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Abstract 

We describe our experiences designing and implementing a virtual PNNI network testbed. The network 
elements and signaling protocols modeled are consistent with the ATM Forum PNNI  draft specifications. 
The models will serve as a high.fidelity testbed of the transport and network layers for simulation-based 
studies of the scalability and performance of PNNI protocols. 

Our models are written in the new network description language TED which offers two advantages. 
First, the testbed design is transparent; the model descriptions are developed separately from, and are 
independent of, the simulation.specific code. Second, TED is compiled to run with the GTW (Georgia 
Tech Time Warp) simulation engine which is supported on shared-memory multiprocessors. Therefore, 
we directly obtain the advantages of parallel simulation. 

This is one of the first complex tests of the TED modeling and simulation software system. The 
feedback from our experiences resulted in some significan~ improvements to the simulation software. The 
resulting PNNI models are truly transparent and the performance of the simulations is encouraging. 
We give results from preliminary simulations of call admission, set.up and tear-down in sample PNNI 
networks consisting of two hundred nodes and over three hundred edges. The time to simulate ten thousand 
call requests decreases significantly with the number of processors; we observe a speedup factor of 5.05 
when 8 processors are employed compared to a single processor. Our initial implementations demonstrate 
the advantages of TED for parallel simulations of large-scale networks. 

1 I n t r o d u c t i o n  

The Private Network-Network Interface (PNNI) protocol suite (ATM Forum 1996) is an interna- 
tional draft standard proposed by the ATM Forum. The protocol defines a single interface for use between 
the switches in a private network of ATM (asynchronous transfer mode) switches, as well as between 
groups of private ATM networks. Corresponding to the network and transport layers of the OSI Ref- 
erence Model, PNNI supports two categories of protocols: (1) topology discovery and (re)configuration, 
and (2) dynamic routing via virtual circuit connections. 

The main feature of the PNNI protocols is scalability, i.e. the complexity of routing does not increase 
drastically as the size of the network increases. There is an inherent trade-off between scalability versus 
quality of routing. Given the complex nature of broadband data traffic, simulations are the only feasible 
avenue to study the scalability of the PNNI protocol and to design and tune strategies for hierarchical 
addressing, topology aggregation and call admissions. 

We are building a virtual PNNI testbed for large-scale simulation studies. Two factors are critical: 
performance and reusability. For the network sizes and time scales of interest, the simulations must run on 
parallel and distributed platforms. Equally important, we insist that the model descriptions be reusable 
and independent of the simulation-engine code. The reason is straightforward: the value of the testbed 
to the user lies in the model descriptions, not the simulation engine. We expect to reuse the testbed 
to study higher-level protocols as well as scenarios to be defined later. Moreover, we do not wish to be 
tied to a single simulation engine - -  we prefer to leverage advances in parallel discrete-event simulation 
technology without having to rewrite the testbed. 

Our testbed uses the new network description language TED (Perumalla and Fujimoto 1996, Peru- 
malla et. al. 1996). TED is designed with the goals of reuse, transparent modeling, and efficient parallel 
execution. We have used the C ++ version of the TED software system that utilizes the GTW (Georgia 

*College of Computing, Georgia Inst. of Technology, Atlanta, GA 30332-0280 
tBell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ 07974 
tBellcore and DIMACS (Rutgers University), 445 South Street, Morristown, New Jersey 07960 

12 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F274084.274086&domain=pdf&date_stamp=1998-03-01


Tech Time Warp) library as the underlying parallel simulation engine. Our preliminary simulations run 
on shared memory multiprocessors. 

This paper presents the modeling and simulation aspects of the testbed. Specifically we focus on 
the issues that arise in (1) separating model code from simulation specifics, and (2) organizing the model 
for parallel simulation, without interfering with transparency. Ongoing network-oriented studies will be 
reported in separate, forthcoming publications. 

The remainder of this paper is organized as follows. Section 2 presents an overview of the T~D 
language and the PNNI protocols, and describes the challenges of building transparent PNNI models. 
Section 3 describes the TED design of the PNNI testbed, while Section 4 describes some of the impli- 
cations of the testbed on the simulation engine. Section 5 describes our initial simulation study and 
presents results of parallel simulations. Finally, Section 6 identifies ongoing and future directions. 

2 T r a n s p a r e n t  P N N I  M o d e l s  

TED (Telecommunications Description) is a language for developing transparent model descriptions 
which are (i) not tied to any specific simulation engine, and (ii) not cluttered with references to simulation 
code. While T~D was conceived for telecomnmnication network models, its basic constructs permit more 
general use. 

