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ABSTRACT

In interconnect optimization by wire-sizing, minimizing
weighted sink delay has been shown to be the key prob-
lem. Wire-sizing with many important objectives such as
minimizing total area subject to delay bounds or minimizing
maximum delay can all be reduced to solving a sequence of
weighted sink delay problems by Lagrangian relaxation [1, 3].
GWSA, first introduced in [10] for discrete wire-sizing and
later extended in [2] to continuous wire-sizing, is a greedy
wire-sizing algorithm for the weighted sink delay problem.
Although GWSA has been experimentally shown to be very
efficient, no mathematical analysis on its convergence rate
has ever been reported. In this paper, we consider GWSA
for continuous wire sizing. We prove that GWSA converges
linearly to the optimal solution, which implies that the run
time of GWSA is linear with respect to the number of wire
segments for any fixed precision of the solution. Moreover,
we also prove that this is true for any starting solution. This
is a surprising result because previously it was believed that
in order to guarantee convergence, GWSA had to start from
a solution in which every wire segment is set to the mini-
mum (or maximum) possible width. Our result implies that
GWSA can use a good starting solution to achieve faster
convergence. We demonstrate this point by showing that
the minimization of maximum delay using Lagrangian relax-
ation can be speed up by 57.7%.

1. INTRODUCTION

With the evolution of VLSI fabrication technology, intercon-
nect delay has become the dominant factor in deep submi-
cron design. In many systems designed today, as much as
50% to 70% of clock cycle are consumed by interconnect de-
lay [7]. As technology continues to scale down, we expect the
significance of interconnect delay will further increase in the
near future. Wire-sizing has been shown to be an effective
technique for interconnect optimization. Many works have
been done during the past few years. See [7] for a survey.
In particular, the problem of minimizing weighted sink
delay has drawn a lot of attention. Basically, a routing tree
with a source, a set of sinks and a set of wire segments is
given. Associated with each sink is a non-negative weight
representing the criticality of the sink. The problem is to de-
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termine the width of each wire segment so that the weighted
sum of the delay from the source to the sinks is minimized.
Solving this problem is a key to solve problems with many
other important objectives such as minimizing total area sub-
ject to delay bounds or minimizing maximum delay. It is
because [1, 3] have shown that those problems can all be re-
duced by Lagrangian relaxation to a sequence of weighted
sink delay problems. So having efficient algorithms for the
weighted sink delay problem is very important for intercon-
nect optimization.

For the problem of minimizing weighted sink delay un-
der Elmore delay model [11], a widely used technique is op-
timal local re-sizing. The basic idea is to iteratively and
greedily re-size the wire segments. In each iteration, the
wire segments in the tree are examined one by one. When
a wire segment is examined, it is re-sized optimally while
keeping the widths of all other segments fixed. This tech-
nique was first introduced in [10] and was later extended to
many other wire, buffer, gate, driver and/or transistor sizing
problems [1, 2, 4, 5, 6, 8, 9].

In [10], discrete wire-sizing (i.e. the segment widths must
be chosen from a given set of discrete choices) was considered.
The proposed algorithm was called GWSA (Greedy Wire-
Sizing Algorithm). GWSA does not give the optimal solution
directly as it can converge to non-optimal solutions. Rather,
GWSA is used to get lower and upper bounds on the segment
widths of the optimal solution. Then dynamic programming
technique is used to find the optimal solution among all the
possible solutions satisfying the lower and upper bounds. As
the lower and upper bounds obtained by GWSA are close to
each other in most cases, the dynamic programming step is
usually very efficient.

In [2], GWSA was extended to continuous wire-sizing (i.e.
the segment widths can be from a continuous range of real
numbers). It was proved in [2] that for continuous wire-
sizing, GWSA always converges to the optimal solution, pro-
vided that all segments are set to their minimum (or max-
imum) possible widths for the starting solution. However,
the convergence rate of GWSA is not known.

In this paper, we analyze the convergence of GWSA for
continuous wire-sizing. One of our contributions is we prove
that the convergence rate of GWSA is linear. This implies
that the run time of GWSA is O(nlog -) where n is the
number of wire segrsgefiasdthe precision of the
solution (see Theorem 2). So GWSA runs in time linear to
n for a fixed precision.

