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ABSTRACT

Understanding the spatial networks formed by the trajectories of
mobile users can be beneficial to applications ranging from epi-
demiology to local search. Despite the potential for impact in a
number of fields, several aspects of human mobility networks re-
main largely unexplored due to the lack of large-scale data at a fine
spatiotemporal resolution. Using a longitudinal dataset from the
location-based service Foursquare, we perform an empirical anal-
ysis of the topological properties of place networks and note their
resemblance to online social networks in terms of heavy-tailed de-
gree distributions, triadic closure mechanisms and the small world
property. Unlike social networks however, place networks present a
mixture of connectivity trends in terms of assortativity that are sur-
prisingly similar to those of the web graph. We take advantage of
additional semantic information to interpret how nodes that take on
functional roles such as ‘travel hub’, or ‘food spot’ behave in these
networks. Finally, motivated by the large volume of new links ap-
pearing in place networks over time, we formulate the classic link
prediction problem in this new domain. We propose a novel vari-
ant of gravity models that brings together three essential elements
of inter-place connectivity in urban environments: network-level
interactions, human mobility dynamics, and geographic distance.
We evaluate this model and find it outperforms a number of base-
line predictors and supervised learning algorithms on a task of pre-
dicting new links in a sample of one hundred popular cities.

1. INTRODUCTION

Mobile user trajectories are known to exhibit structural and tem-
poral regularities associated with the daily and weekly cycles of hu-
man activity. The spatial network formed by user movement, and
its topological characteristics in particular, have been explored in
recent research including the detection of urban neighborhoods [[11],
place recommendation to mobile users [31], touristic route identifi-
cation [26]], and a broad range of applications in epidemiology [?2]].
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However, the majority of models of human mobility focus exclu-
sively on its spatial characteristics [7,/16L|39], and neglect both net-
work topology and temporal dynamics. Recent work has proposed
more advanced computational methods that realize some of these
aspects, for instance by incorporating information about users’ so-
cial network [36] and their spatiotemporal dynamics [9]. The ap-
plicability of these approaches is limited, however, as they rely on
complete knowledge of a user’s historic whereabouts and social
connections as input, which might not be readily available in most
domains.

The goal of this paper is to bridge the gap between universal
mobility models and complex computational methods in mobility
modeling. As opposed to tracking the whereabouts of individual
users, our key idea is to use the aggregate trajectories of users
between real-world places to define a network of venues in the
city. Using a longitudinal dataset from the location-based service
Foursquare we empirically analyze place networks in one hundred
metropolitan areas across the globe. Exploiting a set of insights
on the growth patterns, temporal dynamics, and topological prop-
erties of these place networks, we then build a new human mobil-
ity model that accurately predicts the future interactions between
places in urban environments with minimal parameterization and
computational costs. Our work is articulated in three parts:

Place network growth and temporal pattern analysis. We first
consider the temporal properties of place networks, and focus on
their growth over time in terms of edge and node addition pro-
cesses (Section [2). In accordance with previous observations in
online social networks [21]], we observe a densification pattern, as
the number of edges grows superlinearly to the number of nodes in
the system. A saturating effect for node growth is reached quickly
nonetheless, when the large majority of Foursquare venues have
been added to the network. It takes approximately 10 weeks for
mobile users to crowdsource a large fraction (more than 95%) of
public places in a city. Subsequently, we compare instances of
place networks across consecutive time windows of observation;
we find that a significant number of new links are generated over
time as users form new spatial trajectories when they navigate be-
tween places. The set of places that generate those edges, however,
remains remarkably stable over long periods of time. These results
reveal the importance of viewing connections as fleeting entities
that emerge dynamically in the network.

Topological properties of place networks. We then empirically
analyze the topological properties of place networks (Section [3).
‘We make two key observations: first, we note that place networks



exhibit the well-known characteristics of social networks such as
heavily skewed degree distributions, scale-free properties, small-
world behavior, and high clustering coefficients. We trace this re-
lationship to the inherent inter-dependence between mobility and
social link formation in geographic space [36| 9} 40]. In contrast,
we also find a striking difference compared to social networks: they
show a resemblance to the web graph presenting a balanced assor-
tative mixing pattern with hub nodes connecting to each other but
also to low degree nodes. This non-social property arises from the
different roles played by places in the network. In particular the
existence of travel spots (e.g. train stations or airports), act as in-
termediate hubs between nearby places (e.g. restaurants, the most
frequent place type in the network), typically characterized by low
degrees. These characteristics are consistent across one hundred
cities.

A new gravity model for link prediction in place networks. Fi-
nally, the turnover of links in the network over time motivates the
following prediction task: given past observations about the con-
nectivity of public venues in Foursquare, we would like to predict
the pairs of places that are likely to connect at a future time (Sec-
tion[d). Candidate prediction models need to rank highly the pairs
of venues that are most likely to interact, a task complicated by a
number of challenges. In particular, the highly volatile, time depen-
dent, link generation process and sparse data setting may hinder the
use of complex prediction algorithms that can be prone to overfit-
ting. The inherently spatial embedding of the network suggests the
need for models which integrate appropriately geographic distance
as a factor. We therefore develop a generalization of gravity mod-
els [7} 16} |8, |29], popular in the mobility and transport literature,
into which we incorporate the temporal aspects of the system. The
model combines information on venue synchronization in terms of
user activity, in- and out-bound movement towards places, and geo-
graphic distance. In practice, it captures the observation that nodes
may act as sources or sinks of users in the course of time, depend-
ing on their cycle of activity. Finally, it incorporates information
about the interaction of places on the network level, a valuable as-
pect of attraction that has been ignored by past mobility modeling
approaches. The ranking strategy put forward by the model out-
performs popular supervised learning algorithms by at least two
points in the Area Under the Curve (AUC) score, and by a large
margin the model adhering to the standard formulation of gravity
in the literature (AUC score 0.905 versus 0.811). This is achieved
with minimal requirements for training and optimization, making
it ideal in practical application scenarios where expensive compu-
tations can pose a trade-off against the real time demands of many
mobile applications. These results are discussed in Section 3]