Besides developing a virtual PNNI testbed, our modeling experience also served as one of the first 
complex tests of the TED modeling and simulation software system. The feedback from our experiences 
resulted in some significant improvements to the simulation software. The end result is that the PNNI 
models are truly transparent and the performance of the simulations is encouraging. 

The remainder of this section gives high-level overviews of TED, PNNI, and the challenges of 
developing transparent models. 

2.1 TED O v e r v i e w  

TED supports a parsimonious set of concepts: event, channel, entity, architecture, process and 
component. Entities, the basic building block for T~D models, are object-oriented encapsulations. These 
abstractions are in the spirit as the VHDL language (Bhasker 1995) for hardware description. 

An entity specifies the abstract interface of a network element or protocol. Entity interfaces are 
defined in terms of channels through which events flow; mappings among channels interconnect entities. 
The behavior of an entity is specified by its architecture which consists of processes and components 
(sub-entities). Inheritance between entitles and architectures allow entity (architecture) types to inherit 
from other entity (architecture) types. Entity and architecture type definitions can be compiled to create 
a model database. Instantiations and compositions among database objects establish desired network 
configurations. Models can be customized via parameters that are assigned user-defined values after 
compilation. 

TED constructs facilitate the development of transparent network models. At the same time, the 
disciplined (and restricted) ways to compose entities makes it possible to compile models for parallel 
execution. By enforcing the discipline for composition within the language itself, the dual concerns of 
model specification and execution are effectively separated. This separation allows the development of 
complex models which can exploit state-of-the-art technologies for parallel and distributed simulation. 

2.2 P N N I  O v e r v i e w  

The PNNI protocol is a complex set of ATM routing and signaling mechanisms proposed in the draft 
specifications vl.0 (ATM Forum 1996). It represents one of the most sophisticated signaling protocols 
devised to date (Cisco Web page), aimed at supporting QoS-based routing along with unprecedented 
levels of scalability. 

The PNNI specifications are based on a hierarchical addressing scheme which is used for maintaining 
network topology information and for call routing. In a global network it is infeasible for each node to 
contain a complete description of the entire network - -  the costs of storing and updating this information 
are prohibitive. On the other hand, a hierarchical scheme allows nodes to have reduced "views" of the 
network; thus, changes to the network need not be propagated to every node. 
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Figure 1: An Example PNNI  Network 

The PNNI hierarchy organizes network nodes (at level-0) into level-1 peer groups; level-1 groups 
are grouped together into level-2 peer groups, and so on. Figure 1 gives an example of a PNNI hierarchy 
with 4 levels. The level-0 nodes have addresses of length 3, level-t groups have addresses of length 2, 
and so on (there are no constraints on the number of nodes in each peer group). The entire network is a 
level-4 group (with an empty address). 

Within every peer group, one member is elected as the peer group leader (PGL). Peer group leaders 
play a prominent role in establishing and maintaining the topology views for network nodes; they are not 
used for call routing. The role of each PGL is played by a network node, which we call the role playing 
physical node (RPPN). The RPPN of a PGL can be determined by recursively following PGLs down the 
hierarchy to a network node. All interactions conceptually within the hierarchy are carried out among 
the RPPN nodes in the network. 

According to the PNNI specifications, each network node must have complete knowledge of the 
nodes and edges within its level-1 peer group. This is achieved by having each node flood its information 
within its level-1 peer group. For higher levels, ~ > 0, level-£ RPPNs of PGLs that are part of the same 
level-(l+ 1) peer group exchange aggregated information via routing control channels (RCCs) established 
by the call setup mechanisms. 

Finally, the aggregated information received by the RPPN of a level-I PGL is sent to the network 
nodes below it in the hierarchy. The exchange of topology information is carried out using short Hel lo 
messages and longer PTSE messages. The topology information that is gathered and maintained con- 
tinually at each node is used in the distributed routing protocols for call admission, call setup and call 
teardown. This information is periodically updated during network operation. The effect of the hierarchy 
is that each node has detailed information about nearby nodes but only approximate information about 
more distant nodes. 

2.3 M o d e l i n g  a n d  S i m u l a t i o n  C h a l l e n g e s  

The PNN]  protocols are challenging, both for modeling and efficient parallel execution. Section 4 
describes how the following challenges were met within the TED - GTW system. 

