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In sponsored search, advertisement (abbreviated ad) slots are usually sold by a search engine to an adver-
tiser through an auction mechanism in which advertisers bid on keywords. In theory, auction mechanisms
have many desirable economic properties. However, keyword auctions have a number of limitations includ-
ing: the uncertainty in payment prices for advertisers; the volatility in the search engine’s revenue; and the
weak loyalty between advertiser and search engine. In this paper we propose a special ad option that allevi-
ates these problems. In our proposal, an advertiser can purchase an option from a search engine in advance
by paying an upfront fee, known as the option price. He then has the right, but no obligation, to purchase
among the pre-specified set of keywords at the fixed cost-per-clicks (CPCs) for a specified number of clicks
in a specified period of time. The proposed option is closely related to a special exotic option in finance that
contains multiple underlying assets (multi-keyword) and is also multi-exercisable (multi-click). This novel
structure has many benefits: advertisers can have reduced uncertainty in advertising; the search engine can
improve the advertisers’ loyalty as well as obtain a stable and increased expected revenue over time. Since
the proposed ad option can be implemented in conjunction with the existing keyword auctions, the option
price and corresponding fixed CPCs must be set such that there is no arbitrage between the two markets.
Option pricing methods are discussed and our experimental results validate the development. Compared to
keyword auctions, a search engine can have an increased expected revenue by selling an ad option.

Categories and Subject Descriptors: J.4 [Computer Applications]: Social and Behaviour Science – Eco-
nomics

General Terms: Theory, Algorithms, Experimentation

Additional Key Words and Phrases: Sponsored Search, Exotic Option, Pricing Model, Revenue Analysis

1. INTRODUCTION
Sponsored search has become an important online advertising format [PWC 2013],
where a search engine sells ad slots in the search engine results pages (SERPs) gener-
ated in response to a user’s search behaviour. An online user submits a term or phrase
within the search box to the search engine. The term or phrase is collectively known
as the query. The SERP has two types of result listings in response to the submitted
query: organic results and paid results. Organic results are the Web page listings that
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most closely match the user’s search query based on relevance [Jansen 2011]. Paid re-
sults are online ads – the companies who have paid to have their Web pages displayed
for certain keywords, so such listings show up when an user submits a search query
containing those keywords. The price of an ad slot is usually determined by a keyword
auction such as the widely used generalized second price (GSP) auction [Edelman et al.
2007; Varian 2007; Lahaie and Pennock 2007; Börgers et al. 2013; Qin et al. 2014]. In
the GSP auction, advertisers bid on keywords present in the query, and the highest
bidder pays the price associated with the second highest bid.

Despite the success of keyword auctions, there are two major drawbacks. First, the
uncertainty and volatility of bids make it difficult for advertisers to predict their cam-
paign costs and thus complicate their business planning [Wang and Chen 2012]. Sec-
ond, the “pay-as-you-go” nature of auction mechanisms does not encourage a stable
relationship between advertiser and search engine [Jank and Yahav 2010] – an adver-
tiser can switch from one search engine to another in the next bidding at near-zero
cost.

To alleviate these problems, we propose a multi-keyword multi-click ad option. It is
essentially a contract between an advertiser and a search engine. It consists of a non-
refundable upfront fee, known as the option price, paid by the advertiser, in return
for the right, but not the obligation, to subsequently purchase a fixed number of clicks
for particular keywords for pre-specified fixed cost per clicks (CPCs) during a spec-
ified period of time. From the advertiser’s perspective, fixing the CPCs significantly
reduces the uncertainty in the cost of advertising campaigns. Moreover, for a keyword,
if the spot CPC set by keyword auction falls below the fixed CPC of the option contract,
the advertiser is not obligated to exercise the option, but can, instead, participate in
keyword auctions. Therefore, the option can be considered as an “insurance” that es-
tablishes an upper limit on the cost of advertising campaigns. From the search engine’s
perspective, the proposed option is not only an additional service provided for advertis-
ers. We show that the search engine can, in fact, increase the expected revenue in the
process of selling an ad option. Also, since the option covers a specific period of time
should encourage a more stable relationship between advertiser and search engine.

An important question for us is to determine the option price and the fixed CPCs as-
sociated with candidate keywords in the advertiser’s request list. Clearly if the option
is priced too low, then significant loss in revenue to the search engine may ensure.
Moreover, this may create an arbitrage opportunity where the buyer of the option
sells the clicks from their targeted keywords to gain extra profits. Conversely, if the
option is priced too high, then the advertiser will not purchase it. In this paper we
consider a risk-neutral environment and price the option under the no-arbitrage ob-
jective [Wilmott 2006; Björk 2009]. We use the Monte Carlo method to price the option
with multiple candidate keywords and show the closed-form pricing formulas for the
cases of single and two keywords. Further, the effects of ad options on the search en-
gine’s revenue is analysed.

This paper has three major contributions. First, we propose a new way to pre-sell ad
slots in sponsored search which provides flexible guaranteed deliveries to advertisers.
It naturally complements the current keyword auction mechanism and offers both ad-
vertiser and search engine an effective risk mitigation tool to deal with fluctuations in
the bid price. Although the proposed ad option belongs to a family of exotic options, it
differs from existing exotic options that we know from finance and other industries (see
Table I for detailed comparisons): it can be exercised not only once but also multiple
times during the contract period; it is not for a single keyword but multiple keywords
and each keyword has its own fixed CPC; it allows its buyer to choose which keyword
to reserve and advertise at the corresponding fixed CPC later during the contract pe-
riod. Second, we discuss a generalized pricing method for the proposed ad option (see
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Algorithm 1) to deal with the high dimensionality. Third, we demonstrate that, com-
pared to keyword auctions, a search engine can have an increased expected revenue
by selling an ad option.

The rest of the paper is organised as follows. Section 2 reviews the related litera-
ture. Section 3 introduces the design of proposed ad option, discusses the option pric-
ing methods and analyses the option effects on the search engine’s revenue. Section 4
presents our empirical evaluation and Section 5 concludes the paper. Several impor-
tant mathematical results are provided in Appendices A-C.

2. RELATED WORK
The work presented in this paper touches upon several streams of literature. We first
review the prior work on options in finance and other industries, and then discuss the
related literature in guaranteed advertising deliveries.

2.1. Options and Their Pricing Methods
Options have been known and traded for many centuries and can be traced back to
the 17th century [Constantinides and Malliaris 2001]. A standard option is a contract
in which the seller grants the buyer the right, but not the obligation, to enter into a
transaction with the seller to either buy or sell an underlying asset at a fixed price on
or prior to a fixed date. The fixed price is called the strike price and the fixed date is
called the expiration date. The seller grants this right in exchange for a certain amount
of money, called the option price. An option is called the call option or put option de-
pending on whether the buyer is purchasing the right to buy or sell the underlying
asset. The simplest option is the European option [Wilmott 2006], which can be ex-
ercised only on the expiration date. This differs from the American option [Wilmott
2006], which can be exercised at any time during the contract lifetime. Both European
and American options are called standard options.

In the beginning of the 1980s, standard options became more widely understood and
their trading volume increased dramatically. Financial institutions began to search
for alternative forms of options, known as exotic options [Zhang 1998], to meet their
new business needs. Among them, two types of options, multi-asset options and multi-
exercise options, are particularly relevant to our research.

Multi-asset options are the options written on at least two underlying assets [Zhang
1998]. These underlying assets can be stocks, bonds, currencies and indices in either
the same category or different markets. Several types of multi-asset options are worth
mentioning, such as basket options, dual-strike options, rainbow options, paying the
best and cash options, and quotient options. Table I provides a brief summary of these
multi-asset options, and compares them to standard options and our proposed multi-
keyword multi-click ad options (see Section 3) along the following seven dimensions:
payoff function, underlying variable, exercise opportunity, early exercise opportunity,
strike price and application area. The comparison indicates that our proposed ad op-
tions is more complex than previous proposals.

