
Redesigning the jMetal Multi-Objective Optimization
Framework

Antonio J. Nebro
Departamento de Lenguajes y
Ciencias de la Computación

Ada Byron Research Building
University of Málaga, Spain
antonio@lcc.uma.es

Juan J. Durillo
Distributed and Parallel

System Group
University of Innsbruck,

Austria
juan@dps.uibk.ac.at

Matthieu Vergne
Center for Information and

Communication Technology,
FBK-ICT, Italy

vergne@fbk.eu
Doctoral School in Information

and Communication
Technology, Italy

matthieu.vergne@unitn.it

ABSTRACT
jMetal, an open source, Java-based framework for multi-
objective optimization with metaheuristics, has become a
valuable tool for many researches in the area as well as for
some industrial partners in the last ten years. Our expe-
rience using and maintaining it during that time, as well
as the received comments and suggestions, have helped us
improve the jMetal design and identify significant features
to incorporate. This paper revisits the jMetal architecture,
describing its refined new design, which relies on design pat-
terns, principles from object-oriented design, and a better
use of the Java language features to improve the quality of
the code, without disregarding jMetal ever goals of simplic-
ity, facility of use, flexibility, extensibility and portability.
Among the newly incorporated features, jMetal supports live
interaction with running algorithms and parallel execution
of algorithms.

CCS Concepts
•Software and its engineering → Software libraries
and repositories; •Computing methodologies→Heuris-
tic function construction;

Keywords
jMetal; Optimization Framework; Multi-Objective Metaheu-
ristics; Open Source

1. INTRODUCTION
Multi-objective optimization with metaheuristics is an ac-

tive research area since early 2000, when algorithms that
rapidly become widely used were proposed (NSGA-II [3],
SPEA2 [16], PAES [10]) and the books about evolutionary

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

algorithms for solving multi-objective problems of K. Deb [9]
and C. Coello et al [2] were published.

The availability of software tools, including state-of-the-
art metaheuristics, has become an important factor in the
field of multi-objective optimization for promoting (1) re-
search of new techniques and (2) the adoption of these algo-
rithms in real scenarios. One of these tools is jMetal [5][4][6].

The jMetal project started in 2006 to cover our needs
for researching in multi-objective optimization with meta-
heuristics. The absence at that time of an easy-to-use, flex-
ible, extensible and portable software framework led us to
design and develop a new tool from scratch. In 2008, jMetal
was hosted on SourceForge1, becoming freely available to
the research community for multi-objective optimization.
Since then, jMetal has become a popular software in the
field [8] and our three papers describing the jMetal frame-
work [5][4][6] sum up more than 500 citations at the time of
writing this paper2.

The object-oriented architecture of jMetal and its code
readability are very appreciated features for many users who
have provided feedback about the tool. However, as regular
jMetal users, we have detected several issues that could be
improved in its nine years old design, many of which have
also been pointed out by other users. For this reason, we
have taken the decision of carrying out the first major revi-
sion of jMetal since its initial version. The first step in this
direction has been to switch to GitHub for the versioning of
the code3. This has allowed us to get very valuable ideas
from other people who have notably influenced the new re-
lease architecture.

In this paper, we analyse first those relevant aspects of
jMetal that we have reconsidered (Section 2) and then we
describe how we have dealt with them (Section 3). Finally,
the conclusions of the paper are summarized in Section 4.

We have to note that at the time of writing the paper, the
new jMetal version is not finished yet, so what we present
here is a work in progress. The next major release, jMetal
5.0, is expected to be finished by the end of July 2015.

1jMetal on SourceForge: http://jmetal.sourceforge.net
2Source: Google Scholar
3jMetal on GitHub: https://github.com/jMetal/jMetal



2. RELEVANT ISSUES
A critical review of jMetal identified some issues in our

core class hierarchy that make some recurrent actions, such
as creating new types or operators, not as simple as it would
be desired. Although one of the original goals of jMetal was
to pay attention to code quality, there is room for improve-
ment here, for example the implementation of unit tests.
Another point is the project delivery strategy consisting in
only providing the source code, which does not facilitate the
use of jMetal as a dependency in other projects. In this sec-
tion we analyse several points to elaborate on these ideas.

