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1. INTRODUCTION

Although modeling systems in mechanical CAD and in animation are
expanding their geometric domain to free-form surfaces, polyhedral models
remain the primary 3-D representation used in manufacturing, architec-
tural, GIS, geoscience, and entertainment industries. Polyhedral models
are particularly effective for hardware-assisted rendering, which is impor-
tant for video games, virtual reality, fly-through, and electronic mock-up
applications involving complex CAD models.

In comparison to image and video compression, little attention has been
devoted to the compression of 3-D shapes, both from the research commu-
nity and from 3-D data exchange standards committees. This situation is
likely to change rapidly for the following reasons.

(1) The exploding complexity of industrial CAD models significantly raises
the cost of the memory and auxiliary storage required by these models.

(2) The distribution of 3-D models over networks for collaborative design,
gaming, rapid prototyping, or virtual interactions is seriously limited
by the available bandwidth.

(3) The graphics performance of high-level hardware adapters is limited by
insufficient onboard memory to store the entire model or by a data
transfer bottleneck.

Since arbitrary polygonal faces may be easily and efficiently triangulated
(see, e.g., Ronfard and Rossignac [1994]), we restrict the exposition to
triangular meshes. A triangular mesh is defined by the location of its
vertices (positions), by the association between each triangle and its
sustaining vertices (connectivity), and by color, normal, and texture infor-
mation (properties) that do not affect the 3-D geometry but influence the
way it is shaded.

The compressed format and the compression and decompression algo-
rithms introduced in this article expand upon the pioneering work by
Deering [1995] by providing:

(1) lossless encoding and higher compression ratios for the connectivity
information (two bits less per triangle on average); Figure 1 shows an
example;

(2) better organization of vertices for coordinate compression,;

(3) efficient methods for building nearly optimal compressions for polyhe-
dral models of arbitrary topology; and

(4) compression and decompression techniques that produce very long
triangle strips and are thus suitable for current generation high-end
graphics adapters.

2. RELATED WORK

Recent methods in 3-D compression may be divided into three categories:
polyhedral simplification, compression of positions and properties, and
encoding of the connectivity information.
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Fig. 1. This model contains 83,044 vertices, 165,963 triangles, and no properties. In VRML
format it requires 8,052,266 bytes of storage. Quantizing the vertex positions to 11 bits per
coordinate, our compression algorithm reduces its size to 137,130 bytes (i.e., a 58.72:1.00
compression ratio and 6.61 bits per triangle). 25,115 bytes correspond to connectivity (i.e., 1.21
bits per triangle) and 111,832 bytes correspond to positions (i.e., 5.39 bits per triangle). The
remaining bytes are used to represent the scene graph structure of the VRML file. The edges
of the vertex spanning tree, composed of 162 runs, are shown as black lines. The triangle
spanning tree is composed of 1643 runs. Leaf triangles are shown in red, regular triangles in
yellow, and branching triangles in blue.

‘\ .

2.1 Polyhedral Simplification

Polyhedral simplification techniques® reduce the number of vertices in the
mesh by altering the model’s connectivity and by possibly adjusting the
position of the remaining vertices to minimize the error produced by the
simplification. These techniques concentrate on the generation of multiple
levels of detail (LOD) for accelerated graphics [Funkhouser and Sequin
1993; Borrel et al. 1995] or data reduction for over-sampled meshes [Hoppe
et al. 1992]. Although these techniques could be considered for lossy
compression, they are inappropriate for applications that require access to
the exact connectivity of the model. In fact, simplification techniques are
orthogonal to the compression techniques described here because geometric
compression may be applied to each level of detail.

2.2 Compression of Positions and Properties

Lossy or lossless compression methods are used to reduce the storage
necessary for the geometric data associated with vertex locations, and
possibly with the normals, colors, and texture coordinates. Applying gen-
eral purpose data compression algorithms to the geometric data stream
leads to suboptimal solutions. We build upon Deering’s [1995] approach of
normalizing the geometry into a unit cube and rounding off the vertex
coordinates to fixed length integers. The rounding controls the amount of
lost information. We use a spatial organization of the vertices into a
spanning tree and geometric predictors to replace position or property
coordinates by small corrective terms, which may be encoded losslessly
with fewer bits and further compressed with standard lossless entropy

1Please see Rossignac and Borrel [1993], Hoppe et al. [1993], Eck et al. [1995], Shroeder et al.
[1992], Kalvin and Taylor [1993], Guéziec [1995], and Hoppe [1996].
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encoding techniques. Artifacts created by the quantization process in
meshes composed of a large number of small triangles can be reduced using
mesh smoothing methods [Taubin 1995a,b; Taubin et al. 1996].

2.3 Connectivity Encoding

Connectivity encoding techniques attempt to reduce the redundancy inher-
ent in many popular representations of polyhedral or triangular meshes in
3-D. This is the primary focus and main contribution of the present article.

Consider a triangular mesh of V vertices and T triangles. (Note that for
meshes with simple topology there are roughly twice as many triangles as
vertices.) Assume that the vertices are listed in a suitable order. What is
the minimum number of bits required to define the T triangles sustained
by these vertices?

At one extreme, if the vertices are always organized into a regular 2-D
grid, the triangle mesh may be completely defined by the number of rows
and columns of the grid. Regular grids may be appropriate for terrain
modeling in GIS and for rendering uniformly tessellated nontrimmed
rectangular parametric patches. However, they are not suitable for model-
ing the more general 3-D shapes found in CAD, entertainment, and other
applications.

At the other extreme, each triangle may be represented by three vertex
references (pointers or indices into the vertex positions array). This solu-
tion does not impose any topological limitations on the mesh, but requires
storing three addresses per triangle (approximately six addresses per vertex).
Even if the models were restricted to less than 1,024 vertices, this scheme
would consume 60 bits per vertex for the connectivity information alone.

Triangle strips used in graphics APIs such as OpenGL [Neider et al.
1993] provide a compromise where a new vertex is combined with the
previous two vertices to implicitly define a new triangle in the current
strip. Triangle strips only pay off if one can build long strips, which is a
challenging computational geometry problem [Arkin et al. 1994]. Further-
more, because on average a vertex is used twice, either as part of the same
triangle strip or of two different ones, the use of triangle strips with
OpenGL requires sending most vertices multiple times. The absence of the
swap operation further increases this redundancy.

The application of triangle strips as a compression technique, where the
locations of all vertices are available for random access during decompres-
sion, would still require storing one vertex reference per triangle, two vertex
references per strip, the bookkeeping information on the number and length of
the strips, and an additional bit of information per triangle indicating which
open side of the previous triangle should be used as the basis for the next
triangle (this bit is equivalent to the SWAP operation in GL).

Deering [1995] proposes using a stack-buffer to store 16 of the previously
used vertices instead of having random access to all of the vertices of the
model. This is a suitable solution for adapters with very limited on-board
memory. Deering also generalizes the triangle strip syntax by providing
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more general control over how the next vertex is used and by allowing the
temporary inclusion of the current vertex on the stack and the reuse of any
one of the 16 vertices of the stack-buffer. The storage cost for this
connectivity information is: 1 bit per vertex to indicate whether the vertex
should be pushed onto the stack-buffer, 2 bits per triangle to indicate how
to continue the current strip, 1 bit per triangle to indicate whether a new
vertex should be read or whether a vertex from the stack-buffer should be
used, and 4 bits of address for selecting a vertex from the stack-buffer each
time an old vertex is reused. Assuming that each vertex is reused only once,
the total cost for encoding the connectivity information is: 1 + 4 bits per
vertex plus 2 + 1 bits per triangle. Assuming 2 triangles per vertex, the
total cost is roughly 11 bits per vertex. (Of course other general-purpose
compression schemes may be applied to the resulting bit stream, but this is
the case for all the variations of geometric compression, and is ignored for
this comparative analysis.) As far as we know, algorithms for systemati-
cally creating good traversals of general meshes using Deering’s general-
ized triangle mesh syntax have not yet been developed. Naive traversal of
the mesh may result in many isolated triangles or small runs, implying
that a significant portion of the vertices will be sent more than once, and
hence increase the number of bits per triangle.

