
ABSTRACT
We propose a simple, isometry invariant pattern matching algo-

rithm for an effective data reduction useful in layout-related data
processing of very complex IC designs. The repeatable geometri-
cal features and attributes are stored in a pattern database. Original
pattern instance, or its geometrical attributes, may be quickly
regenerated based both on the information stored within the pattern
and position of the pattern instance. We also show preliminary
results of analysis of the state-of-the-art ICs which suggest that the
diversity of patterns does not significantly increase with the
increase of chip size.

1. INTRODUCTION
Verification of sub-half-micron IC's presents many challenges

that have not been fully addressed by the current CAD tools. Com-
plex physical and chemical phenomena involved in DUV lithogra-
phy, the use of phase shifting masks and optical proximity
corrections for technologies below quarter-micron cause the 3-
dimensional topography of the manufactured IC to be very differ-
ent from the one created by the simplistic superposition of litho-
graphic masks. Thus, most of the design verification and analysis
tasks, especially accurate circuit extraction, critical area/volume
extraction and optical proximity correction, in deep submicron
domain must use accurate mask to topography mapping as a start-
ing point. Moreover, the enormous size/complexity of modern ICs
require efficient hierarchical approaches to be employed for the
purpose of handling the layout data.

Given the complexity of today’s ICs and the increasing necessity
to process the 3-D topography instead of mask layout, a data
reduction technique is needed which is effective in terms of mem-
ory requirements and still allows CAD algorithms to operate on the
data without a big performance penalty. Several IC verification
tools (e.g., DRCs, circuit extractors, critical area extractors for
yield prediction) have been developed in the past to handle the
repetitive nature of VLSIC's by employing the design hierarchy.
One of the main difficulties in practice is that the real-life hierar-
chy is often not clean; it includes overlapping cells and over-the-
cell-routing wires. Moreover, most applications require accounting
for interaction of cell instances with their neighborhood which
complicates the use of design hierarchy even further. There are
three currently published approaches to this problem which do not
completely exclude each other. The first one relies on local flatten-
ing of the design hierarchy [1], [2]. The second one applies decom-
position of cells into parts based on interactions of their instances
with the surrounding primitives and other instances which “cleans”
the hierarchy at the expense of an increase in the number of cells
[3],[4]. Third approach adds some complexity to hierarchy by
applying the inverse layout trees [5]. Although such solutions may
work for some tasks and some lower layout levels (e.g., up to local
interconnect layer), they break down for the metal interconnect

layers in which the cell-based hierarchy is not followed at all. Pro-
cessing of such layers, given their complexity, is a challenge.
Therefore, the data reduction technique must have an option of
adapting to the statistical pattern of mask features instead of being
always forced into the framework of cell hierarchy.

This paper presents a pattern matching algorithm which is, in our
opinion, a basic step to address the above problem. The matching
is based on a signature which stores a shape template in a way
which is both compact and allows for a quick regeneration of any
shape instance or its attributes (e.g. bounding box, convex hull,
area). We focus on this algorithm since we have observed that frag-
ments of shapes on masks of interconnect layer repeat often even if
the entire mask shapes do not. Such repeatability of geometrical
features is an advantage, since thanks to the pattern matching we
may store details of these features only once even if they are
rotated or mirrored. The repeatable geometrical patterns (and all
their repeatable attributes such as 3-D topography profiles) are
stored in a pattern database. The geometrical CAD database uses
instances of these patterns. This is analogous to the way instances
of library cells are used in a hierarchical layout representation, but
allows to account for “finer granularity” of repetitive patterns.

This paper is organized as follows. Sec. 2 introduces our canoni-
cal representation of shapes, the concept of contour equivalence
and the previous work in the area of shape matching. Sec. 3 pre-
sents our pattern matching algorithm in general terms. Sec. 4
describes our approach to building libraries of patterns based on
this algorithm and presents considerations specific to IC mask
geometry. Sec.5 contains experimental results. Sec. 6 presents con-
clusions.

2. BACKGROUND
We begin with the discussion of contours, i.e., oriented borders

of regions defined by simple polygons on 2D plane. These regions
may correspond either to mask shapes or to some other entities
which are used in physical CAD algorithms (for example, the
interaction area in DRC, the device geometry, etc.). We assume
that a region may be either an interior or an exterior of the contour,
i.e., a solid or a hollow.