2. NETWORK GROWTH AND DYNAMICS

Figure [T] presents a visualization of the place network shaped
by the movement of Foursquare users in New York City. One can
spot hubs being formed at multiple areas of the city, with local
transitions connecting them to nearby places and occasional long
jumps connecting places located further apart from each other, for
example when users move between Manhattan and Brooklyn.

In this section, we investigate the growth patterns of such net-
works. In particular, we are asking how does the number of new
edges observed in the network relate to the number of nodes, or
places that are being crowdsourced by Foursquare users? Subse-
quently, we explore how the network in a city changes over long
periods of time, when considering different temporal windows of
observation. Are two temporal network snapshots similar to each
other? Or, instead, do mobile users form new trajectories as they

Figure 1: A visualization of the place network for New York City
at 11pm. Each dot represents a user traveling between venues, and
is color-coded by the category of the destination with blue being
nightlife and green being food. We clearly see the edges of the
network formed by people moving between places.

explore the city, contributing towards the formation of a large vol-
ume of new links?

2.1 Preliminaries on place networks

We define an urban place network as a directed weighted net-
work whose nodes are the popular public places of a city. For each
city, we consider a finite time period of observation ¢ and build
a directed graph G comprised of a set of nodes V' and a set of
edges, or links, E*. An edge is formed between a pair of places
if a Foursquare user directly transitioned between that pair during
period t. By a direct transition of a user between two places ¢ and j,
we mean that the user checked in at place ¢ first and his next check-
in took place at j. If more than one transition occurs between two
places, the weight of an edge is incremented accordingly. We fur-
ther impose a temporal threshold on each transition so that only
direct transitions within 3 hours are taken into account. This aims
to avoid biases related to non-direct user movements.

2.2 Network growth patterns

Network densification is a fundamental phenomenon in network
dynamics and relates to the different rhythms with which nodes
and edges are added to the network. Previous work by Leskovec
et al. [21]] characterizes empirically the densification process in on-
line social and technological networks showing that the number of
edges grows superlinearly with the number of nodes in the network.
Specifically, given the number of nodes n(t) observed at a point in
time ¢, one is interested in the number of edges e(¢) and the way
this relationship forms as ¢ grows. Formally we have:

e(t) o< n(t)” M

Different values of the exponent o imply differences in the ex-
pected number of edges over time. A graph with o« = 1 maintains
a stable average degree over time, whereas o > 1 corresponds
to an increase in the average degree. The findings reported by
Leskovec et al. suggest that the latter is the case in many real world
networks, and here we investigate whether it holds also in urban
place networks. We pick a random point in time ¢, where we begin
monitoring the evolution of a place network and then measure the
number of new nodes and edges added by users sequentially. Fig-
ure 2] shows the number of edges versus the number of nodes in the
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Figure 2: Number of edges versus number of nodes in Los An-
geles and San Francisco as the cities become crowdsourced by
Foursquare users.

cities of Los Angeles and San Francisco, as venue information in
these cities becomes crowdsourced over time by Foursquare users.
Initially the number of links grows superlinearly with the number
of nodes. We have measured using the least squares optimization
method an exponent o« = 1.14 with a standard deviation +0.06
across a set of one hundred cities. However, at a specific city size-
dependent threshold, this scaling breaks, as the number of nodes
ceases to increase whereas new links continue to appear. At that
point, a majority of places have been discovered by the users, and
finite-size effects induce a slowing down of new place discovery,
as shown in Figure [3] where we plot the fraction of newly added
venues over time for the two cities. One observes that it takes ap-
proximately 10 weeks for Foursquare users to crowdsource a sig-
nificant fraction of the city’s set of public venues, as the probability
of seeing a new place after the 10th week drops to approximately
0.02, with a convergence very close to zero after several weeks.
One should note that new venues such as retail facilities are con-
tinuously created in a city, so the probability may never drop to
zero, but the time scale of urban growth is much slower, on the
order of months or years [27], than the rate of place discovery by
Foursquare users. Unlike an online social network, or other tech-
nological networks, that may be able to reach a maximum number
of nodes in the order of years (Facebook still adds new users at a
high rate [41]]), urban place networks are smaller in size by several
orders of magnitude. Even a large metropolis will have on the order
of several thousand places, which is a significantly smaller number
compared to the hundreds of millions of users in a social graph. Im-
portantly, the number of edges crowdsourced by the users remains
small as compared to the total number of connections, of the or-
der n(t)?, and no finite-size effect is encountered by link creation,
which leads to the patterns of Figure 2]

2.3 Temporal dynamics of place networks

Link generation over time. The results of section [2.2] show that
place networks are dynamically evolving entities with new edges
being added continuously over time. Given these observations, a
natural question to ask is how do these links persist in time? Put
otherwise, will an observed link re-appear?

