
TED Mode l s for A T M Internetworks

K a l y a n Perumal la* M a t t h e w Andrews t Sandeep B h a t t t

Abstract

We describe our experiences designing and implementing a virtual PNNI network testbed. The network
elements and signaling protocols modeled are consistent with the ATM Forum PNNI draft specifications.
The models will serve as a high.fidelity testbed of the transport and network layers for simulation-based
studies of the scalability and performance of PNNI protocols.

Our models are written in the new network description language TED which offers two advantages.
First, the testbed design is transparent; the model descriptions are developed separately from, and are
independent of, the simulation.specific code. Second, TED is compiled to run with the GTW (Georgia
Tech Time Warp) simulation engine which is supported on shared-memory multiprocessors. Therefore,
we directly obtain the advantages of parallel simulation.

This is one of the first complex tests of the TED modeling and simulation software system. The
feedback from our experiences resulted in some significan~ improvements to the simulation software. The
resulting PNNI models are truly transparent and the performance of the simulations is encouraging.
We give results from preliminary simulations of call admission, set.up and tear-down in sample PNNI
networks consisting of two hundred nodes and over three hundred edges. The time to simulate ten thousand
call requests decreases significantly with the number of processors; we observe a speedup factor of 5.05
when 8 processors are employed compared to a single processor. Our initial implementations demonstrate
the advantages of TED for parallel simulations of large-scale networks.

1 I n t r o d u c t i o n

The Private Network-Network Interface (PNNI) protocol suite (ATM Forum 1996) is an interna-
tional draft standard proposed by the ATM Forum. The protocol defines a single interface for use between
the switches in a private network of ATM (asynchronous transfer mode) switches, as well as between
groups of private ATM networks. Corresponding to the network and transport layers of the OSI Ref-
erence Model, PNNI supports two categories of protocols: (1) topology discovery and (re)configuration,
and (2) dynamic routing via virtual circuit connections.

The main feature of the PNNI protocols is scalability, i.e. the complexity of routing does not increase
drastically as the size of the network increases. There is an inherent trade-off between scalability versus
quality of routing. Given the complex nature of broadband data traffic, simulations are the only feasible
avenue to study the scalability of the PNNI protocol and to design and tune strategies for hierarchical
addressing, topology aggregation and call admissions.

We are building a virtual PNNI testbed for large-scale simulation studies. Two factors are critical:
performance and reusability. For the network sizes and time scales of interest, the simulations must run on
parallel and distributed platforms. Equally important, we insist that the model descriptions be reusable
and independent of the simulation-engine code. The reason is straightforward: the value of the testbed
to the user lies in the model descriptions, not the simulation engine. We expect to reuse the testbed
to study higher-level protocols as well as scenarios to be defined later. Moreover, we do not wish to be
tied to a single simulation engine - - we prefer to leverage advances in parallel discrete-event simulation
technology without having to rewrite the testbed.

Our testbed uses the new network description language TED (Perumalla and Fujimoto 1996, Peru-
malla et. al. 1996). TED is designed with the goals of reuse, transparent modeling, and efficient parallel
execution. We have used the C ++ version of the TED software system that utilizes the GTW (Georgia

*College of Computing, Georgia Inst. of Technology, Atlanta, GA 30332-0280
tBell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ 07974
tBellcore and DIMACS (Rutgers University), 445 South Street, Morristown, New Jersey 07960

12

http://crossmark.crossref.org/dialog/?doi=10.1145%2F274084.274086&domain=pdf&date_stamp=1998-03-01

Tech Time Warp) library as the underlying parallel simulation engine. Our preliminary simulations run
on shared memory multiprocessors.

This paper presents the modeling and simulation aspects of the testbed. Specifically we focus on
the issues that arise in (1) separating model code from simulation specifics, and (2) organizing the model
for parallel simulation, without interfering with transparency. Ongoing network-oriented studies will be
reported in separate, forthcoming publications.