Under the assumption that all vertex coordinates are available for
random access during decompression, the solution proposed in this article
produces two to three times better compression ratios than Deering’s
solution and outlines practical and efficient algorithms for computing
nearly optimal encoding of the connectivity. As a by-product, the decom-
pression algorithm creates very long triangle strips suitable for optimizing
communication with current generation 3-D rendering adapters.

Furthermore, our compression algorithm preserves the original connec-
tivity of the mesh, which Deering’s method usually does not, and organizes
the vertices by proximity, which we use to further improve compression of
positions and properties.

3. OVERVIEW

The triangles of a triangle mesh may form one or more connected manifold
components. In our compression scheme, the connectivity information of
each connected component is encoded by first constructing a vertex span-
ning tree in the graph of vertices and edges of the component.

Because proximity in this vertex spanning tree often implies geometric
proximity of the corresponding vertices, we can use ancestors in the tree to
predict vertex positions, and thus only need to encode the difference
between predicted and actual vertex positions. When vertex coordinates are
quantized (i.e., truncated to the nearest number in a fixed-point represen-
tation scheme), these corrective vectors have on average smaller magnitude
than absolute positions and can therefore be encoded with fewer bits.
Furthermore, the corrective terms are then compressed by entropy encod-
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Fig. 2. Representation. The vertex spanning tree (a) (b) composed of vertex runs. Cutting
through the vertex tree edges produces topological simply connected polygons (c) (d). The
bounding loop (e) is the boundary of the polygon. The dual graph of the polygon is the triangle
spanning tree (f). Triangle runs end in leaf or branching triangles. Leaf triangles are red,
regular triangles are yellow, and branching triangles are blue. The triangle spanning tree has
a root triangle (g). Marching edges (h) connect consecutive triangles within a triangle run.
Each branching triangle has a corresponding Y-vertex. Two consecutive branching triangles
define a run of length one (i).

ing using, for example, Huffman or arithmetic coding as in the JPEG/
MPEG standards [Pennebaker and Mitchell 1993].

To encode the connectivity, the mesh is first cut through a subset of its
edges, called the cut edges. This subset includes all the edges of the vertex
spanning tree. In Section 5 we show that, depending on the topological type
of the mesh, a small number of cut edges that are not vertex spanning tree
edges may also be required. For example, for a simple mesh (mesh that is
homeomorphic to a sphere) such as the one shown in Figure 2, we prove
that there are no cut edges other than the vertex spanning tree edges.
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The branching nodes and the leaf nodes of the vertex spanning tree are
interconnected by vertex runs (i.e., by nodes that have a single child). We
compress the representation of the vertex spanning tree by encoding for each
vertex run: its length plus two bits of information, which collectively capture
the topology of the spanning tree. To increase the compression ratio, we strive
to build vertex spanning trees with the least number of runs.

This representation only captures the structure of the vertex spanning
tree. The correspondence between nodes of the vertex spanning tree and
vertex positions is established by storing our compressed encoding of the
positions of each vertex (i.e., the entropy encoded corrective terms) in the
order in which their corresponding nodes are visited by a pre-order (depth-
first) traversal of the spanning tree [Tarjan 1983, Section 1.5].

When treated as a topological boundary, the cut edges organize the mesh
into a set of ¢riangle runs connected by branching triangles. Each branch-
ing triangle connects three runs (we treat the adjacency between two
branching triangles as a triangle run of length one). The edges that connect
triangles within a run or that bound branching triangles are called march-
ing edges. We prove that an edge of a simple mesh (mesh that is homeomor-
phic to a sphere) is either a marching edge or a vertex spanning tree edge.

A graph whose nodes correspond to triangles and whose edges correspond
to marching edges forms a binary spanning tree of the triangles of the
mesh. It is the dual graph of the mesh resulting from cutting through the
edges of the vertex spanning tree. We encode this triangle spanning tree in
the same way as we encode the vertex spanning tree. However, because the
triangle tree is binary, we need only store the length of each triangle run
plus a single bit of information.

The combination of these two trees with the compressed vertex positions
permits the recovery of the length and boundary of each triangle run and
the vertices that bound each triangle. As the first step of decompression the
recovery process constructs a lookup table of vertex indices that reflect the
order in which the vertices appear along the bounding loop of the mesh
formed by the cut edges. Figure 3 illustrates the formation of this boundary
by artificially enlarging the topological discontinuity created by the cut
edges, and by flattening the triangulated polygon enclosed by the bounding
loop. The cutting and flattening process resembles the process of peeling an
orange so that the skin remains connected. Observe that different cutting
strategies produce triangle trees with different numbers of runs. We have
developed a cutting strategy that appears to be effective at minimizing the
number of triangle and vertex runs.

Traversing a triangle run along the direction that corresponds to a
top-down traversal of the triangle tree defines the left and the right
boundaries. Because the left and right boundaries of each triangle run form
connected subsets of the bounding loop, we can recover the boundary of
each run if we know two starting vertices (one on each side), and the
number of vertices along the left and right boundary of the run.

Each marching edge shares a vertex with the previous marching edge in
the triangle run. That shared vertex could lie on the left or on the right
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Fig. 3. Two ways of peeling an orange: (a) (b) the thick edges are the edges of the vertex tree
constructed on the mesh; (c) (d) the mesh is cut through the vertex tree edges (the vertex
positions have been modified here only to illustrate the creation of the cut); (e) (f) the result is
a topological simply connected polygon. The dual graph of this polygon is the triangle tree.

boundary. A single bit of information per marching edge is used to encode
the correct side. These bits are concatenated in the order in which the
corresponding marching edges are visited by the decompression algorithm.
They form what we call a marching pattern of left or right steps.

An entry of our representation of the triangle spanning tree indicates the
number N of marching edges in a run and thus the total number of vertices
on both sides of the triangle run. The number of zeros in the corresponding
subset of the marching pattern indicates the number of vertices on the left
side (the number of ones indicates the number of vertices on the right side).

Given two indices into the lookup table for the bounding loop (one for the
starting point of the left boundary of the triangle run and one for the start-
ing point of the right boundary), our decompression algorithm uses the next
N — 1 bits of the marching pattern and constructs a triangle strip for the
run.

At the end of the run we may encounter a leaf of the triangle spanning
tree or a branching triangle. In the latter case, the last marching edge of
the run forms the base of the abutting branching triangle. The third vertex
of the branching triangle is called a Y-vertex. The corresponding index in
the bounding loop is not explicitly stored in our compressed format, but is
derived through a decompression preprocessing step and stored in a lookup
table in the form of an index offset relative to the last vertex of the left
boundary of the parent triangle run.

The decompression algorithm will visit the two runs connected to the two
edges of the branching triangle in a recursive manner until the triangle
spanning tree is traversed and all triangles recovered. Long triangle strips
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(which include SWAP operations) may be constructed by combining trian-
gles encountered by following the connected paths visited during pre-order
traversal. These paths start at the root or at a branching node and end at
the leftmost leaf of the corresponding subtree.

Normals, colors, and texture mapping coordinates may be associated with
the triangulated model. These are specified at the vertices of the model
mainly for shading and rendering purposes, but they may be different for
each use of the vertex in a different triangle. In Section 6 we show that in
the compressed representation with spanning trees there is an implicit
ordering for the vertices of the triangles that can be used to compress
normals, colors, and texture mapping coordinates.

