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ABSTRACT

The majority of Ant Colony Optimization (ACO) algorithms
for data mining have dealt with classification or clustering
problems. Regression remains an unexplored research area
to the best of our knowledge. This paper proposes a new
ACO algorithm that generates regression rules for data min-
ing applications. The new algorithm combines components
from an existing deterministic (greedy) separate and conquer
algorithm—employing the same quality metrics and continu-
ous attribute processing techniques—allowing a comparison
of the two. The new algorithm has been shown to decrease
the relative root mean square error when compared to the
greedy algorithm. Additionally a different approach to han-
dling continuous attributes was investigated showing further
improvements were possible.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search - Heuristic methods

Keywords

ant colony optimization; data mining; regression rules; se-
quential covering

1. INTRODUCTION
Data mining is a research area concerned with the the au-

tomated search for useful and usable patterns in data [3].
There are many data mining tasks, which are broadly di-
vided into descriptive (e.g., association rule mining, clus-
tering) and predictive (e.g., regression, classification). The
task investigated in this paper is the discovering of regression
rules. Regression aims to create a model to predict a con-
tinuous dependent variable (attribute) based on a number
of independent variables (regressor or predictor attributes).
The continuous nature of the dependent variable sets regres-
sion apart from the classification task, which aims to predict
the value of a nominal dependent variable—i.e., a variable
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that has a number of predefined categories (values). A clas-
sical real-world regression problem is the prediction of prop-
erty rental prices (the continuous dependent variable) based
upon independent variables including the floor area, loca-
tion and year of construction. Conventional regression mod-
els range from linear equations to non-parametric equations
[2]. Regression rules contain a list of logical conditions that,
if satisfied, predict a dependent value—predictions can take
the form of a numeric value or, in the more complex case, a
linear model [4]. Similarly to classification rules, regression
rules can be represented in a IF-THEN form, where the IF
is regarded as the antecedent of the rule and contains log-
ical conditions involving the predictor attributes, while the
THEN is regarded as the consequent of the rule and con-
tains the prediction. When combined as a list, regression
rules provide a comprehensible prediction model.

Ant Colony Optimization (ACO) algorithms [1] have been
successful at discovering classification rules, most notably
Ant-Miner and its derivatives [13, 6, 12]. ACO algorithms
use a colony of artificial ants, where each ant creates a can-
didate solution by selecting individual components based on
pheromone and heuristic information derived from the prob-
lem domain. Components with a greater pheromone level
are more likely to be selected by an ant. After creation,
each ant solution quality is evaluated and components that
are used in good quality solutions have their pheromone level
increased while those that do not will have their pheromone
reduced. Every iteration will produce a more refined so-
lution until the colony converges on a set of near optimal
solutions. Ant-Miner and its derivatives employ an ACO
procedure to create classification rules, while the applica-
tion of ACO algorithms to discover regression rules remains
an unexplored area to the best of our knowledge.

In this paper we propose a sequential covering ACO al-
gorithm to create an ordered list of regression rules. The
proposed algorithm follows Ant-Miner’s rule creation prin-
ciple and regression-specific metrics of SeCoReg [5], a deter-
ministic (greedy) sequential covering regression algorithm
that creates a list of regression rules. This will allow us to
evaluate the benefits of incorporating an ACO search in the
creation of regression rules. A crucial aspect in the design
of the proposed algorithm is the strategy to deal with con-
tinuous values in the antecedent of rules. We evaluated the
same split point generation method as SeCoReg and also
evaluated a second strategy, comparing its effects in both
the proposed and SeCoReg algorithms.

ACO algorithms have been successfully applied to many
combinatorial optimisation problems, classical examples are
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the travelling salesman problem and network routing [1].
The ordering of nodes in combinatorial problems is impor-
tant in the final result, this feature is easily expressed in
ACO algorithms as the ants walk between nodes producing
a natural order. Similarly the antecedent of regression rules
can be seen as an ordered set of terms that are used to make
a prediction. The successful implementation of Ant-Miner
for classification problems, which has been shown to outper-
form classical rule induction classification algorithms [12],
provides evidence that ACO has the potential to perform
well when applied to regression problems.

