
AA:1

This paper is a revised and extended version of [Berardi et al. 2012]. The order in which the authors are
listed is purely alphabetical; each author has given an equal contribution to this work.
Authors’ address: Giacomo Berardi and Andrea Esuli, Istituto di Scienza e Tecnologie dell’Informazione,
Consiglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy. E-mail: first-
name.lastname@isti.cnr.it . Fabrizio Sebastiani, Qatar Computing Research Institute, PO Box 5825, Doha,
Qatar. E-mail: fsebastiani@qf.org.qa . Fabrizio Sebastiani is on leave from the Italian National Council of
Research.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1556-4681/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

ar
X

iv
:1

50
3.

00
49

1v
1

 [
cs

.L
G

]
 2

 M
ar

 2
01

5

Utility-Theoretic Ranking
for Semi-Automated Text Classification

GIACOMO BERARDI, ANDREA ESULI, Italian National Council of Research
FABRIZIO SEBASTIANI, Qatar Computing Research Institute

Semi-Automated Text Classification (SATC) may be defined as the task of ranking a set D of automatically
labelled textual documents in such a way that, if a human annotator validates (i.e., inspects and corrects
where appropriate) the documents in a top-ranked portion of D with the goal of increasing the overall
labelling accuracy of D, the expected increase is maximized. An obvious SATC strategy is to rank D so
that the documents that the classifier has labelled with the lowest confidence are top-ranked. In this work
we show that this strategy is suboptimal. We develop new utility-theoretic ranking methods based on the
notion of validation gain, defined as the improvement in classification effectiveness that would derive by
validating a given automatically labelled document. We also propose a new effectiveness measure for SATC-
oriented ranking methods, based on the expected reduction in classification error brought about by partially
validating a list generated by a given ranking method. We report the results of experiments showing that,
with respect to the baseline method above, and according to the proposed measure, our utility-theoretic
ranking methods can achieve substantially higher expected reductions in classification error.

Categories and Subject Descriptors: Information systems [Information retrieval]: Retrieval tasks
and goals—Clustering and Classification; Computing methodologies [Machine learning]: Learning
paradigms—Supervised learning

General Terms: Algorithm, Design, Experimentation, Measurements

Additional Key Words and Phrases: Text classification, supervised learning, semi-automated text classifica-
tion, cost-sensitive learning, ranking

1. INTRODUCTION
Suppose an organization needs to classify a set D of textual documents under classi-
fication scheme C, and suppose that D is too large to be classified manually, so that
resorting to some form of automated text classification (TC) is the only viable option.
Suppose also that the organization has strict accuracy standards, so that the level of
effectiveness obtainable via state-of-the-art TC technology (including any possible im-
provements obtained via active learning) is not sufficient. In this case, the most plau-
sible strategy is to train an automatic classifier Φ̂ on the available training data Tr,
improve it as much as possible (e.g., via active learning), classify D by means of Φ̂, and
then have a human editor validate (i.e., inspect and correct where appropriate) the re-
sults of the automatic classification. The human annotator will validate only a subset
D′ ⊂ D, e.g., until she is confident that the overall level of accuracy of D is sufficient,
or until she runs out of time. We call this scenario semi-automated text classification
(SATC).

An automatic TC system may support this task by ranking, after the classification
phase has ended and before validation begins, the classified documents in such a way
that, if the human annotator validates the documents starting from the top of the
ranking, the expected increase in classification effectiveness that derives from this
validation is maximized. This paper is concerned with devising good ranking strategies
for this task.

One obvious strategy (also used in [Martinez-Alvarez et al. 2012]) is to rank the
documents in ascending order of the confidence scores generated by Φ̂, so that the top-
ranked documents are the ones that Φ̂ has classified with the lowest confidence. The
rationale is that an increase in effectiveness can derive only by validating misclassi-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Utility-Theoretic Ranking for Semi-Automated Text Classification A:3

fied documents, and that a good ranking method is simply the one that top-ranks the
documents with the highest probability of misclassification, which (in the absence of
other information) we may take to be the documents which Φ̂ has classified with the
lowest confidence.

In this work we show that this strategy is, in general, suboptimal. Simply stated,
the reason is that the improvements in effectiveness that derive from correcting a
false positive or a false negative, respectively, may not be the same, depending on
which evaluation function we take to represent our notion of “effectiveness”. Addition-
ally, the ratio between these improvements may vary during the validation process. In
other words, an optimal ranking strategy must take into account the above improve-
ments and how these impact on the evaluation function; we will thus look at ranking
methods based on explicit loss minimization, i.e., optimized for the specific effective-
ness measures used.

The contributions of this paper are the following. First, we develop new utility-
theoretic ranking methods for SATC based on the notion of validation gain, defined
as the improvement in effectiveness that would derive by correcting a given type of
mistake (i.e., false positive or false negative). Second, we propose a new evaluation
measure for SATC based on a probabilistic user model, and use it to evaluate our ex-
periments on standard text classification datasets. The results of these experiments
show that, with respect to the confidence-based baseline method discussed above, our
ranking methods are substantially more effective.

The rest of the paper is organized as follows. Section 2 reviews related work, while
Section 3 sets the stage by introducing preliminary definitions and notation. Section
4 describes our base utility-theoretic strategy for ranking the automatically labelled
documents, while in Section 5 we propose a novel effectiveness measure for this task
based on a probabilistic user model. Section 6 reports the results of our experiments
in which we test the effectiveness of ranking strategies by simulating the work of a
human annotator that validates variable-sized portions of the labelled test set. In Sec-
tion 7 we address a potential problem deriving from the “static” nature of our strat-
egy, by describing a “dynamic” (albeit computationally more expensive) version of the
same strategy, and draw an experimental comparison between the two. In Section 8
we acknowledge the existence of two different ways (“micro” and “macro”) of averaging
effectiveness results across classes, and show that the methods we have developed so
far are optimized for macro-averaging; we thus develop and test methods optimized
for micro-averaged effectiveness. Section 9 concludes by charting avenues for future
research.

2. RELATED WORK
Many researchers have tackled the problem of how to improve on the accuracy de-
livered by an automatic text classifier when this accuracy is not up to the standards
required by the application (as, e.g., stipulated in a Service Level Agreement).

A standard response to this problem is to ask human annotators to label additional
data that can then be used in retraining a (hopefully) more accurate classifier. This can
be done via the use of active learning techniques (AL – see e.g., [Hoi et al. 2006; Tong
and Koller 2001]), i.e., via algorithms that rank unlabelled documents in such a way
that the top-ranked ones bring about, once manually labelled and used for retraining,
the highest expected improvement in classification accuracy. Still, the improvement in
accuracy that can be obtained via active learning is limited: even by using the best ac-
tive learning algorithm, accuracy tends to plateau after a certain number of unlabelled
documents have been manually annotated. When this plateau is reached, annotating
more documents will not improve accuracy any further [Settles 2012]. Similar consid-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 G. Berardi, A. Esuli, and F. Sebastiani

erations apply when active learning is carried out at the term level, rather than at the
document level [Godbole et al. 2004; Raghavan et al. 2006].

A related response to the same problem is to use training data cleaning techniques
(TDC – see e.g., [Brodley and Friedl 1999; Esuli and Sebastiani 2013; Fukumoto and
Suzuki 2004]), i.e., use algorithms that optimize the human annotator’s efforts at cor-
recting possible labelling mistakes in the training set. TDC algorithms rank the train-
ing documents in such a way that the top-ranked ones bring about, once their labels
are manually checked and then used for retraining, the highest expected improvement
in classification accuracy. In other words, TDC is to labelled training documents what
AL is to unlabelled ones. Similarly to what happens in active learning, in many ap-
plicative contexts high enough accuracy levels cannot be attained even at the price of
carefully validating the entire training set for labelling mistakes.

Yet another response may be the use of some form of weakly supervised learning /
semi-supervised learning, i.e., of techniques that allow training a classifier when train-
ing data are few, often leveraging unlabelled data along with the labelled training data
[Chapelle et al. 2006; Zhu and Goldberg 2009]. This solution relies on the fact that un-
labelled data is often available in large quantities, sometimes even from the same
source where the training and test data originate. Similarly to the cases of AL and
TDC, improvements with respect to the results of the purely supervised setting may
be obtained, but these improvements are going to be limited anyway.

In conclusion, when the required accuracy standards are high, neither training data
cleaning, nor active learning, nor weakly supervised / semi-supervised learning, nor a
combination of them, may suffice to reach up to these standards. In this case, after ei-
ther or all such techniques have been applied, we can only resort to manual validation
of part of the automatically classified documents by a human annotator. Supporting
this last phase is the goal of semi-automated text classification.

All the techniques discussed above are different from SATC, since in SATC we are
not concerned with improving the quality of the trained classifier. We are instead con-
cerned with improving the quality of the automatically classified test set, typically
after all attempts at injecting additional quality in the automatic classifier (and in
the training set) have proved insufficient; in particular, no retraining / reclassification
phase is involved in SATC.

Active learning. As remarked above, SATC certainly bears relations to active learn-
ing. In both SATC and in the selective sampling approach to AL ([Lewis and Catlett
1994]; also known as pool-based approach [McCallum and Nigam 1998]), the automat-
ically classified objects are ranked and the human annotator is encouraged to correct
possible misclassifications by working down from the top of the ranked list. However,
as remarked above, the goals of the two tasks are different. In active learning we
are interested in top-ranking the unlabelled documents that, once manually labelled,
would maximize the information fed back to the learning process, while in SATC we
are interested in top-ranking the unlabelled documents that, once manually validated,
maximize the expected accuracy of the automatically classified document set. As a re-
sult, the optimal ranking strategies for the two tasks may be different too.

Some approaches to AL take into account the costs of misclassification, thus attribut-
ing different levels of importance to different types of error. In [Kapoor et al. 2007]
these costs are embedded into a decision-theoretic framework, which is reminiscent of
our utility-theoretic framework. A value-of-information criterion is used in order to se-
lect samples which maximize profit, determined by the total risk of classification and
the total cost of labelling. The total risk is formulated as a utility function in which
the probability of each classification and the risk associated with it are taken into ac-
count. The concept of risk is reminiscent of the notion of “gain” defined in our utility

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Utility-Theoretic Ranking for Semi-Automated Text Classification A:5

function (see Section 4.2), but its purpose is to consider the human effort needed in
correcting a misclassified sample [Vijayanarasimhan and Grauman 2009]. Therefore
this decision-theoretic strategy is not aimed to directly improve classification accuracy,
but to minimise the manual work of the annotator, which is quantified by the risk and
the cost of labelling.
Semi-automated TC. While AL (and, to a much lesser degree, TDC) have been in-
vestigated extensively in a TC context, semi-automated TC has been fairly neglected
by the research community. While a number of papers (e.g., [Larkey and Croft 1996;
Sebastiani 2002; Yang and Liu 1999]) have evoked the existence of this scenario, we
are not aware of many published papers that either discuss ranking policies for sup-
porting the human annotator’s effort, or that attempt to quantify the effort needed
for reaching a desired level of accuracy. For instance, while discussing a system for
the automatic assignment of ICD9 classes to patients’ discharge summaries, Larkey
and Croft [1996] say “We envision these classifiers being used in an interactive system
which would display the 20 or so top ranking [classes] and their scores to an expert
user. The user could choose among these candidates (...)”, but do not present experi-
ments that quantify the accuracy that the validation activity brings about, or methods
aimed at optimizing the cost-effectiveness of this activity.

The recent [Martinez-Alvarez et al. 2012] tackles the related problem of deciding
when a document is too difficult for automated classification, and should thus be routed
to a human annotator. However, the method presented in the paper is not applicable to
our case, since (a) it is undefined for documents with no predicted labels (a fairly fre-
quent case in multi-label TC), and (b) it is undefined when the classification threshold
is zero (again, a fairly frequent case in modern learning algorithms).

In a subsequent paper [Martinez-Alvarez et al. 2013], the same authors study a
family of SATC methods that exploit “document difficulty”, taking into account the
confidence scores computed by the base classifiers. They also present a comparison
between the techniques they propose and that presented in an earlier version of the
present paper [Berardi et al. 2012]; in this comparison, the former are claimed to out-
perform the latter on the Reuters-21578 dataset discussed in Section 6.4. However, this
comparison is incorrect since the authors compare the results of their ranking meth-
ods as applied to confidence scores generated by SVMs, with those of the [Berardi et al.
2012] ranking method as applied to confidences scores generated by a different learner.
A correct comparison among ranking methods must instead be carried out by provid-
ing to all methods the same input, i.e., the same confidence scores (whose generation
is not part of the method itself). The comparison reported in [Martinez-Alvarez et al.
2013] is incorrect also because it is carried out in terms of the ENERµρ measure (see
Section 5.3); instead, as stated in [Berardi et al. 2012], the measure according to which
the method of [Berardi et al. 2012] should be evaluated is ENERMρ , and not ENERµρ ,
since it is ENERMρ that that method was optimized for. In Section 8 we will indeed
present SATC methods optimized for ENERµρ .

An application of the method discussed in Section 7 to performing SATC in a market
research context is presented in [Berardi et al. 2014].