2.1 Too Many Entities to Represent Solutions
Solution encoding is a fundamental aspect when solving

an optimization problem with a metaheuristic because it
determines the variation operators that can be applied. En-
coding is managed in jMetal through three classes: Solu-

tion, SolutionType and Variable (the architecture of the
last jMetal release, version 4.5, is depicted in Figure 1). This
way, a solution has a type and it is composed of a number
of variables. The solution type is used to determine which
operators are available for manipulating the solutions, and
the variables are the containers of the solution values. If
we consider evolutionary algorithms, a solution represents
an individual, the variables constitute the chromosome, and
each variable is a gene.

In [7] we studied the behaviour of several state-of-the-art
multi-objective metaheuristics when solving parameter scal-
able problems. The targets were the continuous problems
of the ZDT benchmark [15]. In this study we addressed
problems having up to 2048 Real variables, meaning that
the solutions were composed of 2048 Variable objects in
some experiments, thefore introducing a significant perfor-
mance overhead. We introduced then an “optimized encod-
ing” called ArrayReal, in such a way that a real solution
is composed of a single variable which contains an array of
real values. This scheme showed more efficiency, but it led to
two ways of using real coded solutions. To simplify the man-
agement of this duplication, we used a wrapper class called
XReal. As a consequence, up to five classes can be used to
work with real coded solutions: Solution, Real (variable
type), RealSolutionType, ArrayReal and XReal. A simpler
scheme would be desirable.

Another consequence of our encoding was that, to access
the value of its ith variable, a solution s requires to use the
following statement:

value = s.getDecisionVariables()[i].getValue()

which is rather cumbersome. It should be as simple as get-
ting the value of the jth objective:

value = s.getObjective(j)

2.2 Non-SOLID Core Classes
According to the SOLID principles [13], a class should

fulfil five principles:

• Single Responsibility Principle (SRP): a class should
have responsibility over a single part of the function-
ality provided by the software, and this responsibility
should be entirely encapsulated by the class.

• Open-Close Principle (OCP): a class must be open to
extensions and closed to modification.

• Liskov Substitution Principle (LSP): derived classes
must be substitutable for their base classes.

• Interface Segregation Principle (ISP): no client should
be forced to depend on methods or elements it does
not use.

• Dependency inversion principle (DIP): classes must de-
pend on abstractions, not on implementations.

One of the classes at the core of jMetal, the Solution

class, does not fulfil some of these principles. Besides in-
cluding the data that every solution must have, it includes
numerous fields which are algorithm dependent (SRP viola-
tion), such as fields to store the ranking and the crowding
distance of a solution, required by the NSGA-II algorithm
but not used by algorithms such as PAES or SPEA2 (viola-
tion of the ISP). Similarly, a strength variable is included for
the only need of the SPEA2 algorithm, and so on. In fact,
the way to proceed every time a new metaheuristic is to be
included consists in modifying the Solution class according
to the needs of that algorithm (violation of the OCP), giving
as a result a class populated with many fields.

The Solution class is not the only one violating these
principles. The Problem class contains fields such as lower
and upper bound, which are only needed by continuous prob-
lems, or a getNumberOfBits() method, which is only useful
for problems that work with binary representations.

2.3 Unrelated Solution Types, Operators and
Problems

Every optimization problem in jMetal is associated with a
particular encoding, which is indicated by a SolutionType

object. For example, continuous problems require real coded
solutions, and combinatorial problems require other solution
types such as binary types (like the OneMax problem) or
permutations (such as the travelling salesman problem or
TSP). The solution type is used to determine the variation
operators that can be applied to a solution. For example,
single point and BLX-α are crossover operators which should
work only with binary and real representations, respectively.