The rest of the paper is structured as follows. Firstly
we present related work that has been conducted in related
areas in Section 2, including sequential covering and ACO
algorithms for classification. This will be followed by a de-
scription of the proposed algorithm in Section 3, discussing
the rule quality measures and split point generation. Next,
we present our results in Section 4 followed by a discussion
in Section 5. Finally, in Section 6 we draw our conclusions
and discuss possible areas for further work.

2. BACKGROUND
There are mainly two areas of related work, sequential

covering and ACO-based classification algorithm. First, we
will present the sequential covering algorithm followed by
a description of relevant algorithms that use this strategy.
Finally, a description of Ant-Miner—the first application of
ACO for the classification task in data mining—is presented,
as it is the base for the proposed algorithm presented in this
paper.

2.1 Sequential Covering
A Sequential covering strategy, also known as separate and

conquer, is commonly used in classification and regression
to generate a list of rules. The pseudocode for sequential
covering is shown in Algorithm 1.

Sequential covering has a simple iterative structure, where
each iteration generates a single rule using the procedure
LearnOneRule(Instances), which covers a number of pre-
viously uncovered instances. This new rule is then added to
the ordered list of rules (line 5) that have been discovered
so far. The newly covered instances are then removed from
the training set (line 7) and the algorithm continues. The
removal of the covered training instances guarantees that
subsequent rules will cover a different subset of instances.
Stopping criteria are normally defined so that the algorithm
stops when an acceptable number of instances remain un-
covered or the performance of the last rule drops below a
threshold [8, 5].

A number of different algorithms exist that use the se-
quential covering strategy, where each algorithm provides a
different implementation for the LearnOneRule(Instances)
procedure. In this section we will be discussing three se-
quential covering algorithms that discover regression rules,
namely M5’Rules [4], SeCoReg [5] and PSOminer [7].

M5’Rules is a wrapper for the M5 [14] algorithm. M5
generates regression trees, which contain linear models as
leaf nodes instead of outputting a single value—the linear
models enable M5 to improve the accuracy of the predic-
tion. M5’Rules uses the sequential covering strategy to cre-
ate a list of rules. In each iteration, an entire regression tree
is generated. This tree is then flattened to produce a set
of rules, where the best rule from the set is added to the

Algorithm 1: SequentialCovering(Instances)

Data: Instances
Result: RuleList

1 RuleList ←− ∅
2 Rule ←− LearnOneRule(Instances)
3 while Performance(Rule, Instances) > Threshold do
4 // Adds rule to list

5 RuleList ←− RuleList ∪ Rule
6 // Removes covered instances

7 Instances ←− Instances − Covered(Rule, Instances)
8 // Creates the next rule

9 Rule ←− LearnOneRule(Instances)

10 end
11 // Adds the default rule

12 RuleList ←− RuleList ∪ DefaultRule
13 return RuleList

list of rules. As M5, the prediction of the rules created by
M5’Rules is made by a linear model, which compromise the
comprehensibility of the rules that are produced. M5’Rules
was tested using 30 continuous data sets with 10 fold cross
validation. The results were compared to the original M5 im-
plementation, where it was found that the M5’Rules rarely
performed significantly worse but did significantly reduce
the size of the rule list in 11 data sets, highlighting the ad-
vantage of the rule list representation over the regression
tree. A particular interesting aspect of M5 for the design of
regression algorithm is the strategy used to cope with con-
tinuous attributes: it chooses the split point that maximises
the expected error reduction, where the error is measured as
the standard deviation of the dependent variable in the gen-
erated subsets. We present more details of this procedure
in Section 3, as it is one the strategies used in the proposed
algorithm.

SeCoReg is a sequential covering algorithm that employs
a top-down beam search strategy to create regression rules
[5]. The strategy involves generating a list of possible mod-
ifications for the current rule; it then adds them one at a
time searching for the modification that gives the best qual-
ity of all the modifications. If the new rule generated by the
addition of the modification is better than the best-so-far it
replaces the best rule. This process is repeated until there
are no more modifications that can be added. The conse-
quence of rules are obtained by calculating the mean value of
all covered instances in the training data. The rule quality
is defined as the product of two measures, the relative cov-
erage and relative root mean square error—these measures
are discussed in detail in Section 3.2.