Considering three-month temporal snapshots over a period of
two years, from the beginning of 2012 to the end of 2014, we es-
timate the probability of a new place, or a new edge, being added
in a subsequent time period. Formally, given the set of edges E°*
observed in a network snapshot during a three month period ¢ and
the set of edges E**! of the subsequent time period, we define the
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Figure 3: Starting from week 2, we show the fraction of new venues
added to the system out of the total observed that week, for Los
Angeles and San Francisco.
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Figure 4: Probability of observing a new edge in the next network
snapshot. The probability is measured by comparing successive
temporal network snapshots. Each point on the x-axis refers to the
date that a snapshot ends and its successor begins. The shaded area
corresponds to the standard deviations across 100 cities worldwide.

probability of a new edge occurring in the next snapshot as:

|Et+1 _ Etl

Pe: IEt+1|

@)
Figure @] shows the corresponding probabilities across seven subse-
quent intersections of network snapshots. The probability of a new
edge forming is approximately 70 — 75% and has small standard
deviations across cities as shown by the shaded curve.

A related measurement is the probability that an edge will persist
in the network by re-emerging consistently in network snapshots
over several months. Figure [5]shows the average probability for a
given edge’s reappearing in snapshots t+1,t+2 . .. t+n given that
the edge has appeared in snapshot ¢t. We use the term edge longevity
to denote this process. Formally, this probability is defined as the
cardinality of the intersection of n consecutive network snapshots,
divided by the cardinality of the starting snapshot ¢:

B |EtﬂEt+1~~~ﬂEt+"|

Pon = T 3)

We observe that this probability is just above 30% with values
dropping towards 20% over subsequent months. The small portion
of stable links that propagate through time, roughly 20%, corre-
sponds to high-weight edges representative of regular traffic pat-
terns like commuting. We will delve deeper into the functional
role of places in the network in Section |3} where we observe that
most high-weight edges are linking to travel hubs (airports, train
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Figure 5: The edge longevity probability measure shows the ten-
dency for an edge to appear in future temporal network snapshots.
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Figure 6: Probability that an edge will persist in the next network
snapshot as a function of the edge’s weight for New York.

stations etc.). Figure [ demonstrates that an edge’s longevity di-
rectly relates to its weight. We report the probability that an edge
will persist in the following snapshot as a function of the edge’s
weight defined as:

{e € E' N E' : weight(e) > w}
|{e € Et : weight(e) > w}

Pe(w) = “

where weight(e) is the function that returns the weight of an edge
e. An edge with weight equal to 2 has a probability very close to 0.4
of being observed in the next time window, with the same probabil-
ity doubling to a value very close to 0.8 when the weight is equal
to 5. It should be noted that there is a possibility, albeit small, that
high-weight edges may not re-appear in the future. Large events
or transport disruptions could alter the flow of movement of urban
populations [15], e.g. when a large crowd is moving to the park for
a music festival. This can lead to the opportunistic appearance of
high-weight edges that may not persist over long periods of time.

Node persistence over time. We now investigate whether places
persist over longer periods of time. As we did in the case of net-
work links, we formulate the new node and node longevity proba-
bilities and observe how these evolve across several temporal snap-
shots. Similarly to the new edge probability definition, the new
node probability, defined as

pitl oyt
P, = % s)
for the set of nodes in V* during period ¢, is approximately 5%,
as shown in Figure These results suggest that connectivity in
cities emerges over a very stable base of venues with the constant
generation of new links formed due to differences in users’ mobil-
ity patterns. We also consider the persistence probability of nodes
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Figure 7: Probability of observing a new node in the next network
snapshot.

1.00
0.95
0.90
0.85
0.80
0.75
0.70 : ; ; : :
0.65F----- ....... ....... ....... ______ i
0.60 I L I I A

Node Longevity Probability

Figure 8: Node longevity across temporal network snapshots.

formalized as:

P [Vta vttty
v,n — |Vt‘

(6)

‘We observe that places seen in a snapshot, not only persist to the
following one as implied by Figure[7] but as shown in Figure[§]they
are active in the network with a probability greater than 95% over
many subsequent months with the value remaining above 90% on
average even after two years.

Taken together, these results paint a picture of a highly volatile
network in terms of the edge generation process. Unlike online
social networks, such as Facebook, where the friendships being
formed among users tend to persist across time, in place networks
the majority of links are constantly evolving and often fleeting, ex-
isting only for a short time period. This observation motivates the
construction of link prediction models that can track their evolution
over time. An improved understanding of the mechanisms behind
network evolution is crucial in order to provide more intelligent
location-based services that can adapt to the ever-changing patterns
of cities and offer more tailored recommendations and advertise-
ments based on a user’s location and expected mobility patterns.
Prior to devising predictive models for link prediction in place net-
works, we investigate their topological properties in the following
section.

3. PROPERTIES OF PLACE NETWORKS

In Section 2| we have shown how place networks are similar
to other networks in terms of densification patterns. We now ask
whether this similarity manifests also with regard to the more elab-
orate properties of networks. We aim to answer the following ques-
tion: Do place networks in cities have similar structural properties
to other social and technological networks that have been empiri-
cally investigated in the past or are they fundamentally different?