3. PRELIMINARIES
Given a set of textual documents D and a predefined set of classes C = {c1, . . . , cm},
(multi-class multi-label) TC is usually defined as the task of estimating an unknown
target function Φ : D × C → {−1,+1}, that describes how documents ought to be clas-
sified, by means of a function Φ̂ : D × C → {−1,+1} called the classifier1; +1 and −1

1Consistently with most mathematical literature we use the caret symbol (ˆ) to indicate estimation.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 G. Berardi, A. Esuli, and F. Sebastiani

represent membership and non-membership of the document in the class. Here, “multi-
class” means that there are m ≥ 2 classes, while “multi-label” refers to the fact that
each document may belong to zero, one, or several classes at the same time. Multi-class
multi-label TC is usually accomplished by generating m independent binary classifiers
Φ̂j , one for each cj ∈ C, each entrusted with deciding whether a document belongs or
not to a class cj . In this paper we will actually restrict our attention to classifiers Φ̂j
that, aside from taking a binary decision Dij ∈ {−1,+1} on a given document di, also
return a confidence estimate Cij , i.e., a numerical value representing the strength of
their belief in the fact that Dij is correct (the higher the value, the higher the confi-
dence). We formalize this by taking a binary classifier to be a function Φ̂j : D → R in
which the sign of the returned value Dij ≡ sgn(Φ̂j(di)) ∈ {−1,+1} indicates the binary
decision of the classifier, and the absolute value Cij ≡ |Φ̂j(di)| represents its confidence
in the decision.

For the time being we also assume that

F1(Φ̂j(Te)) =
2TPj

2TPj + FPj + FNj
(1)

(the well-known harmonic mean of precision and recall) is the chosen evaluation mea-
sure for binary classification, where Φ̂j(Te) indicates the result of applying Φ̂j to the
test set Te and TPj , FPj , FNj , TNj indicate the numbers of true positives, false posi-
tives, false negatives, true negatives in Te for class cj . Note that F1 is undefined when
TPj = FPj = FNj = 0; in this case we take F1(Φ̂j(Te)) = 1, since Φ̂j has correctly clas-
sified all documents as negative examples. The assumption that F1 is our evaluation
measure is not restrictive; as will be evident later on in the paper, our methods can be
customized to any evaluation function that can be computed from a contingency table.

As a measure of effectiveness for multi-class multi-label TC, for the moment be-
ing we use macro-averaged F1 (noted FM1), which is obtained by computing the class-
specific F1 values and averaging them across all the cj ∈ C. An alternative way of
averaging across the classes (micro-averaged F1) will be discussed in Section 8.

In this paper the set of unlabelled documents that the classifier must automatically
label (and rank) in the “operational” phase will be represented by the test set Te.

4. A RANKING METHOD FOR SATC BASED ON UTILITY THEORY
4.1. Ranking by utility
For the time being let us concentrate on the binary case, i.e., let us assume there is a
single class cj that needs to be separated from its complement cj . The policy we propose
for ranking the automatically labelled documents in Φ̂j(Te) makes use of utility theory,
an extension of probability theory that incorporates the notion of gain (or loss) that
derives from a given course of action [Anand 1993; von Neumann and Morgenstern
1944]. Utility theory is a general theory of rational action under uncertainty, and as
such is used in many fields of human activity; for instance, one such field is betting,
since in placing a certain bet we take into account (a) the probabilities of occurrence
that we subjectively attribute to a set of outcomes (say, to the possible outcomes of a
given football game), and (b) the gains or losses that we obtain, having bet on one of
them, if the various outcomes materialise.

In order to explain our method let us introduce some basics of utility theory. Given a
set A = {α1, α2, . . .} of possible courses of action and a set Ω = {ω1, ω2, . . .} of mutually
disjoint events, the expected utility U(αi,Ω) that derives from choosing course of action

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Utility-Theoretic Ranking for Semi-Automated Text Classification A:7

αi given that any of the events in Ω may occur, is defined as

U(αi,Ω) =
∑
ωk∈Ω

P (ωk)G(αi, ωk) (2)

where P (ωk) is the probability of occurrence of event ωk and G(αi, ωk) is the gain ob-
tained if αi is chosen and event ωk occurs. For instance, αi may be the course of ac-
tion “betting on Arsenal FC’s win” and Ω may be the set of mutually disjoint events
Ω = {ω1, ω2, ω3}, where ω1=“Arsenal FC wins”, ω2=“Arsenal FC and Chelsea FC tie”,
and ω3=“Chelsea FC wins”; in this case,

— P (ω1), P (ω2), P (ω3) are the probabilities of occurrence that we subjectively attribute
to the three events ω1, ω2, ω3;

—G(αi, ω1), G(αi, ω2), G(αi, ω3) are the economic rewards we obtain if we choose course
of action αi (i.e., we bet on the win of Arsenal FC) and the respective event occurs. Of
course, this economic reward will be positive if ω1 occurs and negative if either ω2 or
ω3 occur.

When we face alternative courses of action, acting rationally means choosing the
course of action that maximises our expected utility. For instance, given the alternative
courses of action α1=“betting on Arsenal FC’s win”, α2=“betting on Arsenal FC’s and
Chelsea FC’s tie”, α3=“betting on Chelsea FC’s win”, we should pick among {α1, α2, α3}
the course of action that maximises U(αi,Ω).

How does this translate into a method for ranking automatically labelled docu-
ments? Assume we have a set D = {d1, ..., dn} of such documents that we want to
rank, and that cj is the class we deal with. For instantiating Equation 2 concretely we
need

(1) to decide what our set A = {α1, α2, . . .} of alternative courses of action is;
(2) to decide what the set Ω = {ω1, ω2, . . .} of mutually disjoint events is;
(3) to define the gains G(αi, ωk);
(4) to specify how we compute the probabilities of occurrence P (ωk).

Let us discuss each of these steps in turn.
Concerning Step 1, we will take the action of validating document di as course of

action αi. In this way we will evaluate the expected utility Uj(di,Ω) (i.e., the expected
increase in the overall classification accuracy of Te) that derives to the classification
accuracy of class cj from validating each document di, and we will be able to rank the
documents by their Uj(di,Ω) value, so as to top-rank the ones with the highest expected
utility.

Concerning Step 2, we have argued in the introduction that the increase in accuracy
that derives from validating a document depends on whether the document is a true
positive, a false positive, a false negative, or a true negative; as a consequence, we
will take Ω = {tpj , fpj , fnj , tnj}, where each of these events implicitly refers to the
document di under scrutiny (e.g., tpj denotes the event “document di is a true positive
for class cj”). Our utility function has thus the form

Uj(di,Ω) =
∑

ωk∈{tpj ,fpj ,fnj ,tnj}

P (ωk)G(di, ωk) (3)

How to address Step 3 (defining the gains) will be the subject of Sections 4.2 and 4.3,
while Step 4 (computing the probabilities of occurrence) will be discussed in Section
4.4.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 G. Berardi, A. Esuli, and F. Sebastiani

4.2. Validation gains

We equate G(di, fpj) in Equation 3 with the average increase in F1(Φ̂j(Te)) that would
derive by manually validating the label attributed by Φ̂j to a document di in FPj .
We call this the validation gain of a document in FPj . Note that validation gains are
independent of a particular document, i.e., G(d′, fpj) = G(d′′, fpj) for all d′, d′′ ∈ Te.
Analogous arguments apply to G(di, tpj), G(di, fnj), and G(di, tnj).

Quite evidently, G(di, tpj) = G(di, tnj) = 0, since when the human annotator vali-
dates the label attributed to di by Φ̂j and finds out it is correct, she will not modify it,
and the value of F1(Φ̂j(Te)) will thus remain unchanged.

Concerning misclassified documents, it is easy to see that, in general, G(di, fpj) 6=
G(di, fnj). In fact, if a false positive is corrected, the increase in F1 is the one deriving
from removing a false positive and adding a true negative, i.e.,

G(di, fpj) =
1

FPj
(FFP1 (Φ̂j(Te))− F1(Φ̂j(Te)))

=
1

FPj
(

2TPj
2TPj + FNj

− 2TPj
2TPj + FPj + FNj

)

(4)

where by FFP1 (Φ̂j) we indicate the value of F1 that would derive by correcting all false
positives of Φ̂j(Te), i.e., turning all of them into true negatives. Conversely, if a false
negative is corrected, the increase in F1 is the one deriving from removing a false
negative and adding a true positive, i.e.,

G(di, fnj) =
1

FNj
(FFN1 (Φ̂j(Te))− F1(Φ̂j(Te)))

=
1

FNj
(

2(TPj + FNj)

2(TPj + FNj) + FPj
− 2TPj

2TPj + FPj + FNj
)

(5)

where by FFN1 (Φ̂j) we indicate the value of F1 that would derive by turning all the
false negatives of Φ̂j(Te) into true positives.

Equation 4 defines the gain deriving from the correction of a false positive as the
average across the gains deriving from the correction of each false positive in the con-
tingency table (and analogously for Equation 5). The advantage of such a definition is
that such average gain can be computed once for all during the entire process. We will
see a different definition, leading to a different SATC method, in Section 7.

4.3. Smoothing contingency cell estimates
One problem that needs to be tackled in order to compute G(di, fpj) and G(di, fnj)
is that the contingency cell counts TPj , FPj , FNj are not known (since in operational
settings we do not know which test documents have been classified correctly and which
have been instead misclassified), and thus need to be estimated2. In order to estimate
them we make the assumption that the training set and the test set are independent
and identically distributed. We then perform a k-fold cross-validation (k-FCV) on the
training set: if by TPTrj we denote the number of true positives for class cj result-
ing from the k-fold cross-validation on Tr, the maximum-likelihood estimate of TPj is
ˆTP
ML

j = TPTrj · |Te|/|Tr|; same for F̂P
ML

j and ˆFN
ML

j
3.

2We will disregard the estimation of TNj since it is unnecessary for our purposes, given that F1(Φ̂j(Te))
does not depend on TNj .
3As in many other contexts, the assumption that the training set and the test set are independent and iden-
tically distributed may not be verified in practice; if it is not, in our case this leads to imprecise estimates of

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Utility-Theoretic Ranking for Semi-Automated Text Classification A:9

However, these maximum-likelihood cell count estimates need to be smoothed, so as
to avoid zero counts. In fact, if ˆTP

ML

j = 0 it would derive from Equation 4 that there is
nothing to be gained by correcting a false positive, which is counterintuitive. Similarly,
if F̂P

ML

j = 0 the very notion of FFP1 (Φ̂j) would be meaningless, since it does not make
sense to speak of “removing a false positive” when there are no false positives; and the
same goes for ˆFN

ML

j .

A second reason why ˆTP
ML

j , F̂P
ML

j , ˆFN
ML

j need to be smoothed is that, when
|Te|/|Tr| < 1, they may give rise to negative values for G(di, fpj) and G(di, fnj), which
is counterintuitive. To see this, note that ˆTP

ML

j , F̂P
ML

j , ˆFN
ML

j may not be integers
(which is not bad per se, since the notions of precision, recall, and their harmonic mean
intuitively make sense also when we allow the contingency cell counts to be nonneg-
ative reals instead of the usual integers), and may be smaller than 1 (this happens
when |Te|/|Tr| < 1). This latter fact is problematic, both in theory (since it is mean-
ingless to speak of, say, removing a false positive from Te when “there are less than 1
false positives in Te”) and in practice (since it is easy to verify that negative values for
G(di, fpj) and G(di, fnj) may derive).

Smoothing has extensively been studied in language modelling for speech process-
ing [Chen and Goodman 1996] and for ad hoc search in IR [Zhai and Lafferty 2004].
However, the present context is slightly different, in that we need to smooth contin-
gency tables, and not (as in the cases above) language models. In particular, while
the ˆTP

ML

j , F̂P
ML

j , and ˆFN
ML

j are the obvious counterparts of the document model
resulting from maximum-likelihood estimation, there is no obvious counterpart to the
“collection model”, thus making the use of, e.g., Jelinek-Mercer smoothing problem-
atic. A further difference is that we here require the smoothed counts not only to be
nonzero, but also to be ≥ 1 (a requirement not to be found in language modelling).

Smoothing has also been studied specifically for the purpose of smoothing contin-
gency cell estimates [Burman 1987; Simonoff 1983]. However, these methods are inap-
plicable to our case, since they were originally conceived for contingency tables char-
acterized by a small (i.e., ≤ 1) ratio between the number of observations (which in our
case is |Te|) and the number of cells (which in our case is 4); our case is quite the oppo-
site. Additionally, these smoothing methods do not operate under the constraint that
the smoothed counts should all be ≥ 1, which is a hard constraint for us.

For all these reasons, rather than adopting more sophisticated forms of smoothing,
we adopt simple additive smoothing (also known as Laplace smoothing), a special case
of Bayesian smoothing using Dirichlet priors [Zhai and Lafferty 2004] which is ob-
tained by adding a fixed quantity to each of ˆTP

ML

j , F̂P
ML

j , ˆFN
ML

j . As a fixed quantity
we add 1, since it is the quantity that all our cell counts need to be greater than or
equal to for Equations 4 and 5 to make sense. We denote the resulting estimates by
ˆTP
La

j , F̂P
La

j , ˆFN
La

j . As it will be clear in Section 6 and following, this simple form of
smoothing proves almost optimal, which seems to indicate that there is not much to be
gained by applying more sophisticated smoothing methods to our problem context.

the contingency cell counts. While this may be suboptimal, there is practically nothing that we can do about
it, since we do not know the real values of these counts; in other words, k-FCV is our “best possible shot” at
estimating them in the absence of foreknowledge. As discussed in Section 6.5, we will exactly measure how
suboptimal using k-FCV is, by running experiments in which an oracle feeds our utility-theoretic method
with the true values of the contingency cells.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 G. Berardi, A. Esuli, and F. Sebastiani

Note that we apply smoothing in an “on demand” fashion, i.e., we check if the con-
tingency table needs smoothing at all (i.e., if any of ˆTP

ML

j , F̂P
ML

j , ˆFN
ML

j is < 1) and
we smooth it only if this is the case. The reason why we adopt this “on-demand” policy
will be especially apparent in Section 7.