In jMetal 4.5 and previous versions, these relations among
different entities in the framework are hard coded and run-
time checks are needed to validate the applicability of an
operator to a given solution based on its type. As an exam-
ple, the following code shows the constructor of the classical
Schaffer problem. The problem constructor receives a string
as parameter to indicate if the problem is continuous (Real),
discrete (Integer) or of any other type. As we can see, an
if statement is used to ensure that the solution type is cor-
rectly set:

public Schaffer(String solutionType) {
numberOfVariables_ = 1;
numberOfObjectives_ = 2;
numberOfConstraints_ = 0;
problemName_ = "Schaffer";

lowerLimit_ = new double[numberOfVariables_];
upperLimit_ = new double[numberOfVariables_];
lowerLimit_[0] = -100000;
upperLimit_[0] = 100000;

if (solutionType.compareTo("Real") == 0)
solutionType_ = new RealSolutionType(this) ;

else {
System.out.println("Error: solution type ") ;
System.out.println("" + solutionType + " invalid") ;



Figure 1: jMetal 4.5 architecture

System.exit(-1) ;
}

} // Schaffer

Part of the code of the PolynomialMutation class, which
implements a mutation operator for continuous problems
such as Schaffer, is included in the following lines. It can
be also seen that this code checks whether the type of a
solution is adequate for this operator.

public class PolynomialMutation extends Mutation {
...
private static final List VALID_TYPES =

Arrays.asList(RealSolutionType.class) ;
...
public Object execute(Object object) {
Solution solution = (Solution)object;
if (!VALID_TYPES.contains(solution.
getType().getClass())) {
... // error message

} // if

doMutation(mutationProbability_, solution);
return solution;

} // execute

Such programming practice works, but it is error prone,
so the execution of an algorithm may be interrupted at run-
time if the solution type received by an operator is not the
expected one.

2.4 Code Replication and Algorithm Templa-
tes

Most of metaheuristic families are characterized by a com-
mon behaviour which is shared by all the algorithms be-
longing to the family. This behaviour can be expressed as

a pseudo-code that can be seen as a template. An exam-
ple is shown in Algorithm 1, which represents Evolutionary
Algorithms (EAs),

Algorithm 1 Pseudo-code of an evolutionary algorithm

1: P (0)← GenerateInitialSolutions()
2: t← 0
3: Evaluate(P (0))
4: while not StoppingCriterion() do
5: Q(t) ← Variation(P (t))
6: Evaluate(Q(t))
7: P (t+ 1) ← Update(P (t), Q(t))
8: t← t+ 1
9: end while

Having a template for a basic EA would lead researches
to focus on which part of a new EA are novel and what
parts already exist. From the software engineering point of
view, an algorithm whose behavior falls in a basic template
would only require to implement some specific methods for
the new technique (in the case of genetic algorithms, the
recombination, selection, etc); the common behavior would
not be needed to be programmed, therefore resulting in less
code replication. jMetal does not contain any set of basic
templates, so the users do not benefit of the aforementioned
advantages.

2.5 No Run Time Information Support
By default, when the execution of an algorithm is launched

(by calling its execute() method), the calling program has



to wait until the method has finished to get the computed
result. During this period of time, little or no information
about the algorithm execution is provided. While this may
be acceptable for executions that take a few seconds (even
minutes), this behaviour is non-desirable for long execution
that take hours or days to complete. In these cases, it may
be necessary to be able to retrieve some information (such
as the current iteration, the current set of non-dominated
solutions, etc.) at any point of its execution in order to take
further decisions.

In the previous version of jMetal, for obtaining such infor-
mation during an algorithm execution, the only choice was
to manually add log sentences by modifying the source code.
This is an unattractive approach, especially if we are using
several metaheuristics (e.g., in a comparative study). Fre-
quently, these monitoring sentences have to be removed or,
even worse, commented, leading to many commented lines
of code.

2.6 Code Quality
One of our goals, when developing jMetal, was to pay at-

tention to the quality of the code, a concern which has been
well appreciated by many users who have provided feedback
about our tool. However, our criteria to qualify the code
quality were fuzzy and mainly based on our intuition. In-
deed, the application of specific tools to measure the quality
of code, such as SonarQube4, revealed many issues to im-
prove, such as:

• System.exit() is widely used when an error situation
is found. This sentence shuts down the Java virtual
machine, which is a very undesirable effect if jMetal is
included into other software.

• Some methods have many lines of code, making them
hard to read and understand and hinder to effectively
apply unit tests.

• Many commented-out lines of code.

• Many names of fields, constants, methods, and classes
do not comply with a naming convention.