Definition 1. Let L be a simple polygon described by a sequence of
vertices (V1,...,Vn). By a contour K (Fig. 1) we will understand
the simple polygon L with the attribute of orientation of sequence
of its vertices. The sequence of vertices is oriented counter-clock-
wise if L represents a border of a hollow or clockwise if it repre-
sents the border of a solid.

The matching algorithm which we propose in this paper is isom-
etry invariant (i.e., it recognizes as equivalent the contours which
are translated, rotated and reflected). Moreover, the contour orien-
tation is an attribute which is preserved under reflection. To be
more precise, our matching algorithm checks for the equivalence
of contours defined as follows.

Definition 2. Two contours K1 and K2 belong to the same contour
equivalence class if there exists an isometric transformation which
maps the polygon of contour K1 into the polygon of contour K2

and both contours have the same orientation. Contours belonging
to the same equivalence class are called equivalent.

A PATTERN MATCHING ALGORITHM FOR VERIFICATION AND ANALYSIS OF VERY LARGE IC LAYOUTS

Mariusz Niewczas*, Wojciech Maly and Andrzej Strojwas
Dept. of Electrical and Computer Engineering, Carnegie Mellon University,

5000 Forbes Ave., Pittsburgh PA 15213, fax: (412) 268 3204, email: mn@ece.cmu.edu
*On leave from Dept. of Electronics, Warsaw University of Technology, Warsaw, Poland.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISPD 98, April 6-8, 1998, Monterey, CA USA
© 2000 ACM ISBN 1-58113-021-x/98/04…$5.00 129

http://crossmark.crossref.org/dialog/?doi=10.1145%2F274535.274554&domain=pdf&date_stamp=1998-04-01

FIGURE 1. Illustration of Definition 1. Orientation defines that
the interior is “to the right” of directed line segments of the

respective contour. The arcs denote internal angles.

Many interesting pattern matching algorithms have been devel-
oped in the past [7],[8],[9],[10],[11]. As will be explained below,
we base our pattern matching on vertex angles and edge segment
lengths of contours. The angles and lengths are isometry invariants
and have been used in various forms in more complicated algo-
rithms performing inexact matching (e.g. [8],[11]).

3. PATTERN MATCHING ALGORITHM
We will now describe an algorithm for checking whether two

given contours are equivalent in the sense of Definition 2. The
algorithm is based on a concept of a contour signature, a sequence
of numerical values which uniquely characterizes a contour equiv-
alence class and which can be quickly constructed for a given con-
tour.
3.1. The signature

Let us choose an arbitrary vertex V out of n vertices of a contour
K. We construct our signature as a sequence of angles and edge
lengths built by following the vertices along the contour. To
describe the signature and to prove its uniqueness within equiva-
lence classes, we will have to introduce two auxiliary concepts.

Definition 3. The vertex sequence of contour K starting in vertex
V is a series of vertices ordered as they appear when the polygon
of K is traversed in a given direction starting from V. We will call a
vertex sequence a direct one if the order of vertices agrees with the
orientation of contour K and we will call it an indirect (or mir-
rored) one in the opposite case. The sequence will be called full if
it contains all n vertices of K.

Definition 4 . For a given full vertex sequence A={Vi}i=0,..,n-1, by
the angle-segment sequence of contour K we will understand the
sequence:

S = {(αi, Li)} i=0,..,n-1, (1)

where, αi is a magnitude of internal angle of vertex Vi and Li is the
length of the line segment connecting Vi with the vertex V(i+1)mod n
(i.e., with the next vertex of K). S is direct when A is direct, and S
is indirect (or mirrored) otherwise.

Observe that vertex sequence is a chain of points with specific
locations on the plane whereas the angle-segment sequence is
isometry invariant and thus is position-independent.

Fig. 2 illustrates the above concepts. The example sequences
start at the same π/4 corner. Note that the inverted sequence of K is
equal to the direct sequence of K’. This is because K’ is a reflec-
tion of K and the sense of angles is changed, but contour orienta-
tion is preserved.

FIGURE 2. Example angle-segment sequences (1) for two
equivalent contours: K and its reflection K’. Angles are in radians.

Observation. Let us consider a given contour K and let S be any
of this contour’s angle-segment sequences in a form given by (1). S
uniquely identifies the contour equivalence class to which K
belongs.