4.4. Turning confidence scores into probabilities
We derive the probabilities P (ωk) in Equation 3 by assuming that the confidence
scores Cij generated by Φ̂j can be trusted (i.e., that the higher Cij , the higher the
probability that Dij is correct), and by applying to Cij a generalized logistic function
f(z) = eσz/(eσz + 1). This results in

P (fpj |Dij = +1) = 1− eσCij

eσCij + 1

P (fnj |Dij = −1) = 1− eσCij

eσCij + 1

(6)

The generalized logistic function (see Figure 1) has the effect of monotonically con-
verting scores ranging on (−∞,+∞) into real values in the [0.0,1.0] range (hence the
probabilities of Equation 6 range on [0.0,0.5]). When Cij = 0 (this happens when Φ̂j
has no confidence at all in its own decision Dij), then

P (tpj |Dij = +1) = P (fpj |Dij = +1) = 0.5

P (fnj |Dij = −1) = P (tnj |Dij = −1) = 0.5
(7)

i.e., the probability of correct classification and the probability of misclassification are
identical. Conversely, we have

lim
Cij→+∞

P (fpj |Dij = +1) = 0

lim
Cij→+∞

P (fnj |Dij = −1) = 0
(8)

i.e., when Φ̂j has a very high confidence in its own decision Dij , the probability that
Dij is wrong is taken to be close to 0.

The reason why we use a generalized version of the logistic function instead of its
non-parametric version (which corresponds to the case σ = 1) is that using this latter
within Equation 6 would give rise to a very high number of zero probabilities of mis-
classification, since the non-parametric logistic function converts every positive num-
ber above a certain threshold (≈ 36) to a number that standard implementations round
up to 1 even by working in double precision. By tuning the σ parameter (the growth
rate) we can tune the speed at which the right-hand side of the sigmoid asymptotically
approaches 1, and we can thus tune how evenly Equation 6 distributes the confidence
values across the [0.0,0.5] interval.

The process of optimizing σ within Equation 6 is usually called probability calibra-
tion. How we actually optimize σ is discussed in Section 6.1.

4.5. Ranking by total utility
Our function Uj(di,Ω) of Section 4.1 is thus obtained by plugging Equations 4 and 5
into Equation 3. Therefore, we are now in a position to compute, given an automatically
classified document di and a class cj , the utility, for the aims of increasing F1(Φ̂j(Te)),
of manually validating the label Dij attributed to di by Φ̂j .

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Utility-Theoretic Ranking for Semi-Automated Text Classification A:11

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

-0.2

0.2

0.4

0.6

0.8

1.0
σ=0.20

σ=0.42

σ=1.00

σ=2.00

σ=3.00

Fig. 1. The generalized logistic function.

Now, let us recall from Section 3 that our goal is addressing not just the binary,
but the multi-class multi-label TC case, in which binary classification must be accom-
plished simultaneously for |C| ≥ 2 different classes. It might seem sensible to propose
ranking, for each cj ∈ C, all the automatically labelled documents in Te in decreasing
order of their Uj(di,Ω) value. Unfortunately, this would generate |C| different rankings,
and in an operational context it seems implausible to ask a human annotator to scan
|C| different rankings of the same document set (this would mean reading the same
document |C| times in order to validate its labels). As suggested in [Esuli and Sebas-
tiani 2009] for active learning, it seems instead more plausible to generate a single
ranking, according to a score U(di,Ω) that is a function of the |C| different Uj(di,Ω)
scores. In such a way, the human annotator will scan this single ranking from the
top, validating all the |C| different labels for di before moving on to another document.
As the criterion for generating the overall utility score U(di,Ω) we use total utility,
corresponding to the simple sum

U(di,Ω) =
∑
cj∈C

Uj(di,Ω) (9)

Our final ranking is thus generated by sorting the test documents in descending order
of their U(di,Ω) score.

From the standpoint of computational cost, this technique is O(|Te| · (|C|+ log |Te|)),
since the cost of sorting the test documents by their U(·,Ω) score is O(|Te| log |Te|), and
the cost of computing the U(·,Ω) score for |Te| documents and |C| classes is O(|Te| · |C|).

5. EXPECTED NORMALIZED ERROR REDUCTION
No measures are known from literature for evaluating the effectiveness of a SATC-
oriented ranking method ρ. We here propose such a measure, which we call ex-
pected normalized error reduction (denoted ENERρ). In this section we will introduce
ENERρ in a stepwise fashion.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 G. Berardi, A. Esuli, and F. Sebastiani

0.0 0.2 0.4 0.6 0.8 1.0
Inspection Depth

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
ed

uc
tio

n
(E

R)

Random
Baseline
U-Theoretic(s)
U-Theoretic(d)
Oracle1(s)
Oracle1(d)
Oracle2(s)
Oracle2(d)

0.0 0.2 0.4 0.6 0.8 1.0
Inspection Depth

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
ed

uc
tio

n
(E

R)

Random
Baseline
U-Theoretic(s)
U-Theoretic(d)
Oracle1(s)
Oracle1(d)
Oracle2(s)
Oracle2(d)

Fig. 2. Error reduction, measured as ERMρ , as a function of validation depth. The dataset is REUTERS-
21578, the learners are MP-BOOST (left) and SVMs (right). The Random curve indicates the results of our
estimation of the expected ER of the random ranker via a Monte Carlo method with 100 random trials.
Higher curves are better.

5.1. Error reduction at rank
Let us first introduce the notion of residual error at rank n (noted Eρ(n)), defined as
the error that is still present in the document set Te after the human annotator has
validated the documents at the first n rank positions in the ranking generated by ρ.
The value of Eρ(0) is the initial error generated by the automated classifier, and the
value of Eρ(|Te|) is 0. We assume our measure of error to range on [0,1]; if so, Eρ(n)
ranges on [0,1] too. We will hereafter call n the validation depth (or inspection depth).

We next define error reduction at rank n to be

ERρ(n) =
Eρ(0)− Eρ(n)

Eρ(0)
(10)

i.e., a value in [0,1] that indicates the error reduction obtained by a human annotator
who has validated the documents at the first n rank positions in the ranking generated
by ρ; 0 stands for no reduction, 1 stands for total elimination of error.

Example plots of the ERρ(n) measure are displayed in Figure 2, where different
curves represent different ranking methods ρ′, ρ′′, ..., and where, for better conve-
nience, the x axis indicates the fraction n/|Te| of the test set that has been validated
rather than the number n of validated documents. By definition all curves start at the
origin of the axes (i.e, if the annotator validates 0 test documents, no error reduction is
obtained) and end at the upper right corner of the graph (i.e., if the annotator validates
all the |Te| test documents, a complete elimination of error is obtained). More convex
(i.e., higher) curves represent better strategies, since they indicate that a higher error
reduction is achieved for the same amount of manual validation effort.

The reason why we focus on error reduction, instead of the complementary concept
of “increase in accuracy”, is that error reduction has always the same upper bound
(i.e., 100% reduction), independently of the initial error. In contrast, the increase in
accuracy that derives from validating the documents does not always have the same
upper bound. For instance, if the initial accuracy is 0.5, if we assume that accuracy

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Utility-Theoretic Ranking for Semi-Automated Text Classification A:13

values range on [0,1] then an increase in accuracy of 100% is indeed possible, while this
increase is not possible if the initial accuracy is 0.9. This makes the notion of “increase
in accuracy” less immediately interpretable, since different datasets and/or different
classifiers give rise to different initial levels of accuracy. So, using “error reduction”
instead of “increase in accuracy” makes our curves more immediately interpretable,
since error reduction has the same range (i.e., [0,1]) irrespectively of dataset used
and/or initial classifier used.

Since (as stated in Section 3) we use F1 for measuring effectiveness, as a measure of
classification error we use E1 ≡ (1−F1), which indeed (as assumed at the beginning of
this section) ranges on [0,1]. In order to measure the overall effectiveness of a ranking
method across the entire set C of classes, we compute macro-averaged E1 (noted EM1),
obtained by computing the class-specific E1 values and averaging them across the cj ’s;
from this it derives that EM1 = 1 − FM1 . By ERMρ (n) we will indicate macro-averaged
ERρ(n), also obtained by computing the class-specific ERρ(n) values and averaging
them across the cj ’s.

5.2. Normalized error reduction at rank ...
One problem with ERρ(n), though, is that the expected ERρ(n) value of the random
ranker is fairly high4, since it amounts to n

|Te| . The difference between the ERρ(n)

value of a genuinely engineered ranking method ρ and the expected ERρ(n) value of
the random ranker is particularly small for high values of n, and is null for n = |Te|.
This means that it makes sense to factor out the random factor from ERρ(n). This
leads us to define the normalized error reduction of ranking method ρ as NERρ(n) =
ERρ(n)− n

|Te| , with macro-averaged NERρ(n) obtained as usual and denoted, as usual,
by NERMρ (n).

5.3. ... and its expected value
However, NERρ(n) is still unsatisfactory as a measure, since it depends on a spe-
cific value of n (which is undesirable, since our human annotator may decide to work
down the ranked list as far as she deems suitable). Following [Robertson 2008] we as-
sume that the human annotator stops validating the ranked list at exactly rank n with
probability Ps(n) (the index s stands for “stoppage”). We can then define the expected
normalized error reduction of ranking method ρ on a given document set Te as the
expected value of NERρ(n) according to probability distribution Ps(n), i.e.,

ENERρ =

|Te|∑
n=1

Ps(n)NERρ(n) (11)

with macro-averaged ENERρ indicated, as usual, as ENERMρ .
Different probability distributions Ps(n) can be assumed. In order to base the def-

inition of such a distribution on a plausible model of user behaviour, we here make
the assumption (along with [Moffat and Zobel 2008]) that a human annotator, after
validating a document, goes on to validate the next document with probability (or per-
sistence [Moffat and Zobel 2008]) p or stops validating with probability (1− p), so that

Ps(n) =

{
pn−1(1− p) if n ∈ {1, . . . , |Te| − 1}
pn−1 if n = |Te| (12)

4That the expected ERρ(n) value of the random ranker is n
|Te| is something that we have not tried to

formally prove. However, that this holds is supported by intuition and is unequivocally shown by Monte
Carlo experiments we have run on our datasets; see Figures 2 to 4 for a graphical representation.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 G. Berardi, A. Esuli, and F. Sebastiani

It can be shown that, for a sufficiently large value of |Te|,
∑|Te|
n=1 n · Ps(n) (the expected

number of documents that the human annotator will validate as a function of p) asymp-
totically tends to 1

1−p . The value ξ = 1
|Te|(1−p) thus denotes the expected fraction of the

test set that the human annotator will validate as a function of p.
Using this distribution in practice entails the need of determining a realistic value

for p. A value p = 0 corresponds to a situation in which the human annotator only
validates the top-ranked document, while p = 1 indicates a human annotator who val-
idates each document in the ranked list. Unlike in ad hoc search, we think that in a
SATC context it would be unrealistic to take a value for p as given irrespective of the
size of Te. In fact, given a desired level of error reduction, when |Te| is large the hu-
man annotators need to be more persistent (i.e., characterized by higher p) than when
|Te| is small. Therefore, instead of assuming a predetermined value of p we assume
a predetermined value of ξ, and derive the value of p from the equation ξ = 1

|Te|(1−p) .
For example, in a certain application we might assume ξ = .20 (i.e., assume that the
average human annotator validates 20% of the test set). In this case, if |Te| = 1000,
then p = 1 − 1

.20·1000 = .9950, while if |Te| = 10, 000, then p = 1 − 1
.20·10000 = .9995. In

the experiments of Section 6 we will test all values of p corresponding to values of ξ in
{.05, .10, .20}.

Note that the values of ENERρ are bound above by 1, but a value of 1 is not at-
tainable. In fact, even the “perfect ranker” (i.e., the ranking method that top-ranks
all misclassified documents, noted Perf) cannot attain an ENERρ value of 1, since in
order to achieve total error elimination all the misclassified documents need to be val-
idated anyway, one by one, which means that the only condition in which ENERPerf
might equal 1 is when there is just 1 misclassified document. We do not try to nor-
malize ENERρ by the value of ENERPerf since ENERPerf cannot be characterized
analytically, and depends on the actual labels in the test set.

6. EXPERIMENTS
We have now fully specified (Section 4) a method for performing SATC-oriented rank-
ing and (Section 5) a measure for evaluating the quality of the produced rankings, so
we are now in a position to test the effectiveness of our proposed method. In Sections
6.1 to 6.5 we will describe our experimental setting, while in Section 6.6 we will report
and discuss the actual results of these experiments.

6.1. Experimental protocol
Let Ω be a dataset partitioned into a training set Tr and a test set Te. In each experi-
ment reported in this paper we adopt the following experimental protocol:

(1) For each cj ∈ C
(a) Train classifier Φ̂j on Tr and classify Te by means of Φ̂j ;
(b) Run k-fold cross-validation on Tr, thereby

i. computing TPTrj , FPTrj , and FNTr
j ;

ii. optimizing the σ parameter of Equation 6 (see Section 6.2 below for the ac-
tual optimization method used);

(2) For every ranking policy ρ tested
(a) Rank Te according to ρ;
(b) Scan the ranked list from the top, correcting possible misclassifications and

computing the resulting values of ENERMρ for different values of ξ.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Utility-Theoretic Ranking for Semi-Automated Text Classification A:15

For Step 1b we have used k = 10; we think this value guarantees a good tradeoff
between the accuracy of the parameter estimates (which tends to increase with k) and
the cost of computing these estimates (which also increases with k).

