
A Streaming Real-Time Web Observatory Architecture for
Monitoring the Health of Social Machines

Ramine Tinati, Xin Wang, Ian Brown, Thanassis Tiropanis, Wendy Hall
University of Southampton
Web and Internet Science

{r.tinati,x.wang,ian.brown.tt2,wh}@ecs.soton.ac.uk

ABSTRACT
Over the past years, streaming Web services have become popular,
with many of the top Web platforms now offering near real-time
streams of user and machine activity. In light of this, Web Obser-
vatories now are faced with the challenge of being able to process
and republish real-time, big data, Web streams, whilst maintaining
access control and data consistency. In this paper we describe the
architecture used in the Southampton Web Observatory to harvest,
process, and serve real-time Web streams.

Categories and Subject Descriptors
H.3.5 [INFORMATION STORAGE AND RETRIEVAL]: On-
line Information Services—Data sharing

Keywords
Web Observatory; Real-time Processing; Data Security

1. INTRODUCTION
As the Web grows, the number of humans interacting with the

Web, and the types of social machines are increasing, as are the
devices used to engage with them. As a consequence of this chang-
ing technological and social landscape, there is a growing trend
towards social machines emitting real-time streams of system and
user activity. These real-time streams, which can be considered as
big data due to their size, speed, and unstructured nature [15], offer
Web Observatories with rich, timely resources for observation and
analysis. Individually, these feeds provide a resource to measure
the current state - or health - of a social machines, and combined,
they have the potential to provide a collective pulse of the Web.

However, working with real-time big data sources introduces a
number of new challenges for Web Observatory platforms which
were initially built with technologies designed to process curated
and structured resources.Many of these challenges are a result of
the characteristics of big data, which is often large scale, high vol-
ume, and is not published in a standardised, (common) structured
fashioned. Therefore, the challenge lies in being able to process
them in a timely manner, which is computationally efficient, for

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2743977 .

both the publisher and subscriber. Aware of these challenges, the
Web Observatory builders has already conducted substantial re-
search into techniques for harvesting, processing, archiving, query-
ing, and visualisation of data [9, 4, 6],

In addition to the challenges of processing real-time data, a Web
Observatory introduces another layer of complexity: data control
and sharing. A fundamental component of a Web Observatory is
for data owners to control who has access to their data, and where
their data is used. Therefore, Web Observatories need to extend the
typical data processing pipeline of data collection-to-data visuali-
sation, and append this with a layer of data sharing, security and
access control, for any resource that it contains.

In this paper we describe the Southampton Web Observatory’s
approach to engineering a real-time streaming Web Observatory
architecture to deliver resources via a custom developed API, which
utilises common OAuth 2.0 protocols in order to provide access
control to data owners. We also describe the type of metrics that
real-time feeds can provide to monitor and measure the health of a
social machine.

The remainder of this paper will be structured as follows, we
first discuss the current state-of-the-art in terms of Web Observa-
tories and real-time processing. We then introduce the Web Ob-
servatory concept and reference architecture, with particular focus
on the streaming and API layers. We then describe our approach
to harvesting and publishing via APIs. Finally we consider a num-
ber of scenarios for monitoring the health of social machines, and
discuss the future areas of research still required.

2. RELATED WORK
In this section we describe existing and on-going research rele-

vant to the development of Web Observatories and processing real-
time Web data.

2.1 Web Observatory Development
The current body of Web Observatories are comprised of two

main groups belonging either to systems conceived and developed
specifically as Web Observatories [9] and those converging on Web
Observatory status from other starting positions (such as analytics
platforms or data repositories) [6, 4]. It should be noted that we
do not include/exclude based on the specific designation “Obser-
vatory” for obvious reasons but focus rather on the functionality
exhibited by the system (based on our developing taxonomy of Ob-
servatories [3].

Examples of the first class include the Southampton Web Obser-
vatory (SUWO) [9], the Singapore NUS NeXT Social Observatory
[6], the Recorded Future Web Intelligence platform 1 and Quid 2 all
1http://https://www.recordedfuture.com/
2http://http://quid.com/

http://https://www.recordedfuture.com/
http://http://quid.com/

of which are instances of systems gathering and preparing dynamic
web-based external data for the purposes of decision support and
insight.