The remainder of this paper is organized as follows. Section 2 presents an overview of the T~D
language and the PNNI protocols, and describes the challenges of building transparent PNNI models.
Section 3 describes the TED design of the PNNI testbed, while Section 4 describes some of the impli-
cations of the testbed on the simulation engine. Section 5 describes our initial simulation study and
presents results of parallel simulations. Finally, Section 6 identifies ongoing and future directions.

2 T r a n s p a r e n t P N N I M o d e l s

TED (Telecommunications Description) is a language for developing transparent model descriptions
which are (i) not tied to any specific simulation engine, and (ii) not cluttered with references to simulation
code. While T~D was conceived for telecomnmnication network models, its basic constructs permit more
general use.

Besides developing a virtual PNNI testbed, our modeling experience also served as one of the first
complex tests of the TED modeling and simulation software system. The feedback from our experiences
resulted in some significant improvements to the simulation software. The end result is that the PNNI
models are truly transparent and the performance of the simulations is encouraging.

The remainder of this section gives high-level overviews of TED, PNNI, and the challenges of
developing transparent models.

2.1 TED O v e r v i e w

TED supports a parsimonious set of concepts: event, channel, entity, architecture, process and
component. Entities, the basic building block for T~D models, are object-oriented encapsulations. These
abstractions are in the spirit as the VHDL language (Bhasker 1995) for hardware description.

An entity specifies the abstract interface of a network element or protocol. Entity interfaces are
defined in terms of channels through which events flow; mappings among channels interconnect entities.
The behavior of an entity is specified by its architecture which consists of processes and components
(sub-entities). Inheritance between entitles and architectures allow entity (architecture) types to inherit
from other entity (architecture) types. Entity and architecture type definitions can be compiled to create
a model database. Instantiations and compositions among database objects establish desired network
configurations. Models can be customized via parameters that are assigned user-defined values after
compilation.

TED constructs facilitate the development of transparent network models. At the same time, the
disciplined (and restricted) ways to compose entities makes it possible to compile models for parallel
execution. By enforcing the discipline for composition within the language itself, the dual concerns of
model specification and execution are effectively separated. This separation allows the development of
complex models which can exploit state-of-the-art technologies for parallel and distributed simulation.

2.2 P N N I O v e r v i e w

The PNNI protocol is a complex set of ATM routing and signaling mechanisms proposed in the draft
specifications vl.0 (ATM Forum 1996). It represents one of the most sophisticated signaling protocols
devised to date (Cisco Web page), aimed at supporting QoS-based routing along with unprecedented
levels of scalability.

The PNNI specifications are based on a hierarchical addressing scheme which is used for maintaining
network topology information and for call routing. In a global network it is infeasible for each node to
contain a complete description of the entire network - - the costs of storing and updating this information
are prohibitive. On the other hand, a hierarchical scheme allows nodes to have reduced "views" of the
network; thus, changes to the network need not be propagated to every node.

13

H . .

Figure 1: An Example PNNI Network

The PNNI hierarchy organizes network nodes (at level-0) into level-1 peer groups; level-1 groups
are grouped together into level-2 peer groups, and so on. Figure 1 gives an example of a PNNI hierarchy
with 4 levels. The level-0 nodes have addresses of length 3, level-t groups have addresses of length 2,
and so on (there are no constraints on the number of nodes in each peer group). The entire network is a
level-4 group (with an empty address).

Within every peer group, one member is elected as the peer group leader (PGL). Peer group leaders
play a prominent role in establishing and maintaining the topology views for network nodes; they are not
used for call routing. The role of each PGL is played by a network node, which we call the role playing
physical node (RPPN). The RPPN of a PGL can be determined by recursively following PGLs down the
hierarchy to a network node. All interactions conceptually within the hierarchy are carried out among
the RPPN nodes in the network.

According to the PNNI specifications, each network node must have complete knowledge of the
nodes and edges within its level-1 peer group. This is achieved by having each node flood its information
within its level-1 peer group. For higher levels, ~ > 0, level-£ RPPNs of PGLs that are part of the same
level-(l+ 1) peer group exchange aggregated information via routing control channels (RCCs) established
by the call setup mechanisms.