6.2. Probability calibration
We optimize the σ parameter by picking the value of σ that minimizes the average
(across the cj ∈ C) absolute value of the difference between PosTrj , the number of posi-
tive training examples of class cj , and E[PosTrj], the expected number of such examples
as resulting from the probabilities of membership in cj computed in the k-fold cross-
validation. That is, we pool together all the training documents classified in the k-fold
cross-validation phase, and then we pick

arg min
σ

1

|C|
∑
cj∈C
|PosTrj − E[PosTrj]| =

arg min
σ

1

|C|
∑
cj∈C
|PosTrj −

∑
di∈Tr

P (cj |di)| =

arg min
σ

1

|C|
∑
cj∈C
|PosTrj −

∑
di∈Tr

eσΦ̂j(di)

eσΦ̂j(di) + 1
|

(13)

This method is a much faster calibration method than the traditional method of pick-
ing the value of σ that has performed best in k-fold cross-validation5. In fact, unlike the
latter, it does not depend on the ranking method ρ. Therefore, this method spares us
from the need of ranking the training set several times, i.e., once for each combination
of a tested value of σ and a ranking method ρ.

6.3. Learning algorithms

As our first learning algorithm for generating our classifiers Φ̂j we use a boosting-
based learner called MP-BOOST [Esuli et al. 2006]. Boosting-based methods have
shown very good performance across many learning tasks and, at the same time, have
strong justifications from computational learning theory. MP-BOOST is a variant of
ADABOOST.MH [Schapire and Singer 2000] optimized for multi-label settings, which
has been shown in [Esuli et al. 2006] to obtain considerable effectiveness improve-
ments with respect to ADABOOST.MH. In all our experiments we set the S parameter
of MP-BOOST (representing the number of boosting iterations) to 1000.

As the second learning algorithm we use support vector machines (SVMs). We use
the implementation from the freely available LibSvm library6, with a linear kernel
and parameters at their default values.

In all the experiments discussed in this paper stop words have been removed, punc-
tuation has been removed, all letters have been converted to lowercase, numbers have
been removed, and stemming has been performed by means of Porter’s stemmer. Word
stems are thus our indexing units. Since MP-BOOST requires binary input, only their
presence/ absence in the document is recorded, and no weighting is performed. Docu-
ments are instead weighted (by standard cosine-normalized tfidf) for the SVMs exper-
iments.

5This method is sometimes called Platt calibration (see e.g., [Niculescu-Mizil and Caruana 2005]), due its
use in [Platt 2000]. However, the method was in use well before Platt’s article (see e.g., [Ittner et al. 1995,
Section 2.3]).
6http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

A:16 G. Berardi, A. Esuli, and F. Sebastiani

Table I. Characteristics of the test collections used. From left to right we report the number of
test sets |T | (Column 2) and, for each test set, the number of training documents |Tr| (3), the
number of test documents |Te| (4), the number of classes |C| (5), and the average number of
classes per test document ACD (6). Columns 7-10 report the initial error (both EM1 and Eµ1)
generated by the MP-BOOST and SVMs classifiers.

Dataset |T | |Tr| |Te| |C| ACD
EM1 Eµ1

MP-B SVMs MP-B SVMs

REUTERS-21578 1 9603 3299 115 1.135 .392 .473 .152 .140

REUTERS-21578/10 10 9603 330 115 1.135 .194 .199 .151 .130

REUTERS-21578/100 100 9603 33 115 1.135 .050 .049 .149 .140

OHSUMED 1 183229 50216 97 0.132 .553 .577 .389 .324

OHSUMED-S 1 12358 3584 97 1.851 .520 .522 .286 .244

6.4. Datasets
Our first dataset is the REUTERS-21578 corpus. It consists of a set of 12,902 news
stories, partitioned (according to the standard “ModApté” split we have adopted) into
a training set of 9603 documents and a test set of 3299 documents. The documents
are labelled by 118 categories; the average number of categories per document is 1.08,
ranging from a minimum of 0 to a maximum of 16; the number of positive examples
per class ranges from a minimum of 1 to a maximum of 3964. In our experiments we
have restricted our attention to the 115 categories with at least one positive train-
ing example. This dataset is publicly available7 and is probably the most widely used
benchmark in text classification research; this fact allows other researchers to easily
replicate the results of our experiments.

Another dataset we have used is OHSUMED [Hersh et al. 1994], a test collection
consisting of a set of 348,566 MEDLINE references spanning the years from 1987 to
1991. Each entry consists of summary information relative to a paper published on one
of 270 medical journals. The available fields are title, abstract, MeSH indexing terms,
author, source, and publication type. Not all the entries contain abstract and MeSH
indexing terms. In our experiments we have scrupulously followed the experimental
setup presented in [Lewis et al. 1996]. In particular, (i) we have used for our experi-
ments only the 233,445 entries with both abstract and MeSH indexing terms; (ii) we
have used the entries relative to years 1987 to 1990 (183,229 documents) as the train-
ing set and those relative to year 1991 (50,216 documents) as the test set; (iii) as the
categories on which to perform our experiments we have used the main heading MeSH
index terms assigned to the entries. Concerning this latter point, we have restricted
our experiments to the 97 MeSH index terms that belong to the Heart Disease (HD)
subtree of the MeSH tree, and that have at least one positive training example. This
is the only point in which we deviate from [Lewis et al. 1996], which experiments only
on the 77 most frequent MeSH index terms of the HD subtree.

The main characteristics of our datasets, and of three variants (called REUTERS-
21578/10, REUTERS-21578/100, and OHSUMED-S) that will be discussed in Section
6.6, are conveniently summarized in Table I.

6.5. Lower bounds and upper bounds
As the baseline for our experiments we use the confidence-based strategy discussed in
Section 1, which corresponds to using our utility-theoretic method with both G(fp) and

7http://www.daviddlewis.com/resources/testcollections/∼reuters21578/

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.daviddlewis.com/resources/testcollections/~reuters21578/

Utility-Theoretic Ranking for Semi-Automated Text Classification A:17

G(fn) set to 1. As discussed in Footnote ??, while this strategy has not (to the best of
our knowledge) explicitly been proposed before, it seems a reasonable, common-sense
strategy anyway.

While the confidence-based method will act as our lower bound, we have also run
“oracle-based” methods aimed at identifying upper bounds for the effectiveness of our
utility-theoretic method, i.e., at assessing the effectiveness of “idealized” (albeit non-
realistic) systems at our task.

The first such method (dubbed Oracle1) works by “peeking” at the actual values of
TPj , FPj , FNj in Te, using them in the computation of G(di, fpj) and G(di, fnj), and
applying our utility-theoretic method as usual. Oracle1 thus indicates how our method
would behave were it able to “perfectly” estimate TPj , FPj , and FNj . The difference in
effectiveness between Oracle1 and our method will thus be due to (i) the performance
of the method adopted for smoothing contingency tables, and (ii) possible differences
between the distribution of the documents across the contingency table cells in the
training and in the test set.

In the second such method (Oracle2) we instead peek at the true labels of the docu-
ments in Te, which means that we will be able to (a) use the actual values of TPj , FPj ,
FNj in the computation of G(di, fpj) and G(di, fnj) (as in Oracle1), and (b) replace the
probabilities in Equation 3 with the true binary values (i.e., replacing P (x) with 1 if x
is true and 0 if x is false), after which we apply our utility-based ranking method as
usual. The difference in effectiveness between Oracle2 and our method will be due to
factors (i) and (ii) already mentioned for Oracle1 and to our method’s (obvious) inability
to perfectly predict whether a document was classified correctly or not.

6.6. Results and discussion
The results of our experiments are given in Table II, where we present the re-
sults of running, for each of two learners (MP-BOOST and SVMs) and five datasets
(REUTERS-21578, OHSUMED, and three variants of them – called REUTERS-
21578/10, REUTERS-21578/100, OHSUMED-S – that we will introduce in Sections
6.6.2, 6.6.3, 6.6.4), our utility-theoretic method against the three methods discussed
in Section 6.5. In Table II our method, Oracle1 and Oracle2 are actually indicated as
U-Theoretic(s), Oracle1(s) and Oracle2(s), to distinguish them from variants (indicated
as U-Theoretic(d), Oracle1(d) and Oracle2(d)) that will be described in Section 7. Table
II presents ENERMρ (ξ) values for three representative values of ξ, i.e., 0.05, 0.10, and
0.20.

For each of two learners and five datasets, and for each pairwise combination of all
the methods discussed (including those we will discuss in Section 7), we have run a
paired t-test with ENERMρ (0.10) as the evaluation measure and 0.05 as the signifi-
cance level, in order to determine whether the difference in performance between the
two methods is statistically significant. The results of such tests are reported in Table
III.

6.6.1. Mid-sized test sets. Figure 2 plots the results, in terms of ERMρ (n), of our experi-
ments with the MP-BOOST and SVM learners on the REUTERS-21578 dataset. The
results of these experiments in terms of ENERMρ as a function of the chosen value of
ξ are instead reported in Table II. The optimal value of σ returned by the k-fold cross-
validation phase is .554 for MP-BOOST and 7.096 for SVMs; these values, sharply dif-
ferent from 1 and from each other, clearly show the advantage of converting confidence
scores into probabilities via a generalized logistic function.

The first insight we can draw from these results is that our U-Theoretic(s) method
outperforms Baseline in a very substantial way (the paired t-test – see Table III –

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 G. Berardi, A. Esuli, and F. Sebastiani

Table II. Results of various ranking methods, applied to two learning algorithms and several test collections, in
terms of ENERMρ (ξ), for ξ ∈ {0.05, 0.10, 0.20}. Improvements listed for the various methods are relative to the
baseline.

MP-BOOST SVMs

ξ = 0.05 ξ = 0.10 ξ = 0.20 ξ = 0.05 ξ = 0.10 ξ = 0.20

R
E

U
T

E
R

S
-2

15
78

Baseline .071 .108 .152 .262 .352 .420

U-Theoretic(s) .163 (+128%) .226 (+109%) .280 (+84%) .442 (+69%) .531 (+51%) .562 (+34%)

U-Theoretic(d) .160 (+124%) .224 (+107%) .279 (+84%) .431 (+65%) .523 (+49%) .557 (+33%)

Oracle1(s) .155 (+117%) .222 (+106%) .280 (+84%) .477 (+82%) .563 (+60%) .586 (+40%)

Oracle1(d) .152 (+113%) .219 (+103%) .275 (+81%) .476 (+82%) .567 (+61%) .592 (+41%)

Oracle2(s) .693 (+869%) .738 (+583%) .707 (+365%) .719 (+174%) .760 (+116%) .723 (+72%)

Oracle2(d) .677 (+847%) .725 (+571%) .699 (+360%) .723 (+176%) .763 (+117%) .724 (+72%)

R
E

U
T

E
R

S
-2

15
78

/1
0 Baseline .063 .097 .135 .243 .322 .383

U-Theoretic(s) .145 (+131%) .203 (+110%) .245 (+81%) .330 (+36%) .415 (+29%) .465 (+21%)

U-Theoretic(d) .139 (+121%) .198 (+105%) .239 (+77%) .335 (+38%) .420 (+30%) .470 (+23%)

Oracle1(s) .159 (+153%) .205 (+112%) .243 (+80%) .392 (+61%) .482 (+50%) .522 (+36%)

Oracle1(d) .158 (+152%) .212 (+119%) .255 (+89%) .394 (+62%) .488 (+52%) .531 (+39%)

Oracle2(s) .555 (+784%) .643 (+566%) .648 (+380%) .596 (+145%) .676 (+110%) .672 (+75%)

Oracle2(d) .558 (+789%) .648 (+571%) .654 (+384%) .599 (+147%) .679 (+111%) .675 (+76%)

R
E

U
T

E
R

S
-2

15
78

/1
00

Baseline .069 .121 .164 .226 .302 .364

U-Theoretic(s) .118 (+71%) .172 (+42%) .215 (+31%) .291 (+29%) .365 (+21%) .416 (+14%)

U-Theoretic(d) .119 (+72%) .176 (+45%) .217 (+32%) .289 (+28%) .367 (+22%) .419 (+15%)

Oracle1(s) .192 (+178%) .247 (+104%) .281 (+71%) .318 (+41%) .422 (+40%) .479 (+32%)

Oracle1(d) .197 (+185%) .266 (+120%) .318 (+94%) .318 (+41%) .427 (+41%) .489 (+34%)

Oracle2(s) .429 (+521%) .537 (+344%) .575 (+251%) .458 (+103%) .568 (+88%) .600 (+65%)

Oracle2(d) .429 (+521%) .537 (+344%) .576 (+251%) .458 (+103%) .569 (+88%) .601 (+65%)

O
H

S
U

M
E

D

Baseline .385 .479 .512 .526 .630 .644

U-Theoretic(s) .442 (+15%) .529 (+10%) .549 (+7%) .623 (+18%) .685 (+9%) .666 (+3%)

U-Theoretic(d) .443 (+15%) .531 (+11%) .550 (+7%) .618 (+17%) .676 (+7%) .655 (+2%)

Oracle1(s) .445 (+16%) .530 (+11%) .549 (+7%) .639 (+21%) .687 (+9%) .657 (+2%)

Oracle1(d) .449 (+17%) .532 (+11%) .550 (+7%) .617 (+17%) .659 (+5%) .636 (-1%)

Oracle2(s) .838 (+118%) .839 (+75%) .769 (+50%) .864 (+64%) .854 (+36%) .778 (+21%)

Oracle2(d) .758 (+97%) .762 (+59%) .700 (+37%) .795 (+51%) .787 (+25%) .721 (+12%)

O
H

S
U

M
E

D
-S

Baseline .021 .025 .026 .075 .124 .164

U-Theoretic(s) .087 (+323%) .118 (+374%) .132 (+402%) .212 (+184%) .282 (+127%) .323 (+97%)

U-Theoretic(d) .088 (+329%) .118 (+374%) .132 (+402%) .210 (+182%) .280 (+126%) .321 (+96%)

Oracle1(s) .091 (+343%) .117 (+370%) .125 (+375%) .272 (+265%) .334 (+169%) .352 (+115%)

Oracle1(d) .094 (+358%) .119 (+378%) .128 (+387%) .301 (+303%) .363 (+193%) .380 (+132%)

Oracle2(s) .481 (+2246%) .554 (+2125%) .572 (+2075%) .511 (+585%) .589 (+375%) .603 (+268%)

Oracle2(d) .450 (+2095%) .498 (+1900%) .496 (+1786%) .487 (+553%) .540 (+335%) .536 (+227%)

indicates that this difference is statistically significant). This can be appreciated both
from the plots of Figures 2, in which the red curve (corresponding to U-Theoretic(s))
is markedly higher than the green curve (corresponding to Baseline), and from Table
II. In this latter, for ξ = .10 (corresponding to p = .996) our method obtains relative
improvements over Baseline of +109% (MP-BOOST) and +51% (SVMs); for ξ = .20 the

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Utility-Theoretic Ranking for Semi-Automated Text Classification A:19

Table III. Statistical significance results obtained for the two learners (MP-Boost and SVMs) via a
paired t-test withENERMρ (0.10) as the evaluation measure and 0.05 as the significance level. “Y”
means that there is a statistically significant difference between the two methods, while “N” means
there is not; each 5-tuple of Y’s and N’s indicates this for the five datasets studied in this paper
(REUTERS-21578, REUTERS-21578/10, REUTERS-21578/100, OHSUMED, OHSUMED-S, in
this order).