The second class includes systems (whilst still comprising many
of the features of WO) that are typic- ally orginally conceived with
other purposes such as data repositories, data aggregation services
or non-web research and anaytic tools. Examples here include the
COSMOS Observatory, the ePrints document repository 3, Tamr 4,
Import.IO 5 and the Datasift social network data platform 6.

The challenges around gathering, storing and analysing data at
Web scale are vast when considered from a technical perspective:
from integrating publishing technologies, to querying across mul-
tiple sources, to harmonising meta-data schemes and access meth-
ods. Added to this the challenge of making such data/ analyses ac-
cessible to non-technical users, exacerbates the design challenges
even further. The following are a few exemplars who have con-
tributed variously to these challenges. The NeXT platform has
developed methods to access extremely high volume image and
micro-blog processing algorithms offering product/person/location
based views. The SUWO portal has developed mechanisms to
host data and analytics and perform database agnostic querying
from historic data sources. The COSMOS platform enables drag-
and-drop analytics of locally-based data sets for non-technical re-
searchers.

2.2 Real-time Processing
Many of the key challenges faced for implementing real-time

processing for Web Observatories is also situated in a wider com-
munity of research of involved in real-time stream processing [18,
2]. As Heinze et al [10] describe, there are several important as-
pects of (real-time) stream processing including designing scalable
solutions which are able to both partition and query data efficiently,
and systems which have an amount of fault tolerance, being able to
actively respond to changes in stream conditions.

Research on these topics include the optimisation of hardware
and software processes to improve run-time efficiency [19, 1] and
improve hardware load-balancing [22]. There are also substantial
efforts involved in data integration and aggregation, developing ap-
proaches to data integration using different publish-and-subscribe
paradigms [5, 8]. Our research is also situated in the area of event
detection and processing [13], which contain overlap with topics of
stream processing such as data integration and aggregation [7, 12,
16] but have a particular focus on using these techniques in order
to extract events [17].

The basis of our work draws upon the techniques described in
the aforementioned literature in order to develop a solution which
utilises a publish-and-subscribe approach in combination with the
core principles of performing real-time stream processing as de-
scribed by Stonebraker et al. [18].

3. SOUTHAMPTON WEB OBSERVATORY
(SUWO)

The Southampton Web Observatory (SUWO) engages user com-
munities with dataset and analytic resources via the SUWO portal
7. In general, the SUWO portal provides access to the follow-
ing types of resources: (1) Datasets: these can be historical or

3http://twitter,eprints.soton.ac.uk
4http://http://www.tamr.com/
5http://import.io
6http://www.datasift.com
7http://webobservatory.soton.ac.uk

real-time, quantitative or qualitative, and are heterogeneous in con-
tent. (2) Applications: these represent analytical applications, often
supported via visualisations, which are linked back to the datasets
listed on the Web Observatory portal. (3) Tools: analytical toolk-
its which provide analytical methods for datasets listed - but not a
requirement - on the portal.

3.1 Architectural Principles
Four fundamental principles were considered in the design of the

SUWO, a summarised account of these is listed below:
Not all datasets or applications can be public. Access to some

datasets needs to be restricted for licensing, privacy or other rea-
sons. The Web Observatory allows its users to list or host datasets
that are public or private. Access to private datasets is managed by
the user who hosts them on the Web Observatory. Since access to
datasets can be restricted, access to applications that make use of
those datasets needs to be restricted as well.

Web Observatories list two main types of resources: datasets
and analytic applications, including visualisations. The link be-
tween a listed analytic application and the datasets that it uses must
always be made explicit, even if the used datasets are listed as pri-
vate, with restricted access.

Not all listed resources need to be locally hosted. Listed datasets
or analytic applications can be hosted in remote servers managed
by third parties.

Metadata describing the listed resources and projects are pub-
lished. This way, descriptions of resources can be harvested and
listed in other Web Observatories or Web-based resources.

Based on these four principles and the requirements described
above, the design of the SUWO architecture aims to abstract the
types of features and requirements into three sets of sub-components,
as shown in Figure 1. Each of the separate components contain
their own individual architecture, workflows, and associated tech-
nologies. They interface with each other using open standards
and protocols to ensure the highest level of modularity and re-
configuration. Each sub-component functions autonomously, thus
can potentially interact with other Web Observatories, as described
in [20].

For this paper we focus specifically on the real-time processing
technology and workflows used within the dataset component, and
the construction of the Web Observatory API.