For all previous algorithms using optimal local re-sizing,
the convergence always depends on the fact that the solu-
tion of optimal local re-sizing satisfies a special dominan ce
property [10]. That is if a wire-sizing solution is dominated
by the optimal solution (i.e. the width of every segment in
the solution is smaller than or equal to that in the optimal
solution), then the solution after an optimal local re-sizing
of any segment will still be dominated by the optimal so-
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lution. So if we start from a solution with every segment
set to its minimum possible width (this solution is obviously
dominated by the optimal solution), then after any number
of optimal local re-sizing, the solution will still be dominated
by the optimal solution. In other words, for any segment, the
optimal width is always an upper bound to the width by opti-
mal local re-sizing. Since segment widths are non-decreasing
during optimal local re-sizing and are upper bounded, the
solution must converge (to a lower bound of the optimal so-
lution for discrete wire-sizing, and to the optimal solution for
continuous wire-sizing). A similar property holds for wire-
sizing solutions which dominate the optimal solution.

Therefore, previously in order to guarantee convergence,
GWSA always sets all segments to their minimum (or max-
imum) possible widths for the starting solution. Another
contribution of this paper is we prove that for continuous
wire-sizing, GWSA always converges to the optimal solution
from any starting solution. This is done by proving the con-
vergence of GWSA without using dominance property. So by
using a good starting solution for GWSA, faster convergence
can be achieved.

This result on starting solution is particularly useful in
optimizing other objectives (e.g. minimizing total area sub-
ject to delay bounds or minimizing maximum delay) by La-
grangian relaxation. A problem with other objective can be
solved optimally by reducing it to a sequence of weighted sink
delay problems using the Lagrangian relaxation technique.
Previously, before solving each weighted sink delay problem,
in order to guarantee convergence, all segments are reset to
their minimum (or maximum) possible widths to form the
starting solution for GWSA. However, since two consecutive
weighted sink delay problems in the sequence are almost the
same (except that the sink weights are changed by a little
bit), the optimal solution of the first weighted sink delay
problem is close to the optimal solution of the second one,
and hence a good starting solution to the second one. So it
is better not to reset the wire-sizing solution before solving
each weighted sink delay problem. We experimentally verify
that our new approach of not reseting is much better than
the previous approach of reseting each time. We show that
our approach can speed up the minimization of maximum
delay using Lagrangian relaxation by 57.7%.

The rest of this paper is organized as follows. In Section
2, we will present the weighted sink delay problem and the
algorithm GWSA considered in [2]. In Section 3, we will an-
alyze the convergence of GWSA. In Section 4, experimental
results to show the linearity of the run time of GWSA and
the speedup on optimizing other objectives using Lagrangian
relaxation are presented.

2. THE WEIGHTED SINK DELAY PROBLEM
AND THE ALGORITHM GWSA

In this section, we will first present the continuous wire-sizing
problem with weighted sink delay objective and then the
algorithm GWSA considered in [2].

Assume that we are given a routing tree T imple-
menting a signal net which consists of a source (at the
root) with driver resistance Rp, a set of n wire segments

{W1,Wa,...,W,}, and a set of m sinks N =
{N1,Na,...,Np,} (at the leaves) with load capacitance c,
1 < k < m. Associated with each sink N} is a non-negative
weight A; representing the criticality of the sink. Assume
without loss of generality that EZ;I Ar = 1. Basically, the
problem is to minimize the weighted sink delay for the rout-
ing tree by changing the widths of the wire segments. See
Figure 1 for an example of a routing tree.

Figure 1. An example of a routing tree.

Let dec(W;) be the set of descendant wire segments or
sinks of W; (excluding W;). Let ans(W;) be the set of an-
cestor wire segments of W; (excluding W;). Let path(Ng)
be the set of wire segments on the path from the driver to
the sink Nj. For example, for the routing tree as shown
in Figure 1, dec(W1) = {Wa2, W3, W4, N1, N2}, ans(Wi) =
{}7 deC(Ws) {N3}’ ans(WS) {W51 W67W7}, and
path(N;;) = {Ws, We, Wr, Ws}.