B
as

el
in

e

U
-T

he
or

et
ic

(s
)

U
-T

he
or

et
ic

(d
)

O
ra

cl
e1

(s
)

O
ra

cl
e1

(d
)

O
ra

cl
e2

(s
)

O
ra

cl
e2

(d
)

M
P

-B
oo

st

Baseline −−−− YYYYY YYYYY YYYYY YYYYY YYYYY YYYYY

U-Theoretic(s) YYYYY −−−− NYNNN NNYNN YNYNN YYYYY YYYYY

U-Theoretic(d) YYYYY NYNNN −−−− NNYNN NNYNN YYYYY YYYYY

Oracle1(s) YYYYY NNYNN NNYNN −−−− NNYNN YYYYY YYYYY

Oracle1(d) YYYYY YNYNN NNYNN NNYNN −−−− YYYYY YYYYY

Oracle2(s) YYYYY YYYYY YYYYY YYYYY YYYYY −−−− NNNYN

Oracle2(d) YYYYY YYYYY YYYYY YYYYY YYYYY NNNYN −−−−

SV
M

s

Baseline −−−− YYYYY YYYYY YYYYY YYYYY YYYYY YYYYY

U-Theoretic(s) YYYYY −−−− YNNYN YYYNY YYYNY YYYYY YYYYY

U-Theoretic(d) YYYYY YNNYN −−−− YYYNY YYYNY YYYYY YYYYY

Oracle1(s) YYYYY YYYNY YYYNY −−−− NNYNY YYYYY YYYYY

Oracle1(d) YYYYY YYYNY YYYNY NNYNY −−−− YYYYY YYYYY

Oracle2(s) YYYYY YYYYY YYYYY YYYYY YYYYY −−−− YYNNN

Oracle2(d) YYYYY YYYYY YYYYY YYYYY YYYYY YYNNN −−−−

improvements, while not as high as for ξ = .10, are still sizeable (+84% for MP-BOOST
and +34% for SVMs), while for ξ = .05 the improvements are even higher than for
ξ = .10 (+128% for MP-BOOST and +69% for SVMs).

A second insight is that, surprisingly, our method hardly differs in terms of perfor-
mance from Oracle1(s). The two curves can be barely distinguished in Figure 2, and
in terms of ENERMρ Oracle1(s) is even slightly outperformed, in the MP-BOOST ex-
periments, by U-Theoretic(s) (e.g., .226 vs. .222 for ξ = .10); the paired t-test (see Table
III) indicates that the difference between the two methods is not statistically signifi-
cant. This shows that (at least judging from these experiments) Laplace smoothing is
nearly optimal, and there is likely not much we can gain from applying alternative,
more sophisticated smoothing methods. This is sharply different from what happens
in language modelling, where Laplace smoothing has been shown to be an underper-
former [Gale and Church 1994]. The fact that with MP-BOOST our method slightly
(and strangely) outperforms Oracle1(s) is probably due to accidental, “serendipitous”
interactions between the probability estimation component (Equation 6) and the con-
tingency cell estimation component of Section 4.3; in fact, the paired t-test indicates
(see Table III) that this difference is not statistically significant.

A third interesting fact is that error reduction is markedly better in the SVM ex-
periments than in the MP-BOOST experiments. This is evident from the fact that
the Figure 2 curves for SVMs are much more convex (i.e., are higher) and are closer
to the optimum (i.e., closer to the Oracle2(s) curve) than the corresponding Figure 2
curves for MP-BOOST. This fact is also evident from the numerical results reported

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 G. Berardi, A. Esuli, and F. Sebastiani

in Table II where, with U-Theoretic(s), SVMs obtain ENERMρ (.10) = .531, which is
+134% better than the ENERMρ (.10) = .226 result obtained by MP-BOOST (similar
improvements can be observed for the other methods and for the other values of ξ).
This provides a striking contrast with the classification accuracy results reported in
Figure I where, on the same dataset, MP-BOOST (EM1 = .392) substantially outper-
formed SVMs (EM1 = .473). It is easy to conjecture that, even if MP-BOOST yields
higher classification accuracy, it generates less reliable (calibrated) confidence scores,
i.e., it generates confidence scores that correlate with the ground truth worse than the
SVM-generated scores.

The rates of improvement of U-Theoretic(s) over the baseline are instead much
higher for MP-BOOST than for SVMs (e.g., for ξ = .10 these are +109% and +51%, re-
spectively). (The same goes for the improvements of Oracle1(s) over the baseline.) This
is likely due to the fact that, as observed above, the absolute values of ENERMρ (ξ) ob-
tained by the baseline are much higher for SVMs than for MP-BOOST for all methods,
so the margins of improvement with respect to the baseline are smaller for SVMs than
for MP-BOOST.

6.6.2. Small test sets. We have also run a batch of experiments aimed at assessing how
the methods fare when ranking test sets much smaller than REUTERS-21578. This
may be more challenging than ranking larger sets since, when the test set is small,
Laplace smoothing (i) can seriously perturb the relative proportions among the cell
counts, which can generate poor estimates of G(di, fpj) and G(di, fnj), and (ii) is per-
formed for more classes, since (as discussed at the end of Section 4.3) we smooth “on
demand” only, and since the likelihood that ˆTP

ML

j , F̂P
ML

j , ˆFN
ML

j are smaller than 1
is higher with small test sets. This is also a realistic setting since, if a set of unlabelled
documents is small, it is likely that validating a portion of it that can lead to sizeable
enough effectiveness improvements is feasible from an economic point of view.

Rather than choosing a completely different dataset, we generate 10 new test sets by
randomly splitting the REUTERS-21578 test set in 10 equally-sized parts (about 330
documents each). In our experiments we run each ranking method on each such part
individually and average the results across the 10 parts. We call this experimental
scenario REUTERS-21578/10. This allows us to study the effects of test set size on our
methods in a more controlled way than if we had picked a completely different dataset,
since test set size is the only difference with respect to the previous REUTERS-21578
experiments.

The results displayed in Figure 3 allow us to visually appreciate that U-Theoretic(s)
substantially outperforms Baseline also in this context. This can be seen also from
Table II: for ξ = .10 the relative improvement over Baseline is +110% for MP-BOOST
and +30% for SVMs, and similarly substantial improvements are obtained for the two
other values of ξ tested.

Incidentally, note that the REUTERS-21578/10 experiments model an application
scenario in which a set of automatically labelled documents is split (e.g., to achieve
faster throughput) among 10 human annotators, each one entrusted with validating
a part of the set. In this case, each annotator is presented with a ranking of her own
document subset, and works exclusively on it8.

8Actually, if we did have k annotators available, the best strategy would be to generate the k rankings in a
“round robin” fashion, i.e., by allotting to annotator i the documents ranked (in the global ranking) at the
positions r such that (r mod k) = i. This splitting method would guarantee that only the most promising
documents are validated by the annotators.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Utility-Theoretic Ranking for Semi-Automated Text Classification A:21

0.0 0.2 0.4 0.6 0.8 1.0
Inspection Depth

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
ed

uc
tio

n
(E

R)

Random
Baseline
U-Theoretic(s)
U-Theoretic(d)
Oracle1(s)
Oracle1(d)
Oracle2(s)
Oracle2(d)

0.0 0.2 0.4 0.6 0.8 1.0
Inspection Depth

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
ed

uc
tio

n
(E

R)

Random
Baseline
U-Theoretic(s)
U-Theoretic(d)
Oracle1(s)
Oracle1(d)
Oracle2(s)
Oracle2(d)

Fig. 3. Results obtained by (a) splitting the REUTERS-21578 test set into 10 random, equally-sized parts,
(b) running the analogous experiments of Figure 2 independently on each part, and (c) averaging the results
across the 10 parts. The learners used are MP-BOOST (left) and SVMs (right).

6.6.3. Tiny test sets. In further experiments that we have run, we have split the
REUTERS-21578 test set even further, i.e., into 100 equally-sized parts of about 33
documents each, so as to test the performance of Laplace smoothing methods in even
more challenging conditions. We call this experimental scenario REUTERS-21578/100.
From an application point of view this is a less interesting scenario than the two pre-
viously discussed ones, since applying a ranking method to a set of 33 documents only
is of debatable utility, given that a human annotator confronted with the task of vali-
dating just 33 documents can arguably check them all without any need for ranking.
The goal of these experiments is thus checking whether our method can perform well
even in extreme, albeit scarcely realistic, conditions.

The detailed ERMρ (n) plots for this REUTERS-21578/100 scenario are presented in
Figure 4, while the ENERMρ results are reported in Table II9. U-Theoretic(s) still out-
performs Baseline, with a relative improvement of +42% with MP-BOOST and +21%
with SVMs with ξ = .10, corresponding to p = .696; qualitatively similar improvements
are obtained with the other tested values of ξ.

Note that in these experiments, unlike in those performed on the full REUTERS-
21578, the Oracle1(s) method proves to be markedly superior to U-Theoretic(s) (e.g.,
.247 vs. .172 in terms of ENERMρ (.10) with MP-BOOST, and similarly for other values
of ξ and for the SVM learner); unlike in the previous two datasets, the difference be-
tween the two methods turns out to be statistically significant. The reason is that, for
a smaller test set, (a) distribution drift is higher, (b) “smoothing on demand” is invoked
more frequently (because the likelihood that contingency table cells have a value ≤ 1
is higher), and (c) when smoothing is indeed applied the distribution across the cells
of the contingency table is perturbed more strongly.

Note also that the ERMρ (n) curves are smoother than the analogous curves for the
full REUTERS-21578 and, although to a lesser extent, those for REUTERS-21578/10.

9From the next experiments onwards, for reasons of space we will not include the full plots in the style of
Figures 2 to 4, and will only report ENERMρ results.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 G. Berardi, A. Esuli, and F. Sebastiani

0.0 0.2 0.4 0.6 0.8 1.0
Inspection Depth

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
ed

uc
tio

n
(E

R)

Random
Baseline
U-Theoretic(s)
U-Theoretic(d)
Oracle1(s)
Oracle1(d)
Oracle2(s)
Oracle2(d)

0.0 0.2 0.4 0.6 0.8 1.0
Inspection Depth

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
ed

uc
tio

n
(E

R)

Random
Baseline
U-Theoretic(s)
U-Theoretic(d)
Oracle1(s)
Oracle1(d)
Oracle2(s)
Oracle2(d)

Fig. 4. Same as Figure 3 but with REUTERS-21578/100 in place of REUTERS-21578/10. The learners used
are MP-BOOST (left) and SVMs (right).

This is due to the fact that the curves in Figure 4 result from averages across 100
different experiments, and the increase brought about at rank n is actually the average
of the increases brought about at rank n in the 100 experiments.

6.6.4. Large test sets. While in the previous sections we have discussed experiments on
mid-sized to small (or very small) datasets, we now look at larger datasets such as
OHSUMED. The OHSUMED results in Table II confirm the quality of U-Theoretic(s),
which outperforms the purely confidence-based baseline by +10% (MP-BOOST) and
+9% (SVMs) in terms of ENERMρ (.10); qualitatively similar improvements are ob-
tained for the other two values of ξ studied.

The OHSUMED collection is characterized by the presence of an unusually large
number (93.1% of the entire lot) of unlabelled documents (i.e., documents, that are
negative examples for all cj ∈ C) that originally belonged to other subtrees of the
MeSH tree. Since such a large percentage is unnatural, we have generated (and also
used in our experiments) a variant of OHSUMED (called OHSUMED-S) by removing
all the unlabelled documents from both the training set and the test set.

As illustrated in Table II, on OHSUMED-S U-Theoretic(s) outperforms the con-
fidence-based baseline by a very large margin (+374% with MP-BOOST and +127%
with SVMs for ξ = .10, with qualitatively similar results for the other two tested val-
ues of ξ).

6.6.5. Discussion. In sum, the results discussed from Section 6.6.1 to the present one
have unequivocally shown that U-Theoretic(s) outperforms the confidence-based base-
line, usually by a large or very large margin, for all the five tested datasets and for
both tested learners.

Note that, for all five datasets and for both learners, the improvements of the utility-
theoretic methods over Baseline are larger for smaller values of ξ. This indicates that
the difference between the two methods is larger for smaller validation depths, i.e.,
where using the utility-theoretic method pays off the most is at the very top of the
ranking. This is an important feature of this method, since it means that all human

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Utility-Theoretic Ranking for Semi-Automated Text Classification A:23

annotators, be they persistent or not (i.e., independently of the depth at which they
validate), are going to benefit from this approach.

