stable as the memetic PSO, but also reach better median
values for all problems.
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