The results presented for SeCoReg show that it does not
perform significantly worse than a number of comparison
algorithms including linear regression and SVMreg [15]. Fi-
nally the authors suggested a possible extension to the al-
gorithm by replacing the prediction to a linear model in a
similar fashion to M5’Rules, although they acknowledge the
drawback of compromising comprehensibility.

PSOminer is a Particle Swarm Optimisation (PSO) based
regression rule miner [7]. PSOminer uses a sequential cover-
ing strategy to build a list of rules that covers the training
instances, using a PSO procedure to find high quality rules.
PSOminer has the ability to parse both numeric and cat-
egorical attributes by encoding the attributes to each par-



ticle in the following manner. All attributes are encoded
over a number of dimensions over the range of [0,1]. Nu-
meric attributes do not require split points like M5 rules and
SeCoReg, instead numeric attributes are mapped to two di-
mensions: the first dimension specifies the parameters lower
bound while the second encodes the upper bound of each pa-
rameter. To allow unbounded attributes, for both lower and
upper bounds independently, the domain high and low val-
ues are reserved to signify the parameter is unbound. Cate-
gorical attributes are encoded via dummy encoding, where a
dimension is used for each allowed value and the dimension
with the highest value is used to set the attributes value.
Null is set through an additional dimension which enables
an attribute to be unused. PSOminer is also limited to gen-
erating a list of rules which is constrained in size—in the
experiments reported in [7], the rule list was limited to 5
or 10 rules. PSOminer showed promising results when com-
pared against the reference SeCoReg implementation, out-
performing with statistically significant differences when set
to produce 10 rules (no differences were observed when set
to produce only 5 rules).

2.2 Ant-Miner Overview
Ant Colony Optimization has been successfully used for

generating classification rules for data mining applications,
in particular Ant-Miner [13] and its derivatives. ACO algo-
rithms are able to achieve this by creating rules based on the
probabilistic decisions by artificial ants. The artificial ants
are guided by a pheromone trail left behind by previous ants
and problem-specific heuristic information. The pheromone
trail gives the ants a feedback mechanism to promote indi-
vidual terms (attribute-value conditions) used often in gen-
erating high quality rules. The pheromone also evaporates
over time allowing the colony to forget poor decisions that
they made in the past.

Ant-Miner requires a graph for the artificial ants to walk
across while generating rules—Figure 1 shows a simplified
graph of rule terms (nodes) that can be selected by an ant
based on the probabilities derived from the pheromone and
heuristic information. An ant would start at a random node
and then move to another node by applying a stochastic se-
lection based upon the pheromone and heuristic values of
neighbouring nodes. Once a node is visited, it is added to
the rule being created. The ant will continue to add new
terms until either all attributes have been used or if the
addition of term makes the rule to cover a number of exam-
ples below predefined threshold. Once all ants in the colony
complete their rule, the best rule of the iteration is used
to update the pheromone values—i.e., the pheromone asso-
ciated with terms included in the best rule are increased,
while the pheromone associated with unused terms are de-
creased. Following the sequential covering strategy, after a
rule has been created, the covered instances are removed
from the training set and the next rule is created. This pro-
cess goes on until the training set has less than a predefined
number of instances remaining.

cAnt-Miner [10] was adapted from Ant-Miner so that nu-
meric attributes could be resolved at run time rather than
a pre-processing step and thus require a small change to the
graph the ant traverses. Figure 1 shows a graph of both cat-
egorical and numeric attributes, which allows an ant to walk
between attribute-value pairs allowing the construction of a
rule. Categorical attributes are added to the current rule
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Figure 1: Simple construction graph that can be
used to construct rules, including both categorical
and numeric attributes.

if selected. Numeric attributes are handled differently: if a
numeric attribute is chosen, a split point generation method
is used to resolve a suitable partition in the data to create
a complete term. The proposed algorithm follows a similar
strategy, although it used measures to evaluate candidate
split points suitable for regression problems.