We do not use unit nor integration testing in jMetal, so
the possibility that some errors remain undetected is higher.
For example, the behaviour of variation operators, like the
polynomial mutation or SBX crossover applied by many al-
gorithms, has not been tested to ensure that they are cor-
rectly implemented.

2.7 Source Code Delivery
jMetal is distributed by providing the source code through

SourceForge. This means that, if a new version is released,
a project using it has to be updated manually. jMetal 4.5
is also delivered as a jar file, but the problem is the same.
With the purpose of simplifying the use of jMetal by other
researchers, we did not use any external dependence. There-
fore, we did not use packages of third parties that would un-
doubtedly help to offer more functionalities and accelerate
the jMetal development.

4SonarQube: http://www.sonarqube.org

2.8 Weak Support for Parallelism
jMetal includes parallel variants of some metaheuristics,

like pNSGAII, pSMPSO and pMOEAD. These versions are
thread-based implementation of these algorithms built on
top of the Java thread facilities. They are only intended to
run on multi-core processors and are not usable to develop
distributed versions of the algorithms.

3. REDESIGNING JMETAL
After analysing those issues that could be improved in

jMetal, we detail in this section how we cope with them in
the forthcoming jMetal 5.0 version.

3.1 New Architecture
The main goal of the new architecture is to provide a sim-

pler design while keeping the same functionality as before.
Figure 2 depicts the core classes of this architecture. This
diagram, composed of only four interfaces, captures the typ-
ical functionality provided by jMetal: an Algorithm solves a
Problem by manipulating a set of potential Solution objects
through the use of several Operators.

Compared with the former architecture (see Figure 1), the
new design introduces several obvious differences. First, the
number of core classes has been reduced from seven to four.
Second, all these core classes are now interfaces, and most
of them have only few methods. Finally, we can observe the
use of parametrized types to model the use of Java generics,
which are now widely applied.

The absence of the SolutionSet class, that was used be-
fore for representing populations in EAs (or swarms in PSO),
may be a bit surprising; however, our analysis revealed that
its role can be fulfilled by a list of solutions, and therefore
it can be represented by the java.util.List interface. The
main advantage of using Lists for this purpose is that Java
provides already several implementations with different per-
formance and characteristics (arrays, linked list, etc).

3.2 Representing Solutions
In jMetal 5.0, there is no need for using the concepts of

solution types nor variables to encode a solution. The for-
mer is not required thanks to the use of generics. Figure 3
shows how the solutions are defined now, where three repre-
sentations are included: binary, real, and integer. By using
this approach, many implementations can be provided for
the same encoding, adding an extra degree of flexibility.

In the case of double solutions, we provide a default im-
plementation where the variable values are stored in an ar-
ray, so we avoid having to define something like the former
ArrayReal encoding. This also eliminates the necessity of
wrapper classes such as XReal. Now, getting the value of a
variable and an objective is done in this way:

double value = solution.getVariableValue(i) ;
double objective = solution.getObjective(j) ;

which is simpler and more natural than the previous scheme
commented in Section 2.1.

The use of generics also allows that an attempt to incor-
rectly assign the value of a variable results in a compilation
error, e.g., trying to assign to an int variable the variable
value of a DoubleSolution.

A feature of the new approach to represent solutions is the
introduction of attributes, which are simply <key, value>



Figure 2: UML class diagram of jMetal 5.0 core classes.

Figure 3: jMetal 5.0 Solution class diagram.

pairs. When a solution has to incorporate a field which is
specific for a given algorithm, that field can be added as an
attribute. This way, there is no need to modify the solution
class, as commented in Section 2.2.

To avoid having to manage directly the solution attributes,
we include this utility interface:

public interface SolutionAttribute
<S extends Solution, V> {

public void setAttribute(S solution, V value) ;
public V getAttribute(S solution) ;
public Object getAttributeID() ;

}

The use of solution attributes can be encapsulated. As an
example, we have defined the following interface to assign a
rank to a solution (i.e, NSGA-II’s ranking):

public interface Ranking<S extends Solution>
extends SolutionAttribute<S, Integer>{

public Ranking computeRanking(List<S> solutionList) ;
public List<S> getSubfront(int rank) ;
public int getNumberOfSubfronts() ;

}

so a client class (e.g., the NSGAII class) can merely use:

Ranking ranking = computeRanking(jointPopulation);

This way, the solution attribute is managed internally by
the class implementing the ranking and is hidden to the
metaheuristic.