4. SIMPLE MESH

We first describe the compressed representation and the associated algo-
rithms for a simple mesh without photometric information (properties). By
a simple mesh we mean a triangulated connected oriented manifold with-
out boundary having Euler characteristic 2 (i.e., a mesh that can be
continuously deformed into a sphere). Later we remove these constraints.
We extend the representation and propose a polyhedral mesh compression
algorithm valid for any manifold, with one or more connected components,
oriented or nonoriented, with or without boundary, and of arbitrary Euler
characteristic.

4.1 Validity

The compressed representation introduced in this article is motivated by a
classical result of elementary algebraic topology. Simply and intuitively, a
two-manifold is a surface such that each of its points has a neighborhood
that can be continuously deformed into an open disk. The classification
theorem [Massey 1967, Theorem 5.1] establishes that all compact two-
manifolds can be constructed by identifying pairs of edges of a simply
connected polygon. This identification process can be visualized as contin-
uously and smoothly deforming the polygon until the corresponding edges
coincide, at which time the edges are sewn together with surface-normal
continuity.

Every manifold triangular mesh can be constructed using this approach.
It suffices to triangulate a suitable polygon without introducing new
internal vertices and to identify the pairs of edges. Edges that are sewn
together must belong to different triangles. The compression algorithms
presented here compute a suitable polygon for a given mesh, along with the
identification of the edge pairs. This alternate representation of the mesh is
the basis of our compression approach.

We prove in the Appendix that when a simple mesh is cut through the
edges of the vertex tree, the result is a triangulated, simply connected
polygon whose dual graph (the graph with triangles as nodes and internal
edges as edges) is a tree, the triangle spanning tree.
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4.2 Representation

Assume without loss of generality that the original triangulated model with
V vertices and T triangles is represented with two arrays: V vertices, each
represented by its three floating point coordinates, the vertex positions
array, and T triangles, the triangle array, each represented by three
indices to the vertex positions array. The compressed representation of this
model is composed of:

(1) VTREE: the vertex tree structure table (array of triplets—run length,
branching bit, and leaf bit), that efficiently encodes a spanning tree of
the graph defined by the vertices and edges of the original mesh (i.e., a
tree of the cut edges);

(2) VCOR: the compressed vertex position corrections (bit stream of concat-
enated variable length tags) representing deviations between predicted
and actual vertex positions. The predictions are based on ancestor
vertex positions in the vertex tree;

(3) TTREE: the triangle tree structure table (array of pairs—run length
and leaf bit), which efficiently encodes the binary tree of the triangle
strips and is used to re-create the boundary of each triangle strip;

(4) MARCH: the triangle tree marching pattern (bit stream of concate-
nated variable length tags) representing left—right moves along triangle
strips;

plus some fixed size bookkeeping information, such as the size of these
tables, the parameters for geometric normalization, the vertex positions
quantization parameters, the vertex positions predictor parameters, the
quantized and normalized position of the root vertex of the vertex tree, and
the identification of the root vertex for the triangle tree.

Picking a leaf node of a tree as the root defines an orientation for the tree
edges and a parent—child relation between nodes. Nodes that have two or
more children are called branching nodes. A rooted tree can be described as
a sequence (ordered according to the pre-order traversal) of runs connecting
leaves or branching nodes. The children of the branching nodes of both
trees are ordered consistently with the global orientation of the mesh
(either clockwise or counterclockwise) with respect to the parent node.
Because the nodes are ordered according to the pre-order traversal, only
the number of edges in each run and how the runs are connected must be
represented.

For the vertex tree, connectivity between the runs is encoded in VTREE
with two bits per run, which indicate whether the run has a right sibling
(i.e., there is a further run starting at the same branching node), and
whether it ends in a leaf. Because the triangle tree is binary, the bit
indicating whether the run has a right sibling is omitted in the TTREE
table used to encode triangle spanning trees.

Removing the branching triangles that correspond to the branching
nodes of the triangle tree decomposes the polygon into connected triangle
strips. The loop defined by the cut edges allows us to identify the boundary
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of each triangle strip. The structure of the marching edges internal to a
particular strip cannot be deduced from the descriptions of the two trees.
The triangle tree only indicates the number of such edges per strip, and
identifies the starting marching edge. The triangles of the strip may be
traversed by moving the left or right vertex of the marching edge to an
adjacent vertex along the loop. One bit per triangle is needed to encode
which vertex of the edge to move. The marching pattern, MARCH, is the
concatenation of these bits, according to the triangle tree traversal order. It
is entropy encoded for further compression. A triangle strip may end either
at a leaf triangle or at a branching triangle. If it ends at a branching
triangle, the next vertex is not adjacent to the marching edge along the
loop. However, the indices that identify these Y-vertices need not be stored.
They are derived by a simple preprocessing step of the decompression
algorithm. Indeed, the distance along the loop from either the left or right
vertices to a Y-vertex can be derived from the triangle tree independently
of the marching pattern.

Within the vertex tree there is a unique path from each vertex to the
root. The depth of a vertex is the length of this path, with the depth of the
root vertex equal to zero. The bounding box for the solid is used to define
the fixed precision format. If v, denotes the result of quantizing to B bits
the normalized relative position of a vertex of depth n within the bounding
box, then each vertex position v, is defined by

Up, = E(Un) + P(A7 Upn-15 - - - Un*K)7 (1)

where €(v,,) is the vertex position correction associated with that vertex, P
is a vertex position’s predictor function, A and K are parameters for the
predictor, and v,,_4, ..., v, _x are the K ancestors of the vertex along the
unique path to the vertex tree root. Note that since the top vertices of the
tree may not have K ancestors, we define vertex positions corresponding to
negative depth as equal to the position of the vertex tree root. The vertex
position corrections (integer values) are represented concatenated accord-
ing to the vertex tree pre-order, and further entropy encoded.

4.3 Decompression Algorithm

Decompressing a simple mesh involves these steps, explained in detail in
the following:

(1) reconstructing the table of vertex positions,

(2) constructing the bounding loop (lookup table pointing to the vertex
position table),

(3) computing the relative indices for Y-vertices in the order in which they
will be used, and

(4) reconstructing and linking of triangle strips.

4.3.1 Geometry Decompression. We first use the encoding of the vertex
tree to derive the total number of vertices (the sum of the lengths of the
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vertex runs plus one). The vertex positions array is reconstructed from the
encoding of the vertex tree. For this, the tree is traversed (depth-first)
using a recursive procedure. During the tree traversal an array of indices to
ancestors of vertices is maintained. After entropy decoding the vertex
position corrections, the quantized relative position of the vertices is
computed according to Equation (1).

4.3.2 Building the Bounding Loop. The bounding loop is constructed
during the recursive traversal of the vertex tree and represented by a table
of 2V — 2 references to the vertex table. References to vertices encountered
going down the tree are added to the table during the traversal. Except for
leaf vertices, these references are also pushed onto a stack. The two bits
(branching bit and leaf bit) that characterize each run of the vertex tree are
used to control the tree traversal and the stack popping. When a leaf is
visited, references are popped from the stack and added to the bounding
loop table until the reference to the branching vertex where the next vertex
run starts is popped, or until the stack is exhausted.

4.3.3 Computing Boundary Lengths. For computational convenience,
the Y-vertices are identified not by the absolute index in the bounding loop
lookup table, but by their offset in that table (i.e., their topological distance
along the bounding loop) from the reference to the last vertex of the left
boundary of the corresponding triangle run. These offsets are precomputed
and stored in the Y-vertex lookup table.

For each branching triangle, the distance along the loop from either the
left or right vertices to the Y-vertex, the left branch boundary length and
right branch boundary length, can be computed by recursion. The length of
the boundary of a branch starting with a run of length n is equal ton + nj,
+ np — 1, where n; and ny are both equal to 1 if the runs end at a leaf
triangle, and equal to the left and right branch boundary lengths of the
branching triangle if the run ends at a branching triangle.