For 1 <4 < n, let z; be the width of wire segment W;, and
L; and U; be respectively the lower bound and the upper
bound on the width of W;. Therefore, L; < z; < U; for
1<i<n Let & = (z1,22,...,2n), which will be referred
to as a wire-sizing solution. A wire segment is modeled as
a m-type RC circuit as shown in Flgure 2. The res1stance
and capacitance of wire segment W; are 7; / z; and ¢iz; + fi
respectlvely, where 7; is the unit width wire resistance, ¢;
is the unit width wire area capacitance, and f; is the wire
fringing capacitance of W;.

2<\3>

[ x| L T

Figure 2. The model of wire segment W; by a ﬂ-type RC
circuit. Note that the resistance and capacitance of the segment

-~ -~ . -~ . . .
are r;/z; and c;z; + f; respectively, where r; is the unit width
. . -~ ., . . . .
wire resistance, c; is the unit width wire area capacitance, and f;
is the wire fringing capacitance of W;.

Let p;i = Z Ak

Ny €dec(W;)
sink weights of segment W;.

Let R;i(x) = Z
W;€ans(W;)
upstream wire resistance of segment W;.

Let Cs(z) = Z
W; edec(W;)
stream wire area capacitance of segment W;.

ct— S g Y
W; €dec(W;) Ny edec(W;)

downstream wire fringing capacitance and sink capacitance
of segment W;.

ie. pi is the total downstream

wiry/z;, ie. Ri(x) is a weighted

cjzj, ie. Ci(x) is the total down-

cr, i.e. C{’ is the total

Elmore delay model [11] is used for delay calculation. For
a wire-sizing solution @, the Elmore delay from the source to
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the sink Ny is given by

Ro( ) Gaj+ > fi+ Y )

wW;ew W;ewW N eN

7/"\1' ami 4 s
o 2 L(Framefeer)

W; €path(Ny)

Then the weighted sink delay problem can be written as:

Z Aka

L,<m,<Ul, 1<i<n.

Minimize
Subject to

Now we present the algorithm GWSA proposed in [2] for
solving the weighted sink delay problem. The algorithm
GWSA is a greedy algorithm based on iteratively re-sizing
the wire segments. In each iteration, the wire segments are
examined one by one. When a wire segment W; is exam-
ined, it is re-sized optimally while keeping the widths of all
other segments fixed. This operation is called an optimal
local re-sizing of W;. The following lemma gives a formula
for optimal local re-sizing.

Lemma 1 For a wire-sizing solution ® = (z1,Z2,...,Zn),
the optimal local re-sizing of W; is given by changing the
width of W; to

~ fi fs
. KiTs Ci(z) + 3 +C;
i =ming Uj,max Li,\| <~ " —F5 75—
’ " \/ ci Ri(x) + Rp

Proof outline: By extending the proof of Lemma 1 in [2]

(which did not consider wire fringing capacitance), we can

show that

D) = @zi(Ri(z)+Ro)+ 27 (Cie) + L 4 0F)
3

+ terms independent of z;

Note that R;(x) and C;(x) are also independent of z;. Hence
by Lemma 2 of [2], the result follows. a

Let children(W;) be the set of all children wire segments
of W; and let p; be the index of the parent wire segment of
W;. Then the algorithm GWSA is given below. Note that
since Cj(x) and R;(x) are computed incrementally in step
S3 and S4, each iteration of GWSA takes only O(n) time.

For the original GWSA in [2], in S1, z; is set to L; for
all <. Then dominance property can be applied to show that
the algorithm converges. However, the convergence rate is
not known. Also, if some other starting wire-sizing solution
is used in S1, it it not clear whether the algorithm will still
converge. In the next section, we will show that GWSA
always converges linearly for any starting solution.

3. CONVERGENCE ANALYSIS OF GWSA

In this section, we will first prove that the algorithm GWSA
always converges to the optimal solution for any starting so-
lution (Theorem 1). Then we will prove that the convergence
rate for any starting solution is always linear. This implies
the run time of GWSA is O(nlog 1) for any starting solution,
where e specifies the precision of the solution (Theorem 2).
For the following two lemmas, we will focus on segment
Wy, for some fixed k. Note that during the n optimal local

ALGORITHM GWSA:
S1.Let & be some starting wire-sizing solution.
S2. Compute p;’s and C’{s’s by a bottom-up traversal
of T using the following formula:
Ak, if Wi connects directly to sink Vg

pe= W; €children(W;) M, otherwise

of ¢y, if W; connects directly to sink N
. :: fs .
' ijechudren(w,-)(fj + C}’), otherwise