7. AN IMPROVED, “DYNAMIC” RANKING FUNCTION FOR SATC
The utility-theoretic method discussed in Section 4 is reasonable but, in principle, sub-
optimal, and its suboptimality derives from its “static” nature. To see this, assume that
the system has ranked the test documents according to the strategy above, that the hu-
man annotator has started from the top of the list and validated the labels of document
di, that she has found out that its label assignment for class cj is a false negative, and
that she has corrected it, thus bringing about an increase in F1 equivalent to

2(TPj + 1)

2(TPj + 1) + FPj + (FNj − 1)
− 2TPj

2TPj + FPj + FNj
(14)

Following this correction, the value of FNj is decreased by 1 and the value of TPj
is increased by 1. This means that, when another false negative for cj is found and
corrected, the value of (14) has changed. In other words, the improvement in F1 due
to the validation of a false negative is not constant through the validation process. Of
course, similar considerations apply for false positives.

This suggests redefining the validation gains defined in Equations 4 and 5 as

G(di, fpj) =
2TPj

2TPj + (FPj − 1) + FNj
− 2TPj

2TPj + FPj + FNj

G(di, fnj) =
2(TPj + 1)

2(TPj + 1) + FPj + (FNj − 1)
− 2TPj

2TPj + FPj + FNj

(15)

To see the novelty introduced with respect to Equation 15, in the following we will dis-
cuss the case of false negatives; the case of false positives is completely analogous. The
difference between Equation 5 and Equation 15 is that the former equates G(di, fnj)

with the increase in F1(Φ̂j(Te)) that would derive by correcting all of the documents in
FNj divided by their number, while the latter equates G(di, fnj) with the increase in
F1(Φ̂j(Te)) that would derive by correcting the next document in FNj . In other words,
we might say that Equation 5 enforces the notion of average gain, while Equation 15
enforces the notion of pointwise gain10. The two versions return different values of
G(di, fnj): as the following example shows, it is immediate to verify that if FNj con-
tains more than one document, the validation gainsG(di, fnj) that derive by correcting
different documents are the same (by definition) if we use Equation 5 but are not the
same if we use Equation 15.

Example 7.1. Suppose we have classified a set of 100 documents according to class
cj , and that the classification is such that TPj = 10, FNj = 20, FPj = 30, and TNj =
40. According to Equation 5, G(di, fnj) evaluates to ≈ 0.0190 for each false negative
corrected. Instead, according to Equation 15, G(di, fnj) evaluates to ≈ 0.0241 for the
1st false negative corrected, ≈ 0.0235 for the 2nd, ≈ 0.0228 for the 3rd, ..., down to
≈ 0.0147 for the 20th.

Given this new definition we may implement a dynamic strategy in which, instead of
plainly sorting the test documents in descending order of their U(di,Ω) score, after each

10Equations 15 might have also been formulated in a continuous way, i.e., as partial derivatives of F1 in the
two variables TPj and TNj (in other words, Equations 15 would thus represent the gradient of F1). We have
preferred to stick to a discrete formulation, since (a) Equations 4 and 5 are instead not naturally formulated
as derivatives (exactly because they represent average – rather than pointwise – gains), and since (b) having
Equations 4, 5 and 15 all formulated in a common notation allows an easier comparison among them.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 G. Berardi, A. Esuli, and F. Sebastiani

correction is made we update ˆTP
La

j , F̂P
La

j , ˆFN
La

j by adding and subtracting 1 where
appropriate, we recompute G(di, fpj), G(di, fnj) and U(di,Ω), and we use the newly
computed U(di,Ω) values when selecting the document that should be presented next
to the human annotator. In detail, the following steps are iteratively performed:

(1) For all classes cj ∈ C, compute G(di, fpj) and/or G(di, fnj) using Equations 15;
(2) If the human annotator does not want to stop validating documents, then identify

the document dmax ≡ arg max
di∈Te

U(di,Ω) for which total utility is maximised;

(3) Remove dmax from Te;
(4) For all cj ∈ C, have the human annotator check the label attached by Φ̂j to dmax;

if all these labels are correct go to Step 2; else, for all classes cj ∈ C for which the
label attached by Φ̂j to dmax is incorrect:
(a) Have the human annotator correct the label;
(b) If dmax was a false positive for cj , decrease F̂P

La

j by 1; if it was a false negative

for cj , increase ˆTP
La

j by 1 and decrease ˆFN
La

j by 1;

(c) Re-smooth ˆTP
La

j , F̂P
La

j , ˆFN
La

j if needed;
(d) Recompute G(di, fpj) and/or G(di, fnj) and go back to Step 2.

This might also be dubbed an incremental ranking strategy, in the sense pioneered in
[Aalbersberg 1992] for relevance feedback in ad-hoc search, in the sense that the values
of G(di, fpj) and G(di, fnj) are incrementally updated so that the U(di,Ω) function
reflects the fact that part of Te has indeed been corrected. In keeping with [Brandt
et al. 2011] we prefer to call it a dynamic strategy, and to call the one of Section 4 a
static one.

Note that in Step 2 we simply compute the maximum element (according to U(di,Ω))
of Te instead of sorting the entire set, since we can perform this step in O(|Te|) instead
of O(|Te| log |Te|)11. Furthermore, note that in this algorithm the re-computation of
Uj(di,Ω) does not entail the recomputation of the probabilities P (fpj) and/or P (fnj) of
Equation 3, since these probabilities are computed (i.e., calibrated) once for all, imme-
diately after the training phase.

Note also that computing validation gains via Equations 4 and 5 is the only possi-
bility within the static method (since the values of G(di, fpj) and G(di, fnj) produced
must be used unchanged throughout the process), but is clearly inadequate in a dy-
namic context, in which validation gains are always supposed to be up-to-date reflec-
tions of the current situation.

The dynamic nature of this method makes it clear why, as specified at the end of Sec-
tion 4.3, we smooth the cell count estimates only “on demand” (see also Step 4c of the
above algorithm), i.e., only if any of ˆTP

ML

j , F̂P
ML

j , ˆFN
ML

j is < 1. To see this, suppose

that we smooth ˆTP
ML

j , F̂P
ML

j , ˆFN
ML

j at each iteration, even when not strictly needed.
Adding a count of one to each of them at each iteration means that, after k iterations,
k counts have been added to each of them; this means that, after many iterations, the
counts added to the cells have completely disrupted the relative proportions among
the cells that result from the maximum-likelihood estimation. This would likely make

11When computing this maximum element returns repeatedly a document whose labels are all correct, the
lack of a sorting step entails the need of computing the maximum element several times in a row with the
values of G(di, fpj) and G(di, fnj) unchanged. In these cases, the presence of a sorting step would thus
have been advantageous. However, the likelihood that this situation occurs tends to be small, especially
when |C| is large, thus making the computation of the maximum element preferable to sorting.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Utility-Theoretic Ranking for Semi-Automated Text Classification A:25

the dynamic method underperform the static method, which does not suffer from this
problem since the maximum-likelihood estimates are smoothed only once. As a result,
we smooth a contingency table only when strictly needed, i.e., when one of ˆTP

ML

j ,

F̂P
ML

j , ˆFN
ML

j is < 1.
By solving the inequality G(di, fnj) > G(di, fpj) we may find out under which con-

ditions correcting a false negative yields a higher gain than correcting a false posi-
tive. It turns out that, when validation gains are defined according to Equation 15,
G(di, fnj) > G(di, fpj) whenever FN + FP > 1, i.e., practically always. Of course, this
need not be the case for evaluation functions different from F1, and in particular for
instances of Fβ with β 6= 1.

From the standpoint of total computational cost, our dynamic technique is O(|Te| ·
(|C| + |Te|)), since (i) computing the U(di,Ω) score for |Te| documents and computing
their maximum according to the computed U(di,Ω) score can be done in O(|Te| · |C|)
steps, and (ii) this step must be repeated O(|Te|) times. This policy is thus, as expected,
computationally more expensive than the previous one.

7.1. Experiments
The results of the experiments with the dynamic version of our utility-theoretic method
and of our two oracle-based methods are reported in Figures 2 to 4 and in Table II,
where they are indicated as U-Theoretic(d), Oracle1(d) and Oracle2(d). Of course there
exists no dynamic version of the baseline method, since this latter does not involve
validation gains.

The first observation that can be drawn from these results is the fact that U-
Theoretic(d) is not superior to U-Theoretic(s), as could instead have been expected. In
fact, in Figures 2 to 4 the curves corresponding to the former are barely distinguish-
able from those corresponding to the latter, and the numeric results reported in Table
II show no substantial difference either; as reported in Table III, in 7 out of 10 cases
(2 learners × 5 datasets) the difference is not statistically significant. Note that there
are extremely small differences also between Oracle1(s) and Oracle1(d); again, in 7 out
of 10 cases no statistically significant difference can be detected. This shows that the
lack of any substantial difference between static and dynamic is not due to a possi-
ble suboptimality of the method for estimating contingency table cells (including the
method adopted for smoothing the estimates). Analogously, note also the extremely
small differences between Oracle2(s) and Oracle2(d) (again, no statistically significant
difference in 7 out of 10 cases), which indicates that the culprit is not the method for
estimating the probabilities of misclassification.

This substantial equivalence between the static and the dynamic methods is some-
how surprising, since on a purely intuitive basis the dynamic method seems definitely
superior to the static one. We think that the reason for this apparently counterintu-
itive results is that, when validation gains are recomputed in Step 4d of the algorithm,
the magnitude of the update (i.e., the difference between validation gains before and
after the update) is too small to make an impact. This is especially true for large test
sets, where incrementing or decrementing by 1 the value of a contingency cell makes
too tiny a difference, since that value is very large.

Actually, the part of Figure 2 relative to MP-BOOST displays an apparently strange
phenomenon, i.e., the fact that for some values of ξ the Oracle2(s) method outperforms
Oracle2(d). A similar phenomenon can be noticed in some of the cells of Table II, where
the static version of either Oracle1 or Oracle2 outperforms, even if by a small margin,
the dynamic version. This seems especially strange for Oracle2(d), which is the theoret-
ically optimal method (since it is a method that operates with perfect foreknowledge),
and as such should be impossible to beat. The reason for this apparently counterin-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 G. Berardi, A. Esuli, and F. Sebastiani

Table IV. Comparison between the actual computation times (in sec-
onds) of the U-Theoretic(s) and U-Theoretic(d) methods on our five
datasets.

Dataset Method MP-BOOST SVMs

REUTERS-21578
U-Theoretic(s) 0.426 0.452

U-Theoretic(d) 3.128 3.021

REUTERS-21578/10
U-Theoretic(s) 0.166 0.153

U-Theoretic(d) 0.195 0.198

REUTERS-21578/100
U-Theoretic(s) 0.033 0.033

U-Theoretic(d) 0.046 0.044

OHSUMED
U-Theoretic(s) 10.282 11.251

U-Theoretic(d) 500.047 577.864

OHSUMED-S
U-Theoretic(s) 0.418 0.424

U-Theoretic(d) 4.731 4.195

tuitive behaviour lies not in the ranking methods, but in a counterintuitive property
of F1, i.e., the fact that, when TP = FN = 0 (i.e., there are no positives in the gold
standard – and 25 out of 115 classes in the dataset used in Figure 2 have this prop-
erty), its value is 0 when FP > 0 but 1 when FP = 0 (so, TP = FP = FN = 0 is a
“point of discontinuity” for F1). This essentially means that, when TP = FN = 0 and
FP > 0, G(di, fnj) is 1/|FP | for the static method and 0 for the dynamic method; i.e.,
in this case the dynamic method does not provide any incentive for correcting a false
positive, while the static method does. As a result, the static method can speed up the
correction of false positives more than the dynamic method does. As mentioned above,
this phenomenon exposes a suboptimality not of the dynamic method, but of the F1

function.
In Table IV we report the actual computation times incurred by both U-Theoretic(s)

and U-Theoretic(d) on our five datasets12. These figures confirm that the dynamic
method is (as already discussed above) substantially more expensive to run than
the static method; in particular, the magnitude of this difference, together with the
marginal (if any) accuracy improvements brought about by the dynamic method over
the static one, shows that the static method is much more cost-effective than the dy-
namic one. In other words, the bad news is that the dynamic method brings about no
improvement; the good news is that the computationally cheaper static method is hard
to beat.

8. A “MICRO-ORIENTED” RANKING FUNCTION FOR SATC
In Section 3 we have assumed that the evaluation of classification algorithms across
the |C| classes of interest is performed by macro-averaging the F1 results obtained for
the individual classes cj ∈ C. Consistently with this view, in Section 5 we have in-
troduced macro-averaged versions of E1, ERρ, NERρ, and ENERρ. macro-averaging

12The times reported are relative to an experiment in which the entire test set is validated; this is because,
in a simulated experiment, the entire test set must be validated in order to compute the ERMρ (n) values
reported in Figures 2 to 4. In a realistic setting in which only a portion of the ranked list is validated,
the difference between U-Theoretic(s) and U-Theoretic(d) is smaller, since the cost of recomputing validation
gains is roughly proportional to the validation depth, and since this cost affects U-Theoretic(d) but not U-
Theoretic(s).

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Utility-Theoretic Ranking for Semi-Automated Text Classification A:27

across the classes in |C| essentially means paying equal attention to all of them, irre-
spective of their frequency or other such characteristics.

However, there is an alternative, equally important way to evaluate effectiveness
when a set of |C| classes is involved, namely, micro-averaged effectiveness. While
macro-averaged measures are computed by first computing the measure of interest
individually on each class-specific contingency table and then averaging the results,
micro-averaged measures are computed by merging the |C| contingency tables into a
single one (via summing the values of the corresponding cells) and then computing
the measure of interest on the resulting table. For instance, micro-averaged F1 (noted
Fµ1) is obtained by (i) computing the category-specific values TPj , FPj and FNj for all
cj ∈ C, (ii) obtaining TP as the sum of the TPj ’s (same for FP and FN), and then
(iii) applying Equation 1. Measures such as Eµ1 , ERµρ , NERµρ , and ENERµρ are defined
in the obvious way. The net effect of using a single, global contingency table is that
micro-averaged measures pay more attention to more frequent classes, i.e., the more
the members of a class cj in the test set, the more the measure is influenced by cj .