Figure 1: Architecture of the Southampton University Web Ob-
servatory

http://twitter,eprints.soton.ac.uk
http://http://www.tamr.com/
http://import.io
http://www.datasift.com
http://webobservatory.soton.ac.uk

4. WEB OBSERVATORY: REAL-TIME PRO-
CESSING AND PUBLISHING

In this section we introduce the architecture, technologies and
configuration used to process and republish real-time data streams
in the SUWO. We then describe the Web Observatory API and use
of OAuth 2.0 as a security mechanism to provide data owners con-
trol over who has access to their data.

4.1 Harvesting Multiple Web Streams
Many Web services now provide programmatic access to plat-

forms via APIs. Depending on the Web service, using the API can
provide the complete collection of activities - the firehose connec-
tion - in real-time. Many of the social media platforms offer full-
to-limited access to their social data, which typically contains in-
formation regarding their member’s communications, interactions
and activity.

4.1.1 Architecture and Configuration
As shown in Figure 2, the first stage of the real-time process-

ing pipeline involves connecting to various external APIs in order.
The Pre-Processing Stage involves the harvesting, enrichment and
unification of various real-time streams from Web services. This
process is achieved by using separate Web harvesters connected to
the different external APIs, which are jointly controlled by the pro-
cessing component. For each harvester, the External data streams
are first collected, extracted from their own unique data schema,
and then converted into the SUWO real-time stream JSON format
8. As part of the conversion into a uniform schema we perform
a lightweight enrichment process in order to ensure consistency
across streams. This enrichment process, performed in real-time
ensures that each record has at a minimum, a timestamp (ISO8068),
source identifier (i.e. ‘twitter_public_api’) and unique identifier.

After the initial pre-processing stage, the enriched and uniformed
data streams are then processed in the Streaming Stage, which uses
the Advanced Message queueing protocol (AMQP) [21] to restream
the incoming data sources. In our real-time processing pipeline,
AMQP acts middleware for our publish-and-subscribe approach, it
acts as a scalable technology which is designed for high-volume
message processing and passing [11]. In order to take advantage
of AMQP capabilities, we use RabbitMQ, an open source mes-
sage broker and queueing service that supports advanced AMQP
functionality, such as the in-memory queueing and exchange-based
publish-and-subscribe services.

Many of the Web sources being harvested produce high volume
feeds as a consequence of the rate at which incoming records are
harvested and pre-processed, it is problematic to use a queueing ap-
proach to hold messages - in-memory or on disk - until clients con-
nect and pop them off the queue. An alternative approach, which is
far more suited to handling multiple, high volume data streams, is
to take advantage of RabbitMQ’s exchange mechanism, which ef-
fectively is a publish-and-subscribe service, which allows multiple
clients to connect to a ‘temporary’ queue and retrieve the incoming
messages. The advantage of this method is that it requires sub-
stantially less resources than a queueing approach, and that clients
are receiving the latest data as soon as they connect. However, the
disadvantage of this approach is that clients are offered no ‘cache’
when connecting to the exchange, thus if there is no incoming mes-
sages, the stream may appear to be inactive. For each pre-processed
stream we instantiate a single exchange, and for combined streams,
we use a recursive approach by connecting to the single stream ex-

8http://webobservatory.soton.ac.uk/tutorial/
realtime

changes, perform additional processing, and then publish this on a
new exchange.

The final stage to the real-time stream processing workflow in-
volves two components, internal consumption for archiving pur-
poses, and a AMQP HTTP middleware in order to make the ex-
changes available via the Web Observatory portal. Although dis-
cussed in more detail in Section 4.2, the middleware used to con-
nect to the AMQP exchanges is a lightweight service that does not
process data, but provides the necessary handshaking and layer of
security for clients to connect to the exchanges.

4.1.2 Challenges
As described in Section 2, there are various challenges associated

with processing real-time streams of heterogeneous, unstructured
data. One of the core challenges faced in developing this solution
involved being able to to process the high volume of information
in a timely fashion, which includes unifying, and in some cases
enriching the data streams in order to obtain a consistent and usable
stream. Many of the enrichment sub-processes required calls to
external services (e.g. geographic location), which potentially slow
down processing time. In order to overcome this, an internal cache
of recently looked-up resources is used to ensure that processing of
streams is performed in a timely manner.