Finally, the aggregated information received by the RPPN of a level-I PGL is sent to the network
nodes below it in the hierarchy. The exchange of topology information is carried out using short Hel lo
messages and longer PTSE messages. The topology information that is gathered and maintained con-
tinually at each node is used in the distributed routing protocols for call admission, call setup and call
teardown. This information is periodically updated during network operation. The effect of the hierarchy
is that each node has detailed information about nearby nodes but only approximate information about
more distant nodes.

2.3 M o d e l i n g a n d S i m u l a t i o n C h a l l e n g e s

The PNN] protocols are challenging, both for modeling and efficient parallel execution. Section 4
describes how the following challenges were met within the TED - GTW system.

R e c u r s i v e l a y e r d e p e n d e n c i e s . The conventional "layered" approach to modeling network ele-
ment behavior is inadequate to express the complex behavior of the PNNI nodes. For example, establish-
ing the hierarchy requires that RCCs be set up; this requires call routing and admission which, in turn,
depends on the hierarchy being set up. This requires that the modeling framework support recursive
dependencies.

C o m p l e x m o d e l b e h a v i o r . PNNI node behavior involves complex timing, ordering and syn-
chronization of protocol messages. The informal description of the protocol functions in the PNNI draft
specification illustrates this complexity, with several timers, decisions and assumptions. The challenge
was to formulate these interactions within the TED discipline, compromising neither the transparency of
the TED model nor the efficiency of the parallel execution.

14

C o m p l e x a n d l a r g e s t a t e s . PNNI nodes contain large amounts of state information that change
in unpredictable ways. The state information itself is complex, and requires modeling support for trans-
parent processing. The large state size requires incremental state saving techniques in the context of
optimistic parallel simulation. Indeed, we had to incorporate a transparent incremental state saving
facility within the Georgia Time Warp (GTW) system.

Complex c o m m u n i c a t i o n p a t t e r n s . In typical PNNI networks, there are several classes of in-
teraction for configuration discovery, topology exchange, call setup, data transfer, and so on. Moreover,
the interaction of a node with its neighbors varies with the type of the neighbor and the class of the
interaction. The communication patterns are complex and unpredictable. To further aggravate the situ-
ation, typical networks (such as the one used in our study) are difficult to partition; this creates hurdles
for load balancing for efficient parallel simulation.

V a r i a b i l i t y in e v e n t s ize a n d p r o c e s s i n g . Event sizes vary considerably with type. For example,
Hello packets are considerably smaller than PTSE packets. This variation is important because parallel
simulators typically fix event sizes for efficient memory management; forcing all events be the size of the
largest event lowers performance because of the overhead of memory copying. Similarly, the computation
performed by a PNNI node on receiving a message (event processing) varies with the type of the message.
It is important that load balancing mechanisms for parallel simulators not assume uniform costs for event
processing.

C o m p l e x i t y o f d e v e l o p m e n t p r o c e s s . In developing complex simulation models, facilities for
automatic checks of model correctness are indispensable. For example, "assertions" are a common tech-
nique by which pre-conditions and post-conditions are specified in the models, which are automatically
verified at run-time by the simulator, and the simulation halted upon the detection of the first asser-
tion violation. In the context of optimistic parallel simulations, however, transient erroeneous conditions
may be caused due to optimistic processing, in addition to non.transient modeling errors. Generalized
correctness checking techniques in the modeling systems are thus needed.