In Table I, it is worth emphasising basket options and dual-strike options. Basket
options are those options whose payoff is determined by the weighted sum of un-
derlying asset prices [Wilmott 2006]. This structure can be extended to the keyword
broad match setting1, where the weights are the probabilities that sub-phrases occur

1The keyword match type setting helps the search engine to control which searches can trigger an adver-
tiser’s ad. Under the exact match setting, the advertiser’s ad may show on searches that are an exact term
and close variations of that exact term; Under the broad match setting, the advertiser’s ad may show on
searches that include misspellings, synonyms, other relevant variations and related searches. For further
details, see https://support.google.com/adwords/
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in search queries. Dual-strike options are options with two different strike prices for
two different underlying assets [Zhang 1998]. One simple version of our proposed ad
options is a dual-strike call option, which allows an advertiser to switch between his
targeted two keywords during the contract lifetime. However, in sponsored search, the
number of candidate keywords to choose from is usually more than two, so the two key-
words are extended to higher dimensions. In addition, as an advertiser usually needs
more than a single click for guaranteed delivery, the dual-strike call option is extended
to a multi-exercise option.

Multi-exercise options are a generalisation of American options, which provide a
buyer with more than one exercise right and sometimes control over one or more other
variables [Villinski 2004], e.g., the amount of the underlying asset exercised in cer-
tain time periods. Multi-exercise options have become more prevalent over the past
decade, particularly, in the energy industry, such as electricity swing options and wa-
ter options. Contributors to the multi-exercise options include Deng [2000], Deng and
Oren [2006], Clewlow and Strickland [2000], Villinski [2004], Weron [2006], Marshall
et al. [2011] and Marshall [2012]. Their work is not further discussed here as our pro-
posed ad option is a simple example of multi-exercise options. Compared to the energy
industry, the multi-exercise opportunity in sponsored search is more flexible. Advertis-
ers are allowed to exercise options at any time in the option lifetime, i.e. the exercise
time is not pre-specified, and no minimum number of clicks is required for each exer-
cise. Therefore, there is no penalty fee if the advertiser does not exercise the minimum
clicks. In addition, there is no transaction fee for ad options in sponsored search.

Motivated by an attempt to model the fluctuations of asset prices, Brownian motion
(i.e., the continuous-time random walk process [Shreve 2004]) was first introduced
by Bachelier [1900] to price an option. However, the impact of his work was not recog-
nised by financial community for many years. Sixty five years later, Samuelson [1965]
replaced Bachelier’s assumptions on asset price with a geometric form, called the geo-
metric Brownian motion (GBM). In the GBM model, the proportional price changes are
exponentially generated by a Brownian motion. While the GBM model is not appropri-
ate for all financial assets in all market conditions, it remains the reference model
against which any alternative dynamics are judged.

The research of Samuelson highly affected Black and Scholes [1973] and Merton
[1973], who then examined the option pricing based on a GBM. They constructed a
portfolio from risky and risk-less underlying assets to replicate the value of an Euro-
pean option. Risky assets can be stocks, foreign currencies, indices, and so on; risk-
less assets can be bonds. Once the risky part of the replicated portfolio is estimated,
the option value can be obtained accordingly. The pricing methods proposed by Black
and Scholes [1973] and Merton [1973] were based on the assumption that investors
on the market cannot obtain arbitrage. Therefore, the replicated portfolio is treated
as a self-adjusting process whose least expectation of returns increase at the same
speed as the constant bank interest rate. If considering the constant bank interest
rate as a discount factor, the discounted value of the replicated portfolio would be a
martingale [Björk 2009], whose probability measure is called the risk-neutral proba-
bility measure. Since a closed-form pricing formula can be obtained from the settings
of Black and Scholes [1973] and Merton [1973], we normally call their work as the
Black-Scholes-Merton (BSM) option pricing formula. The BSM option pricing formula
spurred research in this field. Various numerical procedures then appeared, including
lattice methods, finite difference methods and Monte Carlo methods. These numerical
procedures are capable of evaluating more complex options when the closed-form so-
lution does not exist. In this paper, the Monte Carlo method we discussed can quickly
price an ad option where the number of candidate keywords is larger than two.
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2.2. Guaranteed Advertising Deliveries
Guaranteed contracts appeared in the early stages of online advertising (particularly
in display advertising). They were mostly negotiated by advertisers and publishers2

privately [Edelman et al. 2007]. Each negotiation contains an amount of needed dis-
play impressions over a certain period of time and a pre-specified guaranteed price.
Hence, in discussing guaranteed deliveries, the following issues must be considered:
allocation and pricing. Many studies discussed these two issues separately. Allocation
models is reviewed first, then the pricing models.

Feldman et al. [2009] studied an ad selection algorithm for a publisher whose ob-
jective is not only to fulfil the guaranteed contracts but also to deliver the well-
targeted display impressions to advertisers. This research was more relevant to a
service matching problem. The allocation of impressions between the guaranteed and
non-guaranteed channels was first discussed by Ghosh et al. [2009], where a publisher
was considered to act as a bidder who bids for guaranteed contracts. This modelling
setting was reasonably good as the publisher acts as a bidder who would allocate im-
pressions to online auctions only when other winning bids are high enough. Balseiro
et al. [2011] investigated the same allocation problem but used some stochastic control
models. In their model, for a given price of an impression, the publisher can decide
whether to send it to ad exchanges or assign it to an advertiser with a fixed reserve
price. The decision making process aims to maximise the expected total revenue. Roels
and Fridgeirsdottir [2009] proposed a similar allocation framework to Balseiro et al.
[2011], where the publisher can dynamically select which guaranteed buy requests
to accept and to deliver the guaranteed impressions accordingly. However, compared
to Balseiro et al. [2011], the uncertainty in advertisers’ buy requests and the traffic of a
website were explicitly modelled under the revenue maximisation objective. Recently, a
lightweight allocation framework was proposed by Bharadwaj et al. [2012]. They used
a simple greedy algorithm to simplify the computations of revenue maximisation.

Two algorithms for pricing the guaranteed display contracts were discussed
by Bharadwaj et al. [2010]. Each contract has a large number of impressions and the
proposed algorithms solved the revenue optimisation problem for the given number of
user visits (i.e., the demand level). However, their work did not consider the auction
effects on the contract pricing, and the developed algorithms were purely based on the
statistics of users’ visits.

Consider the case where the online advertising market is bouyant (i.e., the winning
payment prices for specific ad slots from online auctions increase) and non-guaranteed
selling becomes more profitable for publishers. In this case, they may want to cancel
the sold guaranteed contracts before the time that the targeted impressions will be
created. Online auctions with cancellations were recently discussed by Babaioff et al.
[2009] and Constantin et al. [2009]. They both considered a design where a publisher
can cancel the sold guaranteed contracts but needs to pay a penalty to the advertisers.
The proposed auctions with cancellations exhibit interesting economic properties, such
as allocative efficiency and equilibrium solution. However, there may exist speculators
who pursue the cancellation penalty only. In fact, the discussed cancellation penalty is
very similar to over-selling of flight tickets [Talluri and van Ryzin 2005].

Salomatin et al. [2012] studied a framework of guaranteed deliveries for sponsored
search, under which advertisers are able to send their guaranteed requests to a search
engine. Each guaranteed request includes the needed number of clicks and the ad bud-
get. The search engine then decides guaranteed deliveries according to search queries
and available positions. Since the allocation decision is based on the joint revenue max-

2Publishers are sellers in display advertising.
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imisation from guaranteed deliveries and keyword auctions, some advertisers may not
receive all their demanded clicks. In such cases, the search engine pays a penalty. How-
ever, advertisers still have less control of the ad exposure time and the position of the
ad. In addition, with the number of guaranteed advertisers increasing, it is less likely
that advertisers can meet their business needs with such a mechanism.