Multi-stream integration is also an on-going area of research. Es-
sentially, the integration of streams is achieved by finding a com-
mon field or ‘pattern’ between streams, which in many cases, is a
topic, keyword, or simply, a timestamp. For the SUWO real-time
stream integration, we are working on dynamic methods of inte-
grating streams. One approach involves monitoring a the overall
message rate of a given set of streams (i.e. posts per minute), and
using fluctuations in stream volumes as an early indicator for com-
bining streams undergoing similar changes.

4.2 Public Access - Web Observatory API

4.2.1 API Design
The SUWO maintains metadata of all resources, and those meta-

data are internally represented using the Data Catalog Vocabulary
(DCAT) [14] (Figure 3). The SUWO API is built by mapping
DCAT documents to a REST API in a way that preserves the se-
mantics of DCAT. The SUWO API follows the Hypermedia as the
Engine of Application State (HATEOAS) constraint of REST9, that
enables applications to explore the whole API from a single entry
without referring to external documentations. A sample mapping
of DCAT distribution to REST API is shown in Figure 4.

dcat:Dataset

dct:title

dct:description

dct:publisher

dcat:theme

dcat:keyword

dcat:landingPage

...

dcat:Catalog

dct:title

dct:description

foaf:homepage

...

dcat:Distribution

dct:title

dct:description

dct:license

dct:rights

dcat:accessURL

dcat:downloadURL

dcat:mediaType

dct:format

...

dcat:dataset

dcat:distribution

Figure 3: A simplified diagram demonstrating the three main
classes of DCAT and their relationships. A complete diagram
is given in [14].

9Strictly speaking an API is not RESTful without HATEOAS

http://webobservatory.soton.ac.uk/tutorial/realtime
http://webobservatory.soton.ac.uk/tutorial/realtime

Figure 2: SOWO Real-Time Streaming Architecture

dcat:Distribution (in Turtle)

@prefix : https://api.example.com/

:dist_1 a dcat:Distribution;

 dct:title Example dist 1 ;

 dct:description

 DBpedia SPARQL endpoint ;

 dcat:license

 <http://creativecommons.org/

 licenses/by-nc/2.5/rdf>;

 dcat:accessURL

 <http://dbpedia.org/sparql>;

 dcat:mediaType

 application/sparql-

 results+xml .

</void/dist_1.ttl>

 void:inDataset :dist_1.

REST (in JSON)

GET https://api.example.com/dist_1

{

 title : Example dist 1 ,

 description : DBpedia SPARQL endpoint. ,

 links : [

 {

 href : /dist_1 ,

 rel : self ,

 method : GET

 },

 {

 href : http://creativecommons.org/

 licenses/by-nc/2.5/rdf ,

 rel : license ,

 type : application/rdf+xml ,

 method : GET

 },

 {

 href : http://dbpedia.org/sparql ,

 rel : dcat-access ,

 type : application/sparql-results+xml ,

 method : GET

 },

 {

 href : /void/dist_1.ttl ,

 rel : describedby ,

 type : text/turtle ,

 method : GET

 }

]

}

Figure 4: Mapping rules of a dcat:Distribution to its REST rep-
resentation.

Accessing a resource requires two pieces of information: the
access URL and its media type10. The access URL gives the lo-

10A comprehensive list of media types is available at http:
//www.iana.org/assignments/media-types/media-
types.xhtml

cation where the resource is available; the media type indicates
the protocol and procedure for accessing the resource. The me-
dia type should be standard if possible, or a definition of the me-
dia type should be provided. For example, the resource shown
in Figure 4 is a SPARQL endpoint (indicated by the media type
“application/sparql-results+xml”11). Then applications will know
that they can send SPARQL queries to the given URL. For AMQP
streams we use a custom media type “application/amqp”12. Appli-
cations built on multiple streams can select resources of the type
“application/amqp” and filter relevant ones based on the resource
descriptions and keywords. It is also possible to combine static
datasets and live streams in the same way. There are several advan-
tages of the DCAT-to-REST approach:

Rich semantics: DCAT provides the information required to
discover and access a resource. The mapping preserves all such
information in the API.

Interoperability and automation: DCAT is an interoperable
vocabulary, and HATEOAS enables applications to automatically
traverse the whole API from a single start point. Combining both
gives the opportunity of automatic resource discovery and retriev-
ing.

