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1. INTRODUCTION
Linkage-learning Evolutionary Algorithms (EAs) use link-

age learning to construct a linkage model, which is exploited
to solve problems efficiently by taking into account impor-
tant linkages, i.e. dependencies between problem variables,
during variation. It has been shown that when this linkage
model is aligned correctly with the structure of the problem,
these EAs are capable of solving problems efficiently by per-
forming variation based on this linkage model [2]. The Link-
age Tree Genetic Algorithm (LTGA) uses a Linkage Tree
(LT) as a linkage model to identify the problem’s structure
hierarchically, enabling it to solve various problems very ef-
ficiently. Understanding the reasons for LTGA’s excellent
performance is highly valuable as LTGA is also able to ef-
ficiently solve problems for which a tree-like linkage model
seems inappropriate. This brings us to ask what in fact
makes a linkage model ideal for LTGA to be used.

2. OFFLINE LINKAGE TREE LEARNING
To study the strengths and weaknesses of LTGA, we per-

formed experiments aimed at learning LTs offline to be used
as predetermined linkage models for LTGA, that replace the
online-learned LTs (LTons). Contrary to conventional ap-
proaches, this is done by searching in the space of LTs and
evaluating the associated performance of LTGA.
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Figure 1: Experimental results of LTGA using
(pruned) offline-learned LTs for the hardest NK-
Landscapes and MAXCUT instances.

Using a binary encoding to represent all possible offline-
learned LTs (LToff s) is non-trivial and would result in a
problem with high dimensionality, of which it is questionable
whether it can be solved within reasonable time. Instead,
the outcome of the hierarchical clustering algorithm used by
LTGA to learn LTons based on a population can be manip-
ulated by forcing different contents into the distance matrix
used, resulting in LTs that represent different linkage con-
texts. We used the real-valued EA known as iAMaLGaM to
this end, as it was found to be very robust in finding suitable
contents for a distance matrix [1]. The fitness of solutions,
i.e. distance matrices, evaluated by iAMaLGaM was defined
as the number of evaluations needed by LTGA with a newly
implemented population-size-free scheme when the LTons of
LTGA are replaced by the corresponding offline-learned LT
(LToff ), averaged over 1000 runs. This population-size-free-
scheme repeatedly initiates instances of LTGA, ever dou-
bling the population size until a stopping condition is met.

This resulted in distance matrices that support the cre-
ation of optimal LToff s, being LTs that cause the largest
reduction in required number of evaluations by LTGA when
such an LToff is used as a predetermined linkage model, re-
placing the LTons of LTGA.

2.1 Experimental Results
We compare the LToff s found by iAMaLGaM with the

LTons learned by the conventional LTGA in terms of LTGA’s
performance and by the contents of these LTs. Figure 1
shows the performance imposed by LTGA when using ei-
ther LToff s or LTons, which corresponds to the fitness values
found by iAMaLGaM. Results for pruned LToffs in Figure
1 can be ignored for now.



For NK-Landscapes and MAXCUT, experiments show that
LTGA using the LToff s substantially outperforms the con-
ventional LTGA, as reflected by Figure 1. Moreover, LTGA
using LToff s seems to be slightly better scalable, suggest-
ing that the LToff s learned are intrinsically better than the
LTonand raising the question why this is the case.

Linkage sets in LToff s are determined based on LTGA’s
performance when using these LToff s and thus in a sense
must contain key linkage structures. To obtain insight into
the extent to which LTGA also identifies these structures,
we study the overlap between the LToff s and the LTons used
by LTGA over 100 independent runs of LTGA. For Onemax,
results of these experiments are rather trivial, however for
Deceptive Trap, these experiments show that after the sec-
ond generation all important linkage sets are present in the
LTon more than 98% of the time. This verifies that LTGA
is able to identify important linkages and represent these in
the LTs learned for problems with clear linkage structures.