R e c u r s i v e  l a y e r  d e p e n d e n c i e s .  The conventional "layered" approach to modeling network ele- 
ment behavior is inadequate to express the complex behavior of the PNNI  nodes. For example, establish- 
ing the hierarchy requires that RCCs be set up; this requires call routing and admission which, in turn, 
depends on the hierarchy being set up. This requires that the modeling framework support recursive 
dependencies. 

C o m p l e x  m o d e l  b e h a v i o r .  PNNI node behavior involves complex timing, ordering and syn- 
chronization of protocol messages. The informal description of the protocol functions in the PNNI  draft 
specification illustrates this complexity, with several timers, decisions and assumptions. The challenge 
was to formulate these interactions within the TED discipline, compromising neither the transparency of 
the TED model nor the efficiency of the parallel execution. 
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C o m p l e x  a n d  l a r g e  s t a t e s .  PNNI  nodes contain large amounts of state information that change 
in unpredictable ways. The state information itself is complex, and requires modeling support for trans- 
parent processing. The  large state size requires incremental state saving techniques in the context of 
optimistic parallel simulation. Indeed, we had to incorporate a transparent incremental state saving 
facility within the Georgia Time Warp (GTW) system. 

Complex c o m m u n i c a t i o n  p a t t e r n s .  In typical PNNI networks, there are several classes of in- 
teraction for configuration discovery, topology exchange, call setup, data transfer, and so on. Moreover, 
the interaction of a node with its neighbors varies with the type of the neighbor and the class of the 
interaction. The communication patterns are complex and unpredictable. To further aggravate the situ- 
ation, typical networks (such as the one used in our study) are difficult to partition; this creates hurdles 
for load balancing for efficient parallel simulation. 

V a r i a b i l i t y  in e v e n t  s ize  a n d  p r o c e s s i n g .  Event sizes vary considerably with type. For example, 
Hello packets are considerably smaller than PTSE packets. This variation is important because parallel 
simulators typically fix event sizes for efficient memory management; forcing all events be the size of the 
largest event lowers performance because of the overhead of memory copying. Similarly, the computation 
performed by a PNNI  node on receiving a message (event processing) varies with the type of the message. 
It is important that load balancing mechanisms for parallel simulators not assume uniform costs for event 
processing. 

C o m p l e x i t y  o f  d e v e l o p m e n t  p r o c e s s .  In developing complex simulation models, facilities for 
automatic checks of model correctness are indispensable. For example, "assertions" are a common tech- 
nique by which pre-conditions and post-conditions are specified in the models, which are automatically 
verified at run-time by the simulator, and the simulation halted upon the detection of the first asser- 
tion violation. In the context of optimistic parallel simulations, however, transient erroeneous conditions 
may be caused due to optimistic processing, in addition to non.transient modeling errors. Generalized 
correctness checking techniques in the modeling systems are thus needed. 

3 P N N I  M o d e l s  in  T E D  

Each PNNI  node is modeled as a TED entity. The entity interface, shown in Figure 3, conists of (i) 
a parameterized array of channels, one for each ATM link to a neighboring node, and (ii) a user channel 
for the local point of attachment of a user node. The channel types in the array correspond to messages 
in the PNNI protocol between PNNI nodes. The user channel type includes messages that deal with 
network services in terms of switched virtual circuit (SVC) setup and teardown. An arbitrary PNNI 
network configuration can be built by instantiating one entity per network node and connecting channels 
appropriately. 

entity PNNINode( int NUM_LINKS ) 

channels 

inout ATMLinkphysical[ 
SPARA~(~UM_LI~KS)$ ]; 

incut UserChannel user; 
} 

Figure 2: TED Ent i ty  Interface of a P N N I  Node 
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As outlined in Section 2, each node participates in establishing the PNNI hierarchy and possibly 
acting as the PGL for multiple levels within the hierarchy, in periodic exchange of topology informa- 
tion, and in call admission and routing. The corresponding behavioral specification of a PNNI node in 
TED partitions nicely into the linear inheritance hierarchy shown in Figure 3.a. Figure 3.b shows the 
components of the PNNI node architecture and the inheritance among these components. 

When an event appears on one of the channels in the array, it is processed by the SVCService 
architecture. The SVCSorvice architecture models link-to-SVC and SVC-to-link mapping services, so 
that messages are identified by SVC name rather than link identifiers. Depending on its type, the 
received message is forwarded to one of three architectures: TopologyMaintenanee, RoutingService,  or 
UserService. 