The concept of ad option was initially introduced by Moon and Kwon [2010] (even
though Meinl and Blau [2009] discussed the possibility of Web service derivatives,
their proposal was not intended for online advertising). Moon and Kwon [2010] pro-
posed that the ad option buyer can be guaranteed the right to choose the minimum
payment between cost-per-mille (CPM) and CPC once click-through rate (CTR) is re-
alized. This option structure was similar to a paying the worst and cash option [Zhang
1998]. In addition, Moon and Kwon [2010] suggested option pricing under the frame-
work of a Nash bargaining game. Simply, they considered two utility functions: one for
the advertiser and one for the publisher. The objective function is the product of these
two utilities and each utility function is restricted by a negotiation power. Therefore,
the option price is the optimal solution which maximises the negotiated join utility.
Another ad option was discussed by Wang and Chen [2012] (and later Chen and Wang
[2014]) for display advertising. The option allows its buyer to select his preferred pay-
ment scheme (either CPM or CPC) for the fixed payment. For example, an advertiser
can choose to pay a fixed CPC for targeted display impressions. They discussed the lat-
tice methods for option pricing and investigated the stochastic volatility (SV) model for
the cases where the GBM assumption is not valid empirically. However, their work was
limited to an univariate case as the SV model cannot be easily extended to multiple
variables based on the lattice framework.

3. MULTI-KEYWORD MULTI-CLICK AD OPTIONS
We first introduce how a multi-keyword multi-click ad option works, then discuss the
option pricing methods, and finally provide an analysis of the search engine’s revenue.

3.1. Guaranteed Delivery in Sponsored Search via Ad Options
We use the following example to illustrate our idea. Suppose that a computer science
department creates a new master degree programme on ‘Web Science and Big Data
Analytics’ and is interested in an advertising campaign based around relevant search
terms such as ‘MSc Web Science’, ‘MSc Big Data Analytics’ and ‘Data Mining’, etc. The
campaign is to start immediately and last for three months and the goal is to generate
at least 1000 clicks on the ad which directs users to the homepage of this new master
programme. The department (i.e., advertiser) does not know how the clicks will be
distributed among the candidate keywords, nor how much the campaign will cost if
based on keyword auctions. However, with the ad option, the advertiser can submit
a request to the search engine to lock-in the advertising cost. The request consists of
the candidate keywords, the overall number of clicks needed, and the duration of the
contract. The search engine responds with a price table for the option, as shown in
Figure 1. It contains the option price and the fixed CPC for each keyword. The CPCs
are fixed yet different across the candidate keywords. The contract is entered into
when the advertiser pays the option price.

During the contract period [0, T ], where T represents the contract expiration date
(and is three months in this example), the advertiser has the right, at any time, to
exercise portions of the contract, for example, to buy a requested number of clicks for
a specific keyword. This right expires after time T or when the total number of clicks
have been purchased, whichever is sooner. For example, at time t1 ≤ T the advertiser
may exercise the right for 100 clicks on the keyword ‘MSc Web Science’. After receiv-
ing the exercise request, the search engine immediately reserves an ad slot for the
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Fig. 1. Schematic view of buying, selling and exercising a multi-keyword multi-click ad option in sponsored
search.
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keyword for the advertiser until the ad is clicked on 100 times. In our current design,
the search engine decides which rank position the ad should be displayed as long as
the required number of clicks is fulfilled - we assume there are adequate search im-
pressions within the period. It is also possible to generalise the study in this paper
and define a rank specific option where all the parameters (CPCs, option prices etc.)
become rank specific. The advertiser can switch among the candidate keywords and
also monitor the keyword auction market. If, for example, the CPC for the keyword
‘MSc Web Science’ drops below the fixed CPC, then the advertiser may choose to par-
ticipate in the auction rather than exercise the option for the keyword. If later in the
campaign, the spot price for the keyword ‘MSc Web Science‘’ exceeds the fixed CPC,
the advertiser can then exercise the option.

Figure 1 illustrates the flexibility of the proposed ad option. Specifically, (i) the ad-
vertiser does not have to use the option and can participate in keyword auctions as
well, (ii) the advertiser can exercise the option at any time during the contract period,
(iii) the advertiser can exercise the option up to the maximum number of clicks, (iv) the
advertiser can request any number of clicks in each exercise provided the accumulated
number of exercised clicks does not exceed the maximum number, and (v) the adver-
tiser can switch among keywords at each exercise at no additional cost. Of course, this
flexibility complicates the pricing of the option, which is discussed next.

3.2. Option Pricing Methods
The proposed multi-keyword multi-click ad option enables an advertiser to fix his ad-
vertising cost and construct a set of candidate keywords beforehand, yet leave the
decision of selecting suitable keywords for matching and the exact timing to place the
ad to later. Since the advertiser enjoys great flexibility in sponsored search, there is an
intrinsic value associated with an ad option and the buyer needs to pay an upfront op-
tion price first. In the following discussion, we focus on calculating a fair upfront option
price for the given option candidate keywords, the current winning payment prices, the
volatility of these keywords, the length of contract period, the risk-less bank interest
rate, and the fixed CPCs for candidate keywords. Note that the fixed CPCs are con-
sidered as given variables as they can be set by the search engine after receiving the
advertiser’s request or be proposed by the advertiser in his request. Either case will
not affect our valuation of the option. We follow the scenario of the motivating example
presented in Figure 1 and consider the search engine sets the fixed CPCs.

Recall that Table I presents two different payoff functions for the proposed ad option.
The first payoff function can be used to price an ad option with either the keyword exact
or broad match setting, which is determined by what is the match type of the winning
payment prices used. However, if only having the exact match winning payment prices
from keyword auctions and the advertiser wants to have an ad option with keyword
broad match setting, the second payoff function can be used for option pricing. In the
following, we discuss the option pricing based on the first payoff function. Same method
can be applied to the second payoff function, for further details see Section 3.2.4.

3.2.1. Underlying Stochastic Model. The winning payment CPC of the candidate keyword
Ki (for a specific slot/position) at time t is denoted by Ci(t). Its movement can be de-
scribed by a multivariate geometric Brownian motion (GBM) [Samuelson 1965]:

dCi(t) = µiCi(t)dt+ σiCi(t)dWi(t), i = 1, . . . , n, (1)

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 1, Article 5, Publication date: October 2015.



5:10 B. Chen et al.

Table II. Summary of notations.

Notation Description
r Constant continuous (risk-less) interest rate.
T Option expiration date.
t Continuous time point in [0, T ].
m Number of total clicks specified by an ad option.
n Number of total number of keywords specified by an ad option.
K Keywords specified by an ad option, K = {K1, . . . ,Kn}.
F Pre-specified fixed CPCs for keywords K.
C(t) Winning payment CPCs for keywords K from auctions at time t.
V (t,C(t);T,F ,m) Value of an n-keyword m-click ad option at time t.
µi Constant drift of CPC for keyword Ki, i = 1, . . . , n.
σi Constant volatility of CPC for keyword Ki, i = 1, . . . , n.
W (t) Standard Brownian motion at time t.
Σ Price correlation matrix, in which ρij is the correlation coefficient between

keywords Ki and Kj , such that ρii = 1 and ρij = ρji.
MΣM Price covariance matrix, whereM is the matrix with σi along the diagonal

and zeros everywhere else.
Φ(C(t)) Payoff function of an ad option at time t.
π0 Option price (i.e., upfront fee) of an ad option.
N(µ, σ2) Normal distribution with mean µ and variance σ2.
MVN(µ,MΣM) Multivariate normal distribution with mean µ and variance MΣM .
N [·] Cumulative probability distribution of a standard normal distribution.

where µi and σi are constants representing the drift and volatility of the CPC respec-
tively, and Wi(t) is a standard Brownian motion satisfying the conditions:

E(dWi(t)) = 0,

var(dWi(t)) = E(dWi(t)dWi(t)) = dt,

cov(dWi(t), dWj(t)) = E(dWi(t)dWj(t)) = ρijdt,

where ρij is the correlation coefficient between keywords Ki and Kj , such that ρii = 1
and ρij = ρji. The correlation matrix is denoted by Σ, so that the covariance matrix
is simply MΣM , where M is the matrix with the σi along the diagonal and zeros
everywhere else. For the reader’s convenience, detailed descriptions of notations are
provided in Table II.