3.3 jMetal as a Maven Project
A request of some users was to make jMetal a Maven

project5. This way it would be easier to incorporate it in
any Maven project and also to use dependencies of third
parties.

Our approach has been to partition jMetal into four pack-
ages:

• jmetal-core: Classes of the core architecture plus
some utilities, including quality indicators.

• jmetal-algorithm: Implementations of the metaheu-
ristics included in the framework.

• jmetal-problem: Implementations of the known prob-
lems.

• jmetal-exec: Executable programs to configure and
run the algorithms.

These packages can be found in the Maven Central Repos-
itory6, where the Maven dependencies can be obtained. For
example, in the case of needing the jmetal-core package,
the current dependence is:

<dependency>
<groupId>org.uma.jmetal</groupId>
<artifactId>jmetal-core</artifactId>
<version>5.0-Beta-28</version>

</dependency>

5https://maven.apache.org/
6Maven Central Repository: http://search.maven.org/



3.4 Relating Solution, Operators, and Prob-
lems

By using generics in the new architecture, the compiler
can ensure that, if an algorithm is configured to solve e.g, a
continuous problem (a DoubleProblem in jMetal 5.0), then
the operators must manipulate only DoubleSolutions.

Let us suppose that we want to use NSGA-II to solve
a continuous problem. The configuration of the algorithm
would contain the following code:

DoubleProblem problem;
Algorithm<List<DoubleSolution>> algorithm;
CrossoverOperator<

List<DoubleSolution>,List<DoubleSolution>> crossover;
MutationOperator<DoubleSolution> mutation;

...

algorithm = new NSGAIIBuilder
<DoubleSolution>(problem, crossover, mutation)
.setSelectionOperator(selection)
.setMaxIterations(100)
.setPopulationSize(100)
.build() ;

This way, operators such as the SBX crossover and poly-
nomial mutation will be valid to solve a problem such as
ZDT1 (continuous), but the code will not compile if there
is any attempt to apply the single point crossover or bit-flip
mutation binary operators, or the ZDT5 problem (binary).

Any attempt to use an operator with a non valid solution
will be detected in compilation time, and advanced IDEs
(e.g, Eclipse) can immediately find these errors.

3.5 Algorithm Templates
As commented in Section 2.4, providing algorithm tem-

plates can bring a number of advantages. In jMetal 5.0 we
include a number of templates mimicking canonical meta-
heuristics. For example, the AbstractEvolutionaryAlgo-

rithm class provides a template for EAs by including the
following implementation of the run() method (Algorithm
extends Runnable):

@Override public void run() {
List<S> offspringPopulation;
List<S> matingPopulation;

population = createInitialPopulation();
population = evaluatePopulation(population);
initProgress();
while (!isStoppingConditionReached()) {
matingPopulation = selection(population);
offspringPopulation = reproduction(matingPopulation);
offspringPopulation =

evaluatePopulation(offspringPopulation);
population = replacement(population, offspringPopulation);
updateProgress();

}
}

To develop a new EA, the methods used by run() have
to be implemented. This way, the flow control is in the
abstract class, not in the algorithm implementation. This
abstract class is the base class of genetic algorithms, evo-
lution strategies, and differential evolution algorithms. An
AbstractParticularSwarmOptimization class is currently
provided as well.

Popular metaheuristics such as NSGA-II [3], PAES [10],
SPEA2 [16] or SMS-EMOA [1] follow this template. Others,
such as MOEA/D [12], cannot be implemented according to

it, so they need to inherit directly from the Algorithm inter-
face. Templates provide facilities to implement algorithms,
but they are not mandatory.

3.6 Measures in Algorithms
A novelty in jMetal 5.0 is the inclusion of measures, which

allow to obtain algorithm-specific information during its ex-
ecution. The current implementation supports two types
of measures: a PullMeasure provides the value of the mea-
sure on demand (synchronous), while a PushMeasure allows
to register listeners (observer design pattern) to receive the
value of the measure when it is produced (asynchronous).