While earlier attempts to construct appropriate predeter-
mined linkage models were not fruitful for more intricate
problems such as NK-Landscapes and MAXCUT [3], these
results show that indeed such predetermined linkage models
exist. This indicates that the LTons used by LTGA might
not be optimal linkage models as iAMaLGaM is able to
learn LToff s that differ significantly from the LTons while
containing important linkage sets and supporting a better
performance of LTGA. A clear explanation for this phe-
nomenon was not found after inspecting the differences be-
tween LToff s and LTons.

3. PRUNING THE LINKAGE TREE
Experiments described above resulted in intrinsically bet-

ter LTs. Though what if we take away the constraint of
using a tree-structured linkage model? Additional overhead
may exist in the LT in the form of superfluous linkage sets
that impose additional evaluations when performing varia-
tion. Therefore, the found LToff s were pruned to filter out
such linkage sets.

This was done with the use of LTGA itself by encoding
subsets of an LToff in a straightforward manner. For in-

stance if the LToff would be
{
{0}, {1}, {2}, {1, 2}, {0, 1,

2}
}

, the solution 10010 would represent the linkage model{
{0}, {1, 2}

}
. As no knowledge was available about the re-

quired population size for this problem, the population-size-
free scheme was used. Moreover, an internally parallelized
implementation of LTGA was used in this scheme that is
able to distribute the workload of the construction of the
distance matrix and the generation of new solutions over
processor cores available in a multi-core architecture.

3.1 Experimental Results
Experimental results show that LTGA, when using the se-

lected subsets of the LToff s as linkage models, exhibits even
better performance than LTGA when using the full LToff s,
further outperforming the conventional LTGA. The perfor-
mance of LTGA when using the pruned LToff s is included in
Figure 1 for the hardest problem instances of NK-Landscapes
and MAXCUT in a randomly generated test-suite of 100 in-
stances.

An analysis of the contents of the pruned LToff s show
that for Onemax and Deceptive Trap, the pruned LToff con-
tains all but one of the important linkage sets, which is as

expected. For NK-Landscapes and MAXCUT, however, no
clear correlation nor pattern could be found among the se-
lected linkage sets. One clear pattern that was found in
general, was that only half of the linkage sets in the LToff s
were selected, which is likely due to the overlap between
linkage sets contained in the LT. Experiments performed in
which for each solution only a random half of the LT was
used when performing variation, show that, although better
than expected, the performance does not consistently exceed
the performance of the conventional LTGA. This indicates
that indeed a specific underlying scheme is causing half of
the LTs to be redundant and a more advanced heuristic is
needed to efficiently determine a more suitable linkage model
for LTGA, either for fully learning the LT in a different man-
ner of by pruning LTons at low costs.

4. CONCLUSIONS & FUTURE WORK
The recently introduced Linkage Tree Genetic Algorithm

(LTGA) has been shown to exhibit excellent scalability on
a variety of optimization problems. LTGA employs Link-
age Trees (LTs) to identify and exploit linkage information
between problem variables. Much is already understood
about LTGA’s performance, but it is still unclear whether
the LT model can be further improved upon. In this work
we analyzed the results of learning LTs offline by optimiz-
ing LTGA’s performance as a function of static LTs. This
resulted in a better performance of LTGA than with online-
learned LTs as problem complexity increases. Further anal-
ysis of the offline-learned LTs indicated that pruning the
LT can result in a further performance improvement of the
LTGA up to a factor 6. Using a population-size-free inter-
nally parallelized version of LTGA, we found that the opti-
mal subset of the offline-learned LT typically contains only
about 50% of the nodes. This suggests that the LT model
contains redundancies that may possibly still be exploited to
improve the performance of LTGA with online-learned LTs.
The magnitude of this performance improvement is subject
to the costs implied by constructing improved linkage mod-
els, meaning that significant performance improvement can
only be achieved when they can be constructed at costs that
are comparable to the current costs of learning the LTs on-
line. Future work is aimed at constructing a suitable metric
for defining these exact costs of online linkage learning and
gaining more insight into the contents of pruned LToff s in
order to find a method for constructing linkage models of
higher quality. This might ultimately enable us to reduce
the number of evaluations, increasing the performance of
LTGA and supporting the ability to solve more complex
problems.
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