Reversible mapping: The API has all the semantics of DCAT
documents, it is straightforward to construct the source DCAT doc-
uments from the API structure.

Easy federation: DCAT documents can be combined into a big-
ger documents and mapped to a REST API. Therefore different in-

11http://www.w3.org/TR/rdf-sparql-XMLres/
12There is a media type for streams, “application/octet-stream”.
However in our case the media type has to be specific enough to
enable applications to automatically access the resource.

http://www.iana.org/assignments/media-types/media-types.xhtml
http://www.iana.org/assignments/media-types/media-types.xhtml
http://www.iana.org/assignments/media-types/media-types.xhtml
http://www.w3.org/TR/rdf-sparql-XMLres/

stances of SUWO can be federated by simply merging their DCAT
documents.

4.2.2 Protecting resources using OAuth 2.0
Not all resources are open to the public. The SUWO API adopts

OAuth 2.0 to provide comprehensive yet flexible protection for
both public and private resources. As shown in Figure 5, the SUWO
acts as a reverse proxy of registered resources. That is, all requests
for access are controlled by the SUWO before accessing the re-
sources. Using OAuth users can authorise applications (either their
own or third-party) to act on behalf of the users, and the autho-
rised applications gain the same permission as the users. To access
resources, authorised applications firstly authenticate themselves
against OAuth 2.0, and the SUWO verifies whether the applica-
tions - the users who are viewing the application - are allowed to
access the resources.

Figure 5: Requesters are users or applications initiating re-
quests to access resources; SUWO authenticates requesters and
authorises their requests, and resources, that are datasets and
analytics shared on the web observatory.

5. MEASURING SOCIAL MACHINES
USING SUWO

In this section we will address the purpose of designing a system
capable of ingesting and republishing multiple Web streams in real-
time, and discuss the type of metrics that provide an indication of a
social machines state of operation.

5.1 Measuring Social Machines
A critical question for a Web observatory is what insights can

such a platform provide, and how does real-time analysis provide
additional value? In response to this, we argue that in order to sup-
port, improve, or even re-engineer a system, it is critical that it is
first understood. The fundamental purpose of a Web Observatory
such as SUWO, is to provide observational and analytical under-
standing of current state of the Web at various levels of granularity
and types of interaction. A Web Observatory becomes the inter-
mediary tool to measure a social machine using various different
metrics in order to understand its functionality and state of opera-
tion.

In addition to this, real-time analysis of social machines turns the
process of observation, analysis, and reporting into something far
more responsive and reactive. By being able to monitor how a sys-
tem is functioning in real-time offers the potential to react to sudden
changes in types of activity, and from this, learning strategies can
be built which can automatically reach depending of the fulfilment

of certain criteria. Therefore, it is important to define a set of macro
and micro level measurements and metrics that can be used to mea-
sure different characteristics of a social machine. The following
section provides a number of metrics that a real-time stream can
provide and that we are using in the SUWO.

5.1.1 Social Machine Metrics
Described below are a number of metrics we are currently exam-

ining in order to characterise the activity of a social machine. Many
of these measurements can be used in combination with each other
to provide a more detailed view of a social machines operation.

Macro-level system activity. A metric associated with the prin-
ciple type of activity that a social machine is designed for. In many
cases there are a number of measurements that can be considered as
a primary indicator of activity. In such cases, these can all be used
to represent system activity. For instance, considering a microblog-
ging platform such as Twitter may be measured as the number of
messages posted per second, as well as the number of re-shares
between messages. Other classes of social machines may be mea-
sured as the number of tasks performed per second, or the number
of active users in a given time period.

Community Engagement activity. Many systems involve the
interaction between users, which may be communications, or some
model of a friendship social network graph (i.e. Facebook, LinkedIn).
The connectivity of this network can act as a measure of a so-
cial machine’s structure, which can act as a proxy for the under-
lying community structure. For instance, measuring a social ma-
chines social graph may reveal distinct communities of users op-
erating in isolation from each other, which, depending on the pur-
pose of the system (i.e. a community-crowdsourced platform such
as Wikipedia) , may reduce its performance, or effectiveness.