3. DISCOVERING REGRESSION RULES
In this section we present the proposed Ant-Miner-Reg

algorithm. The algorithm is based on both SeCoReg and
Ant-Miner. The greedy rule construction procedure in SeC-
oReg has been replaced with an ACO implementation using
the same rule quality measures and split point generation
procedure. This will allow a comparison between the rule
creation strategies. We also evaluated a second alternative
split point generation method based on the M5 algorithm.

Rules for both approaches take the form of a sequence
of (attribute, operator, value) tuples connected by ANDs
in the antecedent of the rule. The operator for categorical
values must be =, while continuous attributes are allowed
to use the operators < or ≥. Finally the rule will predict
the mean value of the covered instances in the training data.
An example rule is shown below:

IF att1 ≥ value1 AND att2 = value2 THEN 3.5

where att1 is a continuous attribute and att2 is a categorical
attribute. The value after the THEN corresponds to the
rule prediction (consequent of the rule).

3.1 Ant-Miner-Reg
The proposed Ant-Miner-Reg algorithm follows the se-

quential covering strategy presented in Algorithm 1. The
difference is that the LearnOneRule(Instances) procedure
is replaced by an ACO procedure to create the best rule



Algorithm 2: ACOLearnOneRule(Instances)

Data: Instances
Result: BestRule

1 BestEval ←− ∞, BestRule ←− null
2 PheromoneInitialization()
3 for i = 0 to ant iterations do
4 // Each ant creates a rule, remembering

5 // the best for later

6 MaxEval ←− −∞, MaxRule ←− null
7 for j = 0 to colony size do
8 Rule ←− CreateRule()
9 PruneRule(MaxRule)

10 Eval ←− EvaluateRule(Rule, Instances)
11 if Eval > MaxEval then
12 MaxEval ←− Eval
13 MaxRule ←− Rule

14 end

15 end
16 // Adds the best rule and update the

17 // pheromone levels with the best rule

18 // produced by the colony

19 UpdatePheromone(MaxRule)
20 // If the max rule is better than the best

21 // rule found from all iterations update

22 // the best rule

23 if MaxEval > BestEval then
24 BestEval ←− MaxEval
25 BestRule ←− MaxRule

26 end

27 end
28 return BestRule

given a set of training instance at each iteration. The rule
construction procedure is based on the cAnt-Miner algo-
rithm [10], which allows the algorithm to deal with con-
tinuous attributes directly.1 The high-level pseudocode for
the implementation of the ACOLearnOneRule(Instances) is
shown in Algorithm 2, where ant iterations is the number of
iterations and colony size is the number of ants that walk
the construction graph in each iteration. The pheromone
levels of each node define the probability of a node be-
ing chosen as the next term in the rule—conventionally the
probability of being chosen also relies on a problem specific
heuristic, however in this case no heuristic information has
been used. Therefore, the selection of nodes relies only on
pheromone values. The pheromone matrix initialisation is
achieved by setting the value of each cell to 1/matrix size—
this is the same technique used by Ant-Miner—and val-
ues are updated using the best rule created in an iteration
(MaxRule). The best-so-far rule (BestRule) created by the
colony is stored, so that the best rule from all the iterations
can be returned once the algorithm has finished.

The rule pruning (line 9) is a simple method that removes
the last term and recomputes the quality of the rule—this
is the same pruning procedure proposed in [11]. If the rule
is as good or better than the original rule then the shorter,

1cAnt-Miner’s rule construction procedure is essentially the
same as Ant-Miner, with the difference that it includes a
dynamic entropy-based discretisation procedure.

more general rule is preferred. This process is repeated until
the quality of the rule does not improve.

Finally, the pheromone update mechanism (line 19) also
uses the same method as employed by Ant-Miner. There
are two stages governing the pheromone updates. Stage one
increases the pheromone levels of terms that appear in the
best rule of the iteration. The pheromone increase of termij

(denoted as τij) is proportional to the quality Q of the entire
rule—where Q is constrained between 0 and 1 as can be seen
in Equation 6—and it is given by:

τij(t+ 1) = τij(t) + τij(t) ·Q (1)

Stage two simulates the evaporation of pheromone in the
graph. This is achieved by re-normalising the pheromone
matrix. Every element in the matrix is divided by the sum
of all elements in the matrix. While this affects terms that
have just been increased as well as unused terms, it still pro-
motes the former. This is due to unused terms who have not
had their pheromone increased will be lowered by the nor-
malisation, since the total pheromone value has increased,
while used terms will increase their normalised pheromone
levels compared to previous iterations [13].