City V] |E| C Cy D D, d dr (k) r

Saint Petersburg || 9292 | 278099 | 0.20 | 0.08 | 5.83 | 5.91 | 3.30 | 3.25 | 42.57 | —0.05
Moscow 8962 | 168945 | 0.19 | 0.07 | 6.25 | 6.00 | 3.21 | 3.37 | 30.96 | —0.05
Sao Paulo 8643 | 66110 | 0.17 | 0.04 | 6.83 | 6.25 | 3.67 | 3.68 | 18.01 | —0.05
New York 8156 | 145671 | 0.18 | 0.07 | 5.91 | 5.25 | 3.12 | 3.14 | 40.99 | —0.07
Kuala Lumpur 7656 | 56035 | 0.19 | 0.05 | 6.41 | 6.00 | 3.45 | 3.43 | 23.93 | —0.06
Istanbul 7389 | 60790 | 0.14 | 0.02 | 10.00 | 7.50 | 4.66 | 4.20 | 10.50 | 40.05
Tokyo 7327 | 36627 | 0.23 | 0.07 | 7.58 | 7.16 | 3.79 | 3.79 | 10.40 | —0.09
Bangkok 6986 | 33827 | 0.15 | 0.04 | 7.41 | 6.58 | 3.88 | 3.74 | 15.58 | —0.00
Singapore 6825 | 30384 | 0.14 | 0.02 | 8.08 | 7.08 | 4.02 | 3.89 | 14.95 | —0.00
Jakarta 4645 | 10776 | 0.08 | 0.00 | 10.83 | 9.25 | 5.45 | 5.07 | 5.84 | +0.05

Table 1: Statistics and network properties for a set of 10 cities in the first three months of 2013. For each network we report the number of
nodes | V|, number of edges |E|, mean clustering coefficient C, median network diameter D, mean shortest path d, average degree (k) for
the undirected network versions and assortativity r. We denote the statistics of the corresponding null models with the subscript » where

appropriate.
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Figure 9: Probability density of the degree distribution in a tempo-
ral network snapshot for three cities and a linear fit to the plotted
data on a log-log scale.

Topological network properties such as the degree distribution,
community structure or small-world behavior are known to have
important implications for the functionality of real-world networks,
including their robustness and information spreading. Moreover,
the existence of regularities in the network topology, associated
with mechanisms driving link formation, is a central ingredient in
algorithms for link recommendation, as seen in online social net-
works [[1} 22]]. In Table m we summarize the statistics of the place
networks built from the check-ins observed in the first three months
of 2013 for 10 cities in our dataset.

Network heterogeneity and the functional role of places in the
urban domain. Many real world networks, including the world
wide web and social networks, are known to exhibit a heavy-tailed
degree distribution, often approximated by a power-law of the form
P(k) oc k7P, The latter is associated with a strong heterogene-
ity in the connectivity of the system, as a vast majority of nodes
are poorly connected, while a few nodes play the role of hubs and
inter-connect a large number of neighbors. As we show in Figure[d]
place networks also exhibit a heavy-tailed degree distribution. Us-
ing the maximum likelihood parameter estimation method [[10f], we
fit the distribution, and find a mean power-law exponent 3 equal to
1.84 with a standard deviation of 0.09 across 100 cities. A similar
relationship holds for the edge weight distribution in the network,
shown in Figure [I0] The exponent 2.65 + 0.05 indicates the ex-
istence of strong links, associated with a large flow of users, even
on the order of several hundreds, between certain places. In or-
der to interpret the strong heterogeneities present in the system, we
exploit semantic information about Foursquare venue types. Fig-

10° ! . 7
10 E N —@- SaoPaulo |
o —- Kuala Lumpur |4
1077 g —e— New York E
1073 oo | — 265 b
w £
O 107 e g E
o . 1
1072 F vt R - E
1070t i . " 3
L S R EREE 3
10—8 1 | 3 .
10° 10 102 10°
Edge Weight

Figure 10: The edge weight distribution is more broad compared to
the distribution of degrees shown in FigureEl

ure [TT] illustrates the distribution of edge weights stratified by the
underlying place categories (e.g. ’food’, ’nightlife’, etc.) for New
York City. Food places (e.g restaurants, sandwich places, coffee
shops etc.) dominate the sets of low-weight nodes, but are progres-
sively replaced by transportation hubs as weight increases. This
observation is in agreement with the fact that food places are the
largest set in terms of number of places, i.e. that correspond to a
mean fraction 0.4 &= 0.05 of the venues observed in a city, whereas
travel places are dominant in terms of their proportion of check-
ins, 0.13 + 0.07, despite their fairly small number of venues (mean
0.04 £ 0.02). Both types of venues match their traditionally per-
ceived role as functional units in the urban setting: that is, a diverse
pool of food establishments operating alongside the presence of a
few primary transportation hubs that handle most of the citizen and
commuter mobility. While other place types co-exist in this envi-
ronment, the dominance of food and travel spots, in terms of num-
ber of nodes and high weight links respectively, is remarkable. This
potentially reflects two fundamental requirements of modern cities
as part of the ever-intensifying urbanization process in modern de-
velopment. First, the need for efficient urban mobility facilitated
by transportation hubs, and second, the necessity for the presence
of myriad food spots, spread around the city, in order to support
human populations with vital resources.

Note that, as the distribution of edge weights is well fitted by a
power law, there is a vast number of edges that only occur once
or twice. By definition, the latter do not survive long and tend to
appear as new events in the network evolution, as we discussed in
the previous section (see Figure EI) The fact that the distribution
of node degrees is less peaked at small values (the probability is
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Figure 11: Edge weight distribution by place category in New York
with Travel & Transport in green color and Food in black.

approximately uniform for degrees smaller than 10), implies that
places are more persistent than edges, as we observed in Figure[7]

Triadic closure and small-world property. A list of the main
network statistics for a sample of cities in the dataset is given in
Table [Il We first note that the vast majority (almost 99%) of the
nodes belong to the network’s giant connected component Ngc.
For each city, we also present a randomized network (null model)
where links are randomly rewired, preserving the number of nodes,
edges and the original degree distribution of the places in the net-
work. This way we are able to assess the significance of the net-
work measurements as compared to the corresponding random net-
work.