The branch boundary lengths are computed for each branch as a prepro-
cessing step of the decompression algorithm, and stored in a table. When a
branching triangle is encountered during the triangle reconstruction phase,
the identity of the corresponding Y-vertex can be determined by adding the
left branch boundary length to the loop index of the left vertex. Because of
the circular nature of the bounding loop table, this addition is performed
modulo the length of the bounding loop.

4.3.4 Triangle Reconstruction. A reference to a single vertex identifies
the root triangle in the triangle tree. Its left and right vertices are
determined as the predecessor and the successor along the bounding loop.
The rest of the triangles are reconstructed by recursion with the help of the
left vertex stack and the right vertex stack, both initially empty. With the
current left and right vertices at the beginning of a strip of n triangles,
described by an entry of the triangle tree structure table, the next n bits of
the marching pattern identify how many vertices of the loop are traversed
on each side of the strip. If the triangle immediately after the end of the
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strip (the end node of the triangle run) is a branching triangle, the
corresponding Y-vertex is computed as described previously, the triangle
determined by the current left and right vertices and the Y-vertex is
reconstructed, the Y-vertex and current right vertices are pushed onto the
left and right vertex stacks, respectively, and the current right vertex is set
equal to the Y-vertex. If the end triangle is a leaf triangle, the successor to
the current right vertex should be equal to the predecessor to the current
left vertex. In this case the leaf triangle is reconstructed and the current
left and right vertices are popped off the left and right vertex stacks, if
possible. If instead the stacks are empty, the reconstruction process stops
(all the triangles have been reconstructed).

4.4 Compression Algorithms

Compressing a simple mesh involves

(1) constructing the vertex spanning tree,

(2) encoding the vertex tree,

(3) compressing the vertex positions,

(4) encoding the triangle tree, and

(5) computing and compressing the marching pattern.

4.4.1 Constructing the Spanning Trees. The compression ratio is deter-
mined mainly by the total number of runs of the vertex and triangle trees.
The optimal compression is achieved by minimizing this number. We
conjecture that this combinatorial optimization problem, which is very
close to the construction of a Hamiltonian path, is NP-complete. Instead of
attempting to compute an approximate solution using a stochastic optimi-
zation algorithm, we describe here fast deterministic methods that produce
very good compression ratios.

We assign a cost to every edge of the mesh. The spanning tree of
minimum total cost is constructed using a minimum spanning tree con-
struction algorithm. Many such algorithms have been proposed [Tarjan
1983]. We first order the edges by increasing cost. Then we traverse the
ordered list of edges while maintaining two structures: the set of cut edges
(the edges of the vertex spanning tree) and a forest of graphs made by the
marching edges. Each edge is tested and inserted into one of these two
structures. If the edge connects two graphs of the forest or if it can be
added to one of these graphs without forming a loop, it is a marching edge
and is added to the forest structure. Otherwise it is a cut edge and is added
to the set of cut edges. At the end of this process we construct a spanning
tree with all the cut edges of the set.

Using the length of an edge as its cost does not produce good results,
because the resulting trees have far too many branches. This is shown in
Figure 4 (a). Better results are obtained by choosing a vertex as the root of
the vertex tree, and setting the edge cost equal to the Euclidean distance
from the edge midpoint to the vertex tree root. In this way edges closer to
the vertex tree root are considered before those that are far away, and both
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Fig. 4. Tree construction heuristics: (a) minimum spanning trees with edge cost equal to edge
length; (b) minimum spanning trees with edge cost equal to distance from midpoint to vertex
tree root; (¢) minimum spanning trees with edge cost equal to distance from midpoint to vertex
tree root, and giving priority to vertex tree edges that do not create branching nodes; (d)
layered decomposition.

trees grow away from the vertex tree root eventually covering the whole
mesh. This is shown in Figure 4(b).

To reduce the number of branches even further, we build the vertex tree
by modifying the algorithm previously described so that during the first
pass, edges are included in the forest if they create neither loops nor
branching nodes. Edges that fail the test need not be cut edges. They are
marked to be tested again during a second pass, this time only to verify
that they do not create loops in the forest. Figure 4(c) shows an example of
this construction.

Although this modified algorithm produces good results, even better
compression ratios are obtained by the following approach, which performs
a layered decomposition of the mesh, and an incremental construction of
both trees. Intuitively, this process mimics the act of peeling an orange by
cutting concentric rings, cutting the rings open, and joining them as a
spiral, illustrated in Figures 3(a), 3(c), and 3(e). A vertex is chosen as the
root of the vertex tree. The singleton consisting of the root vertex is the
first boundary. The nth triangle layer is the set of triangles incident to one
or more vertices of the nth boundary, not belonging to a previous triangle
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(b)

Fig. 5. Compression algorithm: (a) triangular mesh; (b) topological distance from a chosen
vertex defines the layers; (c) vertex tree and triangle tree are constructed by traversing the
layers in order; (d) polygon resulting from cutting along cut edges with artificial gap
introduced. Triangles are color coded according to their corresponding layer.

layer. The n + 1st boundary consists of all the edges of triangles of the nth
layer with neither of the two end vertices belonging to the nth layer. The
boundary edges do not constitute a tree, but most typically each boundary
is composed of one or more cycles. The layers are also typically composed of
cyclical triangle paths. This construction can incrementally generate both
trees by converting the rings into a spiral. Let us assume that a vertex tree
has been constructed with all the vertices included in the first n bound-
aries, and a triangle forest has been constructed with all the triangles
included in the first n — 1 layers. For each connected component of the n +
1st boundary, one edge connecting that component to a vertex of the nth
boundary is chosen and added to the vertex tree. All these cross-edges are
chosen minimizing the number of new branches added to the two trees.
Then the edges of the n + 1st boundary are included in the vertex tree
after removing a minimum number of edges to maintain the tree struc-
tures. These edges are also chosen minimizing the number of new
branches. Figure 5 illustrates this construction.

Figure 4 illustrates the four techniques on a mesh of 5,138 triangles.
Table I summarizes the results.

4.4.2 Vertex Tree Encoding. The vertex and triangle trees constructed
by one of the algorithms described in the previous section are not rooted. To
encode the vertex tree a leaf is chosen as the root node, and the tree is
traversed in pre-order, with the children of the branching nodes ordered
consistently with the global orientation of the mesh (either clockwise or
counterclockwise) with respect to the parent. Each run of the vertex tree is
represented as a record in the VTREE table. The run length is the number
of edges of the run. The branching bit indicates if a run subsequent to the
current one in the table starts at the same branching node. The leaf bit
indicates if the run ends in a leaf node. For example, when this algorithm is
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Table 1.
(a) (b) (c) (d)
Bits per triangle 5.00 4.23 2.77 2.16
Vertex runs 1292 1528 80 168
Triangle runs 2388 1612 1340 526
Bits per v-run 5 4 10 8
Bits per ¢-run 5 5 6 8

applied to the tree of Figure 2(b), the following vertex tree structure table
is generated

(3,0,0),(2,1,1), (2,1, 1), (2,1, 1), (2, 1, 0).

During the vertex tree traversal the bounding loop, represented by a
table of 2V — 2 references to the vertex table, is also created as in the
decompression algorithm (described in Section 4.3.2).

4.4.3 Compressing Vertex Positions. The vertex tree is also used to
encode the vertex positions based on the predictor equation (1). For
example, a linear predictor is defined by the vertex positions predictor
function

K
P()\> Upn-1s - -+ vn*K) = E /\ivnfi’

i=1

where A = (A, ..., Ag) is a vector of integers, but nonlinear predictors are
also contemplated in this scheme.