Proof. We have to show that: (a) only contours equivalent to K
may have the given angle-segment sequence S and (b) the
sequence S exists for all equivalent contours if it exists for any of
them.

The proof of (b) is immediate since the angle-length sequence S
is isometry invariant and each member of a contour equivalence
class can be mapped by definition to another one by isometry.

To prove (a) let us consider any two contours K and K’ for
which the sequence S exists. Let A = {Vi}i=0,..,n-1 and
A’={Vi’}i=0,..,n-1 be the respective vertex sequences for the angle-
length sequence S of K and K’. To prove that K and K’ are equiv-
alent, we have to show existence of isometry, which transforms K
to K’. This can be done in a following way: let us consider the tri-
angle V0V1V2 determined by the first three vertices of A and the
triangle V0’V1’V2’ determined by the first three vertices of A’.
Without any loss of generality we can assume that V0, V1 and V2

are not collinear - we merge such edge segments in all contours.
 Since A and A’ generate the same angle-segment sequence S,

both triangles are equal (two sides and the angle between them are
equal) which implies that there is an isometry Z which transforms
triangle V0V1V2 to triangle V0’V1’V2’ so that:

V0’ = Z(V0), V1’ = Z(V1) and V2’ = Z(V2). (2)

However, Z is also the isometry which makes K and K’ equiva-
lent since the fact that Vi’ = Z(Vi) for i=3,..,n-1 can be explicitly
deduced from the fact that K and K’ have the same sequence S (we
can build the next pairs of triangles isometric under Z traversing
both contours concurrently). This is because both the edge lengths
and the angle magnitudes are preserved under Z, which ends the
proof.

Note that a contour K with n vertices may be represented by 2n
full vertex sequences; a direct one and a mirrored one starting at
each vertex. However, not all the angle-segment sequences based
on these vertex sequences are necessarily different since the con-
tour may have internal symmetry. For example, a rectangular con-
tour has only two different angle-length sequences.

We base our contour signature on an angle-segment sequence.
The idea is to construct the signature in such a way that we obtain
the same distinct angle-segment sequence for any contour belong-

direct sequence:{(π/4, 1.5), (3π/2, 3), (π/2, 1), (π/2, 3),

 (3π/2, 0.5), (π/2, 1.5), (π/2, 1.5), (3π/4, 1.5√2)}

K

K’

 indirect sequence: {(π/4, 1.5√2), (3π/4, 1.5), (π/2, 1),

 (π/2, 0.5), (3π/2, 3), (π/2, 1), (π/2, 3), (3π/2, 1.5)}

direct sequence: {(π/4, 1.5√2), (3π/4, 1.5), (π/2, 1),

 (π/2, 0.5), (3π/2, 3), (π/2, 1), (π/2, 3), (3π/2, 1.5)}

130

ing to a given equivalence class. The signature can be efficiently
built if we choose the lexicographically smallest sequence. To
find such a sequence for a given contour, we first compute any
direct angle-segment sequence by choosing any random vertex as
the starting point. Then, we may easily obtain any of other direct
sequences for that contour by just changing the index of the start-
ing point and “connecting” the end of the original sequence with
its beginning. Thus, we can look up all sequences and efficiently
find the smallest one. The binary predicate we have chosen for the
lexicographical ordering treats angle magnitudes as more impor-
tant. Only if the compared sequences have the same sub-sequence
of angle magnitudes are the segment lengths compared. Theoreti-
cally, the lexicographical sort can be done in O(n) time [13]. In our
case, the average number of vertices is small (usually in order of
tens). Moreover, we can often take advantage of specific character-
istics of the data set as explained later in Section 4.

Definition 5. The vertex at which a lexicographically smallest
angle-segment sequence was starts will be called the smallest ver-
tex.

To enable matching against mirrored contours we also have to
find the lexicographically smallest indirect angle-segment
sequence. Any indirect angle-segment sequence for a contour can
be generated from a direct one by traversing it in the opposite
direction. This allows us to a find minimal indirect sequence by
applying the same lexicographical ordering procedure as outlined
above.

Definition 6. The contour signature consists of the lexicographi-
cally smallest direct angle-segment sequence and lexicographi-
cally smallest indirect angle-segment sequence.