Triadic closure is a central mechanism of social network evolu-
tion, typically measured with the average clustering coefficient C'

1
C:chu @)

ueV

where ¢, is the fraction of closed triangles between nodes con-
nected to node u, also known as the local clustering coefficient.
C has been calculated for the undirected version of the place net-
work, leading to a mean clustering coefficient value C = 0.20
with a standard deviation 0.06 across the full set of cities. The
corresponding average value for the null models was significantly
lower, C,. = 0.07 £ 0.03. The exact mechanisms leading to a high
density of triangles in place networks may be different from those
of social networks, yet it is notable that this property consistently
holds in the former class of networks. Let us also note that place
networks are embedded in space, and that spatial embedding is a
plausible mechanism leading to triadic closure [37|]. The strong
connections between social network topology and human mobility
patterns [38] |9, |40} |23]] are also expected to make social networks
and place networks share similar patterns.

Next, we focus on the distance between nodes, in terms of the
number of hops between them in the place network. We report a
mean shortest path d = 3.35 4 0.52 across cities and a mean diam-
eter D = 6.35 4 1.46, when the values of the randomized versions
are d, = 3.33 4 0.46 and D, = 5.93 & 1.19 respectively. The
existence of short paths connecting places in the network, together
with their high clustering coefficient, imply that place networks are
small-world. The small-world property can have significant im-

plications for multiple processes in urban systems, including the
spread of epidemic disease or information propagation and rumor
spreading in cities, as has been described in the context of many
other network systems [[19]. Despite the relationship with online
social networks identified so far, as we demonstrate next, place net-
works present non-social connectivity patterns too.

Analogies to the web graph. Because of their strong relationships
to human mobility, place networks can be viewed as spatial navi-
gation systems [20]. For this reason, and inspired by recent works
on virtual navigation of web users in online domains [42] 43]], we
now investigate whether place networks reproduce non-social topo-
logical properties, associated with information systems like the web
graph. To do so, we focus on the notion of assortativity [28]. Social
networks are known to present positive assortative mixing, that is
a tendency for high-degree nodes to be connected with each other.
On the contrary, the world wide web presents a mixed assortativ-
ity trend with hubs connecting to each other but also to low-degree
nodes. In the case of place networks, we observe a very similar
behavior with a mean value of 7 = —0.055 + 0.04. This value
is remarkably consistent across the one hundred cities, and very
close to that observed empirically in the world wide web graph
(r = —0.065) and in protein interaction networks (r = —0.156)
[28]]. The latter observation is reminiscent of recent models of cities
as biological organisms [5]].

The assortativity scores in place networks can be explained by
their polycentric, hierarchical structure ([35]]), where two dominant
connectivity patterns emerge: transport hubs (high degree nodes)
connect to each other through the transportation system to facil-
itate commuter transit and, at the same time, hubs interact with
a plethora of low degree nodes, associated with services, such as
food and nightlife places, as users move to nearby places for re-
freshments and entertainment. This process is also reminiscent of
authorities and hubs in the web, that is pages with authoritative
content and others that connect to many of them.

4. LINK PREDICTION

The empirical analysis of place networks in Section [2] has re-
vealed that a large number of new links is being generated steadily
over time. Despite the large turnover of the links present in the sys-
tem, the networks exhibit stable topological patterns, as described
in Section[3} Our objective now is to exploit network structure to-
gether with mobility information about the temporal dynamics of
places, in order to predict where edges will appear in a future time
period. We manifest this goal by proposing a new gravity model
in Paragraph We also formalize a set of network and mobility
models (Paragraph {f.I)) and present a host of supervised learning
algorithms (Paragraph that we use as a testbed to assess the
model’s efficacy.

Problem formulation. Given a graph representing the place net-
work of a city G* = (V, E*) during a period ¢, the goal is to predict
the edges E**! that appear in the network during the next tempo-
ral snapshot t 4+ 1. The problem essentially consists of ranking
pairs of nodes (4, 7) according to a numeric score r;; estimating
the likelihood of an edge appearing between a source node ¢ and
a destination node j, with 4,7 € V. Link prediction has been a
popular problem in recent years and numerous models have been
proposed to determine r;;: from unsupervised predictors primarily
exploiting node topology in the network [22]], to supervised learn-
ing algorithms that integrate multiple signals synchronously [24].
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Figure 12: The probability of link formation in the next temporal
network snapshot as a function of the common neighbors shared by
two nodes in the network, shown for Chicago.

Challenges. The introduction of the link prediction problem in the
domain of urban place networks brings new challenges that the can-
didate prediction models need to address. First, the realization of
the short term temporal dynamics in user mobility due to the exis-
tence of periodicities and diurnal patterns in human activity during
a week. For example, a corporate office is more likely to connect
to a coffee shop on a Wednesday morning as opposed to a Saturday
night. Second, the ability to cope with the long term temporal dy-
namics characterizing the system, since there is significant novelty
in terms of edges in the network over time; activity in the system
drift as users alter their mobility patterns during urban exploration
or due to seasonal changes. Third, geography is known to play an
important role in connectivity in urban environments [30. As a
consequence, link prediction models deployed in cities should in-
tegrate information on the distance between places effectively.

4.1 Network formation and human mobility

We view an urban place network as an entity shaped by the inter-
play of two primary forces: its current network form, as seen in a
given window of observation, and human movement, which is the
generative force of connectivity in the system. Our underlying as-
sumption is that this feedback loop between network and mobility
forces is key to the network’s evolution. In the following, we de-
fine a number of models, associated with different link formation
mechanisms, which we exploit in the link prediction problem.