Since the GBM assumption lays the foundation of pricing the proposed ad option, we
provide several discussions and investigations of it. In Section 3.2.4, we explain why
the GBM assumption is suitable for pricing an ad option in sponsored search, and also
highlight its limitations. In Section 4.2, we discuss the estimation of GBM parameters.
In Section 4.3, we conduct goodness-of-fit tests with real datasets and track the “errors”
of the calculated option price when the GBM assumption is not valid empirically.

3.2.2. Terminal Value Pricing. To simplify the discussion and without loss of generality,
the value of an n-keyword m-click ad option can be decomposed as the sum of m inde-
pendent n-keyword 1-click ad options. If an advertiser buys an ad option at time 0, the
option price π0 can be expressed as follows

π0 = V (0,C(0);T,F ,m) = mV (0,C(0);T,F , 1), (2)

where V (0,C(0);T,F ,m) represents the option value at time 0.
Our focus now centres on the n-keyword 1-click ad option. Adopting the basic eco-

nomic setting [Narahari et al. 2009], we assume that an advertiser is risk-neutral. In
other words, he has no preference across the candidate keywords and exercises the op-
tion for the keyword which has the maximum difference between its winning payment
price and the pre-specified fixed price. This difference shows the value of the option
because the advertiser is offered the right to move from the auction market to the
guaranteed market.
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Let us first consider if the advertiser exercises the option at the contract expiration
date T , the option payoff can be defined as follows

Φ(C(T )) = max{C1(T )− F1, . . . , Cn(T )− Fn, 0}. (3)
Note that the option payoff in sponsored search does not mean the direct reward but it
measures the difference of advertising cost between the auction market and the guar-
anteed market. By having Eq. (3), we can see if the advertiser would like to exercise
the option early by using the backward deduction method. The option value at time
time t < T is then

V (t,C(t);T,F , 1) =

{
Φ(C(t)), if early exercise,
EQ
t

[
e−r(T−t)Φ(C(T ))

]
, if not early exercise,

where r is the constant risk-less bank interest rate and EQ
t [·] is the conditional expec-

tation with respect to time t under the probability measure Q. As we use the risk-less
bank interest rate as the discounted factor, the probability measure Q is also called the
risk-neutral probability measure [Björk 2009]. Appendix B discusses the rationale for
using the risk-less bank interest rate and introduces an alternative method of option
pricing.

Let us now return to the decision making problem. If the ad option is exercised
early at time t, the option value is equal to its payoff Φ(C(t)). However, if the ad op-
tion is not exercised, the option value at time t is equal to the discounted value of
the expected payoff at the expiration date T . The comparison between Φ(C(t)) and
EQ
t

[
e−r(T−t)Φ(C(T ))

]
informs the optimal decision for the advertiser. Since the payoff

function defined is convex, we then obtain the following inequality (see Appendix A):

Φ(C(t)) ≤ EQ
t

[
e−r(T−t)Φ(C(T ))

]
. (4)

Eq. (4) illustrates, to gain the maximum option value, the advertiser will not exercise
the option until its expiration date. Hence, the option price should be computed at
the discounted value of the expected payoff from the expiration date T . Together with
Eq. (2), we can obtain the option pricing formula for the n-keyword m-click ad option:

π0 = me−rTEQ
0

[
Φ(C(T ))

]
. (5)

It is worth noting that we rule out arbitrage [Varian 1987] between the auction
market and the guaranteed market in option pricing. The concept of arbitrage can
be understood as the “free lunch”. As a market designer, we need to make sure that
everyone obtains something by paying something so that it is fair to both the buy
and sell sides. Since we assume that an advertiser is risk-neutral, the risk-less bank
interest rate can be employed as the benchmark rate to rule out arbitrage. Eq. (5) can
also be obtained by constructing an advertising strategy for the advertiser as discussed
in Appendix B.

3.2.3. Solutions. Eq. (5) can be expanded in integral form as follows

π0 = me−rT
(
2πT

)−n
2 |Σ|− 1

2

(
n∏
i=1

σi

)−1

×

∫ ∞

0

· · ·

∫ ∞

0

Φ(C̃)∏n
i=1 C̃i

exp

{
−1

2
ζTΣ−1ζ

}
dC̃, (6)

where ζ = (ζ1, . . . , ζn)′, ζi = 1
σi

√
T

(
ln{C̃i/Ci(0)} − (r − σ2

i

2 )T
)
, and other notations are

described in Table II.
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Algorithm 1 Pricing a multi-keyword multi-click ad option via Monte Carlo simula-
tions. Detailed description of notations is provided in Table II.

function OptionPricingMC(K,C(0),Σ,M ,m, r, T )
for k ← 1 to ñ do # ñ is the number of simulations;

[z1,k, . . . , zn,k]← GeneratingMultivariateNoise(MVN [0,MΣM ])
for i← 1 to n do

Ci,k ← Ci(0) exp
{

(r − 1
2σ

2
i )T + σizi,k

√
T
}

.
end for
Gk ← Φ([C1,k, . . . , Cn,k]).

end for
π0 ← me−rTE0[Φ(C(T ))] ≈ me−rT

(
1
ñ

∑ñ
k=1Gk

)
.

return π0
end function

Closed form solutions to Eq. (6) can be derived if n ≤ 2. If n = 1, Eq. (6) is equivalent
to the Black-Scholes-Merton (BSM) pricing formula for an European call option [Black
and Scholes 1973; Merton 1973]. If n = 2, Eq. (6) contains a bivariate normal distri-
bution and the option price can be obtained by employing the pricing formula for a
dual-strike European call option [Zhang 1998]. The closed form solutions are provided
in Appendix C.

For n ≥ 3, taking integrals in Eq. (6) is computationally difficult. In such a case,
we resort to numerical techniques to approximate the option price. Algorithm 1 illus-
trates our Monte Carlo method. For ñ number of simulations, for each simulation, we
generate a vector of multinormal noise and then calculate the CPCs at time T . Eq. (4)
shows that there is no need to generate the whole paths in each simulation as we only
consider the CPCs on the expiration date in the calculation of option payoff. Hence, by
having ñ payoffs at time T , the option price π0 can be then approximated numerically.
We refer to this as Algorithm 1.

3.2.4. Discussion. The candidate keywords’ prices may not follow the GBM assump-
tion empirically because some time series features, such as jumps and volatility clus-
tering, cannot be captured effectively by a GBM [Marathe and Ryan 2005]. However,
the GBM model is still a good choice for pricing ad options in sponsored search. First,
in our data analysis (see Section 4.3.1), we find that 15.73% keywords’ CPCs satisfy
the GBM assumption. Second, for the cases where the GBM assumption is not valid
empirically (see Section 4.3.2), we find that the pricing model is reasonably robust as
the identified arbitrage values in many experimental groups are small. Of course, our
dataset might be biased. However, other previous research in keyword auctions sup-
port the GBM assumption: Lahaie and Pennock [2007] tested the log-normality of bids
on Yahoo! search advertising data and gave the estimated distribution parameters;
Ostrovsky and Schwarz [2011] performed experiments based on the log-normal bids
on Yahoo! search advertising platform; Pin and Key [2011] observed random bids from
Microsoft Bing search platform and simulated similar bids based on the log-normal
distribution. Since in these research the advertisers’ bids are tested across auctions,
the winning payment prices (i.e., the second-highest bids from auctions) over time
also satisfy the log-normal distribution. Recall that in the GBM model, the difference
between two logarithms of winning payment prices follows a time dependent normal
distribution. If we consider the average daily winning payment price as the underlying
variable, these previous work can provide the distribution hypothesis tests to support
the GBM assumption in sponsored search. However, for display advertising, the GBM
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assumption is usually not valid empirically, and this has been recently investigated
by Chen et al. [2014] and Yuan et al. [2014].