One can transform a pull measure into a push one (e.g.
with a period of refresh) as well as a push measure into a
pull one (e.g. by storing the value for future demands), thus
choosing one or the other is more a design choice depending
on how the algorithm manage the measured values. For
instance, if the value is always available in the algorithm
(e.g. population size), then it is usual to use a pull measure
to retrieve it on demand, while a value generated on the fly
(e.g. solution evaluation) is prone to be managed by a push
measure.

Finally, these measures are provided by the algorithm
through a MeasureManager, which acts as a mapper between
the available measures and keys which identify each of them.
The measure manager provides all the available keys, allow-
ing to retrieve and manage all the available measures for
further automation.

To illustrate how measures work, jMetal 5.0 provides a
version of NSGA-II endowed with pull and push measures.
The next code shows an example of measures implementing
both features and how they are used:

public class NSGAIIMeasures extends NSGAII {
private CountingMeasure iterations ;
private BasicMeasure<List<Solution>> lastEvaluatedPopulation ;

...

iterations = new CountingMeasure(0) ;
lastEvaluatedPopulation = new BasicMeasure<>() ;

public NSGAIIMeasures(...) {
...
measureManager = new SimpleMeasureManager() ;
measureManager.setPullMeasure("currentIteration",

iterations);
measureManager.setPushMeasure("lastEvaluatedPopulation",

lastEvaluatedPopulation);
}

@Override protected void initProgress() {
iterations.reset(1);

}

@Override protected void updateProgress() {
iterations.increment();
lastEvaluatedPopulation.set(getPopulation());

}

...
}

In this example, our algorithm declares a CountingMea-

sure (a measure intended to count events) called itera-

tions and aiming at counting how many iterations has been
made since the starting of the algorithm. Another one is a
BasicMeasure (simply stores a value) called lastEvaluat-

edPopulation and aiming at providing the population con-
sidered at the evaluation time, thus giving a way to know
how the population evolve between each round. The point



with push measures is when to effectively push the value to
the listeners, thus identifying the precise location where the
value changes. Here, the iteration counting is reset at ev-
ery call of initProgress(), which corresponds to a restart
of the algorithm, and both measures are updated in up-

dateProgress(), which is called at the end of each iteration
(notice that these two methods are required by the evolu-
tionary algorithm template defined in Section 3.5). Regard-
ing the MeasureManager, we register both the measures as
pull or push measures depending on how we want them to
be used out of the algorithm. The client code can make use
of these measures as follows:

...
Algorithm<List<Solution>> algorithm;
...
MeasureManager measureManager =

algorithm.getMeasureManager() ;

CountingMeasure iteration =
(CountingMeasure) measureManager.getPullMeasure(

"currentIteration");
BasicMeasure<List<Solution>> lastEvaluatedPopulationMeasure

= (BasicMeasure) measureManager.getPushMeasure(
"lastEvaluatedPopulation");

lastEvaluatedPopulationMeasure(new Listener());

Thread algorithmThread = new Thread(algorithm) ;
algorithmThread.start();

while(iteration.get() < maxIterations) {
TimeUnit.SECONDS.sleep(5);
System.out.println("Iteration: " + iteration.get()) ;

}

algorithmThread.join();
}

In this piece of code, the measure manager is obtained
from the algorithm, so the measures are now accessible. In
the case of the pull measures, the algorithm is executed in a
thread and the client code prints every five seconds the cur-
rent iteration while the algorithm is concurrently running.

We can observe that a listener is registered to use the push
measure. An example listener class is shown next:

public class Listener
implements MeasureListener<List<Solution>> {

private int counter = 0 ;

@Override synchronized public void
measureGenerated(List<Solution> solutions) {

if ((counter % 10 == 0)) {
// Do whatever action with the solution list (population).

}
counter ++ ;
}

}

In this code, the measureGenerated() method is called
whenever a push operation is invoked on the push measure,
and an action is performed every 10 invocations. A typical
action could be to write the current Pareto front approxi-
mation in a file for experimental evaluation.

The benefit of using a push measure in this example is
that there is no need of modifying the algorithm code; all the
logic is in the client side. The approach has also a minimum
impact on performance: if no listeners are registered, the
push operations only will make a check in an empty list.