Network predictors. Let us first introduce network models for the
link prediction task. We are guided by the common properties be-
tween place networks and social networks, discussed in Section 3]
Being also inspired by popular algorithms for link prediction in
online social networks, we introduce a set of predictors which are
based on two key factors in link generation: triadic closure and
node centrality.

e Triadic closure mechanics. A standard predictor to deter-
mine whether two nodes in a network will connect is the
number of common neighbors they share. We thus define
the CommonNeighbors feature for two venues ¢ and j as
ITs N T';|. In the above formulation, the greater in num-
ber the common neighbors of two venues, the more likely
they are to interact in the future through a direct user transi-
tion. We verify this assumption in Figure [I2] where we see
a significant increase in the probability of inter-place con-
nectivity as the number of common neighbors for a pair of
places grows. Jaccard’s similarity coefficient has been pro-
posed [22] as an improvement to this indicator by taking into
account, additionally, the size of the neighborhoods of the

two places. We refer to this model as NeighborOverlap and
IT;Nry |

define it as .
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Figure 13: The probability of link formation in the next temporal
network snapshot as a function of the geographic distance between
two places and the product of their popularities in New York.

Furthermore, we define the AdamicAdar indicator that de-
pends on the number of common neighbors of two places,
but also penalizes those common neighbors that have high
degrees:

1
—_— 8
2 TogITD) ®

zel;NTy

This measure is known as a very efficient predictor in online
social networks [1]]. In Section 5] we will show that this is
also the case for place networks. For this reason, we also
integrate it into the new gravity model we present in Para-

graph

e Node centrality metrics. In addition to the previous predic-
tors based on triangles, we also focus on predictors purely
based on the importance of the nodes. A basic centrality
measure is degree centrality, and it is incorporated into the
feature DegreeProduct as |I';|.|T';|, which can be general-
ized by taking into account the direction of the links, In-
OutDegreeProduct as |I'}|.|T ;|- Finally, we also use a
non-local measure of centrality, PageRank [32], denoting the
score of place 7 as rw (%), and define the PlaceRank indicator

rw(i).rw(j).

Mobility predictors. We now introduce a set of spatial and mo-
bility information signals related to places.

o Static mobility metrics. Geographic distance is well-known
to have an impact on human mobility [7, |16], and its ef-
fect has been evaluated in the case of location-based social
networks [9, |31]]. For this reason, we use the GeoDistance
predictor that ranks two candidate venues ¢ and j according
to their geographic distance d(%, j) measured in kilometers.
The closer two venues are, the higher their position will be
in the prediction list, with the implicit assumption being that
nearby places are more likely to form a link at a future time.
Next, we define a Popularity feature that ranks venue pairs
according the product of their popularity c;c;, where c; is
simply the sum of check-ins at place ¢. The strong effect of
geographic distance and popularity on the probability of a
link existing for a pair of places is shown in Figure[T3]

e Mobility dynamics. The popularity of Foursquare venues
does not remain static over time however. It is constantly
changing with strong diurnal and weekly patterns due to cor-
responding variations in urban human movement and activ-
ities. Since we are able to capture the precise time of each
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Figure 14: Diurnal venue interaction patterns aggregating over weekdays (top) and weekends (bottom) for the city of London. On the y-axis
(rows) we note the peak hour of the origin venue, and on the x-axis (columns) that of a destination. Each point refers to the density of

transitions between venues in a given hour slot.

check-in we can explicitly model these fluctuations. We de-
fine the temporal similarity between two places ¢ and j as
the cosine similarity between their 7-dimensional check-in
frequency vectors equal to:

cos(éi7,¢") T {1,T} 9)
T can be set equal to 24 or 168 to capture daily and weekly
cycles of activity respectively. We denote the diurnal and
weekly similarity models as DiurnalSim and WeeklySim
respectively. Both metrics are based on the assumption that
two venues are more likely to connect when they are visited
by mobile users during similar hours.

The importance of place synchronization is shown in Figure [T4]
where we visualize the relationship between venue interaction fre-
quencies and venue peak hours (peak hour is simply the hour when
the number of check-ins of a venue maximizes). Plotting on the
y-axis the peak hour of an origin venue we can see the probability
of forming an edge with a destination venue that peaks at a certain
hour of the day. Venues that are active in the morning are rela-
tively more likely to connect to venues that peak in the morning
too, with this relationship holding considering different temporal
intervals through day and night. In the following paragraph, we
fuse information about the mobility dynamics seen here with the
network features presented above, to introduce a new gravity model
that realizes the characteristics of modern mobility datasets.

4.2 Gravity Models

The use of gravity models to reproduce human migration pat-
terns roots back to the seminal work of Ravenstein [34]. Different
variants have been developed, initially in transportation research
and urban planning in the 50s and 60s [8| [29] and more recently
when studying large-scale mobility patterns measured in census or
cellular data [[7} |16]. Inspired by Newton’s law of gravity, gravity
models assume that the flux between two regions ¢ and j takes the
form P;; o kik; f(di;) where f(d;;) is a deterrence function de-
creasing with the geographic distance d;; between ¢ and j. k; is a
measure of the region’s mass, its attractiveness. Taking a standard
form for the deterrence function f(d) ~ d~”, we propose in this
section two versions of gravity models: a classic formulation, as
defined in the literature, and a new gravity model that incorporates
the importance of network structure and temporal synchronization

between regions. Note that in the present domain places are used
as proxy for regions.