S3. Compute all C;’s by a bottom-up traversal
of T using the following formula:
Ci(z) := EW]- echitarenw;) (€iT5 + Cj (@)
S4. Perform a top-down traversal of T
For each W;,
Ri(x) := Rp, (@) + ptp;Tp: /Tp;
uiri Ci(e) + & + of

U;,max < L; —
) ) Ci Rz(w)+RD

z; = min

S5. Repeat S3-S4 until no improvement.

re-sizing operations just before the local re-sizing of Wy at
a particular iteration (except the first iteration), each wire
segment is re-sized exactly once. Intuitively, the following
two lemmas show that during these n re-sizing operations,
if the changes in all the segment widths are small, then the
change in the width zj during the local re-sizing of W} at
that iteration will be even smaller.

For somet > 1,let & = (z1,...,%n), € = (z},...,zy) and
" = (z¥,...,z)) be respectively the wire-sizing solution
just before the local re-sizing of Wy, at iteration ¢, ¢t + 1 and

/ pri Cr(@) + &+ CF
t + 2 of GWSA. Let g \/ = Re(@) + Fp

and

qll — I-’/k;'\k . Ck(ml) + ka + C]{;9
k Ck Ri(2') + Rp

min{Uy, max{L, g, }} and z} = min{Uy, max{Lg,q} }}-

So by Lemma 1, zj =

1 !
Lemma 2 For any § > 0, z'f—<%§1+5for all i,
2

" 1446 —
then < q—’f <1+ éa for some constant 0 < a < 1.
1+6a ~ g
Proof: If Jm, < zj < (1+ 8)z; for all i, we have
1
Tref®@) < Ry(x') < (1+06)Ru(=)
and
1 '
P —— < < (1 .
1+6Ck(:l=) < Cr(z') < (14 90)Ck(x)
/(14 Ep ,
ZW,iEG,ns(Wk)ri/Li>
Let o = max Fe s ot
SRESN Ik s
1/ {1+ 2 +%

> eiUi
W;Eans(Wy)

Note that a is a constant such that 0 < a < 1.

Since 0 < pi < 1 and z; > L; for all i, we have Ri(x) =
ZW,-Gans(Wk) p”rl/m’ S EW,-Gans(Wk) T’/Ll

So a >1/(1+ Rp/Rk(x)), or equivalently,

Ri(x) < a(Ri(x)+ Rp).
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Hence
Ri(z')+Rp < (1+6)Ri(z)+Rp
= ORk(x)+ (Rx(x)+ Rp)
< éa(Ri(x)+ Rp) + (Rr(x) + Rp)
= (1+éa)(Rx(x)+ Rp) (1)
and
Ri(z')+Rp > ﬁRk(af)"‘RD
= Rk(m) + Rp — mRk(w)

> Ru(z)+Rp — —“(Rk(w) +Rp)

= (- 1‘15)(Rk(w)+RD)
> g (Ru(@) + o) @)

asd>0and0<a<l1

Similarly, s1nce z; < U; for all 4, we have Ci(z) =
ZW €ans(Wy) C@CC@ < ZW cans(Wy) C‘U’
Soa>1/ (1 + (’;’c Cf’)/Ck(w)), or equivalently,

Gle) < alCulw)+ Ly of).
Hence we can prove similarly that

)+ 2ol <t + Lol @)

and

Ci(2') + f’“+cfs (ck(m)+ kol (4)

1+ 5
By definitions of ¢;, and g, and by (2) and (3), we have

"o l»lfk?k . Ck(wl) + ka + C]]:;s
gk Ry (:l:’) + Rp

< mde (1+00)(Cu@) + % +Cf)

- Ch 1+5&(Rk( x)+ Rp)

= (1+da)g

1
Similarly, by (1) and (4 )”we can prove that qp > 1_|_wq;c
1 q
As a result, mf—ifl—k&a. a
1 I
Lemma 3 For any § > 0, zfﬂ < i <1+6 for all 1,
then < a:_? <1+ da for some constant 0 < a < 1.
1+6a ~ =z,

Proof: By Lemma 2, if == 1+6 z; <z < (14 8)z; for all 4, then

1_‘_ﬁqk < qi < (1+68a)q;, where a is the constant as defined
in Lemma 2. By Lemma. 1, zj, = min{Uy, max{L, q; }} and
T = min{Uk,max{Lk, qk 1)

In order to prove Ja x}, < z,, we consider three cases:

Case 1) q;, < L.