Note that by choosing K = 1 and A, = 1, the deltas used by Deering
[1995] are covered as a particular case. The variables K and A4, ..., Ax can
be chosen in many different ways. The compression ratio depends on this
choice. We have decided to estimate A4, ..., Ax by minimizing the least
square error

2 llel?,

n=K

where the sum is over all the vertices of depth n = K. The concatenation of
predictor errors ordered according to the vertex tree pre-order traversal are
then encoded using an entropy encoding technique such as Huffman or
arithmetic coding, as in the JPEG/MPEG standards [Pennebaker and
Mitchell 1993]. The number of quantization bits B, and the bounding box
transformation matrix are part of the compressed representation of the
vertex positions as well.

4.4.4 Triangle Tree Encoding. During the triangle tree traversal the
triangle tree structure table and marching pattern are generated. A leaf of
the triangle tree is chosen as the root triangle. This triangle has two edges
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() (h) (69)

Fig. 6. Mesh reconstruction algorithm: (a) leaf triangle is reconstructed from triangle tree
root id; (b) first triangle tree run is reconstructed by advancing the left and right pointers
according to the marching pattern; (c¢) the branching triangle found at the end of the first
triangle run is reconstructed from the current values of the left and right pointers and
bounding loop distance from the left pointer to the corresponding Y-vertex; (d) (e) the second
and third triangle runs have length one and also end in branching triangles; (f) (g) (h) (i) the
remaining triangle runs end in leaf triangles.

on the bounding loop. The bounding loop index of the vertex common to
those two edges is the root vertex for the triangle tree, or triangle tree root
id. It is part of the compressed representation of the tree as well. This
index can be determined by traveling on the surface along the cut without
crossing it, keeping the cut edges on the right, and counting the visited
right vertices. We start at the root of the vertex tree and stop when we
encounter the tip of the first leaf triangle. See Figure 6.

Then we perform a pre-order traversal of the triangle tree. Each triangle
strip connecting two leaf or branching triangles is represented by one
record in the triangle structure table. The run length is the number of
edges in the run, which is equal to the number of triangles in the strip plus
one. The leaf bit represents whether the run ends at a leaf triangle. Since
the triangle tree is binary, no branching bit is necessary. As described in
the reconstruction algorithm (Section 4.3.4), the marching pattern is deter-
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mined during the traversal of the strips in pre-order, as a concatenation of
bits representing left or right movements of the marching edge, and further
entropy encoded.

5. MORE GENERAL MESHES

Triangular manifold meshes of a Euler characteristic other than 2, nonori-
entable, and with boundaries, require minor extensions of the representa-
tion, compression, and decompression algorithms presented in Section 4.
The compressed representation of meshes with multiple connected compo-
nents consists of the concatenation of the compressed components, perhaps
with common compression parameters (bounding box, number of bits per
vertex coordinate, number and value of predictor coefficients, and Huffman
encoding tables).

5.1 Arbitrary Euler Characteristic

When a connected oriented manifold without boundary is cut through the
edges of the vertex tree, the resulting mesh is a connected oriented
manifold with a simple loop as boundary, but not a simply connected
polygon. As shown in the Appendix, if xy = E — V + T is the Euler
characteristic of the original mesh, the new mesh has a Euler characteristic
equal to y — 1. This is topologically equivalent to removing one triangle
from the mesh, which in turn is equivalent to making a hole on the surface.
This is illustrated in Figure 7 for a torus. Nevertheless, the fact that the
Euler characteristic of a connected oriented manifold without boundary is
never less than 2 [Massey 1967] implies that a simply connected polygon
may be obtained by making y — 1 extra cuts, along jump edges.

Since the Euler characteristic is invariant only if the mesh remains
connected, the jump edges are determined in the compression algorithm as
follows. After constructing the vertex tree, the triangle tree is constructed
as a spanning tree in the graph defined using the triangles as nodes, and
the edges that do not belong to the vertex tree as edges. The edges of this
tree are the marching edges. Edges that belong to neither the vertex tree
nor the triangle tree are the jump edges. The cut edges now include both
the vertex tree edges and the jump edges. The cut edges define a topological
boundary of a simply connected polygon, and thus can be organized as a
single closed loop, the extended bounding loop. Our representation defined
for simple meshes needs to be extended to account for the jump edges. We
use a new table with one entry per jump edge, the boundary jump lengths,
indicating the number of edges in the original bounding loop it short
circuits. The index in the bounding loop indicating where a jump edge
starts is derived from additional information that we encode in the triangle
tree table and in the marching pattern. Our decompression algorithm must
be modified to reconstruct the extended bounding loop.

In this extended representation, regular (i.e., nonbranching and nonleaf)
triangles of the triangle tree incident on a jump edge are treated as
branching triangles with one run of length zero starting at the jump edge.
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(a) ()

(©) (d)

Fig. 7. Surfaces topologically equivalent to the result of cutting a torus through the vertices
of the vertex tree. A connected oriented manifold with a simple loop as boundary, but not a
simply connected polygon.

Leaf triangles, including the root triangle, may be incident to zero, one, or
two jump edges. Furthermore, in the case of one jump edge, it may be the
one incident to either the left or the right vertex. This is encoded with two
extra bits per leaf of the triangle tree in the marching pattern.

5.2 Nonorientable Meshes

If the initial mesh is a nonorientable connected manifold without boundary,
the children of the branching nodes of the trees do not inherit a traversal
order from the orientation of the mesh. However, the local orientation of
the neighborhood of the root vertex of the vertex tree can be propagated
along the tree edges to all the other vertices of the mesh. The orientation of
a vertex can be propagated along an edge using one triangle incident to the
edge. The orientation of the first vertex is first transferred to the triangle,
and then to the other vertex. Figure 8 illustrates this procedure. One of the
two orientations is chosen for the root vertex. When a new vertex is visited,
it can be consistently reoriented by transporting the orientation from its
parent vertex. For orientable surfaces this construction produces the same
result as using the global orientation of the surface to define the ordering of
incident edges. However, this construction is valid for nonorientable mani-
folds as well. The simply connected polygon whose dual is the triangle tree
is orientable. One of the two possible orientations is chosen.
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Fig. 8. Transporting the orientation from vertex to vertex along a common edge of a
manifold.

In the orientable case, when a jump edge is crossed the loop path
encountered after the jump is traversed in the same direction as the one
before the jump. In the nonorientable case the direction of loop traversal
may or may not change across a jump edge. An extra bit per jump edge is
added to the marching pattern to represent the changes of direction.

5.3 Meshes with Boundary

If the initial mesh is a connected manifold with boundary, the boundary of
this mesh is composed of a number of closed polygonal curves. Let us
assume that the vertex tree is first constructed as usual in the graph of the
mesh. If the boundary polygons are triangulated without adding new
vertices, a connected manifold without boundary is obtained. We are now in
the previous case, where a spanning triangle tree can be constructed, and
jump edges determined. If the triangles previously added to close the
boundaries of the mesh are now removed from the triangle tree, the result
is a spanning forest, that is, a collection of trees. When one or more nodes
are removed from a tree, together with their incident edges, the result is a
forest. However, if each of the connected subtrees formed by the removed
nodes and their incident edges is connected to the remaining nodes by a
single edge, the remaining forest turns out to be composed of a single tree.
In our case, this means that it is sufficient to include all but one of the
boundary edges of each closed boundary polygonal curve in the vertex
spanning tree to be sure that the mesh resulting from cutting through the
vertex spanning tree edges is connected. After eventually cutting this mesh
through a number of jump edges (determined as in the case of an arbitrary
Euler characteristic described previously), we obtain a single simply con-
nected polygon whose dual graph is the triangle spanning tree. Care should
be taken when describing leaf triangles incident to a boundary edge of the
original mesh. These must be treated as jump edges. Note that one or more
of the loop boundary indices may not be used as a vertex of a triangle here.
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6. PROPERTIES

Normals, colors, and texture mapping vectors are usually provided as
additional information, used for shading purposes. A normal is a three-
dimensional floating point vector of unit length, a color is a three-dimen-
sional floating point vector that belongs to the unit cube [0, 1]3. A texture
mapping vector is a two-dimensional floating point vector. Normals, colors,
and texture mapping vectors can be encoded in a similar manner. We
describe the process only for normals and consider these cases:

(1) one normal per triangle,
(2) one normal per vertex, and
(3) one normal per corner (three normals per triangle).