o A static formulation of gravity. The notion of mass, in
gravity models, depends on the nature of the system under
scrutiny. In the case of fluxes of mobility between cities, for
instance, it is common to use their population as a proxy. In
our classic version of the gravity model, we therefore use the
total popularity of place as its mass, and define a Gravity
index as:

CiCj
d(i, 5)"
This model is essentially a combination of the Popularity

and GeoDistance features, defined in the previous paragraph
and whose effect on place connectivity has been illustrated

in Figure[T3]

e A dynamic gravity model. Modern mobile datasets have
the advantage, as compared to old-fashioned data concerning
mobility, e.g. based on censuses, to include a fine temporal
resolution. Our analysis of place networks suggests that the
temporal patterns of node activity play an important role in
link formation. This observation motivates the incorporation
of temporal information into the gravity model in order to ac-
count for the inherently dynamic aspects of human mobility.
Similarly, our results concerning triadic closure also suggest
the incorporation of network information in the modeling ap-
proach.

(10)

For this reason, we propose a new gravity model, called Dy-
namicGravity, that brings together three fundamental as-
pects for link prediction: network structure, mobility dynam-
ics and geography. Formally, the model is defined as:

T
ai; Yy ci(r)Tei(r)”
T=1
d(i, 5)"
with T = 168 and ¢;(7)" noting the out-strength of place
i, that is the sum of weights of all out-going edges, during

hour 7. Equivalently, ¢; (7)™ accounts for the in-strength at
a given time instance. a;; is the AdamicAdar score between

an




two places defined above. The model aims at capturing in a
principled way the most important information signals in the
data.

First, the importance of a place in the network in terms of
its strength. Second the directionality of the edges gener-
ated by a place given that places act as sources or sinks in
the network. Third, the temporal dynamics and periodici-
ties of these forces as they fluctuate in time. Finally the po-
tential connections between nodes driven by triadic closure.
While these components favor connectivity between impor-
tant nodes in the network (hubs), geographic distance acts
in this context as a balancing factor and biases connectivity
towards nearby places. This allows for the hubs to connect
towards the plethora of low-degree nodes that are present all
over the city and the mixed assortativity trends seen in Sec-
tion[Blare also realized.

At this point, note that there is a possibility for two places not
to share any common neighbors in the network. These places are
still able to connect in the future. To accommodate this potential,
we extend the original formulation of the Adamic-Adar [[1] model
to the form Zzerim“j m + 1.0. The unit value is added
to represent the connectivity of all nodes in the network towards
an imaginary node ¢,, and thus model the possibility of all nodes
in the system to interact at the network level. Finally, note that
when no information about time is available (7" = 1), there are no
common neighbors between two nodes (a;; = 1) and there is no
information about edge directionality, the equation of the dynamic
gravity model falls back to the setup of the original, static gravity
model formalized in Equation [I0]

4.3 Supervised learning methods

Supervised learning methods have been recently hypothesized

to provide effective solutions to the link prediction problem [24],
compared to unsupervised predictors such as those presented in the
previous paragraphs. Supervised learning algorithms are aware of
the class imbalance (ratio of positive and negative instances) in the
system, and unlike their unsupervised counterparts, are able to op-
erate across multiple differentiating class boundaries and capture
the inter-dependency of many variables. Even if a single variable is
considered (e.g. distance) and multiple decision boundaries exist, a
supervised learning method can learn that more complex relation-
ship. Finally, as more data flows in the system through time and
more training labels become available, supervised learning models
are only expected to improve in terms of accuracy.
Training methodology: We build a training dataset on the previous
network snapshot, using positive and negative labels for connected
pairs and disconnected pairs of nodes respectively. We have exper-
imented both with a balanced and an imbalanced training dataset
case where the class distribution is preserved, choosing the latter
as it yielded better experimental results in all cases. For each pair
of places ¢ and j, we construct input feature vectors x;; formed
by all network and mobility features introduced in Paragraph [.1]
Here, we employ three classifiers: logistic regression [13] (applied
with 12 regularization) and the ensemble learning methods random
forests 6] (optimized here with 50 trees of maximum depth 50)
and gradient boosting [|14]] (with 100 tree estimators of maximum
depth 10).

S. EVALUATION

Experimental Setup. We assess the ranking performance of all
models in the link prediction task by means of Area Under the

Curve (AUC) score. To extract the Receiver Operating Character-
istic (ROC) curve we measure the True Positive Rate versus False
Positive Rate ratio for varying decision thresholds on the ranked list
of pairs of places in each city. Then the AUC score is calculated by
measuring the area under the ROC curve and it provides an indica-
tion of the performance of an information signal in balancing the
trade-off between precision and recall. A predictor that ranks place
pairs randomly would yield a ROC curve matching the diagonal
line, y = «, and hence an AUC score 0.5. We make use of a more
informed baseline, named EdgeWeight, that simply ranks pairs of
nodes according to the their edge weight in the previous tempo-
ral snapshot (if an edge does not exist the score is 0). We test the
performance of all ranking strategies in a realistic temporal cross-
validation setting by training on the first three months of 2013 and
testing on the following temporal snapshot in the same year. We
summarize the performance of all models in Table 2] showing their
average score in terms of AUC and standard deviations across the
one hundred cities in the dataset.