In general, pull measures are useful when the client pro-
gram needs to get information in a particular moment about
the current state of the algorithm execution. On the con-
trary, pull measures are more useful when they are intended

to inform the client code about relevant events that are pro-
duced in an asynchronous way. In the former example, that
event is evaluating the population after an algorithm itera-
tion, but more complex scenarios could be considered, e.g.,
the population has not changed in the last N iterations, or
the population does not contain infeasible solutions in case
of solving a constrained problem.

3.7 Improving Code Quality
A reason to start the jMetal project was that we found

out that existing software for multi-objective optimization
with metaheuristics was difficult to understand and to reuse,
so a design goal we imposed ourselves was to pay attention
to code quality. This has been appreciated by many users,
but when we analyzed the current implementation we were
aware that there is room for improvement, as pointed out in
Section 2.6.

In the new implementation, we follow the guidelines of
Robert C. Martin’s Clean Code book [13], with the goal of
making the code more readable, extensible and maintain-
able. This is a work in progress, which implies a deep refac-
toring of most of the code.

Directly related to code quality, an important issue is to
apply unit and integration testing. We use jUnit7 comple-
mented with Mockito8 when mocks are needed.

Because metaheuristics are stochastic methods relying on
randomized components, writing unit tests for these compo-
nents is not trivial. Focusing on variation operators such as
crossover and mutation, our approach is to test them in two
steps. Step 1 consists in checking that the parameters they
receive are correct (e.g., the probabilities of applying them
is between 0.0 and 1.0) and that the produced values are
valid. Because these tests cannot ensure that the operator
works properly, step 2 is to write a program that generates
several solutions, applies the operator to them, and writes
the results in a file; then, by plotting the obtained values we
can visually check whether or not the result is the expected
one.

Our approximation for integration testing is to run the
algorithms to solve known benchmark problems. The ex-
pected values of the tests can be as simple as checking the
number of returned solutions; for example, solving the Kur-
sawe problem with NSGA-II configured with standard set-
tings (a population size of 100, a stopping condition of 25’000
evaluations, a probability of crossover (SBX crossover) of
0.9, and a probability of mutation (Polynomial mutation) of
1/NumberOfVariables) should return 100 solutions, so the
test checks that at least 99 solutions have been returned.
The tests can be more accurate by knowing in advance the
average values of a quality indicator (e.g, the Hypervolume)
when solving a given problem and checking for this value
with an error margin; this information can be obtained from
pilot experiments and from studies published in the litera-
ture.

3.8 Parallelism Support
The inclusion of algorithm templates in jMetal 5.0 (Sec-

tion 3.5) allows to provide parallelism support in an easy way
when a list of solutions has to be evaluated. The approach
taken is to define an interface called SolutionListEvalua-

tor:

7jUnit: http://junit.org/
8Mockito: http://mockito.org



public interface SolutionListEvaluator
<S extends Solution> extends Serializable {

public List<S> evaluate(List<S> solutionSet, Problem problem);
}

This way the techniques based on the abstract evolu-
tionary algorithm template can implement the evaluate()

method in this way:

@Override
protected List<S> evaluatePopulation(List<S> population) {
population = evaluator.evaluate(population, problem);

return population;
}

By adopting this scheme, the evaluation of a list of solu-
tions is encapsulated. We currently provide two implemen-
tations of such evaluators: sequential and multi-threaded.
This scheme does not require to modify the code of the al-
gorithm to use the evaluators, and the following metaheuris-
tics use it: NSGA-II, SMPSO [14], SPEA2 and GDE3 [11].
More implementations are in progress to provide distributed
versions.

4. CONCLUSIONS AND FUTURE WORK
In this paper we have identified and analysed a number

of issues that can be improved in the jMetal framework for
multi-objective optimization with metaheuristics. These is-
sues are related to the class architecture, the quality of the
code, the organization of the project, the lack of templates
for algorithms, the absence of features for getting informa-
tion at runtime, and the lack of parallelism support.

To cope with the identified points, we have introduced
the new architecture of the next release of jMetal and the
adopted solutions to solve those issues. As a result, the re-
designed jMetal should lead to a significantly improved tool
aimed at being useful to researchers of the multi-objective
optimization community.