3.2 Rule Quality Measure
Janssen and Fürnkranz [5] suggested a number of ways

to calculate the errors in regression problems. Their SeC-
oReg implementation uses two metrics in conjunction. The
first one is the Relative Root Mean Square Error (RRMSE),
given by:

LRRMSE =
LRMSE

√

1

m
Ldefault

(2)

where LRMSE is the root mean square error and LDefault

is a normalising factor that will approximately bound the
Relative Root Mean Square Error between 0 and 1. Both
are defined in as:

LRMSE =

√

√

√

√

1

m
·

m
∑

i=1

(yi − ȳi)2 (3)

Ldefault =
m
∑

i=1

(yi − y′)2 (4)

where m is the total number of instances in the dataset, y
is the value of the current instance ȳ is the predicted value
of the current instance and finally y′ is the mean over all
instances.

RRSME attempts to normalise the RMSE between 0 and
1, however it is still possible to achieve values above 1 when
the predicted values are worse than predicting the mean.

The second error metric is the relative coverage of a rule,
which normalises the absolute coverage of the rule between
0 and 1—a rule with a value of 1 covers all the cases in the
current dataset. The relative coverage is given by:

relCov =
1

m
· coverage(Rule) (5)

These two metrics are combined to produce a single value
Q for each rule, given by:



Q = α · (1− LRRMSE) + (1− α) · relCov (6)

where α sets the weighting between RRSME and relative
coverage. An α value of 1 will only take into account the
RRSME and a value of 0 will consider just the coverage.

3.3 Continuous Attribute Processing
Two different methods have been used for generating the

split points for continuous attributes. The first method is
the same one found in the SeCoReg algorithm (dubbed SSP)
and the second one is an adaptation of M5’s standard devi-
ation to the context of regression rules.

3.3.1 SeCoReg Split Point Generation

The SeCoReg method performs supervised clustering of
(attribute, target) pairs and produces n split points, where
n is determined by the user. It achieves this by creating
clusters that minimise the mean absolute errors of the target
values in the following manner. First, it creates clusters
containing a single pair and the instances are then sorted
by attribute value. Next, the method searches either side of
each cluster looking for the merger that increases the error
by the minimum amount. This process is repeated until the
number of clusters is reduced to n+ 1.

The generated clusters have an upper and lower bound
for the attribute values contained within. For each cluster,
the mid point between its upper bound and the next’s lower
bound is calculated and these values are then returned as
the n split points for an attribute. The split points are
then combined with the < and ≥ operators, each term is
temporarily added to the rule being constructed and the
quality measured. The (operator, split point) tuple that
yields the highest quality is chosen as the new term and
added to the rule.

3.3.2 Standard Deviation Split Point Generation

The second split point generation method is based on M5
regression tree algorithm. This method attempts to max-
imise the expected reduction in the error of the target value
in a subset of instances. The expected error reduction is
given by:

∆error = σ(T )−
∑

i

|Ti|

|T |
· σ(Ti) (7)

where T is the entire set of instances while Ti is the i-th
subset and σ is the standard deviation of a subset. To find
the optimal split point p for a continuous attribute attc, the
current covered instances are scanned from beginning to end
(the entire instance set is scanned in the case that a contin-
uous attribute is the first attribute selected to be added to
the antecedent of a rule). Each split point generated two
candidate subsets T : one subset containing instances that
satisfy the condition attc < p and another containing in-
stance that satisfy the condition attc ≥ p. Once the optimal
p has been identified, the operator that is associated with
the subset with the lowest standard error is the one used to
create the rule term.

Note that the split point p is not stored in the construction
graph nor used to update pheromone values, since the split
point generation is a deterministic procedure—the same slit
point p will be generated if attc is selected using the same
set of instances [10].

Table 1: Number of instances and attribute makeup
of the 15 data sets used in the experiments.