1 1
hen z}, = L. b= Ly < Ly < 2.
Then z;, k Sol+5a$k 1760 < Lgp <o

Case 2) ¢j > Uy.

Then mg = Ug. So —— U < Uy = .T,‘k.

1 1
1430 = 1% sa
Case 3) q;, > Ly and q;, < Ug.

Then q;, > Ly = z3, < q;, and q;, < Ur = ¢q;; < zx. So
ek < Tk S <l
Similarly, by cons1der1ng the cases gj, > Uk, g < Lk and

(g5, < Uy and g, > Ly), we can prove zp < (1 +6a)z.
1
As a result, < mk <1+éa. o
1+da —

The following two lemmas give bounds on the changes of
segment widths after each iteration of GWSA. Let #© =

(x&o), xgo), ,mf,o)) be the starting wire-sizing solution, and

for t > 1, let 2® = m(t),m(t),...,:c,(f) be the wire-sizin
) 1 T2 g
solution just after iteration ¢ of GWSA.

1 2D

_t
Lemma 4 For any t > 0 and & > 0, if 1495 < xz('t)
(#+2)

<1443 for all i, then <1+ da for all i

1+ 6o (t+1)

and for some constant 0 < a < 1.

Proof: Assume without loss of generality that the wire seg-
ments are indexed in such a way that a top-down traversal
of T is in the order of Wi, Wa,...,W,. The lemma can be
proved by induction on 3.
Base case: Consider the wire segment W7i.
At iteration t + 1, before local re-sizing of Wi, the wire-
sizing solution is (m(t) m(t) x(t)).
10 r¥n
At iteration t + 2, before local re-sizing of Wy, the wire-

sizing solution is (:cEH'l), a:gH'l), ceey wg"'l)).
(t+1)

Since llﬁ < %T <1+ for all 4, by Lemma 3, we
z<t+2)

have 1+5a < (t+1) <1+ do.

Induction step Assume that the induction hypothesis
is true for 1 =1, ..., k.

At iteration ¢ + 1 before local re-sizing of Wy, the wire-
sizing solution is (z EH'I), cey T ,(:'H), 5:4)_1, ... ,:c,(f)).
At iteration ¢ + 2, before local re-sizing of Wy, the wire-

. L t+2 t+2) (t+1 t+1
sizing solution is ($£+),...,a:,(c+), ;;:1)""’x£l+))-

x
_wzt—+1)§1+6a, and

By induction hypothesis, —1+1¢;a <

(#+2)
1 Z; -

hence 5 < LD <l+éd(asa<l)fori=1,...,k
2D

Also, it is given that 35 < <1+dfori=k+
! 2(t+2)

1,...,7n. So by Lemma 3, 1+5a < (t+1) <1+éa.

Hence the lemma is proved. O

Let A = max {Ui_Li}.
1<i<n L;

Lemma 5 For anyt >0

m(H—l)

1
—— <
14 Aat — 1.()
?
all i and for some constant 0 < a < 1.

<1+Aa for
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Proof: This can be proved by induction on ¢.
Base case: Consider ¢t = 0.

Note that for any wire-sizing solution & = (z1,...,Zn),
(1)
Li <z <Uiforalli. So iy < % <14 %L <14A.
€T 1 i

)
Similarly, we can prove that for all 7, % > 1-|+A'
x .

Induction step: Assume that the induction hypothesis

(t+1)
. 1 T; t
is true for ¢. Therefore, ;xsr < NG <1+ Aa’ for
. 1 2+ 1
a.ll 7. SO by Lemma. 4, W S m:t—+1) S 1 =+ Aa
for all .
Hence the lemma is proved. O

Theorem 1 GWSA always converges to the optimal wire-
sizing solution for any starting solution.

Proof: For any constant 0 < @ < 1, 1+ Aa’ — 1 as t — oco.
So by Lemma 5, it is obvious that the algorithm GWSA
always converges for any starting wire-sizing solution. The-
orem 1 of [2] proved that if GWSA converges, then the wire-
sizing solution is optimal. So the theorem follows. a

Let &* = (21, z3,...,z;) be the optimal wire-sizing solu-
tion. The following lemma proves that the convergence rate
of GWSA is linear with convergence ratio a.