The TopologyMaintenance architecture inherits from the SVCService architecture and models the 
PNNI topology maintenance protocols using the SVC service. It models PGL instantiation and PGL 
communications, and builds and maintains the topology database over time for the node as well as for 
every PGL for which the node is an RPPN. 

The RoutingService architecture inherits from the TopologyMaintenance architecture, thus in- 
heriting the topology database maintenance behavior. It adds the call admission and routing algorithms 
Lo service SVC setup requests coming from the neighboring nodes, or from user nodes, or from the 
TopologyMaintenance processes themselves. 

The UserService architecture inherits from the RoatingService architecture, thus inheriting the 
entire PNNI protocol functionality for a node. To the functionality, it adds the SVC setup, teardown, 
and data transfer services for user nodes. 

4 Experiences 
In this section, we discuss our approach to tile challenges outlined in Section 2. 

Recursive Layer Dependencies. The mutually recursive dependence between topology mainte- 
nance and routing service is resolved by using an internal channel (i~CCREQ) in the TopologyMaint enance 
architecture (sec Figure 3.b). This channel is used by the Topology~laintenance architecture to forward 
SVC setup requests. The inheriting architecture, RoutingService, caters to thesc requests coming on 
the internal channel. Similarly, the routing service architecture caters to SVC setup requests originating 
from the UserService architecture that arrive on another internal channel (LOCREQ) dedicated for that 
purpose. 

Section 2 mentioned the recursive dependence between topology database maintenance and signaling 
in the PNN! protocol. For au~o-configurabillty, the dynamic formation of the peer group hierarchy 
requires the dynamic set up of SVCs between PGLs. But, at the same time, the signaling support that is 
required for setting up the SVCs depends on the formation of the peer group hierarchy in the first place. 

Two facts underlie this recursion: (1) the SVCs between neighboring nodes at level-0 are permanent 
virtual circuits that are set up at boot time, and (2) the formation of the hierarchy up to level i is 
necessary and sufficient for the establishment of SVCs between PGLs at level iq-1. The first fact is easily 
modeled by proper initialization of node parameters. The second is used during the hierarchy formation. 
We have addressed the problem of modeling this recursion using a combination of two solutions. 

First, we generalized the format of the SVC setup requests by not requiring that the destination of 
an SVC setup request be a complete ATM address. When the destination address is specified as a partial 
address, we instead require that it correspond to a peer group address which is then interpreted to be the 
RPPN corresponding to the PGL of that peer group. (A full destination address trivially corresponds to 
the level-0 PGL of the destination peer group, which is the same as the RPPN address of the destination 
node.) This generalized specification of SVC destination enabled us to develop a single model for routing 
services which services both user-initiated requests (which specify full destination addresses) as well as 
internally generated requests (which specify partial destination addresses for l~CCs between PGLs) for 
SVC setup. 

Second, we modeled the recursive interaction between topology maintenance architecture with the 
generalized routing service architecture. This was done using TED's internal channel feature that allows, 
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among other things, for an inherited architecture's processes to send events on an internal channel to 
be processed by the processes of its inheriting architecture. Thus, an internal channel, P~CClttEQ, is used 
for such communication between TopologyMaintenaaee architecture and Rou'eeService architecture. 
Whenever a PGL at level i+  1 is elected in a group at level i, the current topology database at the P~PPN 
corresponding to the PGL contains sufficient information to discover the (partial) addresses of the new 
PGL's neighbors. SVCs must be setup between this PGL and its neighbors. For this, SVC setup requests 
are forwarded by the TopologyHaintenance architecture down the RCCREq internal channel, which are 
received and serviced by the Rou'eeService architecture. For its part, the routing service makes use of 
the current topology database maintained by the TopologyMaintenartce architecture (the database is 
directly accessible because of inheritance). As mentioned previously, the database contains just sufficient 
information at that point in time to service the current SVC requests to the destination PGLs. Thus, 
dependency of the TopologyX;tin'eenanee architecture on the routing service is resolved using an internal 
channel, whereas the dependency of the Rou'eeService architecture on the availability of the appropriate 
topology database information is resolved by means of access to such information through inheritance. 