Attributes

Name Instances Nominal Continuous

Airfoil 1503 0 6
CCPP 9568 0 5
Concrete 1030 0 7
CPU 209 1 8
Efficiency 768 0 9
Flare 1065 10 1
Forest Fire 516 2 11
Housing 452 1 13
Istanbul 535 0 8
MPG 392 3 5
Red Wine 1599 0 12
Skill Craft 3337 0 20
Stock 950 0 10
WPBC r 194 0 33
Yacht 308 0 7

Table 2: Parameters used for SeCoReg and Ant-
Miner-Reg algorithms

General Parameter Value

Minimum Covered Rule 10
Minimum Uncovered Theory 0.1
Split Points 3
Error Weighting 0.59
Cross Validation Folds 10

ACO Parameter Value

Iterations 500
Colony Size 10

4. RESULTS
The experiments were carried out on 15 data sets, shown

in Table 1, using tenfold cross-validation. The two Ant-
Miner-Reg variants (using each of the different split point
generation strategies) were run 5 times2 and the average of
the 5 runs was reported, as the algorithm is stochastic in
nature and therefore its performance may vary; since Se-
CoReg is a deterministic algorithm, only a single run is re-
quired (one execution of the cross-validation). A one-time
pre-processing step was undertaken, where instances with
missing values were removed from the data set.

There are a number of parameters that need specifying for
each algorithm. Parameters which are transferred from SeC-
oReg use the same values specified by the original authors
[5]: the weighting α between coverage and error was set to
0.59 and the separate and conquer stopping criteria was set
at 0.1 (fraction of instances that can remain uncovered). The
ACO specific criteria of maximum number of iterations and
colony size were set to 500 and 10 respectively, no tuning or
optimization has been performed on these parameters. The

2A run corresponds to one execution of the cross-validation,
which consists of executing the algorithm 10 times. There-
fore, the algorithm was executed 50 times (5 times 10 cross-
validation folds).



Table 3: RRMSE of the rule list produced by each of the algorithms on each data set. The bold cell signifies
the smallest error from all three algorithms and the standard deviation is shown in brackets

Data set Ant-Miner-Reg+M5SP Ant-Miner-Reg+SSP SeCoReg+SSP SeCoReg+M5SP

Airfoil 0.5512 [0.0138] 0.7869 [0.0109] 0.9713 [0.0254] 0.9678 [0.0149]

CCPP 0.3484 [0.0007] 0.3592 [0.0005] 0.3622 [0.0012] 0.4041 [0.0022]

Concrete 0.4182 [0.0046] 0.4987 [0.0106] 0.4788 [0.0101] 0.6242 [0.0130]

CPU 0.5624 [0.0450] 0.4469 [0.0289] 0.8218 [0.0157] 0.8634 [0.0312]

Efficiency 0.2038 [0.0006] 0.2044 [0.0028] 0.2224 [0.0057] 0.2232 [0.0102]

Flare 1.0035 [0.0012] 1.0027 [0.0007] 1.0021 [0.0087] 1.0021 [0.0087]

Forest Fire 1.0340 [0.0417] 1.0317 [0.0092] 1.0488 [0.0387] 1.0431 [0.0243]

Housing 0.5547 [0.0354] 0.4873 [0.0090] 0.6324 [0.0054] 0.6392 [0.0087]

Istanbul 0.8563 [0.0246] 0.9287 [0.0175] 0.9035 [0.0084] 0.9601 [0.0178]

MPG 0.5432 [0.0149] 0.5322 [0.0083] 0.5673 [0.0009] 0.5731 [0.0021]

Red wine 0.9048 [0.0216] 0.9161 [0.0114] 0.9800 [0.0186] 0.9851 [0.0203]

Skill Craft 0.8219 [0.0209] 0.8324 [0.0267] 0.8463 [0.0099] 0.8735 [0.0092]

Stock 0.2457 [0.0106] 0.2540 [0.0081] 0.2886 [0.0152] 0.3301 [0.0129]

WPBC r 1.3549 [0.0494] 1.3265 [0.0375] 1.0738 [0.0474] 1.1035 [0.0381]

Yacht 0.5273 [0.0015] 0.3576 [0.0050] 0.3448 [0.0067] 0.5260 [0.0140]

Table 4: Wilcoxon signed-rank test results of
the RRSME error when comparing Ant-Miner-Reg
against SeCoReg with both the SeCoReg split point
processing and M5 split points processing. Signifi-
cant differences at the α = 0.10 are shown in bold.