3 P N N I M o d e l s in T E D

Each PNNI node is modeled as a TED entity. The entity interface, shown in Figure 3, conists of (i)
a parameterized array of channels, one for each ATM link to a neighboring node, and (ii) a user channel
for the local point of attachment of a user node. The channel types in the array correspond to messages
in the PNNI protocol between PNNI nodes. The user channel type includes messages that deal with
network services in terms of switched virtual circuit (SVC) setup and teardown. An arbitrary PNNI
network configuration can be built by instantiating one entity per network node and connecting channels
appropriately.

entity PNNINode(int NUM_LINKS)

channels

inout ATMLinkphysical[
SPARA~(~UM_LI~KS)$];

incut UserChannel user;
}

Figure 2: TED Ent i ty Interface of a P N N I Node

15

As outlined in Section 2, each node participates in establishing the PNNI hierarchy and possibly
acting as the PGL for multiple levels within the hierarchy, in periodic exchange of topology informa-
tion, and in call admission and routing. The corresponding behavioral specification of a PNNI node in
TED partitions nicely into the linear inheritance hierarchy shown in Figure 3.a. Figure 3.b shows the
components of the PNNI node architecture and the inheritance among these components.

When an event appears on one of the channels in the array, it is processed by the SVCService
architecture. The SVCSorvice architecture models link-to-SVC and SVC-to-link mapping services, so
that messages are identified by SVC name rather than link identifiers. Depending on its type, the
received message is forwarded to one of three architectures: TopologyMaintenanee, RoutingService, or
UserService.

The TopologyMaintenance architecture inherits from the SVCService architecture and models the
PNNI topology maintenance protocols using the SVC service. It models PGL instantiation and PGL
communications, and builds and maintains the topology database over time for the node as well as for
every PGL for which the node is an RPPN.

The RoutingService architecture inherits from the TopologyMaintenance architecture, thus in-
heriting the topology database maintenance behavior. It adds the call admission and routing algorithms
Lo service SVC setup requests coming from the neighboring nodes, or from user nodes, or from the
TopologyMaintenance processes themselves.

The UserService architecture inherits from the RoatingService architecture, thus inheriting the
entire PNNI protocol functionality for a node. To the functionality, it adds the SVC setup, teardown,
and data transfer services for user nodes.

4 Experiences
In this section, we discuss our approach to tile challenges outlined in Section 2.

Recursive Layer Dependencies. The mutually recursive dependence between topology mainte-
nance and routing service is resolved by using an internal channel (i~CCREQ) in the TopologyMaint enance
architecture (sec Figure 3.b). This channel is used by the Topology~laintenance architecture to forward
SVC setup requests. The inheriting architecture, RoutingService, caters to thesc requests coming on
the internal channel. Similarly, the routing service architecture caters to SVC setup requests originating
from the UserService architecture that arrive on another internal channel (LOCREQ) dedicated for that
purpose.

Section 2 mentioned the recursive dependence between topology database maintenance and signaling
in the PNN! protocol. For au~o-configurabillty, the dynamic formation of the peer group hierarchy
requires the dynamic set up of SVCs between PGLs. But, at the same time, the signaling support that is
required for setting up the SVCs depends on the formation of the peer group hierarchy in the first place.

Two facts underlie this recursion: (1) the SVCs between neighboring nodes at level-0 are permanent
virtual circuits that are set up at boot time, and (2) the formation of the hierarchy up to level i is
necessary and sufficient for the establishment of SVCs between PGLs at level iq-1. The first fact is easily
modeled by proper initialization of node parameters. The second is used during the hierarchy formation.
We have addressed the problem of modeling this recursion using a combination of two solutions.

First, we generalized the format of the SVC setup requests by not requiring that the destination of
an SVC setup request be a complete ATM address. When the destination address is specified as a partial
address, we instead require that it correspond to a peer group address which is then interpreted to be the
RPPN corresponding to the PGL of that peer group. (A full destination address trivially corresponds to
the level-0 PGL of the destination peer group, which is the same as the RPPN address of the destination
node.) This generalized specification of SVC destination enabled us to develop a single model for routing
services which services both user-initiated requests (which specify full destination addresses) as well as
internally generated requests (which specify partial destination addresses for l~CCs between PGLs) for
SVC setup.

Second, we modeled the recursive interaction between topology maintenance architecture with the
generalized routing service architecture. This was done using TED's internal channel feature that allows,

16

I PNNI Node Entity 1

a. Entity and Architecture Inheritance Hierarchy

PNNI Node Entity

Link I

Link 2

Link 3

Link i

L~kN-2

Link N-I

Link N

SVC

Service

Arch

N{

N{

RCC
RCC

RCC
RCC

"~ RCC
RCc

.,~ RCC..