Neither macro- nor micro-averaging are the “right” way to average in evaluating
multi-label multi-class classification; it is instead the case that in some applications
we may want to pay equal attention to all the classes (in which case macro-averaging
would be our evaluation method of choice), while in some other applications we may
want to pay more attention to the most frequent classes (in which case we should opt
for micro-averaging).

While we have not explicitly discussed this, the method of Section 4 was devised
with macro-averaged effectiveness in mind. To see this, note that the U(di,Ω) function
of Equation 9 is based on an unweighted sum of the class-specific Uj(di,Ω) scores, i.e.,
it pays equal importance to all classes in C. This means that Equation 9 is optimized for
metrics that also pay equal attention to all classes, as all macro-averaged measures do.
We now describe a way to modify the method of Section 4 in such a way that it is instead
optimal when our effectiveness measure of choice (e.g., ENERρ) is micro-averaged. To
do this, we do away with Equation 9 and (similarly to what happens for Fµ1 and Eµ1)
compute instead U(di,Ω) directly on a single, global contingency table obtained by the
cell-wise sum of the class-specific contingency tables. That is, we redefine U(di,Ω) as

U(di,Ω) =
∑
cj∈C

∑
ωk∈{tpj ,fpj ,fnj ,tnj}

P (ωk)G(di, ωk) (16)

where

G(di, fpj) =
1

FP
(FFP1 (Φ̂(Te))− F1(Φ̂(Te)))

=
1

FP
(

2TP

2TP + FN
− 2TP

2TP + FP + FN
)

G(di, fnj) =
1

FN
(FFN1 (Φ̂(Te))− F1(Φ̂(Te)))

=
1

FN
(

2(TP + FN)

2(TP + FN) + FP
− 2TP

2TP + FP + FN
)

(17)

Equations 17 are the same as Equation 4 and 5, but for the fact that the latter are
class-specific (as indicated by the index j) while the former are global. This is due to
the fact that, when using micro-averaging, there is a single contingency table, and the
gain obtained by correcting, say, a false positive for cx is equal to the gain obtained by
correcting a false positive for cy, for any cx, cy ∈ C. Of course, Equations 17 are to be
applied when the static method of Section 4 needs to be optimized for micro-averaging;

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 G. Berardi, A. Esuli, and F. Sebastiani

when we instead want to do the same optimization for the dynamic method of Section
7, we need instead to apply, in the obvious way, “global” versions of Equations 15.

Actually, a second aspect in the method of Section 4 that we need to change in or-
der for it to be optimized for micro-averaging is the probability calibration method
discussed in Section 6.2. In fact, Equation 13 is clearly devised with macro-averaging
in mind, since it minimizes the average across the cj ∈ C of the difference between
the number PosTrj and the expected number E[PosTrj] of positive training examples of
class cj . Again, all classes are given equal attention. For our micro-averaging-oriented
method we thus replace Equation 13 with

arg min
σ
|PosTr − E[PosTr]| =

arg min
σ
|
∑
cj∈C

PosTrj −
∑
cj∈C

E[PosTrj]| =

arg min
σ
|
∑
cj∈C

PosTrj −
∑
cj∈C

∑
di∈Tr

P (cj |di)| =

arg min
σ
|
∑
cj∈C

PosTrj −
∑
cj∈C

∑
di∈Tr

eσΦ̂j(di)

eσΦ̂j(di) + 1
|

(18)

where the difference between the number and the expected number of training ex-
amples in the global contingency table is minimized. It is easy to verify that the two
methods may return different values of σ, as the following example shows.

Example 8.1. Suppose that C = {c1, c2}, that PosTr1 = 20 and that PosTr2 = 10.
Suppose that when σ = a then E[PosTr1] = 18 and E[PosTr2] = 8, while when σ = b
then E[PosTr1] = 17 and E[PosTr2] = 13. According to Equation 13 value a is better than
b (since 1

|C|
∑
cj∈C |Pos

Tr
j − E[PosTrj]| is equal to 2 for σ = a and to 3 for σ = b), but

according to Equation 18 value b is better than a (since |PosTr − E[PosTr]| is equal to
4 for σ = a and to 0 for σ = b).

The same smoothing methods as discussed in Section 4.3 can instead be used; however,
note that smoothing is likely to be needed much less frequently (if at all) here since,
given that we now have a single global contingency table, it is much less likely that
any of its cells have values < 1.

8.1. Experiments
The experiments with our “micro-oriented” methods are reported in Table V. Note that,
since the method we use as baseline corresponds (as noted in Section 6.5) to using U-
Theoretic(s) with all validation gains set to 1, the baseline we use here is different
from the baseline we had used in Section 6.6, since the latter was optimized for macro-
averaging while the one we use here is optimized for micro-averaging. This guarantees
that, in both cases, our baselines are strong ones.

The results show that utility-theoretic methods bring about a much slighter im-
provement with respect to the baseline, compared to what we have seen for the
macro-oriented methods. For instance, for the SVM learner, REUTERS-21578 dataset,
and validation depth ξ = .10, the improvement of our (static) micro-oriented utility-
theoretic method with respect to the baseline is just +2%, while the improvement
was +51% for the equivalent macro-oriented method. Across the two ranking meth-
ods (static and dynamic), five datasets, two learners, and three values of inspection
depth studied, improvements range from -1% (i.e., in a few peculiar cases we even

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Utility-Theoretic Ranking for Semi-Automated Text Classification A:29

Table V. As Table II, but with ENERµρ (ξ) in place of ENERMρ (ξ).

MP-BOOST SVMs

ξ = 0.05 ξ = 0.10 ξ = 0.20 ξ = 0.05 ξ = 0.10 ξ = 0.20

R
E

U
T

E
R

S
-2

15
78

Baseline .107 .167 .222 .240 .325 .389

U-Theoretic(s) .107 (+0%) .168 (+1%) .224 (+1%) .246 (+3%) .332 (+2%) .395 (+2%)

U-Theoretic(d) .107 (+0%) .167 (+0%) .224 (+1%) .246 (+3%) .331 (+2%) .394 (+1%)

Oracle1(s) .107 (+0%) .168 (+1%) .224 (+1%) .246 (+3%) .332 (+2%) .395 (+2%)

Oracle1(d) .107 (+0%) .167 (+0%) .224 (+1%) .246 (+3%) .331 (+2%) .395 (+2%)

Oracle2(s) .333 (+211%) .448 (+168%) .512 (+131%) .394 (+64%) .506 (+56%) .556 (+43%)

Oracle2(d) .333 (+211%) .448 (+168%) .512 (+131%) .394 (+64%) .506 (+56%) .556 (+43%)

R
E

U
T

E
R

S
-2

15
78

/1
0 Baseline .110 .169 .222 .232 .317 .380

U-Theoretic(s) .112 (+2%) .171 (+1%) .224 (+1%) .237 (+2%) .323 (+2%) .386 (+2%)

U-Theoretic(d) .113 (+3%) .171 (+1%) .224 (+1%) .238 (+3%) .322 (+2%) .383 (+1%)

Oracle1(s) .112 (+2%) .171 (+1%) .224 (+1%) .237 (+2%) .324 (+2%) .386 (+2%)

Oracle1(d) .113 (+3%) .171 (+1%) .224 (+1%) .238 (+3%) .324 (+2%) .386 (+2%)

Oracle2(s) .325 (+195%) .438 (+159%) .502 (+126%) .385 (+66%) .496 (+56%) .547 (+44%)

Oracle2(d) .325 (+195%) .438 (+159%) .502 (+126%) .385 (+66%) .496 (+56%) .547 (+44%)

R
E

U
T

E
R

S
-2

15
78

/1
00

Baseline .102 .158 .208 .223 .301 .361

U-Theoretic(s) .107 (+5%) .163 (+3%) .212 (+2%) .224 (+0%) .305 (+1%) .366 (+1%)

U-Theoretic(d) .106 (+4%) .162 (+3%) .211 (+1%) .226 (+1%) .304 (+1%) .363 (+1%)

Oracle1(s) .115 (+13%) .170 (+8%) .216 (+4%) .232 (+4%) .317 (+5%) .377 (+4%)

Oracle1(d) .116 (+14%) .170 (+8%) .217 (+4%) .235 (+5%) .322 (+7%) .383 (+6%)

Oracle2(s) .318 (+212%) .429 (+172%) .492 (+137%) .367 (+65%) .481 (+60%) .534 (+48%)

Oracle2(d) .318 (+212%) .429 (+172%) .492 (+137%) .367 (+65%) .481 (+60%) .534 (+48%)

O
H

S
U

M
E

D

Baseline .442 .552 .583 .492 .600 .620

U-Theoretic(s) .440 (+0%) .549 (-1%) .580 (-1%) .496 (+1%) .602 (+0%) .621 (+0%)

U-Theoretic(d) .442 (+0%) .552 (+0%) .582 (+0%) .496 (+1%) .602 (+0%) .621 (+0%)

Oracle1(s) .439 (-1%) .549 (-1%) .580 (-1%) .497 (+1%) .602 (+0%) .621 (+0%)

Oracle1(d) .441 (+0%) .551 (+0%) .582 (+0%) .497 (+1%) .603 (+1%) .621 (+0%)

Oracle2(s) .660 (+49%) .733 (+33%) .711 (+22%) .704 (+43%) .761 (+27%) .727 (+17%)

Oracle2(d) .660 (+49%) .733 (+33%) .711 (+22%) .704 (+43%) .761 (+27%) .727 (+17%)

O
H

S
U

M
E

D
-S

Baseline .044 .068 .094 .058 .096 .136

U-Theoretic(s) .044 (+1%) .069 (+3%) .096 (+2%) .063 (+10%) .102 (+7%) .143 (+5%)

U-Theoretic(d) .044 (+1%) .070 (+3%) .097 (+3%) .066 (+14%) .104 (+9%) .144 (+6%)

Oracle1(s) .044 (+1%) .069 (+3%) .096 (+2%) .064 (+10%) .103 (+8%) .143 (+5%)

Oracle1(d) .044 (+1%) .070 (+3%) .097 (+3%) .066 (+15%) .105 (+10%) .144 (+6%)

Oracle2(s) .149 (+242%) .221 (+227%) .287 (+205%) .175 (+203%) .259 (+171%) .330 (+143%)

Oracle2(d) .149 (+242%) .221 (+227%) .287 (+205%) .175 (+203%) .259 (+171%) .330 (+143%)

have a small deterioration) to +14%, much smaller than in the macro-oriented case in
which the improvements ranged between +2% and +402%.

The main reason for these much smaller improvements lies in the combined ac-
tion of two factors. The first factor is that the validation gains of Equations 17 are
computed on the global contingency table, whose cells contain very large numbers,

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 G. Berardi, A. Esuli, and F. Sebastiani

|C| times larger than the values in the local contingency tables of the macro-oriented
method. This means that, since the values of the validation gains are very small (given
that an increase or a decrease by 1 of very large values brings about little difference),
the difference between G(di, fpj) and G(di, fnj) is even smaller. This makes the differ-
ence between the utility-theoretic methods and the baseline smaller. The second factor
is that the utility function of Equation 16, by collapsing all the class-specific utility
values for a document into a single value, tends to dwarf the differences between the
documents.

It should also be noted that, in the micro-oriented method, improvements are small
also because the margins of improvement are small. To witness, the improvements
brought about by Oracle2(d) (our theoretical upper bound) with respect to the base-
line are smaller than for the macro-oriented method. For instance, for the MP-BOOST
learner, REUTERS-21578 dataset, and validation depth ξ = .10, this improvement is
+168%, while it was +571% for the macro-oriented method. So, improving over the
baseline is more difficult for the micro-oriented method than for the macro-oriented
one. The reason why the margins of improvement are smaller is that, when accuracy
is evaluated at the macro level, the infrequent classes play a bigger role than when
evaluating at the micro level. Infrequent classes are such that a large reduction in
error can be achieved even by validating a few documents of the right type (i.e., false
negatives). As a consequence, for the infrequent classes a ranking method that pays
attention to validation gains has the potential to obtain sizeable improvements in ac-
curacy right from the beginning; and a method that favours the infrequent classes
tends to shine when evaluated at the macro level.

9. CONCLUSIONS
We have presented a range of methods, all based on utility theory, for ranking the
documents labelled by an automatic classifier. The documents are ranked in such a
way as to maximize the expected reduction in classification error brought about by a
human annotator who validates a top-ranked subset of the ranked list. We have also
proposed an evaluation measure for such ranking methods, based on the expectation
of the (normalized) reduction in error brought about by the human annotator’s valida-
tion activity. This “semi-automated document classification” task is different from “soft
(document-ranking) classification”, since in the latter case it is the documents with the
highest probability of being members of the class (and not the ones which bring about
the highest expected utility if validated) that are top-ranked.

Experiments carried out on standard datasets and variants thereof show that the in-
tuition of using utility theory is correct. In particular, of four methods studied, we have
found that two methods optimized for micro-averaged effectiveness bring about only
limited improvements, while the two methods optimized for macro-averaged effective-
ness deliver drastically improved performance with respect to the baseline. We have
also found that the two “static” methods, while seemingly inferior to the “dynamic”
ones on a purely intuitive basis, perform as well as the dynamic ones at a fraction of
the computational cost.