Table I shows that if only having the exactly matched C(T ), we can still construct a
broad match structure for the option. Similar to Eq. (3), the option payoff function on
time T can be defined as follows

Φ(C(T )) = max

{ k1∑
i=1

ω1iC1i(T )− F1, · · · ,
kn∑
i=1

ωniCni(T )− Fn, 0
}
. (7)

where ωji is the probability that the ith broad matched keyword (i.e., the sub-phrase
occurs in search queries) for the keyword Kj , and kj represents the number of broad
matched keywords. Eq. (1) can be still used to model the underlying CPCs’ movement
and the option price π0 can be directly calculated by Algorithm 1.

3.3. Revenue Analysis for Search Engine
The proposed ad option can be considered as an “insurance” for an advertiser. The
advertiser needs to pay the upfront option price, which contributes to the search en-
gine’s revenue. In the following discussion, we analyse the effect of an ad option on the
search engine’s revenue. We provide a functional analysis for the 1-keyword 1-click ad
option in this section and leave the empirical investigation of the n-keyword cases to
Section 4.

Let D(F ) be the difference between the expected revenue from an ad option and the
expected revenue from only keyword auctions, we then have

D(F ) =

(
C(0)N [ζ1]− e−rTFN [ζ2] + e−rTF

)
P(EQ

0 [C(T )] ≥ F )︸ ︷︷ ︸
= Discounted value of expected revenue from option if EQ

0 [C(T )]≥F

+

(
C(0)N [ζ1]− e−rTFN [ζ2] + e−rTEQ

0 [C(T )]

)
P(EQ

0 [C(T )] < F )︸ ︷︷ ︸
= Discounted value of expected revenue from option if EQ

0 [C(T )]<F

− e−rTEQ
0 [C(T )]︸ ︷︷ ︸

= Discounted value of expected revenue from auction

.

= C(0)N [ζ1]− e−rTFN [ζ2]− e−rT (EQ
0 [C(T )]− F )× P(EQ

0 [C(T )] ≥ F ), (8)

where N [·] represents the cumulative probability of a standard normal distribution.
Let us consider the boundary values first. If F = 0, the option price π0 achieves its

maximum value e−rTEQ
0 [C(T )]; therefore, D(F ) → 0. If π0 = 0, the fixed CPC F is as

large as possible, and P(EQ
0 [C(T )] ≥ F )→ 0 and D(F )→ 0. Since

ln{C(T )/C(0)} ∼ N
(
(r − σ2/2)T, σ2T

)
,
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we can have

P(EQ
0 [C(T )] ≥ F ) = P

(
C(0) exp{(r − 1

2
σ2)T +

1

2
σ2T} ≥ F

)
= P

(
ln{C(T )/C(0)}+ ln{F/C(T )} − rT ≤ 0

)
= P

(
1

σ
√
T

(
ln{C(T )/C(0)} − (r − 1

2
σ2)T

)
≤ 1

σ
√
T

(
ln{C(0)/F}+ rT + σW (T )

))
= N [ζ∗], (9)

where ζ∗ = 1
σ
√
T

(
ln{C(0)/F}+ rT +σW (T )

)
= ζ1− ( 1

2σ
√
T − 1√

T
W (T )) = ζ2 + ( 1

2σ
√
T +

1√
T
W (T )). Since E[W (T )] = 0 and var[W (T )] = T , then ζ2 ≤ ζ∗ ≤ ζ1 with 67% probabil-

ity if σ2T ≥ 4. Then

D(F ) = C(0)N [ζ1]− e−rTFN [ζ2]− e−rT (EQ
0 [C(T )]− F )N [ζ∗]

= C(0)
(
N [ζ1]−N [ζ∗]

)
+ e−rTF

(
N [ζ∗]−N [ζ2]

)
≥ 0, (10)

suggesting that the search engine can have an increased expected revenue if the search
engines sells the click via an option rather than through an auction. Taking the deriva-
tive of D(F ) with respect to F and assigning its value to zero, we have

∂D(F )

∂F
= C(0)

∂N [ζ1]

∂ζ1

∂ζ1
∂F
− e−rTN [ζ2]− e−rTF ∂N [ζ2]

∂ζ2

∂ζ2
∂F

− e−rT (EQ
0 [C(T )]− F )

∂P(EQ
0 [C(T )] ≥ F )

∂F
+ e−rTP(EQ

0 [C(T )] ≥ F ) = 0. (11)

Since ∂N (x)/∂x = 1√
2π
e−

1
2x

2

, the following equation holds

∂N [ζ2]

∂ζ2

/
∂N [ζ1]

∂ζ1
= exp

{
1

2
(ζ21 − ζ22 )

}
=
C(0)erT

F
. (12)

Taking the derivative of ζ1 and ζ2 with respect to F gives

∂ζ1
∂F

=

∂ 1
σ
√
T

(
ln{C(0)/F}+ (r + 1

2σ
2)T

)
∂F

= − 1

Fσ
√
T
, (13)

∂ζ2
∂F

=
∂ζ1
∂F
− ∂σ

√
T

∂F
= − 1

Fσ
√
T
. (14)

and D(F ) achieves its maximum or minimum value at F = EQ
0 [C(T )]. Further, taking

the second derivative of D(F ) with respect to F = EQ
0 [C(T )] gives

∂2D(F )

∂F 2
=
∂P(EQ

0 [C(T )] ≥ F )

∂F
=
∂N [ζ2]

∂ζ2

∂ζ2
∂F

= − 1√
2π0

e−
1
2 ζ2

2 1

Fσ
√
T
< 0.

Hence, if the fixed CPC is set the same as the estimated spot CPC on the contract
expiration date (i.e., F = EQ

0 [C(T )]), the search engine can increase its profit.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 1, Article 5, Publication date: October 2015.



Multi-Keyword Multi-Click Advertisement Option Contracts for Sponsored Search 5:15

Table III. Overview of experimental settings of data.

Market Group Training set (31 days) Deve&test set (31 days)

US

1 25/01/2012-24/02/2012 24/02/2012-25/03/2012
2 30/03/2012-29/04/2012 29/04/2012-31/05/2012
3 10/06/2012-12/07/2012 12/07/2012-17/08/2012
4 10/11/2012-11/12/2012 11/12/2012-10/01/2013

UK

1 25/01/2012-24/02/2012 24/02/2012-25/03/2012
2 30/03/2012-29/04/2012 29/04/2012-31/05/2012
3 12/06/2012-13/07/2012 13/07/2012-19/08/2012
4 18/10/2012-22/11/2012 22/11/2012-24/12/2012

4. EXPERIMENTS
In this section, we describe our data and experimental settings, conduct assumption
and fairness tests, and investigate the option’s effects on the search engine’s revenue.

4.1. Data and Experimental Design
The data used in the experiments is collected from Google AdWords by using its Traffic
Estimation Service [Yuan and Wang 2012]: when an advertiser submits his targeted
keywords, budget, and other settings to Google, the Traffic Estimation Service will re-
turn a list of data values, including the estimated CPCs, clicks, global impressions, lo-
cal impressions and position. These values are recorded for the period from 26/11/2011
to 14/01/2013, for a total of 557 keywords in the US and UK markets. Note that in the
data 21 keywords have missing values and 115 keywords’s CPCs are all 0.

For each market, as illustrated in Table III, we split the data into 4 experimental
groups and each group has one training, one development, and one test set. The train-
ing set is used to: (i) select the keywords with non-zero CPCs; (ii) test the statistical
properties of the underlying dynamic and estimate the model parameters. We then
price ad options and simulate the corresponding buying and selling transactions in
the development set. Finally, the test set is used as the baseline to examine the priced
ad options.