Flat shading requires one normal per triangle. The illusion of smoothness
is produced by specifying a common vertex normal for all the triangles that
share a certain vertex, and then either extending the vertex intensity by
continuity to the interior of the triangles (Gouraud shading), or extending
the normals by continuity to the interiors of the triangles (Phong shading).
Sharp edges must be shaded with different normals for each use of the
shared vertices of the abutting triangles. Which of the three cases is used is
included in the compressed representation of the model.

In the three cases the normals are organized into trees, which determine
how they are ordered (pre-order traversal). In the case of one normal per
triangle, there are T normals, one per node of the triangle tree. In the case
of one normal per vertex, there are V normals, one per node of the vertex
tree.

In the case of one normal per corner (three normals per triangle), there
are 3T normals. To encode these corner properties, we use a corner tree
derived from the order in which the corners are visited during the mesh
reconstruction (decompression) algorithm. Many such trees can be defined.
This is one possibility. The corner associated with the triangle tree root id
is the root of the corner tree, followed by the left and right vertices of the
triangle tree root, in that order, forming the beginning of the first run.
Then, every time a new triangle is constructed of the two corners of the
previous triangle incident to the connecting edge, the last one visited is
connected to the corresponding corner of the new triangle on the other side
of the edge; this corner is connected to the other corner of the new triangle
incident to the connecting edge; and this corner is connected to the third
corner of the new triangle.

Once normals are associated with the nodes of a tree they are quantized,
and predictor errors are entropy encoded as in the case of the vertex
positions. The normals can be quantized using Deering’s [1995] nonrectilin-
ear method, or using the same rectilinear method used for the vertex
positions.

To prevent repeating values in the case of one normal per corner, the
Huffman tables can be modified so that the tag consisting of the single bit
“0” corresponds to “no corner value transmitted” (use last value associated
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Fig. 9. Crocodile model of Table I: (a) (e) source; (b) (f) 12 bits per coordinate; (c) (g) 10 bits
per coordinate; (d) (h) 8 bits per coordinate.

with corresponding vertex), and all the tags starting with bit “1” correspond
to new values. A more complex scheme is implemented in Taubin et al.

[1997].

7. IMPLEMENTATION RESULTS

7.1 Test Models

The results shown in this section have been produced by our first imple-
mentation of the algorithms described in this article, which is restricted to
models stored in VRML 1.0 format without properties. A few representative
models are shown in Figures 9 and 10, together with compression ratios for
different choices of number of bits per coordinate, and timing statistics in
Tables II and III, to demonstrate the effectiveness of the technique on
models of different topological and morphological characteristics. This
implementation does not support all the features of the VRML 1.0 lan-
guage. For example, it does not support compression of individual fields,
and the geometric compression/decompression algorithms do not compress
all the geometric features. The code is not fully optimized for speed.

Each example has its own page with compression results under different
compression parameters and timings for parsing, compressing, decompress-
ing, and writing. Parsing times include the time required to build the
memory representation of the data, not only checking syntax. We have
decided to render them with a single color and flat shaded to enhance the
discretization effect.

For the experiments we have used an IBM RS/6000 model 42T, which has
a PowerPC 604 processor running at 120MHz. All the timings are real-time
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Fig. 10. Fandisk of Table II: (a) (e) source; (b) (f) 12 bits per coordinate; (c) (g) 10 bits per
coordinate; (d) (h) 8 bits per coordinate.

Table II. Crocodile Model with 17,332 Vertices, 34,404 Triangles, 65 Connected
Components, and 0 Properties. Compression Ratios and Timing Statistics
File sizes and compression ratios

FORMAT RESOLUTION | SIZE PERCENTAGE RATIO
uncompressed | 32 bits/coord 1,327,559 100.00% 1:1
gziped 32 bits/coord 386,408 29.11% 3.43:1
compressed 16 bits/coord 80,056 16.58% 19.63:1
compressed 14 bits/coord 63,196 4.76% 21.00:1
compressed 12 bits/coord 48,960 3.69% 27.12:1
compressed 10 bits/coord 36,248 2.73% 36.62:1
compressed 8 bits/coord 26,788 2.02% 49.56:1
Timing
FORMAT PARSING COMPRESSING | DECOMPRESSING | WRITING
uncompressed
ASCII 10.5873 sec 2.4442 sec
BINARY 0.2201 sec 0.0605 sec
compressed
16 bits/coord | 0.0982 sec 12.6789 sec 0.5276 sec 0.0280 sec
14 bits/coord | 0.1023 sec 12.5634 sec 0.4974 sec 0.0255 sec
12 bits/coord | 0.0871 sec 12.0230 sec 0.4757 sec 0.0242 sec
10 bits/coord | 0.0736 sec 11.8670 sec 0.4636 sec 0.0243 sec
8 bits/coord 0.0507 sec 11.5300 sec 0.4383 sec 0.0266 sec

system clock measurements that include whatever else the machine was
doing at the time.
Roughly speaking, these are the conclusions.

—Parsing and decompressing a file in compressed binary format is at least
20 times faster than parsing the corresponding file in ASCII format.
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Table III. Fandisk Model with 6,475 Vertices, 12,946 Triangles, 1 Connected Component,
and 0 Properties. Compression Ratios and Timing Statistics

File sizes and compression ratios

FORMAT RESOLUTION | SIZE PERCENTAGE RATIO
uncompressed | 32 bits/coord 666,925 100.00% 1:1
gziped 32 bits/coord 146,012 21.89% 4.57:1
compressed 16 bits/coord 25,535 3.83% 26.12:1
compressed 14 bits/coord 19,515 2.93% 34.18:1
compressed 12 bits/coord 14,631 2.19% 45.58:1
compressed 10 bits/coord 10,239 1.54% 65.14:1
compressed 8 bits/coord 6,879 1.03% 96.95:1
Timing
FORMAT PARSING COMPRESSING | DECOMPRESSING | WRITING
uncompressed
ASCII 5.5136 sec 0.7507 sec
BINARY 0.1072 sec 0.0516 sec
compressed
16 bits/coord | 0.0385 sec 7.7400 sec 0.1978 sec 0.0062 sec
14 bits/coord | 0.0395 sec 7.1700 sec 0.2001 sec 0.0210 sec
12 bits/coord | 0.0180 sec 6.9600 sec 0.2065 sec 0.1215 sec
10 bits/coord | 0.0197 sec 6.8500 sec 0.1929 sec 0.0135 sec
8 bits/coord 0.0090 sec 6.9800 sec 0.2013 sec 0.0095 sec

—The decompression algorithm reconstructs 60—-90K triangles per second
in memory, and we believe that the code is not yet fully optimized.

—The compression algorithm takes the same time to compress a scene
graph, once it is in memory, as the parser takes to parse an ASCII VRML
1.0 file and to construct the memory representation.

—Writing a scene graph in uncompressed binary form is about 30 times
faster than writing it in ASCII form.

—Writing the same scene graph in compressed binary form is at least 10
times faster than writing it in uncompressed binary form.