User-Centric Activity. This can be considered as a micro-level
measurement as it represents a measure of activity based on a - po-
tentially seeded - list of users of a system. This may monitor their
frequency of activity (i.e. active session durations), or their com-
munication patterns (i.e. who they interact with). Such measures
may be useful for those monitoring a social machines that contains
different types of users. For instance, in crowdsourcing platforms,
these measures could be used to examine the speed to which new
users engage with community or gain the necessary skills to com-
plete an activity.

Topic-Centric Activity. This type of metric measures emerging
topics within a social machine. This measurement may involve
studying the frequency of activity associated with a specific object,
such as text, multimedia, or data. These measurements provide an
indicator of emergent hot or trending topics which may be useful as
an alert for initiating a stream integration process with other social
machines under observation.

Content/Sentiment Measure. This provides a system-level view
of the current content, topics, or sentiment of a social machine.
This measurement is of particular relevance to communication-based
social machines such as microblogging platforms, as it provides an
indicator of the current topics of discussion, or the current senti-
ment of its user base.

Information Flow. The flow of information of a resource (e.g.
text, image, video, URL) can be used as a measurement to un-
derstand various characteristics of a social machine. For instance,
tracing the flow of a word, phrase, or hashtag, in a user generated
message-based social machine (e.g. Twitter), could provide insight
into the current topics of interest, and how diverse such topic has
become (topic virality).

6. CONCLUDING REMARKS
In this paper we describe an architecture for ingesting, process-

ing, and publishing real-time big data for Web Observatories. We
also describe how the application of a real-time Web Observatory
can be used to measure several different characteristics of a social
machine.

The architecture presented in this paper provides a scalable and
secure solution for measuring multiple social machines using a
common schema. From a Web Observatory perspective, being able
to provide a level of access control over datasets and streams is a
fundamental principle in order to allow data owners to retain con-
trol of their data. From a social machines researchers perspective,
the ability to access unified, and in certain circumstances, inte-
grated real-time streams of activity is a essential resource to un-
derstand, analyse, and possibly make predictions about the current
state of a social machines health.

An immediate challenge for SUWO, and the network of Web
Observatories, is to improve the current approach of integrating
real-time streams, and also to be able to query incoming streams
in order to filter the data for specific purposes. Future work will
also include a wider analysis of the current and proposed metrics
for measuring social machine activity, and how they contribute to
understanding different classes of social machines. We also wish
to explore the combination of metrics as a means to measure social
machine activity.

7. ACKNOWLEDGEMENTS
Support for this study was provided by the SOCIAM: The The-

ory and Practice of Social Machines (EP/J017728/1) grant from
the UK Engineering and Physical Sciences Research Council (EP-
SRC).

8. REFERENCES
[1] Aniello, L., Baldoni, R., and Querzoni, L. Adaptive online

scheduling in storm. In Proceedings of the 7th ACM
International Conference on Distributed Event-based
Systems, DEBS ’13, ACM (2013), 207–218.

[2] Artikis, A., Etzion, O., Feldman, Z., and Fournier, F. Event
processing under uncertainty. In Proceedings of the 6th ACM
International Conference on Distributed Event-Based
Systems, DEBS ’12, ACM (2012), 32–43.

[3] Brown, I. C., Hall, W., and Harris, L. Towards a taxonomy
for web observatories. In Proceedings of the Companion
Publication of the 23rd International Conference on World
Wide Web Companion, WWW Companion ’14, International
World Wide Web Conferences Steering Committee (Republic
and Canton of Geneva, Switzerland, 2014), 1067–1072.

[4] Burnap, P., Rana, O., Williams, M., Housley, W., Edwards,
A., Morgan, J., Sloan, L., and Conejero, J. Cosmos: Towards
an integrated and scalable service for analysing social media
on demand. International Journal of Parallel, Emergent and
Distributed Systems, ahead-of-print (2014), 1–21.

[5] Chen, J., Ramaswamy, L., and Lowenthal, D. Towards
efficient event aggregation in a decentralized
publish-subscribe system. In Proceedings of the Third ACM
International Conference on Distributed Event-Based
Systems, DEBS ’09, ACM (New York, NY, USA, 2009),
18:1–18:11.

[6] Chua, T.-S., Luan, H., Sun, M., and Yang, S. Next:
Nus-tsinghua center for extreme search of user-generated
content. MultiMedia, IEEE 19, 3 (July 2012), 81–87.