Observe that for the implementation purposes it is enough to
store the direct sequence only, the smallest indirect sequence being
identified by an index. Moreover, if a contour has an axial symme-
try, then the minimal indirect angle-segment sequence is identical
to the direct one. If the contour has an k-fold center of symmetry
the signature consists of the same sequence repeating k times. For
such contours the signature can be simplified. Also, squares, rect-
angles and trapezoids can obviously be tested for equivalence
directly without any need for generation of the signature. We omit
these issues in the following part of this section for the sake of
clarity.

It should be also noted, that in some CAD applications (e.g.
detailed circuit extraction) it is convenient to associate some prop-
erties with the edge segments or fragments of these edges. Such a
case is often referred to as “edge coloring”. Our signature and pat-
tern matching algorithm can be easily made “color sensitive” by
adding appropriate color sequences to the signature presented
above.
3.2. Signature comparison

Let us assume that two contours P (pattern) and C (candidate)
are given. P would be typically a pattern stored in a database and C
would be a new contour. P and C are equivalent if and only if one
of the following is true:

• minimal direct angle-segment sequence of P is equal to the
minimal direct angle-segment sequence of C

or
• minimal indirect angle-segment sequence of P is equal to the
minimal direct angle-segment sequence of C.

In this way, the problem of contour matching has been reduced
to the problem of string processing. First, the strings are created
(by finding minimal sequences as described above in Sec. 3.1) and
then, the strings are subject to comparison. Both of these proce-
dures have the complexity O(n). It should be noted however, that

maximal value of n (i.e., the greatest number of vertices in a con-
tour for a given design to be processed) does not change signifi-
cantly with an increase of complexity of the design. Hence, the
cost of matching two contours can be considered to be constant.

The need to compare against both direct and indirect sequences
is a consequence of the fact that although each angle-segment
sequence is isometry invariant, the reflection of a shape causes any
particular sequence to become indirect if it was direct before
reflection and vice versa (compare Fig.2). Note, that if we test two
contours for matching, we have to create a full signature for one of
them only (P in our case), the other one may be just coded with the
minimal direct sequence.
3.3. Chain matching

One important variation of the ideas presented above is the case
when pattern matching has to be done in search for repetitive open
chains of vertices. Such a capability may have many applications.
We will give two examples. First, the chain may describe a path
object, (e.g., “the wire” in CIF format). This allows for improved
performance of contour matching on metal interconnect layers.
Second, the chain may describe features of a border of a mask
shape (e.g. for optical proximity correction). In this case, only the
vertices separated by less than a certain threshold distance are con-
sidered members of a chain. This is a concept which we use in
topography simulation [6].

The chain matching procedure differs from contour matching
only at the stage of signature construction. An open chain is repre-
sented by exactly two vertex sequences: a direct one and an indi-
rect one. Thus, the smallest direct angle-segment sequence starts at
the beginning of the chain and the smallest indirect one starts at the
and of the chain. Moreover, the angle segment sequences contain
one more segment length value than the angle magnitude value.
Having this in mind, we can say that signature matching for chains
is analogous to the one described just above for contours.

4. APPLICATION
Using the concept of pattern signature and the matching algo-

rithm introduced above, we organize a pattern database (pDB) and
a database of contour instances (iDB) for a given data set. The
issues related to these two databases are discussed in Sections 4.1
and 4.2.

Our pattern matching algorithm is formulated for arbitrary
isometries and for polygons with arbitrary angles. However, in
order to increase efficiency of our implementation, we limited pos-
sible rotation angles. We also created a special variant of the signa-
ture for regular geometries. We discuss these two issues in Sec. 4.3
and Sec. 4.4.
4.1. Pattern database building algorithm

The pDB stores contour signatures and may also keep some
other useful pattern-related data (such as 3D topography profiles
for example). The pDB is based on a set of binary trees, roots of
which are stored in a hash table. Each binary tree is sorted accord-
ing to the lexicographical order of signatures. The hashing function
is based on the number of contour vertices and dimensions of the
bounding box. Such sorting allows for efficient addition of a new
pattern C to pDB. In other words, we have to perform signature
comparison for C only against those patterns P from the pDB
which satisfy necessary conditions for contour equivalence. In the
case of our implementation, this means that C and P have the same
value of the hashing function and the actual signature comparison
algorithm is invoked for a very small number of patterns only.
Note, that the hashing function can be adjusted to the statistical
properties of geometrical database characteristic of a given CAD
environment and design style. To further improve efficiency of
building the pDB, we construct only the direct minimal angle-seg-
ment sequence of the “candidate” C, not the entire signature (com-