Algorithm Pairings p

Ant-Miner-Reg+M5SP SeCoReg+M5SP 0.0103

Ant-Miner-Reg+SSP SeCoReg+M5SP 0.0164

Ant-Miner-Reg+M5SP SeCoReg+SSP 0.0637

Ant-Miner-Reg+SSP SeCoReg+SSP 0.1354

full list of parameters for both algorithms can be found in
Table 2. It should be noted that the M5 split point gener-
ation method ignores the number of split points requested
and always returns a single one.

Table 3 shows the RRMSE of each algorithm, the first
column contains the error produced by models generated by
Ant-Miner-Reg with M5 Rules split point generation (Ant-
Miner-Reg+M5SP); column 2 contains Ant-Miner-Reg with
SeCoReg split point generation (Ant-Miner-Reg+SSP), fi-
nally the last two columns show the error produced by the
models generated by both variants of the SeCoReg algo-
rithm, the original SeCoReg (SeCoReg+SSP) and SeCoReg
with M5 split point generation (SeCoReg+M5SP). The low-
est value in each row (best result) is shown in bold.

As can be seen in Table 3, the Ant-Miner-Reg variants
outperform SeCoReg variants in 12 of the 15 data sets. Also
of note is the Ant-Miner-Reg+M5SP variant outperforms
the Ant-Miner-Reg+SSP variant in 8 of the 12 data sets

won by Ant-Miner-Reg. The results from all four algorithms
have also been checked for statistical significance using the
Wilcoxon signed-rank test, the pairings that compare similar
algorithms have been ignored leaving four parings between
Ant-Miner-Reg and SeCoReg, which can be found in Table 4.
The decision to use the Wilcoxon signed-rank-test was made
as we are interested in the comparison of the Ant-Miner-Reg
and SeCoReg pairs and not the interaction between different
variants of the same base algorithm.

Additionally, the average number of attributes-conditions
(terms) that are evaluated in the model in order to clas-
sify instances in the test data was profiled, the results of
this can be seen in Table 5. Rule lists that have very gen-
eral rules will perform better as the majority of instances
will require few rules. The data in Table 5 was generated
by counting the number of terms of each rule used to clas-
sify an instance; this total was then divided by the number
of instances classified to give the average number of terms
required for classification—this measure is called prediction-
explanation size [9].

Finally, Table 6 shows the significance of the average term
usage when comparing the Ant-Miner-Reg to SeCoReg using
the Wilcoxon signed-rank test.

5. DISCUSSION
The Ant-Miner-Reg+SSP variant showed an improvement

in RRSME compared to the reference SeCoReg implemen-
tation also using the original split point processing method,
beating it in 12 of the 15 data sets; however the results
were not significantly significant according to the Wilcoxon
signed-rank test. The results do show promise as the ACO
implementation was not tuned before hand and instead used
the parameters optimised by the original SeCoReg authors.



Table 5: Average number of attribute-conditions (terms) involved in the classification of an instance. The
smallest number of terms is shown in bold while the standard deviation is shown in brackets.

Data set Ant-Miner-Reg+M5SP Ant-Miner-Reg+SSP SeCoReg+SSP SeCoReg+M5SP

Airfoil 157.14 [8.00] 55.83 [3.74] 1.97 [0.01] 2.11 [0.02]

CCPP 24.54 [0.53] 23.09 [1.56] 13.13 [5.44] 14.54 [4.23]

Concrete 191.07 [1.83] 196.69 [4.16] 212.23 [36.74] 202.30 [24.43]

CPU 2.99 [0.13] 5.89 [0.11] 3.90 [0.24] 4.21 [0.54]

Efficiency 7.34 [0.33] 6.97 [0.07] 7.08 [1.31 6.82 [0.89]

Flare 28.71 [0.77] 28.49 [1.45] 31.76 [5.88] 29.93 [2.78]

