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ABSTRACT
We augment the mEDEA algorithm to explicitly account for
the costs of communication between robots. Experimental
results show that adding a costs for communication exerts
environmental pressure to implicitly select for genomes that
maintain high energy levels. We compare our two methods
which vary broadcasting based on the individuals fitness to
vanilla mEDEA bundled with an explicit selection method
under these new conditions and find that biasing broadcast-
ing has a negative effect on survivability.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

Keywords
Evolutionary Robotics; Environment-driven; Online Evolu-
tion

1. INTRODUCTION
In previous research [4] we implemented an explicit fit-

ness measure into mEDEA [1] that influences the spread of
genomes through the population in order to increase surviv-
ability, thus, ensure the integrity of the swarm. We dubbed
the algorithm mEDEArf — mEDEA with relative fitness.

In mEDEA a robot’s controller is encoded in its genome
which is constantly broadcast in a close range. A random
selection from a list of the received genomes during the gen-
eration determines the controller for the next generation.
In mEDEArf the broadcasting is varied either by reducing
the range or probability of broadcasting depending on the
explicit fitness value to favour the spread of genomes that
produce controller which maintain a higher energy balance.
We compared mEDEArf to mEDEA where the random se-
lection is replace with an explicit selection method.

Our results suggested that although using the relative fit-
ness value in either way improved survivability, adjusting
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the broadcasting mechanism should conserve energy. In this
paper we derive an energy model to account for the cost for
communication and implemented it into both algorithms to
test this hypothesis. We give a briefly overview of the ex-
periments conducted and the results obtained.

2. METHOD
Two different methods were introduced in mEDEArf that

change the broadcasting mechanism in mEDEA by varying
a) the probability to broadcast and b) adjusting the broad-
cast radius, in proportion to the fitness value. Both mecha-
nisms bias the broadcast towards fitter individuals. For an
in-depth description of the mEDEA algorithm and the de-
tails of our proposed modifications the reader is referred to
[1] and [4] respectively.

To calculate the cost of communication for the simulated
ePuck robots in Roborobo [2], we derive an energy model
based on the Free-Space Model [5] (equation 1) which is
used in wireless sensor network simulations. This field of
research makes extensive use of the low power communica-
tion modules used in experiments1 using the ePuck robot
platform [6].

Etx(n, d) = n× Eelec + n× εamp × d2 (1)

Eelec is the basic charge to run the module, εamp the costs
for signal amplification which is multiplied by the distance
squared and n represents the number of bits in a trans-
mission. n is constant as genome broadcasts only vary in
content, not length. Values for Etx(rmax) = 0.075 and
Etx(rmin) = 0.028 have been chosen following limited em-
pirical testing. The energy required for receiving is constant
and 7% higher than the Etx(rmax), due to the low-power
nature of the signals which requires signal reconstruction
circuits [7].

In order to evaluate the dependence on energy we amend
the experimental setup as follows: maximum energy per
robot adjusted from 2000 to 15000, initial energy of a robot
lowered to 750 (enough to survive half a generation) and
energy pucks limited to 75. Further, the algorithm was
adapted to prevent robots from broadcasting in empty neigh-
bourhoods to prevent fruitless genome distribution attempts.

3. EXPERIMENTS
Experiments were designed to evaluate the following hy-

pothesis: When accounting for the cost of communication,
biasing the spread of gnomes in mEDEArf outperforms con-
tinuous broadcast combined with an explicit selection in

1TI CC2420 in [3] and Bluetooth module LMX9820a in [6]
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Figure 1: Figures show the energy, number of active robots and genomes received for each of the experiments
E1em, E1em+rw, E4em and E5em. Box plots showing values at generation 150.

terms of active robots and the maintained energy level at
the end of the last generation.

Four different experiments were conducted based on the
experiments in [4]: E1em: baseline experiment, vanilla mEDEA
using the energy model with random individual selection;
E1em+rw: as E1em, but using roulette-wheel selection as
individual selection method; E4em: using a fitness propor-
tionate probability to broadcast; E5em: varying the broad-
cast radius proportionate to the fitness.

4. RESULTS AND ANALYSIS
Figure 1 shows the median2 result over 30 repeated runs

at the end of the generation.
In E1em energy can be maintained by reducing broadcast-

ing or gathering energy pucks. In cases where the broadcast-
ing rate is fixed, avoiding others is the only option, which,
however, is not conducive to spreading the genome.

The results3 show that:
E1em broadcasts most and gathers the most pucks. At the

other extreme E4em (frequency variation) broadcasts least
and also gathers fewest pucks: it experiences the least pres-
sure to collect as it can maintain energy by reducing broad-
casting. However, the reduced environmental pressure leads
to a much slower increase in energy and fewer active robots
compared to the unbiased broadcast experiments.

In E5em, although there is the same amount of broadcast-
ing as in E1em, it does not lead to a significant difference
in active robots c.f. E4em. The evolved behaviour leads to
significantly fewer pucks being collected.

The mechanisms in E4em and E5em lower the environmen-
tal pressure by preventing less fit individuals from commu-
nicating. High fitness individuals will broadcast with high
probability or full range hence bear high costs; in contrast
low fitness robots rarely broadcast thus save energy. The
two methods differ in that in E5em even with r = 0 accord-
ing to eq. 1 there is still a basic cost.

2as a Shapiro-Wilk test showed that the results were not
normally distributed
3A Wilcoxon Rank-Sum test with a significance level α =
0.05 was used to determine statistical significance.

5. CONCLUSION
We introduced an energy model based on the Free-Space

model to account for the cost of communication in mEDEArf .
Experimental results showed this exerts environmental pres-
sure to implicitly select for genomes that maintain high en-
ergy levels. Comparing the method of varying the broad-
casting based on fitness to mEDEA alone and with roulette-
wheel genome selection shows that although marginal, the
latter approaches outperform the mEDEArf methods, as
they partially reverse the effect of the environmental pres-
sure.
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