131

pare Sec. 3.2). Only after C is found not to match any contour from
pDB, we look for the indirect minimal sequence and thus, we fin-
ish constructing the signature to add such a unique contour C to
pDB. In the opposite case, when C is found to match a pattern P
already existing in pDB, the angle-segment sequence of C is dis-
carded but we know if C is matched against direct or indirect
sequence of P. The transformation from P to C includes reflection
in the latter case only. Once we have the pDB entry corresponding
to C, we can add this contour instance to iDB. We have to deter-
mine the parameters of transformation leading from pDB entry to
C. This is analogous to providing a transformation code for a cell
instance in hierarchical designs. As explained in Sec. 4.3, we
decided to limit possible rotation angles to the multiples of π/2.

We assume a convention that the identity transformation of a
pDB entry to a contour instance will result in a contour with mini-
mal vertex situated at point (0,0) on the plane. In addition, we
specify orientation of what we call the first vector of the contour:
a vector connecting minimal vertex with the next vertex in the
direct vertex sequence. This vector, for the identity transformation
makes an angle less than π/2 with the X axis of the coordinate sys-
tem.

With this convention in mind, one can easily find translation, and
rotation parameters for any contour C for which its minimal point
is known. Moreover, the reflection must be accounted for if it was
detected during the signature matching.
4.2. Pattern instance database and contour recreation

Due to specific needs of CAD applications, the elements of iDB
are geographically (e.g., using quad-tree representation) and hier-
archically ordered. Note, that iDB may be, when applicable, an
existing hierarchical layout database with pattern instances repre-
senting selected layout primitives. Alternatively, it may be a totally
new database when the hierarchy does not work which is, in gen-
eral, the case for most metal interconnect layers.

Each contour instance, an entry in iDB, must contain the follow-
ing minimal information: the transformation code, coordinates of
its minimal point (called the origin) and reference to the respective
pattern from pDB. The rest of contour instance data, such as the
coordinates of vertices and the bounding box may be regenerated
based on this minimal data and the information contained in the
appropriate pattern from pDB. In order to facilitate fast vicinity
search and region queries in the iDB, we store the origin point
implicitly: we represent the center of gravity of the pattern
instance’s bounding box (COG). The offset from this COG to ori-
gin is stored with the pattern where the dimensions of the bound-
ing box are also kept. This allows for calculation of the bounding
box very efficiently on the fly (four additions only) during vicinity
search.

Based on the signature, the polygon describing the contour
instance cI may be easily recreated using following algorithm:

1. Find length of the first vector based on the signature of cI.
2. if(the transformation of cI does not involve reflection){

3a. Position the first vector at the origin of cI, based on transf.
code of cI, so that beginning of the vector is in origin of cI.

3b. Traversing the minimal direct sequence in signature,
starting from the second vertex, generate each next vector
from the previous by setting the length and rotating the vector
according to corresponding segment length and angle in
signature.

}else{ /*Case of indirect isometry*/
4a. Place the first vector at the origin of cI, based on the transf.
code of cI, so that the end of the vector is in origin of cI.

4b. Traversing minimal direct sequence in the signature
starting at the first vertex and then proceeding backwards
from the last vertex, generate each next vector the from
previous one by setting length and rotating it according to the
corresponding segment length and angle in signature.

}

This procedure is illustrated in Fig. 3. It is worth noting that this
can be also used to constructively prove the uniqueness of signa-
ture discussed in Sec. 3.1.

FIGURE 3. Contour recreation: a) the minimal angle-segment
sequence, b) for the case of a contour instance which is not
mirrored (steps 3a and 3b of the procedure), c) the case of a

contour instance which is mirrored (steps 4a and 4b).

Such a pattern-based organization of the geometrical database
reduces the memory requirements (in comparison with the data-
bases which do not account for repetitive patterns). Moreover, it
allows for adaptive and selective trade-off between memory usage
and execution time. For example, if the coordinates of vertices of
some contour instances are needed often, they can be stored
together with these instances and later, when they are no longer
needed, they may be discarded.
4.3. Limitation of transformations of interest

In our current implementation, we decided to limit (Fig. 4) the
possible contour instance transformations to translations, reflection
with respect to Y axis (traditionally called mirror X or MX), and
rotations by an angle which is a multiple of π/2. This is because all
coordinates are snapped to a grid. Hence, a rotated polygon may in
general have slightly different edge lengths and angle magnitudes
than before rotation. To account for this effect, we would have to
use a much less efficient inexact matching techniques. Moreover,
the entire concept of contour equivalence would become fuzzy.
Within our restricted transformations, a diagonal line is trans-
formed to another diagonal line and a line parallel to grid is trans-
formed to another one parallel to grid. Restriction to eight possible
transformations has an additional advantage: it allows for storing
the transformation code in a 3-bit long field and speeding up rota-
tion processing due to very simple transformation matrices which
include only 0s and ±1s.