We are currently finishing a second implementation, with extended data
structures and algorithms to support 3-D models described in VRML 2.0
format [Carey et al. 1997] in its full generality, including all the possible
property attachments. This implementation is compliant with the VRML
Compressed Binary Format proposal based on these extensions and on a
binary encoding of the VRML scene graph structures [Taubin et al. 1997].
This proposal has been submitted to the VRML Consortium to be consid-
ered as an extension of the VRML standard. This new implementation has
been tested on a large collection of 3-D models. The VRML 2.0 extensions,
as well as the results of the extensive testing, are reported elsewhere
[Taubin et al. 1998].

7.2 Model Size

To analyze the relation between model size (number of triangles) and
compression ratios, starting from the model shown in the upper left corner
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Fig. 11. Compression ratios as a function of model size. A hierarchy of 6 simplified models
was generated using Guéziec’s [1995] method from model (a); (b) and (c) are two of these
simplified models. Then each of these models was recursively subdivided and smoothed three
times (multiplying the number of triangles by four on each subdivision step) using Taubin’s
[1995a] method. The first two levels of subdivision and smoothing corresponding to the models
in the first row are shown in the second and third rows. Complete statistics on the 28 models
are shown in Table IV.

of Figure 11 (4,737 triangles), we generated a hierarchy of 7 simplified
models using Guéziec’s [1995] method. We then recursively applied three
consecutive subdivision and smoothing steps using Taubin’s [1995a]
method to increase the number of triangles. The size of the resulting 28
models, all having the same topology and similar shape, span more than
three orders of magnitude (279 to 303,168 faces). Some of these models are
shown in Figure 11 with the vertex tree edges drawn in black, and the
triangles color-coded according to their position in the triangle tree (leaf
triangles are red, regular triangles are yellow, and branching triangles are
blue). Table IV contains the number of vertices and faces of each model, as
well as their uncompressed sizes (as VRML files), total compressed sizes,
total number of bits per triangle, size of the connectivity information alone,
number of bits per triangle used to encode the connectivity information,
and compression ratios. The plots of Figure 12 show how the total number
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Table IV. Relation Between Model Size (Number of Faces) and Compressed Size per Face
for Models of Same Topology and Similar Shape. Some Models Are Shown in Figure 11.

MODEL SIZE COMPRESSED
NAME NUMBER OF ASCII TOTAL SIZE CONNECTIVITY | RATIO
VERTICES | FACES | (VRML) | BYTES | BITS/TRI | BYTES | BITS/TRI
bunny-00 2,425 4,737 232,529 5,505 9.29 1,497 252 | 42.24:1
bunny-01 1,709 3,308 163,155 4,101 9.91 1,075 259 | 39.78:1
bunny-02 1,178 2,254 111,856 3,170 11.25 988 3.50 | 35.26:1
bunny-03 758 14,35 71,662 2,188 12.19 578 322 | 32751
bunny-04 524 990 49,562 1,583 12.79 368 297 | 31.30:1
bunny-05 342 644 32,376 1,121 13.92 234 290 | 28.88:1
bunny-06 226 426 21,488 835 15.68 167 313 25.73:1
bunny-07 149 279 14,201 624 17.89 115 3.29 | 22.76:1
bunny-10 9,589 | 18,948 924,395 | 15,208 6.42 4,608 1.94 | 60.78:1
bunny-11 6,728 | 13,232 647,034 | 11,279 6.81 3,276 1.98 | 57.37:1
bunny-12 4,612 9,016 442,198 8,617 7.64 2,467 2.18 | 51.32:1
bunny-13 2,953 5,740 282,367 5,941 8.28 1,633 227 | 47.53:1
bunny-14 2,040 3,960 195,002 4,253 8.59 1,009 2.03 | 45.85:1
bunny-15 1,330 2,576 127,068 3,066 9.52 697 216 | 41.44:1
bunny-16 880 1,704 84,146 2,173 10.20 462 216 | 38.72:1
bunny-17 579 1,116 55,313 1,590 11.39 333 238 | 34.79:1
bunny-20 38,128 | 75,792 | 3,686,594 | 43,402 4.58 | 14,333 1.51 | 84.94:1
bunny-21 26,690 { 52928 | 2,577,420 | 32,259 487 10412 1.57 | 79.90:1
bunny-22 18,242 | 36,064 | 1,758,796 | 23,534 522 7,529 1.67 | 74.73:1
bunny-23 11,648 | 22960 | 1,121,362 | 16,020 5.58 4,830 1.68 | 70.00:1
bunny-24 8,042 { 15,840 773972 | 11,499 5.80 3,207 1.61 | 67.30:1
bunny-25 5238 | 10,304 503,856 8,039 6.24 2,167 1.68 | 62.68:1
bunny-26 3,466 6,816 333,428 5,632 6.61 1,336 1.56 | 59.20:1
bunny-27 2,276 4,464 218,726 4,126 7.39 945 1.69 ¢ 53.01:1
bunny-30 152,050 | 303,168 | 15,037,160 | 141,852 3.74 | 47,267 1.24 | 106.00:1
bunny-31 106,310 | 211,712 | 10,326,564 | 104,667 395 35,118 132 | 98.66:1
bunny-32 72,550 | 144,256 | 7,015,648 | 75,426 4.18 | 25,110 139 93.01:1
bunny-33 46,258 | 91,840 | 4,469,698 | 48,675 424 17,679 1.54 | 91.83:1
bunny-34 31,926 { 63,360 | 3,084,272 | 34,595 436 | 11,194 141 89.15:1
bunny-35 20,782 | 41,216 | 2,007,048 | 23,345 4.53 6,980 135 85971
bunny-36 13,750 | 27,264 | 1,327,856 | 15,911 4.66 4,453 130 | 83.46:1
bunny-37 9,018 | 17,856 870,308 | 11,260 5.04 3,171 142 | 77.29:1

of bits per triangle and the number of connectivity bits per triangle vary as
a function of the number of triangles. As expected, the compression pays off
more for larger models and models with more regular meshes (such as
those obtained from recursively subdividing a mesh).

7.3 Algorithmic Complexity

Let N be the maximum of the number of vertices V, the number of edges E,
and the number of triangles T of the triangular mesh.

7.3.1 Decompression Algorithm. Overall, the time and space complex-
ity of the decompression algorithm is O(N).

Since the number of runs of the vertex tree is always less than the
number of vertices, the time complexity of traversing the vertex tree and
constructing the bounding loop lookup table is clearly O(V). In terms of
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Fig. 12. Relation between body size (number of faces) and compressed size per face for the 28
models of Table IV: (a) number of triangles vs total number of bits per triangle; (b) number of
triangles vs number of connectivity bits per triangle.
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storage, a stack of at most depth V is needed for the traversal, and an array
of length 2V — 2 is needed to store the bounding loop lookup table.

The complexity of decoding the entropy encoded vertex positions is
clearly linear in the number of vertices, because the total number of bits of
the encoded data is bounded above by the total number of bits per
coordinate times the number of coordinates times the number of vertices,
and these bits are sequentially read during decompression. The entropy
decoding requires an array of length 3V to store the decoded vertex
positions and a few local variables.

The Y-vertex lookup table is constructed by traversing the triangle tree.
Since there is one Y-vertex per branching triangle, no more than one
branching triangle per triangle run, and no more triangle runs than
triangles, the time and space complexity of building the Y-vertex lookup
table is at most O(T).

The time and space complexity of reconstructing the triangles is also
O(T) because each triangle is visited exactly once during the depth-first
traversal of the triangle tree, reconstructing the triangle only requires
looking at a value in the bounding-loop lookup table or in the Y-vertex
lookup table (both of which require constant time access, for regular
triangles consuming a bit from the marching pattern), the stacks needed
for the traversal are at worst of length 7', and the array needed to store the
reconstructed triangles is of length 37'.