SIG
SIG

SIG
PATH
'P~TH'

PATH

LOCAL
"~ LOCAL

.~ LOCAL

Topology

~" Arch

RCCREQ

Route
~" Arch

,' '~E> User tLOCREQ

t~ Arch < [

User Link=.

b, Internal Compositional View of Architectures

Figure 3: Illustration of P N N I Node Model Orgaaaization in TED

17

among other things, for an inherited architecture's processes to send events on an internal channel to
be processed by the processes of its inheriting architecture. Thus, an internal channel, P~CClttEQ, is used
for such communication between TopologyMaintenaaee architecture and Rou'eeService architecture.
Whenever a PGL at level i+ 1 is elected in a group at level i, the current topology database at the P~PPN
corresponding to the PGL contains sufficient information to discover the (partial) addresses of the new
PGL's neighbors. SVCs must be setup between this PGL and its neighbors. For this, SVC setup requests
are forwarded by the TopologyHaintenance architecture down the RCCREq internal channel, which are
received and serviced by the Rou'eeService architecture. For its part, the routing service makes use of
the current topology database maintained by the TopologyMaintenartce architecture (the database is
directly accessible because of inheritance). As mentioned previously, the database contains just sufficient
information at that point in time to service the current SVC requests to the destination PGLs. Thus,
dependency of the TopologyX;tin'eenanee architecture on the routing service is resolved using an internal
channel, whereas the dependency of the Rou'eeService architecture on the availability of the appropriate
topology database information is resolved by means of access to such information through inheritance.

C o m p l e x M o d e l B e h a v i o r The complexity of PNNI protocols appeared to demand richness and
power from the modeling language, such as arbitrarily nested synchronization points, and timer services.
In the simulation community, such expressive power is generally recognized as corresponding to process-
oriented simulations. Furthermore, it is generally accepted that event.oriented simulations, which hold
lesser expressive potential, can be more efficiently implemented than process-oriented simulations. TED
(as defined in the current language specification) attempts to strike a balance between the expressive
power and efficiency of execution associated respectively to the two simulation approaches by supporting
quasi processes. These are processes in which simulation-time can be advanced only in the "main body"
of the process. In fact, in the version of TED we used for PNNI modeling, the restriction was more
stringent in that wait statements are not allowed to appear under conditional and looping statements,
but rather appear only as the "top-level" statements in the processes. The TED compiler is capable of
translating the quasi-process descriptions into event-oriented simulations with zero stack overheads, thus
achieving the associated efficiency.

The challenge was to specify the PNNI protocols under the quasi-process model supported by TED.
To our surprise this turned out to be quite natural, and the protocols were modeled in an elegant manner
despite the restrictions. This gives us confidence that tradeoffs between expressive power and efficiency
can be settled well in many applications. The PNNI model suite serves as an example model which does
not demand the full expressive power of true process-oriented views. However, for other more demanding
models, TED provides a newer, more powerful, process implemenation (with support for wait statements
inside conditional, looping and sub-routine constructs).

L a r g e a n d C o m p l e x S t a t e Each PNNI node contains a large amount of state information
- - Topology Database for potentially hundreds of nodes, SVC mapping information for (potentially
thousands of) SVC's, link state information for (potentially dozens of) ATM links, and so on. In response
to this need we developed the Transparent Incremental State Saving (TISS) facilities of TED for managing
such large state in a transparent manner. As we have witnessed, this makes it possible to develop TED
models without any knowledge of the underlying TISS method or GTW simulation engine.

In essence, we use object-oriented class definitions that perform simulation-specific functions, but
in a transparent manner. For example, NodeAddress is a class that provides the functionality to manage
node addresses. Internally, it is modeled as an array of INT, each element of which is a transparent
implementation of an incrementally state-saved object. Due to the overloaded assignment operators
predefined by TED over INT types, no additional simulation-specific primitives appear in the model code,
resulting in transparent model code that is oblivious to implementation details.