FIGURE 4. The transformations of contour instances to which we
restrict our implementation. I - identity, MX - mirror wrt Y axis,

R2 - clockwise rotation by π/2, R4 - clockwise rotation by π, R6 -
clockwise rotation by 3π/2, MR2, MR4, MR6 are compositions of

MX and R2, R4, R6, respectively.

4.4. The case of π/4 geometry
The vast majority of layout entities are based on either Manhat-

tan geometry or π/4 geometry (i.e., Manhattan lines and diagonal
lines on a rectangular grid). We have developed a variant of the
matching algorithm implementation to take advantage of this fact.

As shown in Figure 5, we can use a very limited number of angle
codes to represent angle magnitudes for the π/4 geometry. Now,

Angle-segment sequence:

{(π/2, 1), (π/2, 2), (π/2, 3),

 (π/2, 1), (π/2, 2), (3π/2, 1)}

first
vector

1µm

(x,y)
origin

next vector

b) c)

a)

(x,y)
origin

next vector

first
vector

MXI

R2
R4

R6

MR6

MR2

MR4

132

the contour signature can be stored in a more efficient way since
the contour codes require only 3 bits. The angle sequence is stored
separately from the edge length sequence in this variant of imple-
mentation. Moreover, the contour recreation (Figure 3) can be
done efficiently due to the use of simple look-up tables based on
vector direction codes instead of using the rotation matrices.

The angle code 4 (vertex between two collinear segments) is
allowed only in case of colored contours in the point where color
changes on a segment, otherwise collinear edge segments are
merged in order not to cause ambiguity.

This specific way of handling the π/4 geometry provides both a
significant speedup and reduction of memory usage. This is also
very easy to integrate with the general geometry processing code
and data structures thanks to the object oriented implementation.

FIGURE 5. The angle codes allowed for π/4 geometry.

5. EXPERIMENTAL RESULTS

5.1. Repeatability of contours
The goal of our prototype implementation was to verify the con-

cepts of pattern matching and to gain insight into how often pat-
terns tend to repeat in industrial IC designs. We built interfaces
between our prototype and two commercial products: the Cadence
DFII Opus database and the SiCat (AISS/PDF Solutions) mask
engine [12].

Performance of our prototype was about 700 patterns / second
consistently on Spark Ultra 5 and on IBM PowerSeries 850 work-
stations. The examples are shown in Table 1. They are representa-
tive for what we obtained after processing of several industrial
designs done for three different submicron and deep-submicron
technologies and in different design styles (from approx. 15 000
transistors to 70 000 transistors in a flat mode and up to 1 000 000
transistors in a hierarchical mode). First four examples in the Table
1 illustrate repeatability of contours on a large region of polysili-
con mask - the designs were flattened and all overlapping or abut-
ting polygons were merged. Next two examples show the same
thing for the active region and metal 1 mask. Part of the repeatabil-
ity for such flat layouts may be attributed to the repetition of cell
instances in the design hierarchy, but the result of hierarchical pro-
cessing demonstrates that the layout features repeat quite often in
the hierarchical layout database as well. In this case, we traversed
the design hierarchy visiting each cell kind only once and again,
merging all overlapping and abutting shapes, but without any local
flattening of instances within the cell.

Figure 6 shows the repetition characteristics for two different
designs. First one (Figure 6a) is an integer processing unit, which
includes iterative logic. Thus, the characteristics shows repetition
of many patterns exactly the same number of times. This is a fea-
ture which can be often directly deduced from the regularity of the
design structure. However, repeatability of patterns can be seen
even for logic layouts which seem not to contain such a regularity.
The typical pattern repetition characteristics is similar to the one
shown in Figure 6b where we show the worst case we found in our
experiments. There is quite a few contours which do not repeat.