The future work is directly focused in finishing the new
jMetal version and releasing it to the community.

5. ACKNOWLEDGMENTS
This work is partially funded by Grants TIN2014-58304-

R (Ministerio de Economı́a y Competitividad), TIN2011-
25840 (Ministerio de Ciencia e Innovación), P11-TIC-7529
and P12-TIC-1519 (Plan Andaluz de Investigación, Desar-
rollo e Innovación).

6. REFERENCES
[1] N. Beume, B. Naujoks, and M. Emmerich. Sms-emoa:

Multiobjective selection based on dominated
hypervolume. European Journal of Operational
Research, 181(3):1653–1669, 2007.

[2] C. Coello, D. Van Veldhuizen, and G. Lamont.
Evolutionary Algorithms for Solving Multi-Objective
Problems. Genetic Algorithms and Evolutionary
Computation. Kluwer Academic Publishers, 2002.

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast elitist multi-objective genetic algorithm: Nsga-ii.
IEEE Transactions on Evolutionary Computation,
6:182–197, 2000.

[4] J. Durillo, A. Nebro, and E. Alba. The jmetal
framework for multi-objective optimization: Design
and architecture. In CEC 2010, pages 4138–4325,
Barcelona, Spain, July 2010.

[5] J. Durillo, A. Nebro, F. Luna, B. Dorronsoro, and
E. Alba. jMetal: a Java framework for developing
multi-objective optimization metaheuristics. Technical
Report ITI-2006-10, Departamento de Lenguajes y
Ciencias de la Computación, University of Málaga,
E.T.S.I. Informática, Campus de Teatinos, 2006.

[6] J. J. Durillo and A. J. Nebro. jmetal: A java
framework for multi-objective optimization. Advances
in Engineering Software, 42:760–771, 2011.

[7] J. J. Durillo, A. J. Nebro, C. A. Coello Coello,
J. Garćıa-Nieto, F. Luna, and E. Alba. A study of
multiobjective metaheuristics when solving parameter
scalable problems. IEEE Transctions on Evolutionary
Computation, 14(4):618 – 635, August 2010.

[8] I. Giagkiozis, R. Lygoe, and P. Fleming. Liger: an
open source integrated optimization environment. In
Genetic and Evolutionary Computation Conference,
GECCO ’13, Amsterdam, The Netherlands, July 6-10,
2013, Companion Material Proceedings, pages
1089–1096, 2013.

[9] D. K. Multi-Objective Optimization Using
Evolutionary Algorithms. John Wiley & Sons, Inc.,
New York, NY, USA, 2001.

[10] J. D. Knowles and D. W. Corne. Approximating the
nondominated front using the pareto archived
evolution strategy. Evolutionary Computation,
8(2):149–172, 2000.

[11] S. Kukkonen and J. Lampinen. GDE3: The third
evolution step of generalized differential evolution. In
IEEE Congress on Evolutionary Computation
(CEC’2005), pages 443 – 450, 2005.

[12] H. Li and Q. Zhang. Multiobjective optimization
problems with complicated pareto sets, moea/d and
nsga-ii. IEEE Transactions on Evolutionary
Computation, 12(2):284–302, April 2009.

[13] R. Martin. Agile Software Development: Principles,
Patterns, and Practices. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2003.

[14] A. Nebro, J. Durillo, J. Garćıa-Nieto, C. Coello Coello,
F. Luna, and E. Alba. Smpso: A new pso-based
metaheuristic for multi-objective optimization. In
2009 IEEE Symposium on Computational Intelligence
in Multicriteria Decision-Making (MCDM 2009),
pages 66–73. IEEE Press, 2009.

[15] E. Zitzler, K. Deb, and L. Thiele. Comparison of
multiobjective evolutionary algorithms: Empirical
results. Evolutionary Computation, 8(2):173–195,
Summer 2000.

[16] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the strength pareto evolutionary algorithm.
In K. Giannakoglou, D. Tsahalis, J. Periaux,
P. Papailou, and T. Fogarty, editors, EUROGEN
2001. Evolutionary Methods for Design, Optimization
and Control with Applications to Industrial Problems,
pages 95–100, Athens, Greece, 2002.