4.2. Parameter Estimation and Option Pricing
The GBM parameters are estimated by using the method suggested by Wilmott [2006].
Specifically, for the keyword Ki, the volatility σi is the sample standard deviation of
change rates of log CPCs and the correlation ρij is given by

ρij =

∑m̃
k=1

(
yi(k)− ȳi

)(
yj(k)− ȳj

)√∑m̃
k=1

(
yi(k)− ȳi

)2∑m̃
k=1

(
yj(k)− ȳj

)2 , (15)

where m̃ is the size of training data and yi(tk) is the kth change rate of log CPCs.
Figure 2 illustrates an empirical example, where the candidate keywords are

K =

{
K1

K2

K3

}
=

{ ‘canon cameras’
‘nikon camera’

‘yahoo web hosting’

}
,

and the estimated model parameters are

σ =

(
0.2263
0.4521
0.2136

)
, Σ =

(
1.0000 0.2341 0.0242
0.2341 1.0000 −0.0540
0.0242 −0.0540 1.0000

)
.

Note that a high contextual relevance of keywords normally means that they have a
high substitutional degree to each other, such as ‘canon cameras’ and ‘nikon camera’,
whose CPCs move in the same direction with correlation 0.2341. The other keyword

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 1, Article 5, Publication date: October 2015.



5:16 B. Chen et al.

‘yahoo web hosting’ is contextually less relevant to the formers and also has very low
price correlations to them. The example also shows that the contextual relevance of
keywords has an impact on their CPCs movement.

Based on the estimated parameters, we draw a sample of simulated paths of a 3-
dimensional GBM in Figure 2(a) for 31 days (where the x-axis is expressed in terms
of year value). Recall that the option payoff at any time t in the contract lifetime is
max{C1(t)− F1, . . . , Cn(t)− Fn, 0}. In Figure 2(b), we plot the price difference between
the spot CPC and the fixed CPC of each candidate keyword (i.e., Ci(t)−Fi, i = 1, . . . , n)
and also indicate the corresponding option daily payoffs (shown by the cyan curve). It
suggests that switching among keywords would help the advertiser to maximise the
benefits of the ad option. Repeating the above simulations 50 times generates 50 sim-
ulated vales of each keyword for each day, as shown in Figure 2(c). We then calculate
50 option payoffs and their daily mean values to obtain the final option price, as shown
in Figure 2(d).

To examine the fairness (i.e., no-arbitrage) of the calculated option price, we can con-
struct a risk-less value difference process by delta hedging ∂V/∂Cj (see Appendix B)
and check if any arbitrage exists [Wilmott 2006]. The hedging delta of the 1-keyword
1-click ad option can be calculated as follows

∂V

∂C
= N

[
1

σ
√
T

(
ln

{
C(0)

F

}
+ (r +

σ2

2
)T

)]
. (16)

For the n-keyword 1-click option, the hedging delta of each keyword can be com-
puted by the Monte Carlo method, i.e., ∂V/∂Ci = EQ[∂V (T,C(T ))/∂Ci(T )]. According
to Appendix B, we can define the 31-day growth rate of the value difference process as
γ̃ =

(
Π(t31) − Π(t0)

)
/Π(t0), and compare γ̃ to the risk-less bank interest rate r = 5%

(equivalent to r̃ = 4.12% per 31 days return3). The arbitrage detection criteria is

|γ̃ − r̃| ≤ ε ? arbitrage does not exist : arbitrage exists, (17)

where the notation ε is the model variation threshold (and we set ε = 5% in experi-
ments). Hence, a positive γ̃ − r̃ means that the advertiser buys an option can obtain
arbitrage while a negative γ̃ − r̃ indicates the case of making arbitrage by selling an
option. Then the identified arbitrage α is defined as the excess return, that is

α =

{
γ̃ − (r̃ − ε), if γ̃ < r̃ − ε,
γ̃ − (r̃ + ε), if γ̃ > r̃ + ε.

(18)

Table IV presents the overall results of our arbitrage test based on the GBM model.
We generate paths for candidate keywords with 100 simulations and examine the op-
tions price using delta hedging. There are 99.76% (1-keyword), 93.06% (2-keyword)
and 92.71% (3-keyword) options fairly priced. Only a small number of options exhibits
arbitrage and most of the mean arbitrage values lie within 5%, such as shown in Fig-
ure 3. The existence of small arbitrage may be due to two reasons. First, the stability
of process simulations in both option pricing and arbitrage test. Second, the candi-
date keywords are randomly selected for the 2-keyword and 3-keyword options. The
significant differences on the absolute prices of these keywords can generates a large
variation of calculated option payoffs, which then trigger arbitrage.

3The relationship between the continuous compounding r and the return per 31 days r̃ is: 1 + r̃ =
er×30/365 [Hull 2009].
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Fig. 2. Empirical example of pricing a 3-keyword 1-click ad option via Monte Carlo method, where K1 =
‘canon cameras’, K2 = ‘nikon camera’, K3 = ‘yahoo web hosting’, F1 = 3.8505, F2 = 4.6704 and F3 =
6.2520.
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Table IV. Test of arbitrage for ad options based on a GBM: n is the number
of candidate keywords, N is the number of options priced in a group, P(α)
is percentage of options in a group with identified arbitrage, and the E[α]
is the average arbitrage value of the options, where the arbitrage α is
defined by Eq. (18) and the risk-less bank interest rate r = 5%.

n Group US market UK market
N P(α) E[α] N P(α) E[α]

1

1 94 0.00% 0.00% 76 0.00% 0.00%
2 64 0.00% 0.00% 45 0.00% 0.00%
3 94 1.06% 0.75% 87 0.00% 0.00%
4 112 0.89% -0.37% 53 0.00% 0.00%

2

1 47 4.26% 1.63% 38 0.00% 0.00%
2 32 9.38% 0.42% 22 4.55% 13.41%
3 47 4.26% 0.84% 43 4.65% 0.82%
4 56 5.36% 3.44% 26 23.08% -6.22%

3

1 31 0.00% 0.00% 25 4.00% 0.00%
2 21 4.76% -1.38% 15 0.00% 0.00%
3 31 0.00% 0.00% 29 3.45% -1.12%
4 37 10.81% 3.87% 17 35.29% -2.54%
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Fig. 3. Empirical example of arbitrage analysis based on GBM for the US market.

4.3. Model Validation and Robustness Test
We now examine the GBM assumption and investigate if arbitrage exists when the
candidate keywords in an option do not follow a GBM.

4.3.1. Checking the Underlying GBM Assumption. Two validation conditions of the GBM
model are tested [Marathe and Ryan 2005]: (i) the normality of change rates of
log CPCs; and (ii) the independence from previous data. Normality can be either
checked graphically by histogram/Q-Q plot or verified statistically by the Shapiro-Wilk
test [Shapiro and Wilk 1965]. To examine independence, we employ the autocorrela-
tion function (ACF) [Tsay 2005] and the Ljung-Box statistic [Ljung and Box 1978].
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Fig. 4. Empirical example of checking the GBM assumption for the keyword ‘canon 5d’, where the Shapiro-
Wilk test is with p-value 0.3712 and the Ljung-Box test is with p-value 0.4555.
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Fig. 5. Overview of checking the GBM assumption for all keywords of experimental groups.

Figure 4 provides an empirical example of the keyword ‘canon 5d’. Figure 4 (a)-(b) ex-
hibit the movement of CPCs and log change rates while Figure 4 (c)-(d) show that the
stated two conditions are satisfied in this case.

We check the discussed two conditions with the training data. As shown in Figure 5,
there are 14.25% and 17.20% of keywords in US and UK markets that satisfy the
GBM assumption, respectively. Thus 15.73% of keywords can be effectively priced into
an option based on a GBM. It is worth mentioning that not all keywords follow a GBM.
Next, we examine the robustness of pricing model and investigate the arbitrage based
on non-GMB models.
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Fig. 6. Overview of model similarity tests: Wilcoxon test, Ansari-Bradley (A-B) test and Two-sample
Kolmogorov-Smirnov (K-S) test.
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Fig. 7. Overview of pricing model robust tests.