C o m p l e x  M o d e l  B e h a v i o r  The complexity of PNNI protocols appeared to demand richness and 
power from the modeling language, such as arbitrarily nested synchronization points, and timer services. 
In the simulation community, such expressive power is generally recognized as corresponding to process- 
oriented simulations. Furthermore, it is generally accepted that event.oriented simulations, which hold 
lesser expressive potential, can be more efficiently implemented than process-oriented simulations. TED 
(as defined in the current language specification) attempts to strike a balance between the expressive 
power and efficiency of execution associated respectively to the two simulation approaches by supporting 
quasi processes. These are processes in which simulation-time can be advanced only in the "main body" 
of the process. In fact, in the version of TED we used for PNNI modeling, the restriction was more 
stringent in that wait statements are not allowed to appear under conditional and looping statements, 
but rather appear only as the "top-level" statements in the processes. The TED compiler is capable of 
translating the quasi-process descriptions into event-oriented simulations with zero stack overheads, thus 
achieving the associated efficiency. 

The challenge was to specify the PNNI  protocols under the quasi-process model supported by TED. 
To our surprise this turned out to be quite natural, and the protocols were modeled in an elegant manner 
despite the restrictions. This gives us confidence that tradeoffs between expressive power and efficiency 
can be settled well in many applications. The PNNI model suite serves as an example model which does 
not demand the full expressive power of true process-oriented views. However, for other more demanding 
models, TED provides a newer, more powerful, process implemenation (with support for wait statements 
inside conditional, looping and sub-routine constructs). 

L a r g e  a n d  C o m p l e x  S t a t e  Each PNNI node contains a large amount of state information 
- -  Topology Database for potentially hundreds of nodes, SVC mapping information for (potentially 
thousands of) SVC's, link state information for (potentially dozens of) ATM links, and so on. In response 
to this need we developed the Transparent Incremental State Saving (TISS) facilities of TED for managing 
such large state in a transparent manner. As we have witnessed, this makes it possible to develop TED 
models without any knowledge of the underlying TISS method or GTW simulation engine. 

In essence, we use object-oriented class definitions that perform simulation-specific functions, but 
in a transparent manner. For example, NodeAddress is a class that provides the functionality to manage 
node addresses. Internally, it is modeled as an array of INT, each element of which is a transparent 
implementation of an incrementally state-saved object. Due to the overloaded assignment operators 
predefined by TED over INT types, no additional simulation-specific primitives appear in the model code, 
resulting in transparent model code that is oblivious to implementation details. 

Processor M a p p i n g  Since, in general, automatic load balancing is very hard, TED provides facil- 
ities for user-defined mappings. We tried three different schemes for mapping P N N I  nodes to processors: 
a simple round-robin scheme, a second based on balancing node degrees, and a third which partitioned 
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the PNNI hierarchy with few cross-edges. As expected, the third scheme performed the best. The first 
two schemes suffered considerable roll-backs with consequent poor processor utilization. 

In general, we observed that the group-based algorithm is far superior to the degree-based algorithm, 
when the number of processors does not exceed the number of groups. This is expected since nodes 
communicate with neighbors that are members of the same peer group more often than with other 
neighbors. Also, the greater the number of groups, the greater the number of processors that can be used 
while still sustaining a good level of speedup. This leads us to believe that near-linear speedup is possible 
on larger PNNI networks with hundreds of groups. 

E v e n t  Size R e d u c t i o n .  The effect of large size of some infrequent events is mitigated using 
data-compression techniques. The data of the class variables contained in the large events were com- 
pressed before sending the event, and uncompressed into class variables of the event upon receiving the 
event, just before processing it. We observed compression factors between 2 and 3, thus reducing the 
maximum event size significantly, thereby improving the performance. We found that the occasional com- 
pression/uncompression operations do not constitute any significant overheads compared to the average 
event processing granularity. 

Unfortunately, the preceding technique does not constitute a completely satisfactory solution for 
simulating PNNI networks of very large size. This is because of the possibility that the PTSE and/or 
the SVCSetupRequest events can grow linearly with the size of the largest peer group, which implies 
that event data compression may not be sufficient. We are exploring other solutions, such as splitting 
the event into smaller-sized events. However, the most elegant solution appears to be one in which the 
underlying simulator supports variable-sized events, such that the large size of one infrequent event does 
not affect the performance of managing every single event during the simulation. 

P r o b l e m s  w i t h  O p t i m i s t i c  C o m p u t a t i o n  To solve the problem of resolving transient and 
non-transient errors during optimistic parallel simulations, TED provides a special macro, POT~RR() 
("potential error"), that is used in the model to signal a potentially erroneous condition. If the error is 
a result of optimistic processing, the condition gets rolled back appropriately, and the macro will have 
null effect. However, if the error was indeed due to a modeling/programming error, an error report is 
generated by TED upon the termination of the simulation. 