We noticed that for some patterns, significant portion of contour
instances (10 - 25%), may be a reflection of the original pattern. In
the above case of contours on the poly mask of a standard cell
based design, reflection happens much more often than rotations.
Note however, that there are many patterns for which we will never
need reflections due to their symmetry. In the case of chain
instances (see Section 3.3), which are features with “finer granular-
ity”, we noticed that all kinds of transformations for chain
instances are usually present. Due to space limitations, we do not
show here the results we obtained for such chains. They are pre-
sented in [6]. Generally, for maximal vertex spacing of 2µm, there
were only several hundred different vertex chains in each of the
examples we analyzed. Our experiments have shown, that account-
ing for rotations and reflections of contours is an important feature
of the matching algorithm.

of contours # of different
patterns

Mean # of
vertices in

pattern

Data description

1 30507 1366 11.4 flat, Poly, cache tags+ctrl. logic

2 6802 1057 19.2 flat, Poly, full-custom rand logic

3 71503 2723 11.5 flat, Poly, full-custom rand logic

4 15545 4755 15.9 flat, Poly, std cell random logic

5 8219 246 15.5 flat, Met1, full-custom rand logic

6 23585 126 5.6 flat, active, full-custom rand logic

7 45355 3421 10.9 hierarchical, Poly, semi-custom
integer processing unit

8 162699 2339 11.8 hierarchical, Poly, 16bit CISC
CPU (standard cell style)

TABLE 1: Repetition of contour patterns in example designs.

‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’

π/4 2π/4 3π/4 4π/4 5π/4 6π/4 7π/4

FIGURE 6. The frequency of repetition of contour patterns
for polysilicon masks of two different designs (#3 and #4 in

Table 1).

Pattern frequency

Pattern number

1000 2000 3000 4000 50000

1000

100

10

1

Pattern frequency

Pattern number

0 1000 2000 3000500 1500 2500

10000

1000

100

10

1

a)

b)

133

5.2. Memory consumption
Our prototype representation of π/4 geometry pattern with n ver-

tices requires 4n bytes for edge lengths (a coordinate is repre-
sented by 4 bytes), n bytes for angle lengths (this could actually be
n/2 but we chose not to pack two angle codes into one byte for
simplicity), 8 bytes for both bounding box dimensions, and 8 bytes
for the vector coding the offset from COG to first vertex of the pat-
tern and 2 bytes for coding the number of vertices - total 5n + 18
bytes. The memory required to represent pattern instances does not
depend from n and is: 8 bytes for coordinate of COG, 1 byte for
the transformation code, and 4 bytes for the pattern reference -
total of 13 bytes.

The memory needed for representation of a polygon is roughly
8n for coordinates of vertices, 8 bytes for both bounding box
dimensions and 2 bytes for the number of vertices - total of 8n
+10. For the square, rectangle and trapezoid this cost is smaller:
12, 16 and 24 bytes respectively.

The above table shows, that it is possible to spare a lot of mem-
ory if the contours do repeat and the average number of vertices is
larger than 4 (compare Table 1 for mean numbers of vertices). The
case of 4 vertices requires special treatment - in such case we can
still use the patterns, but we use the bounding box and simple
object classification instead of explicit signatures.

6. CONCLUSION
We presented an algorithm for isometry invariant pattern match-

ing tailored especially for processing of geometrical shapes present
in IC designs. The algorithm is capable of handling polygons with
arbitrary angles, but has also a faster version making use of spe-
cific features of data sets in which all angles are multiples of π/4.
Due to practical considerations, we restricted the allowed contour
transformations by limiting the number of possible rotation angles.
Based on the pattern matching algorithm, we presented an
approach for construction of geometrical database using repetitive
patterns stored in a pattern library.

Our data reduction technique seems to be well suited for very
large layouts since the diversity of patterns does not significantly
increase with the increase of chip size. Moreover, the signature-
based pattern matching enables the trade-offs between execution
speed and memory usage. Time required to recreate a contour
based on the information contained in the signature does not
depend upon the chip size. It is also worth noting that many fre-
quent operations that require quad-tree search can be performed
with very small performance penalty if pattern instances were used
as layout primitives instead of polygons or paths. Recreation of a
bounding box from a pattern instance requires only four additions.
This is an example of how our method can provide significant
memory usage reduction without an unacceptable performance
degradation.