Processor M a p p i n g Since, in general, automatic load balancing is very hard, TED provides facil-
ities for user-defined mappings. We tried three different schemes for mapping P N N I nodes to processors:
a simple round-robin scheme, a second based on balancing node degrees, and a third which partitioned

18

the PNNI hierarchy with few cross-edges. As expected, the third scheme performed the best. The first
two schemes suffered considerable roll-backs with consequent poor processor utilization.

In general, we observed that the group-based algorithm is far superior to the degree-based algorithm,
when the number of processors does not exceed the number of groups. This is expected since nodes
communicate with neighbors that are members of the same peer group more often than with other
neighbors. Also, the greater the number of groups, the greater the number of processors that can be used
while still sustaining a good level of speedup. This leads us to believe that near-linear speedup is possible
on larger PNNI networks with hundreds of groups.

E v e n t Size R e d u c t i o n . The effect of large size of some infrequent events is mitigated using
data-compression techniques. The data of the class variables contained in the large events were com-
pressed before sending the event, and uncompressed into class variables of the event upon receiving the
event, just before processing it. We observed compression factors between 2 and 3, thus reducing the
maximum event size significantly, thereby improving the performance. We found that the occasional com-
pression/uncompression operations do not constitute any significant overheads compared to the average
event processing granularity.

Unfortunately, the preceding technique does not constitute a completely satisfactory solution for
simulating PNNI networks of very large size. This is because of the possibility that the PTSE and/or
the SVCSetupRequest events can grow linearly with the size of the largest peer group, which implies
that event data compression may not be sufficient. We are exploring other solutions, such as splitting
the event into smaller-sized events. However, the most elegant solution appears to be one in which the
underlying simulator supports variable-sized events, such that the large size of one infrequent event does
not affect the performance of managing every single event during the simulation.

P r o b l e m s w i t h O p t i m i s t i c C o m p u t a t i o n To solve the problem of resolving transient and
non-transient errors during optimistic parallel simulations, TED provides a special macro, POT~RR()
("potential error"), that is used in the model to signal a potentially erroneous condition. If the error is
a result of optimistic processing, the condition gets rolled back appropriately, and the macro will have
null effect. However, if the error was indeed due to a modeling/programming error, an error report is
generated by TED upon the termination of the simulation.

In the process of developing the PNNI models we found that an integrated correctness-cbecking
facility is absolutely essential both to debug as well as to gain confidence in the correctness of the model
execution when simulated in parallel using a risky and aggresive style of optimistic simulator (such as
GTW).

5 Simulation Study
We have simulated sample PNNI network configurations, with client and server user nodes stochas-

tically generating requests for call setup and teardown. The results show that we can simulate thousands
of successful call setup requests per minute of wall-clock time, for a PNNI network containing 200 nodes.

Simulation runs were performed on the example network configuration containing 200 nodes and
over 300 edges. A user node, containing an SVC client and an SVC server, is attached to each PNNI
node. Each client chooses a server at random and requests an SVC connection to it. The client uses a
scheme that favors servers closer to it within the hierarchy, with decreasing bias for nodes further away
in the hierarchy.

A call connection can fail for two reasons: if the destination server is unreachable (the network is
still "booting up"), or if no path with sufficient capacity is available. When a connection succeeds, the
SVC has been setup, and data can be sent over that SVC. Each client uses an exponentially distributed
intereall time with mean 1.0, and pareto-distributed hold time with mean 1.0 and o~ value of 1.2. At the
end of a call hold time, the SVC is disconnected, which tears down the SVC across the network. (All
constants described above can be customized easily on a per client/server basis.)