* (#) t
P — 1+ A)A
Lemma 6 For anyt >0, Ti % < ( 4; )aa for all
: _
7.
Proof: For any ¢ > 0 and for any 3,
1+ A)ot
Case 1) (;—f)a > 1.
(t)
Then % < % <1+ A <1+4+A0FA
! 0
Similarly, we can prove z;_; > W.
1 t
Case 2) @ <1
l-«a
2 o 2P 1 =
Then o = | Pt o So by Lemma 5, 5 < o <
P where P =[[;°,(1+ Aa*).
o0
InP = Zln(l + Ad®)
k=t
N 1
= Z (Aak - §A2 kL A3k 4 ) (5)
k=t
(o o] o o] 1
< 3 (3]
k=t \j=1 J
S Sy
j=1 J k=t
- T 1—od
= Jj 11—«
o .
J it
< — 6
S LT ©
=

1
= In—— (7)
1- £

where (5) is because In(1+z) = z— 32>+ 3z°+- -+, (6) is

because 0 < & < 1, which implies 0 < (1—a)! < 1—a <
. t

1—a’ for j > 1, and (7) is because 0 < % < % <

landlnt& =2+ 12° + 32° +---if 0 <z < 1. So

1
P s —ZxF
1- £
Aot Aot
=1 1—
+1—a/< 1—a>
Aot A
< _
- 1+1—a/(1 1+A)
¢
_ 1+(1+A)Aa‘
11—«

< zgt) <1 (1+A)Aa?
< + =

z¥ =
H

Hence

1
1+ (1+A)Aat

l1—a
Therefore for both cases,

(t) t

: 1+ A)A

7(11A)Aa, <% < 14 0+8)Ad J;_) @

I+ =5 % @

It is easy to see that 1 — (1+1A7)aA°‘t <5 (1+11A)A.,t . So for any
* (t) t
P —x; 1+ A)A

t>0and forall i, | 5% | < LTA)Ax o

*

; 11—«
Since the convergence rate of GWSA is linear and the run
time of each GWSA iteration is O(n), we have the following
theorem.

Theorem 2 The total run time of GWSA for any starting
solution is O(nlog %), where € specifies the precision of the
final wire-sizing solution (i.e. for the optimal solution x*,
the final solution x satisfies |(z; — zi)/z;| < € for all i).
Proof: By Lemma 6, for any ¢ > 0 and for all 1,

* IL‘(t)

Z; H

"
T;

1+ A)Aat
l—-a

<

In order to guarantee that |(z; — m,ft))/:cﬂ < € for all 4, the
number of iterations ¢ must satisfy

t
1+ A)Aa <e
l-«
or equivalently,
1+A)A
t>logy u
« (1-a)e
In other words, at most [Iog 1 ((11+_ i))f iterations are
enough. Since each iteration of GWSA takes O(n) time,
the total run time is O(nlog 1). O

Therefore, to obtain a solution with any fixed precision,
only a constant number of GWSA iterations are needed. This
implies that the run time of GWSA is O(n). In practice, even
for very accurate solutions, GWSA usually takes only a few
iterations. So, as we will demonstrate in the next section,
GWSA is very efficient in practice.
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4. EXPERIMENTAL RESULTS

In this section, we will demonstrate the linearity of the run
time of GWSA in practice and the use of better starting
solutions to speed up the optimization of other objectives
using Lagrangian relaxation. We run the algorithm GWSA
on an IBM PC with a 200 MHz Pentium Pro processor.

Figure 3 shows the linearity of the run time of GWSA.
We are using the clock trees r1-r5 in [12]. The number of
segments in these trees range from 533 to 6201. In order
to have more data points, we construct 10 trees from each
tree by dividing each tree edge into k segments where k =
1,...,10. So we have 50 trees with the number of segments
ranging from 533 to 62010. For each tree, we run GWSA
with e equals 1075, The run time is plotted against the
number of segment in Figure 3. It can be seen that the run
time of GWSA is linear in practice.