Forest Fire 56.87 [2.13] 84.64 [2.04] 63.50 [31.53] 61.46 [14.32]

Housing 24.26 [7.89] 104.70 [5.20] 45.24 [22.28] 48.39 [26.75]

Istanbul 101.31 [5.96] 29.98 [3.83] 20.57 [11.69] 30.62 [9.13]

MPG 15.42 [0.75] 18.09 [0.42] 14.12 [3.41] 22.45 [5.46]

Red Wine 341.66 [4.46] 311.26 [12.91] 154.51 [23.57] 176.87 [54.73]

Skill Craft 1317.85 [22.28] 1422.58 [29.54] 1022.04 [140.92] 1134.75 [121.34]

Stock 21.07 [1.21] 24.49 [3.48] 29.62 [11.28] 32.74 [8.35]

WPBC r 66.31 [3.71] 103.70 [3.08] 87.36 [76.44] 84.21 [62.05]

Yacht 1.22 [0.08] 1.25 [0.01] 1.26 [0.12] 1.29 [0.17]

Table 6: Wilcoxon signed-rank test results for the
average number of terms used to classify an instance
for the models produced by each algorithm. Signif-
icant differences at the α = 0.10 are shown in bold.

Algorithm Pairings p

Ant-Miner-Reg+M5SP SeCoReg+SSP 0.6788

Ant-Miner-Reg+SSP SeCoReg+SSP 0.0302

Ant-Miner-Reg+M5SP SeCoReg+M5SP 0.8904

Ant-Miner-Reg+SSP SeCoReg+M5SP 0.0833

The switch to a M5 split point generation method im-
proved the performance of Ant-Miner-Reg, outperforming
the SeCoReg reference implementation in the same 12 data
sets; the improvement gained by ACO rule construction pro-
cedure and the M5 split point generation showed that these
results are significant at the 10% level with a p value of
0.0637. These results show that the ACO made a measur-
able improvement to the performance of a sequential cov-
ering algorithm, as this is an initial implementation further
work may lead to greater performance. The improvement
shown by the ACO may be due to its ability to choose (ini-
tially) poor terms for rules that will become good choices
when combined with later terms, while the greedy strategy
will always choose the best term at each decision point. The
M5 split point generation procedure was unable to improve
the performance of SeCoReg’s greedy search strategy, this
may be due to the reduction in the available terms as the
M5 split point generation procedure returns a single split

point, while the original split point generation returns mul-
tiple candidate points.

Secondly the average number of terms to classify each in-
stance was measured. It was found that the best Ant-Miner-
Reg+M5SP variant did not increase the average number of
terms required by a significant amount when compared with
both SeCoReg at the 10% level. Ant-Miner-Reg+SSP was
found to significantly increase the number of terms required
to classify an instance when compared to both SeCoReg vari-
ants.

6. CONCLUSION
This paper presented a ACO-based regression algorithm,

called Ant-Miner-Reg, which generates comprehensible re-
gression rules. The proposed algorithm significantly out-
performed the reference implementation SeCoReg without
increasing the number of terms required to classify an in-
stance. Overall, we regard these results as positive, as it
shows the benefits of using a global search technique in the
form of an ACO to search for the best rule at each iteration
of the sequential covering. Optimisation of Ant-Miner-Reg’s
parameters is required, as currently it uses the same values
as the reference implementation—these may not be optimal
for the proposed Ant-Miner-Reg algorithm and could im-
prove the results presented here further.

Further investigation is required to realise the full poten-
tial of the ACO search used to create regression rules. This
could include the adoption of a better continuous attribute
processing technique, which enables the optimisation of the
numeric values chosen by fully integrating them inside the
pheromone matrix. The adoption of linear models as leaf
nodes in a similar fashion to M5’Rules might improve the
error of the algorithm further, although this needs to be bal-



anced by the loss of comprehensibility. Enabling ants to cre-
ate entire rule lists instead of individual rules (as proposed
in [12]), allowing rule interaction to influence the pheromone
matrix, is another interesting direction. Additionally, Ant-
Miner-Reg takes no advantage of available heuristic infor-
mation, which can be used to increase rule quality.
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