4.3.2. Examining Arbitrage for Non-GBM Dynamics. Several popular stochastic processes
(together with the real data) are tested to check the arbitrage in option pricing. Ta-
ble V shows the candidate models and each model can capture certain features of time
series data, such as mean-reversion, constant volatility and square root volatility [Hull
2009]. The arbitrage tests here are slightly different from that of the GBM model. We
estimate the model parameters from the actual data in the test sets instead of the
learning sets and treat the actual data as one single path of each model. Hence, the
simulated data has the same drift, volatility and correlations as the test data. We are
now able to examine the arbitrage multiple times when the real-world environment
does not follow a GBM. Also, for the candidate models, hypothesis tests are used to
check if the simulated path and actual data come from a same distribution. These
tests include the Wilcoxon test [Wilcoxon 1945], Ansari-Bradley test [Mood et al. 1974]
and Two-sample Kolmogorov-Smirnov test [Justel et al. 1997]. Figure 6 summarises
the results of models’ goodness-of-fit tests, where the y-axis represents the mean per-
centage of simulated paths not rejected by the hypothesis tests. Even though the three
tests give different absolute percentages, the dynamics’ performance is similar and
consistent: the CEV model has the best simulations for the actual data, followed by
the MRD; the CIR and HWV models are very close.

Table VI presents the results of arbitrage tests for the non-GBM dynamics, where
most of experimental groups exhibit arbitrage. The CEV model gives the best no-
arbitrage performance, showing that 78.65% of CEV-based keywords can be properly
priced by using the GBM-based option pricing model. About 53.05% of the CIR model
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Fig. 8. Empirical example of analysing the search engine’s revenue for the keyword ‘canon cameras’.

and about 43% of the MRD or HWV models based options have no arbitrage. For 1-
keyword options, the fairness percentage is more than 85% across all experimental
groups. However, this number drops to around 38% for multi-keyword options (36.27%
for 2-keyword options and 42% for 3-keyword options). For the identified arbitrage,
many groups (especially 1-keyword options) show small arbitrage values (around 10%)
while arbitrage explodes in some groups.

In summary, Tables IV and VI illustrate that our option pricing methods are effective
and reasonably robust for the real sponsored search data. As shown in Figure 7, when
the keywords’s price follow a GBM (15.73%), the pricing model ensures that 95.17%
of ad options are fairly priced under the 5% arbitrage precision. For the non-GBM
keywords, the CEV model is the best performance model, giving 78.65% of fairness; the
CIR model is worst performance model and is with only 31.97% of fairness. Overall,
the best expected fairness for all keywords is 81.25% while the worst is 41.91%. We
find that the increase of the number of candidate keywords in an ad option increases
the likelihood of arbitrage. This is confirmed by the fact that expected fairness drops
from 86.83% (99.76% GBM and 83.60% non-GBM for 1-keyword options) to 43.69%
(2-keyword options) and 53.39% (3-keyword options), respectively.

4.4. Effects on Search Engine’s Revenue
Let us start with the case of 1-keyword options. The example of keyword ‘canon
cameras’ in Figure 8(a) illustrates (other keywords exhibit the similar pattern) the
conclusions from our theoretical analysis in Section 3.3 that (i) the revenue differ-
ence between option and auction is always positive and (ii) that when the fixed CPC
F = EQ

t [C(T )], the revenue difference D(F ) achieves its maximum and the two bound-
ary values are approximately zero.
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Fig. 9. Empirical example of analysing the search engine’s revenue for the keywords ‘non profit debt con-
solidation’ and ‘canon 5d’, where ρ = 0.2247.

The non-GBM cases are further examined in Figure 8(b)-(e), which show that when
the fixed CPC is close to zero, the revenue difference D(F ) → 0. This is because when
the fixed CPC approximates zero, it is almost certain that the option will be used in
the contract period. As such, the only income for the keyword is from the option price,
which in this case is close to the CPC in the auction market (discounted back to t=0).
On the other hand, if the fixed CPC is very high, it is almost certain that the option
won’t be used. In this case, the option price π0 → 0 and the probability of exercising
the option P(EQ

t [C(T )] ≥ F ) → 0. Hence, D(F ) is zero. However, under the non-GBM
dynamics, the point F = EQ

t [C(T )] is not the optimal value that gives the maximum
D(F ), which indicates that arbitrage may occur.

Next, Figure 9 illustrates an empirical example a 2-keyword ad option. The candi-
date keywords are ‘non profit debt consolidation’ and ‘canon 5d’. Figure 9(a) tells that
the higher the fixed CPCs the lower is the option price (even though the option price
is less sensitive to the keyword ‘canon 5d’) and it achieves the maximum when all the
fixed CPCs are zeros. These monotone results are as same as the 1-keyword options.
Figure 9(b) then shows the revenue difference curve of the search engine, where the
red star represents the value where F1 = EQ

t [C1(T )] and F2 = EQ
t [C2(T )]. The expected

revenue differences are all non-negative, showing that this 2-keyword ad option is ben-
eficial to the search engine’s revenue. However, the red star point is not the maximum
difference revenue. This is different to the 1-keyword ad options.

For higher dimensional ad options (i.e., n ≥ 3), it is not possible to graphically exam-
ine the revenue difference. However, based on the earlier discussions, two findings can
be summarised. First, there are boundary values of the revenue differences. If every
Fi → 0, D(F) → 0; and if every Fi → ∞, D(F) → 0. Second, there exists a maximum
revenue difference value even though this may not at the point where Fi = EQ

t [Ci(T )].
Hence, compared to only keyword auctions, proper setting the fixed CPCs can increase
the search engine’s expected revenue.
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5. CONCLUDING REMARKS
In this paper, we proposed a novel framework to provide flexible guaranteed deliveries
for sponsored search, from which both buy and sell sides can benefit. On the buy side,
advertisers are able to secure a certain number of clicks from their targeted keywords
in the future and can decide how to advertise later. They can be released from auction
campaigns and can manage price risk under the given budgets. On the sell side, the
search engine can sell the future clicks in advance and can receive a more stable and
increased expected revenue over time. In addition, advertisers would be more loyal to
a search engine due to the contractual relationships, which has the potential to boost
the search engine’s revenue on the long run.

We also believe that the proposed ad options will soon be welcomed by the sponsored
search market. Several similar but different developments appeared in the display
digital markets are able to support our point of view. They are:

09/2013:. AOL’s Programmatic Upfront4.
03/2013:. OpenX Programmatic Guarantee [OpenX 2013].
10/2012:. Adslot Media’s Programmatic Direct Media Buying5.
10/2012:. Shiny Ads Programmatic Direct Advertising Platform6.
10/2012:. iSOCKET’s Programmatic Direct7.

Our work differs to the above developments in many aspects. First, we focus on spon-
sored search while they are for display advertising. Second, the proposed ad options
provide flexible guaranteed deliveries (e.g., multi-keyword targeting, multi-click exer-
cise, early exercise, no obligation of exercise) while other recent developments do not
provide such features.

Our work leaves several directions for future research. First, to address the limita-
tions of GBM, other stochastic processes tailored to some specific keywords are worth
studying, such as the jump-diffusion model [Kou 2002] and the stochastic volatility
model [Chen and Wang 2014]. The most challenging part of this future research is
that the underlying model is multi-dimensional and needs to be computational fast.
Second, it would be interesting to discuss an optimal pricing and allocation model of
ad options so that a search engine can algorithmically manipulate the limited future
clicks in front of uncertain demand. Third, the game-theoretical pricing of ad options
can be another direction.
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APPENDICES
A. PROOF OF THE NO-EARLY EXERCISE PROPERTY FOR THE PROPOSED AD OPTION
Eq. (3) can be rewritten as Φ(x) = max{x − f , 0}, where x′ = [x1, . . . , xn] and f ′ =
[f1, . . . , fn]. It is not difficult to find that Φ(x) is multivariate convex. Let 0 ≤ λ ≤ 1 and
let y′ = [y1, . . . , yn], if the elements of vector a = y − x are all non-negative, then

Φ
(
λx+ (1− λ)y

)
≤ λΦ(x) + (1− λ)Φ(y).
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If taking y′ = (0, . . . , 0), and using the fact that Φ(0) = 0, we obtain

Φ(λx) ≤ λΦ
(
x
)
, for all xi ≥ 0, 0 ≤ λ ≤ 1.