Results. Focusing on the network models, we observe that the
model which exploits edge directionality information of the nodes,
InOutDegreeProduct, performs best with an AUC score 0.875
improving predictability over the DegreeProduct that ignores di-
rectionality (AUC=0.862) and scoring equally with the PageRank
adaptation, PlaceRank. The former demonstrates that there are
places in the network that tend to behave as sources or sinks by
generating or absorbing mobility flows of users. The models that
do the next best in terms of AUC performance are those based
on common neighbors between places; {textbfCommonNeighbors
scores AUC=0.824 and AdamicAdar attains a very similar score,
AUC=0.822.

We next evaluate the class of models that are built on geographic
or mobility information about places. While geographic distance
explains to some extent the connectivity between places and per-
forms better than the naive predictor EdgeWeight, it is clearly be-
ing outperformed by the Popularity predictor that captures the sig-
nificance of places in the network in terms of how frequently they
are visited by Foursquare users. Ranking performance improves
further when the temporal visitation patterns of users at places is
taken into account as the WeeklySim model suggests. As implied
by the significant improvement (AUC=0.851 versus AUC 0.774)
over DiurnalSim which employs information about diurnal mo-
bility patterns only, the temporal synchronization between places
across weekdays and weekends matters. Looking across all predic-
tion methods, we note that the dynamic gravity model, Dynamic-
Gravity, outperforms by a clear margin all models in the list. No-
tably, it raises the performance of the classic gravity formulation by
almost ten points (AUC=0.905 vs 0.811). This shows how the tem-
poral dynamics of user mobility at places combined with informa-
tion about the connectivity patterns and structure of the place net-
work, formed by the trajectories of mobile users, can significantly
improve predictability over mobility models that utilize solely static
information. The dynamic version of the gravity model we present
here essentially fuses the best information signals from the mobility
and network classes above (InOutDegreeProduct, AdamicAdar
and WeeklySim) as well as integrating geographic distance as a
factor. It effectively captures the fact that places not only behave as
sources or sinks in the network, but also that the way they adhere
to these roles in the system changes dynamically over time. For
example, one would expect a school, or a corporate office, to be a
sink node in the morning, that becomes a source when it terminates
operations later in the day. At the same time a transportation hub in



| Model AUC + |

Network

DegreeProduct 0.862  0.020
InOutDegreeProduct 0.875 0.021
NeighborOverlap 0.803  0.038
CommonNeighbors 0.824  0.048
AdamicAdar 0.822  0.050
EdgeWeight 0.626  0.028
PlaceRank 0.875 0.022

Geo-Mobility
GeoDistance 0.702  0.047
Popularity 0.768 0.039
DiurnalSim 0.774 0.040
WeeklySim 0.851 0.025

Multi-variate
Gravity 0.811 0.041
DynamicGravity 0.905 0.019
RandomForests 0.864 0.071
GradientBoost 0.687 0.104
LogisticReg 0.792  0.047

Table 2: Mean AUC and standard deviation scores across cities for
all features and models.

the area may follow an inverse pattern, being a source in the morn-
ing and a sink in the evening, in accordance with local commuter

mobility trends. . . .
Finally, the model outperforms not only the static gravity version

and all network and mobility models, but also supervised learning
algorithms that have previously been shown to excel in link predic-
tion in other domains [24]. Besides, the latter require special care
in terms of training and parameter optimization. This can be costly
in many realistic deployment scenarios that demand crisp and accu-
rate responses, a frequent case in mobile application settings. The
parameter (3 in the case of the DynamicGravity model has been
set equal to 1 for all cities. Its simple formulation has allowed
it to generalize well without overfitting in a very volatile network
environment, where link formation can be influenced by seasonal
drifts, changes in individual user mobility patterns or even large so-
cial events that can alter the mobility flows of user populations in
the urban domain [|15]].

6. DISCUSSION AND RELATED WORK

In this work, we have investigated the properties of urban place
networks formed by the check-in patterns of millions of Foursquare
users across a large set of 100 cities around the globe. We have
shown that these networks exhibit many of the well-known prop-
erties of other social technological networks, and that the growth
patterns of these networks are characterized by a dynamic edge
generation process over a relatively stable set of nodes.

Understanding the way venues interact in the urban domain by
means of user mobility patterns can support existing applications
and pave the way for new ones. The science of placing a new re-
tail facility or venue, for instance, in an already established urban
network of places would benefit from precise information about
network connectivity in the local area and its underlying dynam-
ics [[17,[18]]. Seeing cities as dynamically evolving networks is in
line with recent works that propose the exploitation of network-
based techniques to understand modern urban systems [4} 5| 3]

Using network analysis techniques to understand how cities grow
and evolve may not be a novelty on its own, yet most research in
this domain has focused on street network analysis [[12] 33]] or the
analysis of transportation networks [35] [25]]. The novelty of our
approach is based on positioning real world places at the spotlight
of network analysis using as input Foursquare’s venue database.
While the network of places has been a fundamental element in re-
lated works in location-based services, either for the detection of
neighborhoods as in the case of the Livehoods project [11]] or to
perform venue recommendations [31], its properties have not been
studied empirically in the past. In that respect the analysis we con-
duct can benefit future works where the place network becomes
important.

Our results have implications for the development of modern
mobile applications too. The image of a highly volatile network
in terms of the edge generation process in particular motivates the
construction of link prediction models that can track their evolu-
tion over time. Unlike in online social networks, such as Facebook,
where the friendships being formed among users tend to persist
across time, in place networks the majority of links are constantly
evolving and often fleeting, existing only for a short time period.
A better understanding of the mechanisms behind network evolu-
tion is crucial in order to provide more intelligent location-based
services that can adapt to the ever-changing patterns of cities and
offer more tailored recommendations and advertisements based on
the user’s location and expected mobility patterns.
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