It should be remarked that the very fact of using a utility function, i.e., a function in
which different events are characterized by different gains, makes sense here since we
have adopted an evaluation function, such as F1, in which correcting a false positive or
a false negative brings about different benefits to the final effectiveness score. If we in-
stead adopted standard accuracy (i.e., the percentage of binary classification decisions
that are correct) as the evaluation measure, utility would default to the probability of
misclassification, and our method would coincide with the baseline, since correcting a
false positive or a false negative would bring about the same benefit. The methods we
have presented are justified by the fact that, in text classification and in other classifi-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Utility-Theoretic Ranking for Semi-Automated Text Classification A:31

cation contexts in which imbalance is the rule, F1 is the standard evaluation function,
while standard accuracy is a deprecated measure because of its lack of robustness to
class imbalance (see e.g., [Sebastiani 2002, Section 7.1.2] for a discussion of this point).

The methods we have proposed are valid also when a different instantiation of the Fβ
function (i.e., with β 6= 1) is used as the evaluation function. This may be the case, e.g.,
when classification is to be applied to a recall-oriented task (such as e-discovery [Oard
et al. 2010; Oard and Webber 2013]), in which case values β > 1 are appropriate. In
these cases our utility-theoretic method can be used once the appropriate instance of
Fβ is plugged, in place of F1, into the equations defining the validation gains (and into
the equations that lead to the definition of ENERρ(ξ)). The same trivially holds for
any other evaluation function, even different from Fβ and even multivariate and non-
linear, provided it can be computed from a contingency table. It is easy to foresee that,
the higher the difference between the roles that false positives and false negatives play
into the chosen function, the bigger the improvements brought about by the utility-
theoretic methods with respect to the baseline are going to be. (For instance, it is easy
to foresee that these improvements would be higher for F2 than for F1.)

We also remark that this technique is not limited to text classification, but can be
useful in any classification context in which class imbalance [He and Garcia 2009], or
cost-sensitivity in general [Elkan 2001], suggest using a measure (such as Fβ) that
caters for these characteristics.

Note that, by using our methods, it is also easy to provide the human annotator with
an estimate of how accurate the labels of the test set are as a result of her validation
activity. In fact, if the contingency cell maximum-likelihood estimates ˆTP

ML

j , F̂P
ML

j ,

and ˆFN
ML

j (see Section 4.3) are updated (adding and subtracting 1 where appropriate)
after each correction by the human annotator, at any point in the validation activity
these are up-to-date estimates of how well the test set is now classified, and from these
estimates F1 (or other) can be computed as usual.

In the future, we would like to try applying a SATC method after a transductive
learner (e.g., Transductive SVMs [Joachims 1999]) has been used to generate the base
classifier in place of the standard inductive learners we have used in this work. A
transductive method, rather than attempting to generate a model that minimizes the
expected risk on any test set, attempts to minimize misclassifications on a specific test
set. When the focus of one’s application is squeezing the highest possible accuracy from
a specific test set, as is the case when using SATC, it would thus make sense to use a
transductive instead of an inductive learning method.

10. ACKNOWLEDGMENTS
We would like to thank David Lewis and Diego Marcheggiani for many interesting
discussions on the topics of this paper.

REFERENCES
IJsbrand J. Aalbersberg. 1992. Incremental Relevance Feedback. In Proceedings of the 15th ACM Interna-

tional Conference on Research and Development in Information Retrieval (SIGIR 1992). Copenhagen,
DK, 11–22.

Paul Anand. 1993. Foundations of Rational Choice under Risk. Oxford University Press, Oxford, UK.
Giacomo Berardi, Andrea Esuli, and Fabrizio Sebastiani. 2012. A Utility-Theoretic Ranking Method for

Semi-Automated Text Classification. In Proceedings of the 35th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR 2012). Portland, US, 961–970.

Giacomo Berardi, Andrea Esuli, and Fabrizio Sebastiani. 2014. Optimising human inspection work in auto-
mated verbatim coding. International Journal of Market Research 56, 4 (2014), 489–512.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 G. Berardi, A. Esuli, and F. Sebastiani

Christina Brandt, Thorsten Joachims, Yisong Yue, and Jacob Bank. 2011. Dynamic Ranked Retrieval. In
Proceedings of the 4th International Conference on Web Search and Web Data Mining (WSDM 2011).
Hong Kong, CN, 247–256.

Carla E. Brodley and Mark A. Friedl. 1999. Identifying mislabeled training data. Journal of Artificial Intel-
ligence Research 11 (1999), 131–167.

Prabir Burman. 1987. Smoothing Sparse Contingency Tables. The Indian Journal of Statistics 49, 1 (1987),
24–36.

Olivier Chapelle, Bernard Schölkopf, and Alexander Zien (Eds.). 2006. Semi-Supervised Learning. The MIT
Press, Cambridge, US.

Stanley F. Chen and Joshua Goodman. 1996. An Empirical Study of Smoothing Techniques for Language
Modeling. In Proceedings of the 34th Annual Meeting on Association for Computational Linguistics (ACL
1996). Santa Cruz, US, 310–318.

Charles Elkan. 2001. The foundations of cost-sensitive learning. In Proceedings of the 17th International
Joint Conference on Artificial Intelligence (IJCAI 2001). Seattle, US, 973–978.

Andrea Esuli, Tiziano Fagni, and Fabrizio Sebastiani. 2006. MP-Boost: A Multiple-Pivot Boosting Algo-
rithm and its Application to Text Categorization. In Proceedings of the 13th International Symposium
on String Processing and Information Retrieval (SPIRE 2006). Glasgow, UK, 1–12.

Andrea Esuli and Fabrizio Sebastiani. 2009. Active Learning Strategies for Multi-Label Text Classification.
In Proceedings of the 31st European Conference on Information Retrieval (ECIR 2009). Toulouse, FR,
102–113.

Andrea Esuli and Fabrizio Sebastiani. 2013. Training Data Cleaning for Text Classification. ACM Transac-
tions on Information Systems 31, 4 (2013).

Fumiyo Fukumoto and Yoshimi Suzuki. 2004. Correcting category errors in text classification. In Proceed-
ings of the 20th International Conference on Computational Linguistics (COLING 2004). Geneva, CH,
868–874.

William A. Gale and Kenneth W. Church. 1994. What’s Wrong with Adding One? In Corpus-Based Research
into Language: In honour of Jan Aarts, N. Oostdijk and P. de Haan (Eds.). Rodopi, Amsterdam, NL,
189–200.

Shantanu Godbole, Abhay Harpale, Sunita Sarawagi, and Soumen Chakrabarti. 2004. Document Classifica-
tion Through Interactive Supervision of Document and Term Labels. In Proceedings of the 8th European
Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2004). Pisa, IT, 185–
196.

Haibo He and Edwardo A. Garcia. 2009. Learning from imbalanced data. IEEE Transactions on Knowledge
and Data Engineering 21, 9 (2009), 1263–1284.

William Hersh, Christopher Buckley, T.J. Leone, and David Hickman. 1994. OHSUMED: An interactive
retrieval evaluation and new large text collection for research. In Proceedings of the 17th ACM Inter-
national Conference on Research and Development in Information Retrieval (SIGIR 1994). Dublin, IE,
192–201.

Steven C. Hoi, Rong Jin, and Michael R. Lyu. 2006. Large-scale text categorization by batch mode active
learning. In Proceedings of the 15th International Conference on World Wide Web (WWW 2006). Edin-
burgh, UK, 633–642.

David J. Ittner, David D. Lewis, and David D. Ahn. 1995. Text categorization of low quality images. In
Proceedings of the 4th Annual Symposium on Document Analysis and Information Retrieval (SDAIR
1995). Las Vegas, US, 301–315.

Thorsten Joachims. 1999. Transductive Inference for Text Classification using Support Vector Machines. In
Proceedings of the 16th International Conference on Machine Learning (ICML 1999). Bled, SL, 200–209.

Ashish Kapoor, Eric Horvitz, and Sumit Basu. 2007. Selective Supervision: Guiding Supervised Learning
with Decision-Theoretic Active Learning. In Proceedings of the 20th International Joint Conference on
Artifical Intelligence (IJCAI 2007). San Francisco, US, 877–882.

Leah S. Larkey and W. Bruce Croft. 1996. Combining classifiers in text categorization. In Proceedings of
the 19th ACM International Conference on Research and Development in Information Retrieval (SIGIR
1996). Zürich, CH, 289–297.

David D. Lewis and Jason Catlett. 1994. Heterogeneous uncertainty sampling for supervised learning. In
Proceedings of 11th International Conference on Machine Learning (ICML 1994). New Brunswick, US,
148–156.

David D. Lewis, Robert E. Schapire, James P. Callan, and Ron Papka. 1996. Training algorithms for linear
text classifiers. In Proceedings of the 19th ACM International Conference on Research and Development
in Information Retrieval (SIGIR 1996). Zürich, CH, 298–306.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Utility-Theoretic Ranking for Semi-Automated Text Classification A:33

Miguel Martinez-Alvarez, Alejandro Bellogin, and Thomas Roelleke. 2013. Document Difficulty Framework
for Semi-Automatic Text Classification. In Proceedings of the 15th International Conference on Data
Warehousing and Knowledge Discovery (DaWaK 2013). Prague, CZ.

Miguel Martinez-Alvarez, Sirvan Yahyaei, and Thomas Roelleke. 2012. Semi-automatic Document classifi-
cation: Exploiting Document Difficulty. In Proceedings of the 34th European Conference on Information
Retrieval (ECIR 2012). Barcelona, ES.

Andrew K. McCallum and Kamal Nigam. 1998. Employing EM in pool-based active learning for text classifi-
cation. In Proceedings of the 15th International Conference on Machine Learning (ICML 1998). Madison,
US, 350–358.

Alistair Moffat and Justin Zobel. 2008. Rank-Biased Precision for Measurement of Retrieval Effectiveness.
ACM Transactions on Information Systems 27, 1 (2008).

Alexandru Niculescu-Mizil and Rich Caruana. 2005. Obtaining Calibrated Probabilities from Boosting. In
Proceedings of the 21st Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI
2005). Arlington, US, 413–420.

Douglas W. Oard, Jason R. Baron, Bruce Hedin, David D. Lewis, and Stephen Tomlinson. 2010. Evaluation
of information retrieval for E-discovery. Artificial Intelligence and Law 18, 4 (2010), 347–386.

Douglas W. Oard and William Webber. 2013. Information Retrieval for E-Discovery. Foundations and Trends
in Information Retrieval 7, 2/3 (2013).

John C. Platt. 2000. Probabilistic outputs for support vector machines and comparison to regularized like-
lihood methods. In Advances in Large Margin Classifiers, Alexander Smola, Peter Bartlett, Bernard
Schölkopf, and Dale Schuurmans (Eds.). The MIT Press, Cambridge, MA, 61–74.

Hema Raghavan, Omid Madani, and Rosie Jones. 2006. Active Learning with Feedback on Features and
Instances. Journal of Machine Learning Research 7 (2006), 1655–1686.

Stephen E. Robertson. 2008. A new interpretation of average precision. In Proceedings of the 31st ACM In-
ternational Conference on Research and Development in Information Retrieval (SIGIR 2008). Singapore,
SN, 689–690.

Robert E. Schapire and Yoram Singer. 2000. BoosTexter: A boosting-based system for text categorization.
Machine Learning 39, 2/3 (2000), 135–168.

Fabrizio Sebastiani. 2002. Machine learning in automated text categorization. Comput. Surveys 34, 1 (2002),
1–47.

Burr Settles. 2012. Active learning. Morgan & Claypool Publishers, San Rafael, US.
Jeffrey S. Simonoff. 1983. A penalty function approach to smoothing large sparse contingency tables. The

Annals of Statistics 11, 1 (1983), 208–218.
Simon Tong and Daphne Koller. 2001. Support Vector Machine Active Learning with Applications to Text

Classification. Journal of Machine Learning Research 2 (2001), 45–66.
Sudheendra Vijayanarasimhan and Kristen Grauman. 2009. What’s it going to cost you?: Predicting effort

vs. informativeness for multi-label image annotations. In Proceedings of the 15th IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2009). Miami, US, 2262–2269.

John von Neumann and Oskar Morgenstern. 1944. Theory of Games and Economic Behavior. Princeton
University Press, Princeton, US.

Yiming Yang and Xin Liu. 1999. A re-examination of text categorization methods. In Proceedings of the
22nd ACM International Conference on Research and Development in Information Retrieval (SIGIR
1999). Berkeley, US, 42–49.

ChengXiang Zhai and John Lafferty. 2004. A Study of Smoothing Methods for Language Models Applied to
Information Retrieval. ACM Transactions on Information Systems 22, 2 (2004), 179–214.

Xiaojin Zhu and Andrew B. Goldberg. 2009. Introduction to Semi-Supervised Learning. Morgan and Clay-
pool, San Rafael, US.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

	1 Introduction
	2 Related work
	3 Preliminaries
	4 A ranking method for SATC based on utility theory
	4.1 Ranking by utility
	4.2 Validation gains
	4.3 Smoothing contingency cell estimates
	4.4 Turning confidence scores into probabilities
	4.5 Ranking by total utility

	5 Expected normalized error reduction
	5.1 Error reduction at rank
	5.2 Normalized error reduction at rank ...
	5.3 ... and its expected value

	6 Experiments
	6.1 Experimental protocol
	6.2 Probability calibration
	6.3 Learning algorithms
	6.4 Datasets
	6.5 Lower bounds and upper bounds
	6.6 Results and discussion
	6.6.1 Mid-sized test sets
	6.6.2 Small test sets
	6.6.3 Tiny test sets
	6.6.4 Large test sets
	6.6.5 Discussion

	7 An improved, ``dynamic'' ranking function for SATC
	7.1 Experiments

	8 A ``micro-oriented'' ranking function for SATC
	8.1 Experiments

	9 Conclusions
	10 Acknowledgments