The patterns and pattern attributes (e.g., 3D topography profile)
accumulated in a library may be used for more than one design tar-
geted at a given manufacturing line. Moreover, even for multiple
analyses for a given design, the building of pattern library and
CAD database can be, in principle, carried out only once.

 An important feature of our approach, which we are going to
exploit in the future, is that it allows to enhance hierarchical repre-
sentation which is important in case of layers such as metal inter-
connect which do not follow the design cell hierarchy. This, of
course, does not exclude the use of the cell hierarchy for some set
of design layers but gives much more freedom in efficient organi-
zation of design data. There are many applications, such as e.g.
optical proximity correction, for which we can assume that the
interactions between the mask shapes can be confined to a single
layer or to the two adjacent layers. Our algorithm has already
proven useful for chip-scale 3-D topography synthesis [6] and is
now a basis for thorough investigation of statistical properties of
deep-submicron industrial designs.

7. ACKNOWLEDGMENTS
We would like to thank Pranab K. Nag and Charles Ouyang of
Carnegie Mellon University for their helpful discussions. We are
also grateful to Thomas Waas and Hendrich Schneider of AISS,
Munich, Germany and to Dennis Ciplickas of PDF Solutions, San
Jose CA for their feedback and for the SiCat mask processing soft-
ware. This work was supported in part by the SRC under contract
DC-068.

8. REFERENCES
[1] T. Whitney, “A Hierarchical Design Analysis Front End”, in

Proc. of First Int. Conf VLSI, Aug. 1981, pp. 217-225
[2] G. S. Taylor and J. K. Ousterhout, “Magics’s Incremental

Design Rule Checker”, Proc. of 21stACM/IEEE Design Auto-
mation Conf., pp. 160-165, 1984.

[3] D.M.H. Walker, C. Kellen, D. M. Svoboda and A. Strojwas,
“The CDB/HCDB Semiconductor Wafer representation
Server”, IEEE Trans. on CAD, Vol CAD-12, No.2, pp.283-
295, Feb. 1993.

[4] P. K. Nag and W. Maly, “Hierarchical Extraction of Critical
Area for Shorts in Very Large ICs”, IEEE Intl. Workshop on
Defect and Fault Tolerance in VLSI Systems, pp. 19-27, Nov
1995

[5] N. Hedenstierna and K. O. Jeppson, “The Halo Algorithm - An
Algorithm for Hierarchical Design of Rule Checking of VLSI
Circuits”, IEEE Trans. on CAD, Vol. CAD-12, No. 2. pp 265-
272, Feb. 1993

[6] Mariusz Niewczas, Xiaolei Li, Andrzej Strojwas and Wojciech
Maly, “Chip scale 3-D Topography Synthesis”, SPIE Optical
Microlithography Conference, Feb 1998.

[7] Neg-Chung Hu, Kuo-Kan Yu, Yung-Li Hsu, “Two-dimensional
shape recognition using oriented -polar representation”, Opti-
cal Engineering, Vol. 36, No. 10, Oct. 1997

[8] L. Davis, “Shape Matching Using Relaxation Techniques”,
IEEE Trans. on Pattern Analysis and Machine Intelligence,
Vol. PAMI-1, No. 1, Jan. 1979

[9] T. Pavlidis, “Algorithms for Shape Analysis of Contours and
Waveforms”, IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 4, July 1980

[10]B. Bhanu and O. Faugeras, “Shape Matching of Two-Dimen-
sional Objects”, IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. PAMI-6, No. 2, March 1984

[11] S. Z. Li, “Matching: Invariant to Translations, Rotations and
Scale Changes”, Pattern Recognition , Vol. 25, No. 6, pp. 583-
594 (1992)

[12] information about SiCat can be found at http://www.aiss.com
[13]A. Aho, J. Hopcroft and J. Ulman, “The design and Analysis of

Computer Algorithms”, Addison-Weseley, 1974

Memory consumption in bytes

polygon π/4 pattern +instance

number of
instances

1 2 10 1 2 10

3 vertices 34 68 340 46 59 163

4 vertices 16 32 160 51 64 168

5 vertices 50 100 500 56 69 173

6 vertices 58 116 580 61 74 178

7 vertices 66 132 660 66 79 183

8 vertices 74 148 740 71 84 188

9 vertices 82 164 820 76 89 193

TABLE 2: Memory usage for direct representation of
polygon layout primitives and for our method.

134