Run Time of GWSA-C isLinear
CPU Time (s)
450 7 ="

4.00 — _

350 - -

3.00 -

250 - -

2.00 - -

150 - -

1.00 - -

0.50 - -

0.00 - -

. . . l4+ Ségments x 103
0.00 20.00 40.00 60.00

Figure 3. Run time of GWSA verses number of segments.

To demonstrate the usefulness of being able to use any
starting wire-sizing solution, we solve the problem of min-
imizing the maximum sink delay of the clock trees rl-r5.
This problem is reduced by Lagrangian relaxation to a se-
quence of weighted sink delay problems. Previously, before
solving each weighted sink delay problem, all segments are
reset to their minimum possible widths to form the starting
solution of GWSA. Our result implies that GWSA will still
converge even if we do not reset the segments widths. So in
our new approach, we do not reset, and therefore the opti-
mal solution of a weighted sink delay problem is used as a
better starting solution to the next one in the sequence. The
run time of the previous approach and our new approach are
listed in Table 1. For the old approach, each weighted sink
delay problem takes about 4 iterations of GWSA. For our
approach, each weighted sink delay problem takes only 1.16
iterations of GWSA on average. The overall improvement
on the run time is 57.7% on average.
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Circuit CPU time (s)

Name | Size Old approach | Our approach || Improv.
rl 533 1.95 0.88 54.9%
r2 1195 7.85 3.32 57.7%
r3 1723 11.97 5.09 57.5%
rd 3805 55.34 22.54 59.3%
rb 6201 71.59 29.41 58.9%

Average: 57.7%

Table 1. Demonstration of the usefulness of being able to use
any starting solution. The run time for the old approach (reset to
min-width before each call to GWSA) and our new approach (do
not reset) are listed.

REFERENCES

[1] Chung-Ping Chen, Yao-Wen Chang, and D. F. Wong.
Fast performance-driven optimization for buffered clock
trees based on Lagrangian relaxation. In Proc. IEEE
Intl. Conf. on Computer-Aided Design, pages 405-408,
1996.

[2] Chung-Ping Chen and D. F. Wong. A fast algorithm for
optimal wire-sizing under Elmore delay model. In Proc.
IEEE ISCAS, volume 4, pages 412-415, 1996.

[3] Chung-Ping Chen, Hai Zhou, and D. F. Wong. Optimal
non-uniform wire-sizing under the Elmore delay model.
In Proc. IEEFE Intl. Conf. on Computer-Aided Design,
pages 38-43, 1996.

[4] Chris C. N. Chu, Chung-Ping Chen, and D. F. Wong.
Fast and exact simultaneous gate and wire sizing by
Lagrangian relaxation. Technical Report TR98-06, De-
partment of Computer Science, University of Texas at
Austin, February 1998.

[5] Jason Cong and Lei He. An efficient approach to si-
multaneous transistor and interconnect sizing. In Proc.
IEEE Intl. Conf. on Computer-Aided Design, pages
181-186, 1996.

[6] Jason Cong and Lei He. Optimal wiresizing for inter-
connects with multiple sources. ACM Trans. Design
Automation of Electronic Systems, 1(4), October 1996.

[7] Jason Cong, Lei He, Cheng-Kok Koh, and Patrick H.
Madden. Performance optimization of VLSI intercon-
nect layout. INTEGRATION, the VLSI Journal, 21:1—
94, 1996.

[8] Jason Cong and Cheng-Kok Koh. Simultaneous driver
and wire sizing for performance and power optimization.
In Proc. IEEE Intl. Conf. on Computer-Aided Design,
pages 206-212, 1994.

[9] Jason Cong, Cheng-Kok Koh, and Kwok-Shing Leung.
Simultaneous buffer and wire sizing for performance and
power optimization. In Proc. Intl. Symp. on Low Power
Electronics and Design, pages 271-276, August 1996.

[10] Jason Cong and Kwok-Shing Leung. Optimal wiresiz-
ing under the distributed Elmore delay model. In Proc.
IEEE Intl. Conf. on Computer-Aided Design, pages
634-639, 1993.

[11] W. C. Elmore. The transient response of damped linear
network with particular regard to wideband amplifiers.
J. Applied Physics, 19:55-63, 1948.

[12] R.S. Tsay. An exact zero-skew clock routing algorithm.
IEEE Trans. Computer-Aided Design, 12(2):242-249,
February 1993.