The performance results are tabulated in Table 1. The speedup against sequential execution of the
model is depicted in Figure 4. The total simulated time is 200 units; of this, the initial network setup

19

time is 150 units, the total number of successful SVC requests is approximately 10,000, and the total
number of failed SVC requests is approximately 300, giving a total of about 10,300 SVC requests. The
work load corresponds to nearly half-million discrete events that are simulated. The simulations were
performed on an SGI PowerChallenge shared-memory multi-processor which has 12 P~8000 processors and
2GB main memory.

PEts 7 p Time Speedup
1 2324 100 202 1.00
2 4282 93 110 1.84
3 6077 87 78 2.59
4 7755 83 61 3.31
5 9333 79 51 3.96
6 10494 74 45 4.49
7 11351 68 42 4.81
8 11797 62 40 5.05

Table 1: Simulation Results on a 200-node, 307-edge Network (7 is event rate in events/second;
p is percentage of simulation efficiency; Time is in seconds)

8 e , , , , , ~ , , ' , '

/ r -

1 2 $ 4 $ 6 7
P rocaeso~

Figure 4: Simulation Speedup on the 200-node Network

In Table 1 the third column is the percentage of events processed that were not the result of a
rollback. As the number of processors increases, we observe a rapid increase in the number of rollbacks.
We also see in Figure 4 that, as the number of processors increases the speedup is linear at first, and then
flattens out. We believe this is caused by the fact that when the number of PNNI nodes per processor
goes below a threshold, rollbacks become frequent. We observed this behavior with smaller networks,
when the performance flattened out at 3 processors. This leads us to believe that very large networks
can be simulated with linear improvements with moderate numbers of processors.

6 Ongoing Work

We are completing the work on including SVC setup crankbaek algorithms in the current PNNI
model suite, and we are performing network-oriented studies using the models, such as studying the
effect of crankback policies on the quality of routing. We also intend to extend the current models to

20

be faithful to the full PNNI specifications. Some of the new features will include failure handling and
PGL election. As the testbed acquires greater functionality, we will use it to analyze the scalability of
the PNNI protocols and to compare different admissions and routing strategies.

A c k n o w l e d g m e n t s

The authors thank Lisa Zhang for many helpful discussions and Iraj Saniee for supplying the 200-
node network for our experiments. This work was carried out, in parts while the first two authors were
visiting Bellcore. This work is also supported by NSF Grant NCR-9527163 and DARPA Contract N66001-
96-C-8530 to DIMACS, Rutgers University with subcontracts to Georgia Tech. Additional support at
MIT was provided by NSF grant CC1~-9302476, ARMY grant DAAI-I04-95-1-0607 and ARPA contract
N00014-95-1-1246.

Appendix: Sample Model Code

process @3: PJNINode:TopoMain~"hello_send
(\(

for(int i=0; 1 < STATE(curr_pg1_level); 1++)

CNodeAddress self;
get_sslf_addr(~self, i);
for(inS i = O; i < MAX_DEGREE; i++)
(

int vcc = DCONST(FIRST_RCC_SVC) + 1*MAX_DEGREE+i;
if (is_es~ablished(vcc))

CHANNEL (vcc_out [vcc]) << EVENT(Hello, (Rself)) ;

)

double jit~_intvl = DCONST(hello_interval) *
(0.75 + O.5*STATE(hello_jitter_rng).nex~());

,air for Sjitt_intvl$;

Figure 5: A TED Process in the PNNI Node Model

R e f e r e n c e s

[1] ATM Forum 1996 PNNI Draft Specification vl,0, ATM Forum 94-0471R12.

[2] Bhasker, J. 1995 A VHDL Primer, Prentice Hall.

[3] "The Next-Generation ATM Switch: From Testbeds to Production Networks,"
http ://wWw. cisco, com/warplpublic1730/General/ngatm_wp, him

[4] Perumalla, K., A. Ogielski, and R. Fujiraoto 1996 MetaTeD: A Meta Language for Modeling Telecom-
munication Networks, GIT-CC-96-32, College of Computing, Georgia Institute of Technology.

[5] Perumalla, K. and l:t. Fujimoto 1996 A C ++ Instance of TED, GIT-CC-96-33, College of Computing,
Georgia Institute of Technology.

21