7.3.2 Compression Algorithm. Let us first assume that the triangular
mesh is a connected manifold.

For efficient implementation, the compression algorithm requires aver-
age constant time access to the edges of the mesh indexed by the two vertex
indices of the endpoints. The edge data structure should also provide
constant time access to the two incident triangles. In our implementation
we represent an edge as an array of four integers, the first two correspond-
ing to the two vertex indices, and the second two to the triangle indices
(boundary edges only have one incident triangle; a special marker is used
to indicate invalid triangles). The edges are organized as a hash table
indexed by the sorted pair of vertex indices (smaller vertex index followed
by larger vertex index). In our implementation, this hash table is an array
of length V of linked lists. When an edge is created, it is inserted in the list
corresponding to the smaller vertex index. Each list is sorted by the value
of the other vertex index. Since for most typical meshes the maximum
number of edges incident to a vertex is reasonably small, we have verified
that in practice this implementation satisfies the requirement. The edges
are constructed in O(T) time by visiting each triangle, and for each of the
three pairs of vertices, first looking for the corresponding edge in the hash
table. If the edge is not found in the hash table, it is created and the two
vertex index entries filled, one of the triangle index entries with the
current values, and the other triangle index with the special marker
previously mentioned. If the edge is found in the hash table the special
marker is replaced with the index of the current triangle.
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Building the vertex and triangle spanning trees (i.e., classifying each
edge as belonging to the vertex spanning tree, triangle spanning tree, or
being a jump edge) requires maintaining forest data structures for both the
vertex and triangle spanning trees. This can be done using the fast
union-find algorithms of Tarjan [1983] to maintain a partition of the
vertices. Each part represents one tree of the forest. Initially, there are as
many trees as vertices, and each tree is composed of one node and no edges.
A similar structure is used for the triangle forest. Then one by one the
edges are considered for inclusion in one of the two forests. If considered for
inclusion in the vertex forest, it is included only if the two endpoints belong
to different trees (different subsets of the partition), in which case the edge
is marked as belonging to the vertex tree, and the two corresponding
subsets in the partition are joined into a single subset. The same is done
when considering the edge for inclusion in the triangle tree. If an edge can
neither be included in the vertex tree nor in the triangle tree, then it is
marked as a jump edge. The order in which the edges are considered and
whether each edge is first considered for inclusion in the vertex forest or in
the triangle forest depends on the particular algorithm. But once these
decisions are made, this process requires essentially O(N) time and space.

All the tree construction algorithms based on variations of the minimum
spanning tree algorithm have a time complexity of O(NN log N) because of
the sorting of the edges as a function of cost. The complexity of the
algorithm based on the layer decomposition is O(N) however, because of its
mesh traversal nature.

Once the edges are classified, the vertex tree is depth-first traversed on
the mesh to encode it as a table of vertex runs. The runs incident to each
branching node are ordered according to the orientation of the mesh, which
requires turning around the branching vertex. The time and space complex-
ity of this operation is O(N). The situation is similar for the triangle
spanning tree, but the marching pattern is also generated while traversing
the triangle spanning tree. Choosing the triangle tree root requires travers-
ing the vertex tree and looking at the incident triangles until a triangle
with two consecutive edges on the vertex spanning tree is found. This also
requires O(N) time to complete.

Quantizing entropy encoding the vertex positions clearly requires O(N)
space and time.

Overall, all the algorithms require O(N) space. The algorithms based on the
minimum spanning tree constructions require O(N log N) time, and our best
algorithm based on the layered decomposition requires only O(N) time.

The determination of the number of connected components, and the
partition of the triangle mesh into connected components comes for free
from the construction of the spanning forests described previously. If at the
end of the construction the vertex forest consists of a single tree (i.e., the
partition is composed of a single subset including all the vertices), then the
triangle mesh is connected. Otherwise each tree of the vertex forest
corresponds to one connected component.
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There are other preprocessing steps that are necessary in a practical
implementation, such as checking whether the triangular mesh is a mani-
fold, and if not, converting it to a manifold. In this article we assume that
the input triangular mesh is a manifold, perhaps with many connected
components, and we do not attempt to check and/or fix it. Algorithms to do
so, and their complexity, are reported elsewhere.

7.4 Optimality Analysis

The method described in this article to losslessly encode the connectivity of
a triangle constitutes a variable-length encoding scheme. We do not have
any optimality claims on it, but in practice it seems to approach one bit per
triangle as the number of triangles grows with constant topology. This is
essentially because the size of the vertex and triangle trees becomes
negligible with respect to the marching pattern, which in our current
implementation is not compressed. By compressing the marching pattern
we could probably obtain even smaller asymptotic rates.

To our knowledge, there are no results on the minimum number of bits
required to encode a triangular mesh. However, it is well known how many
different triangulations of a simply connected polygon exist. The number of
different triangulations of a simply connected polygon of n + 2 vertices
(which is triangulated with n triangles) is given by the Catalan number

[Knuth 1973]
Cn _ 1 (2n) _ 2n! .
n+l\n n!'(n + 1)!

If these triangulations are systematically enumerated, and the corresponding
number is used as the encoding of the triangulation, then log,([C, 0 bits are
needed to encode it. Note that this would be the optimal fix-length encoding
scheme. Using Stirling’s formula it is not difficult to verify that log,([C,,00 — 2,
as n — . OQur variable-length encoding scheme produces better results on the
class of polygon triangulations than our mesh-cutting scheme produces (i.e.,
triangulations with very few branching and leaf triangles).

8. CONCLUSION

In this article we have introduced a new compressed representation for
triangular meshes. In this representation the connectivity of the mesh is
encoded with no loss of information, and the vertex positions and properties
are compressed with variable loss of information. The scheme is particu-
larly appropriate for network-based 3-D applications. We have shown
examples and benchmarks produced with our first VRML 1.0 implementa-
tion. Results obtained with the more complete VRML 2.0 implementation,
as well as the extensions necessary to support the 3-D models that can be
represented in that format, are reported elsewhere. As shown in the
examples, compression ratios of 50:1 are not unusual. Other existing
compression schemes either do not preserve the connectivity of the mesh, or
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do not achieve these compression ratios. The natural next step is to extend
and/or modify this scheme to support progressive transmission, that is,
level-of-detail hierarchies, of 3-D models.

9. APPENDIX

THEOREM 1. The vertex tree cuts a simple mesh into a triangulated
simply connected polygon (i.e., a topological disk).

Proor. Cutting an orientable surface does not destroy its orientability.
The vertex tree has no cycles, and therefore the surface it bounds is
connected. The Euler characteristic y = V — E + T of a simple mesh with
V vertices, E edges, and T triangles is 2 by definition. The vertex tree is
composed of the V vertices of the mesh as nodes and V — 1 edges. Cutting
the mesh through the edges of the vertex tree produces a new connected
mesh with a single boundary loop of edges composed of 2V — 2 nodes and
2V — 2 edges (each cut edge is used twice in the loop). The mesh bounded
by the cut loop has no internal vertices. Each vertex of the original mesh is
used once, twice, or more times in the boundary loop, depending on whether
it is a leaf node, a regular node, or a branching node of the vertex tree.
Since the resulting mesh has 2V — 2 vertices, E + V — 1 edges, and T
triangles, its Euler characteristicis (2V — 2) —(E + V - 1)+ T = (V —
E + T) — 1 = 1. Because the mesh is orientable and connected, it is
homeomorphic to a topological disk, such as a triangle or a simply con-
nected polygon (both are triangulated connected, orientable 2 manifolds
with the same Euler characteristics) (Massey 1967, Theorem 8.2). [J

THEOREM 2. The dual graph of a triangulated simply connected polygon
is a binary tree.

Proor. The tree is clearly binary. If the dual graph had a cycle, it would
decompose the loop into two disjoint components (one of which could be an
isolated point, or would imply that the polygon has an internal vertex). [
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