[7] Fawcett, T., and Provost, F. Activity monitoring: Noticing
interesting changes in behavior. In Proceedings of the Fifth

ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’99, ACM (New York,
NY, USA, 1999), 53–62.

[8] Frischbier, S., Margara, A., Freudenreich, T., Eugster, P.,
Eyers, D., and Pietzuch, P. Asia: Application-specific
integrated aggregation for publish/subscribe middleware. In
Proceedings of the Posters and Demo Track, Middleware
’12, ACM (New York, NY, USA, 2012), 6:1–6:2.

[9] Hall, W., Tiropanis, T., Tinati, R., Wang, X., Luczak-Rosch,
M., and Simperl, E. The web science observatory-the
challenges of analytics over distributed linked data
infrastructures. ERCIM News, 96 (2014), 29–30.

[10] Heinze, T., Aniello, L., Querzoni, L., and Jerzak, Z.
Cloud-based data stream processing. In Proceedings of the
8th ACM International Conference on Distributed
Event-Based Systems, DEBS ’14, ACM (New York, NY,
USA, 2014), 238–245.

[11] Houston, P. Building distributed applications with message
queuing middleware, 1998.

[12] Krishnamurthy, S., Wu, C., and Franklin, M. On-the-fly
sharing for streamed aggregation. In Proceedings of the 2006
ACM SIGMOD International Conference on Management of
Data, SIGMOD ’06, ACM (New York, NY, USA, 2006),
623–634.

[13] Luckham, D. C. The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise
Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[14] Maali, F., and John Erickson. Data Catalog Vocabulary
(DCAT), 2014.

[15] Manyika, J., Chui, Michael Brown, B., Bughin, J., Dobbs,
R., Roxburgh, C., and Hung Byers, A. Big data: The next
frontier for innovation, competition, and productivity.
McKinsey Global Institute (2011).

[16] Pandey, N. K., Zhang, K., Weiss, S., Jacobsen, H.-A., and
Vitenberg, R. Distributed event aggregation for
content-based publish/subscribe systems. In Proceedings of
the 8th ACM International Conference on Distributed
Event-Based Systems, DEBS ’14, ACM (New York, NY,
USA, 2014), 95–106.

[17] Reuter, T., and Cimiano, P. Event-based classification of
social media streams. In Proceedings of the 2Nd ACM
International Conference on Multimedia Retrieval, ICMR
’12, ACM (New York, NY, USA, 2012), 22:1–22:8.

[18] Stonebraker, M., Çetintemel, U., and Zdonik, S. The 8
requirements of real-time stream processing. SIGMOD Rec.
34, 4 (Dec. 2005), 42–47.

[19] Su, H., Rundensteiner, E. A., and Mani, M. Automaton in or
out: Run-time plan optimization for xml stream processing.
In Proceedings of the 2Nd International Workshop on
Scalable Stream Processing System, SSPS ’08, ACM (New
York, NY, USA, 2008), 38–47.

[20] Tiropanis, T., Wang, X., Tinati, R., and Hall, W. Building a
connected web observatory: architecture and challenges. In
2nd International Workshop on Building Web Observatories
(B-WOW14), ACM Web Science Conference 2014 (June
2014).

[21] Vinoski, S. Advanced message queuing protocol. IEEE
Internet Computing 10, 6 (Nov. 2006), 87–89.

[22] Wang, W., Sharaf, M. A., Guo, S., and Özsu, M. T.
Potential-driven load distribution for distributed data stream
processing. In Proceedings of the 2Nd International
Workshop on Scalable Stream Processing System, SSPS ’08,
ACM (New York, NY, USA, 2008), 13–22.

	1 Introduction
	2 Related Work
	2.1 Web Observatory Development
	2.2 Real-time Processing

	3 Southampton Web Observatory (SUWO)
	3.1 Architectural Principles

	4 Web Observatory: Real-Time Processing and Publishing
	4.1 Harvesting Multiple Web Streams
	4.1.1 Architecture and Configuration
	4.1.2 Challenges

	4.2 Public Access - Web Observatory API
	4.2.1 API Design
	4.2.2 Protecting resources using OAuth 2.0

	5 Measuring Social Machines using SUWO
	5.1 Measuring Social Machines
	5.1.1 Social Machine Metrics

	6 Concluding Remarks
	7 Acknowledgements
	8 References