For 0 ≤ s ≤ t ≤ T , since 0 ≤ e−r(t−s) ≤ 1, we then have

EQ
s

[
e−r(t−s)Φ

(
X(t)

)]
≥ EQ

s

[
Φ
(
e−r(t−s)X(t)

)]
≥ Φ

(
EQ
s

[
e−r(t−s)X(t)

])
(by the Jenen’s Inequality)

= Φ
(
ersEQ

s

[
e−rtX(t)

])
,

where EQ
s [·] is the conditional expectation with respect to time s under the risk-neutral

probability measure Q. Since e−rtX(t) is a martingale under Q [Björk 2009], then

Φ
(
ersEQ

s

[
e−rtX(t)

])
= Φ

(
erse−rsX(s)

)
= Φ

(
X(s)

)
.

Hence, EQ
s

[
e−r(t−s)Φ

(
X(t)

)]
≥ Φ

(
X(s)

)
, showing that e−rtΦ

(
X(t)

)
is a sub-martingale

under Q. This tells that the proposed ad option can be priced as same as its European
structure, focusing on the payoff on the contract expiration date. For further detailed
discussions about martingale and sub-martingale, please see [Björk 2009].

B. DERIVATION OF THE AD OPTION PRICING FORMULA
Since the proposed ad option complements the existing keyword auctions, there may
exist a situation that some advertisers only want to make guaranteed profits from the
difference of costs between option and auction markets without taking any risk. This
situation is called arbitrage [Varian 1987; Björk 2009]. Hence, we must fairly evaluate
the option so that arbitrage is eliminated.

In the context of sponsored search, we consider that an advertiser buys a n-keyword
m-click ad option at time 0. Then at time t, t ∈ [0, T ], the difference between the option
value and the market value of candidate keywords can be expressed as

Π(t) = V (t,C(t);F , T,m)−
n∑
i=1

ψi(t)Ci(t), (19)

where ψi(t) represents the number of clicks needed for the keyword Ki such that∑
i ψi(t) = m. Here we call Π(t) as the value difference process. Recall that in Eq. (3),

we consider the value of an n-keyword m-click option as the sum of m independent
n-keyword 1-click options, for the mathematical convenience, Eq. (19) can be rewritten
as follows

Π(t) =m

(
V (t,C(t);F , T, 1)−

n∑
i=1

∆iCi(t)

)
, (20)

where ∆i represents the probability that a single click goes for the keyword Ki and∑n
i=1 ∆i = 1. The changes of Π over a sufficient small period of time dt is then

dΠ(t) = m

(
∂V

∂t
dt+

1

2

n∑
i=1

n∑
j=1

σiσjρijCiCj
∂2V

∂Ci∂Cj
dt+

n∑
i=1

∂V

∂Ci
dCi −

n∑
i=1

∆idCi

)
. (21)

The uncertain components in dΠ(t) can be removed if ∆i = ∂V/∂Ci. This is called
the delta hedging in option pricing theory [Wilmott 2006]. Hence, Π(t) now becomes a
risk-less process over time

dΠ(t) = m

(
∂V

∂t
+

1

2

n∑
i=1

n∑
j=1

σiσjρijCiCj
∂2V

∂Ci∂Cj

)
dt. (22)
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We assume that the advertiser has no initial fund and he borrows the money from
others at the risk-less bank interest rate r, so the interest of this borrowing is

dΠ(t) = rΠ(t)dt = rm

(
V −

n∑
i=1

∂V

∂Ci
Ci

)
dt. (23)

Eqs. (22)-(23) need to be equal otherwise arbitrage exists. If the risk-less growth
rate of the value difference process is larger than the risk-less bank interest rate, the
advertiser can obtain arbitrage by: (i) borrowing the money from bank at interest rate
r to buy an ad option first; (ii) selling the ad option later to repay the bank interest.
In the case where the risk-less growth rate of the value difference process is smaller
than the risk-less bank interest rate, the advertiser can obtain the risk-less surplus
by: (i) selling short an ad option first and saving the revenue in a bank account; (ii)
using the deposit money to buy the clicks of underlying keywords later. In either case,
the advertiser can finally receive a risk-less surplus; therefore, arbitrage exists.

Solving Eqs. (22)-(23) can give a parabolic partial differential equation (PDE) for the
no-arbitrage equilibrium:

∂V

∂t
+ r

n∑
i=1

∂V

∂Ci
Ci +

1

2

n∑
i=1

n∑
j=1

∂2V

∂Ci∂Cj
σiσjρijCiCj − rV = 0.

The above PDE satisfies the boundary condition in Eq. (3). By employing the multidi-
mensional Feynman-Kac̆ stochastic representation [Björk 2009], we obtain the solution

V (t,C(t);F , T, 1) = e−r(T−t)EQ
t [Φ(C(T ))],

where EQ
t [·] is the conditional expectation with respect to time t under the risk-neutral

probability Q. The process Ci(t) can be rewritten as

dCi(t) = rCi(t)dt+ σiCi(t)dW
Q
i (t),

where WQ
i (t) is the standard Brownian motion under Q. Therefore, the option price π0

can be calculated by the following formula:

π0 = V (0,C(0);F , T,m) = mV (0,C(0);F , T, 1) = me−rTEQ
0 [Φ(C(T ))].

C. OPTION PRICING FORMULAS FOR SPECIAL CASES
If n = 1, Eq. (6) is equivalent to the Black-Scholes-Merton (BSM) pricing formula for
an European call option [Black and Scholes 1973; Merton 1973]. Then we have

π0 = mC(0)N [ζ1]−mFe−rTN [ζ2], (24)

where ζ1 = 1
σ
√
T

(
ln{C(0)/F}+ (r + σ2

2 )T
)

and ζ2 = ζ1 − σ
√
T .

If n = 2, Eq. (6) contains a bivariate normal distribution. Hence, we can calculate
the option price as same as the dual-strike European call option [Zhang 1998]:

π0 = mC1(0)

∫ ζ1+σ1

√
T

−∞
f(u)N

[
q1(u+ σ1

√
T )− ρσ1

√
T + ρu√

1− ρ2

]
du

+mC2(0)

∫ ζ2+σ2

√
T

−∞
f(v)N

[
q2(u+ σ2

√
T )− ρσ1

√
T + ρv√

1− ρ2

]
dv

−me−rT
(
F1

∫ ζ1

−∞
f(u)N

[
q1(u) + ρu√

1− ρ2

]
du+ F2

∫ ζ2

−∞
f(v)N

[
q2(v) + ρv√

1− ρ2

]
dv

)
, (25)
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where

q1(u) =
1

σ2
√
T

(
ln

{
F2 − F1 + C1(0)e(r−

1
2σ

2
1)T−uσ1

√
T

C2(0)

}
− (r − 1

2
σ2
2)T

)
,

q2(u) =
1

σ1
√
T

(
ln

{
F1 − F2 + C2(0)e(r−

1
2σ

2
2)T−vσ2

√
T

C1(0)

}
− (r − 1

2
σ2
1)T

)
,

ζ1 =
1

σ1
√
T

(
ln{C1(0)/F1}+ (r − 1

2
σ2
1)T

)
,

ζ2 =
1

σ2
√
T

(
ln{C2(0)/F2}+ (r − 1

2
σ2
2)T

)
.
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