In the process of developing the PNNI models we found that an integrated correctness-cbecking 
facility is absolutely essential both to debug as well as to gain confidence in the correctness of the model 
execution when simulated in parallel using a risky and aggresive style of optimistic simulator (such as 
GTW). 

5 Simulation Study 
We have simulated sample PNNI network configurations, with client and server user nodes stochas- 

tically generating requests for call setup and teardown. The results show that we can simulate thousands 
of successful call setup requests per minute of wall-clock time, for a PNNI network containing 200 nodes. 

Simulation runs were performed on the example network configuration containing 200 nodes and 
over 300 edges. A user node, containing an SVC client and an SVC server, is attached to each PNNI 
node. Each client chooses a server at random and requests an SVC connection to it. The client uses a 
scheme that favors servers closer to it within the hierarchy, with decreasing bias for nodes further away 
in the hierarchy. 

A call connection can fail for two reasons: if the destination server is unreachable (the network is 
still "booting up"), or if no path with sufficient capacity is available. When a connection succeeds, the 
SVC has been setup, and data can be sent over that SVC. Each client uses an exponentially distributed 
intereall time with mean 1.0, and pareto-distributed hold time with mean 1.0 and o~ value of 1.2. At the 
end of a call hold time, the SVC is disconnected, which tears down the SVC across the network. (All 
constants described above can be customized easily on a per client/server basis.) 

The performance results are tabulated in Table 1. The speedup against sequential execution of the 
model is depicted in Figure 4. The total simulated time is 200 units; of this, the initial network setup 
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time is 150 units, the total number of successful SVC requests is approximately 10,000, and the total 
number of failed SVC requests is approximately 300, giving a total of about 10,300 SVC requests. The 
work load corresponds to nearly half-million discrete events that are simulated. The simulations were 
performed on an SGI PowerChallenge shared-memory multi-processor which has 12 P~8000 processors and 
2GB main memory. 

PEts  7 p Time Speedup  
1 2324 100 202 1.00 
2 4282 93 110 1.84 
3 6077 87 78 2.59 
4 7755 83 61 3.31 
5 9333 79 51 3.96 
6 10494 74 45 4.49 
7 11351 68 42 4.81 
8 11797 62 40 5.05 

Table 1: Simulation Results on a 200-node, 307-edge Network (7 is event rate in events/second; 
p is percentage of simulation efficiency; Time is in seconds) 

8 e , , ,  , , ~ , , ' , '  
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Figure 4: Simulation Speedup on the 200-node Network 

In Table 1 the third column is the percentage of events processed that were not the result of a 
rollback. As the number of processors increases, we observe a rapid increase in the number of rollbacks. 
We also see in Figure 4 that, as the number of processors increases the speedup is linear at first, and then 
flattens out. We believe this is caused by the fact that when the number of PNNI nodes per processor 
goes below a threshold, rollbacks become frequent. We observed this behavior with smaller networks, 
when the performance flattened out at 3 processors. This leads us to believe that very large networks 
can be simulated with linear improvements with moderate numbers of processors. 

6 Ongoing Work 

We are completing the work on including SVC setup crankbaek algorithms in the current PNNI 
model suite, and we are performing network-oriented studies using the models, such as studying the 
effect of crankback policies on the quality of routing. We also intend to extend the current models to 
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be faithful to the full PNNI specifications. Some of the new features will include failure handling and 
PGL election. As the testbed acquires greater functionality, we will use it to analyze the scalability of 
the PNNI protocols and to compare different admissions and routing strategies. 
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Appendix: Sample Model Code 

process @3: PJNINode:TopoMain~"hello_send 
(\( 

for(int i=0; 1 < STATE(curr_pg1_level); 1++) 

CNodeAddress self; 
get_sslf_addr( ~self, i ); 
for(inS i = O; i < MAX_DEGREE; i++) 
( 

int vcc = DCONST(FIRST_RCC_SVC) + 1*MAX_DEGREE+i; 
if (is_es~ablished(vcc)) 

CHANNEL (vcc_out [vcc] ) << EVENT(Hello, (Rself)) ; 

) 

double jit~_intvl = DCONST(hello_interval) * 
(0.75 + O.5*STATE(hello_jitter_rng).nex~()); 

,air for Sjitt_intvl$; 

Figure 5: A TED Process in the PNNI Node Model 
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